Analyzing Time Series and Sequential Data Specialization

Analyzing Time Series and Sequential Data Specialization

English | MP4 | AVC 1280×720 | AAC 44KHz 2ch | 175 Lessons (9h 59m) | 1.08 GB

Enhance your skills with SAS Visual Forecasting

What you’ll learn
Using SAS Visual Forecasting and other SAS tools, you will learn to explore time
series, create and select features, build and manage a large-scale forecasting
system, and use a variety of models to identify, estimate and forecast signal
components of interest.

Applied Learning Project
In this specialization’s project, learners will discover signal components in high value series then specify custom specifications appropriate for these series. These custom specifications are incorporated into a large scale forecasting system that learners create to automate the process of model generation, model selection and forecasting. Learners accommodate recurrent events and anomalies in the process generating the data to refine the automatic forecasting system .

Skills you’ll gain

  • Statistical Methods
  • Feature Engineering
  • Dimensionality Reduction
  • Anomaly Detection
  • Regression Analysis
  • Advanced Analytics
  • Automation
  • Predictive Modeling
  • Applied Machine Learning
  • Forecasting
  • Data Analysis
  • Statistical Modeling
  • Statistical Analysis
  • Unsupervised Learning
  • Bayesian Statistics
  • Time Series Analysis and Forecasting
  • Data Processing
  • SAS (Software)
  • Exploratory Data Analysis
  • Data Transformation
Table of Contents

large-scale-forecasting-sas-viya

specialization-overview-review

welcome
1 overview
2 getting-the-most-from-this-specialization_instructions
3 using-forum-and-getting-help_instructions
4 frequently-asked-questions_instructions

course-overview

course-overview
5 welcome-to-the-course
6 prerequisites_instructions
7 accessing-the-course-files-and-practicing-in-this-course-required_instructions

introduction-to-large-scale-forecasting

module-overview
8 about-this-module

the-large-scale-forecasting-problem
9 large-scale-forecasting
10 analysts-and-algorithms

forecasting-system-overview
11 atsm-package-objects
12 objects-and-information-flows
13 other-useful-configurations

exploring-and-processing-timestamped-data

module-overview
14 about-this-module

accumulation-transforming-transactional-data-into-time-series-data
15 time-series-accumulation
16 time-binning-and-indexing
17 accumulation-in-the-tsmodel-procedure
18 demo-accumulation-using-the-tsmodel-procedure

handling-missing-and-zero-valued-intervals
19 missing-value-interpretation
20 missing-value-imputation
21 demo-missing-value-interpretation-and-imputation

aggregation-building-the-data-hierarchy
22 time-series-aggregation
23 building-the-data-hierarchy-in-tsmodel
24 demo-using-proc-tsmodel-to-create-the-data-hierarchy

packages-for-tsmodel
25 proc-tsmodel-packages
26 using-proc-tsmodel-packages

automatic-forecasting-model-specification-and-selection

module-overview
27 about-this-module
28 introduction-to-atsm-objects

automatic-model-specification
29 the-diagspec-object
30 diagspec-object-methods
31 the-diagnose-object

automatic-forecast-generation
32 the-foreng-object
33 collector-objects
34 demo-automatic-model-selection-using-the-atsm-package

creating-custom-models-and-managing-model-lists

module-overview
35 about-this-module
36 custom-models-and-the-tsm-package

the-time-series-model-tsm-package
37 the-tsm-package
38 tsm-package-syntax-highlights
39 demo-creating-and-fitting-a-custom-specification-with-the-tsm-package

adding-custom-models-to-the-automatic-forecasting-system
40 adding-custom-models
41 demo-combining-custom-and-system-generated-models-in-the-model-selection-process

event-variables-in-the-forecasting-system

module-overview
42 about-this-module

introduction-to-event-variables
43 introduction-to-event-variables
44 event-variables-in-sas-visual-forecasting

creating-event-variables-in-the-atsm-package
45 creating-event-variables-in-the-atsm-package
46 implementing-event-variables-defined-in-the-atsm-package
47 demo-creating-and-implementing-event-variables-in-the-atsm-package

creating-event-variables-with-the-hpfevents-procedure
48 creating-event-variables-in-the-hpfevents-procedure
49 implementing-event-variables-defined-in-the-hpfevents-procedure
50 demo-creating-event-variables-in-the-hpfevents-procedure-and-implementing-them

by-group-processing-for-event-variables
51 by-group-functionality
52 implementing-by-group-processing-for-event-variables
53 demo-by-group-processing-for-event-variables

reconciling-statistical-forecasts

module-overview-and-introduction
54 about-this-module
55 reconciliation-basics

basic-forecast-reconciliation
56 performing-basic-forecast-reconciliation
57 demo-top-down-reconciliation-using-the-tsreconcile-procedure

disaggregation-methods
58 performing-disaggregation

bottom-up-reconciliation
59 performing-bottom-up-reconciliation
60 demo-performing-bottom-up-reconciliation

setting-up-the-forecasting-system-and-generating-best-forecasts

module-overview
61 about-this-module

honest-assessment-and-baseline-performance
62 holdout-sample-model-selection
63 holdout-partitioning
64 performance-measures
65 demo-implementing-honest-assessment-for-model-selection-and-creating-benchmark

combined-model-forecasts
66 combined-models
67 demo-adding-combined-models-to-the-forecasting-system

outlier-detection
68 outlier-detection
69 demo-adding-outlier-detection-to-the-forecasting-system

conditional-processing-and-error-catching
70 conditional-processing
71 demo-conditional-processing-and-error-catching

rolling-the-forecasting-system-forward-in-time
72 rolling-the-forecasting-system-forward-in-time
73 stability-and-updating-models
74 demo-rolling-the-system-forward-in-time

modeling-time-series-and-sequential-data

specialization-overview-review

welcome
75 overview
76 getting-the-most-from-this-specialization_instructions
77 using-forum-and-getting-help_instructions

course-overview

course-overview-and-logistics
78 welcome-to-the-course
79 prerequisites_instructions
80 finding-the-course-files-and-practicing-in-this-course-required_instructions
81 frequently-asked-questions_instructions

introduction-to-time-series

module-overview
82 about-this-module

a-review-of-time-series-components-and-concepts
83 time-series-components
84 applications-of-time-series-analysis
85 demo-exploring-a-time-series
86 a-framework-for-forecasting
87 demo-accumulating-a-time-series-and-exploring-systematic-variation

simple-models-for-time-series
88 concepts-and-notation
89 naive-models

exponential-smoothing-models
90 introduction-to-exponential-smoothing-models-esm
91 esm-and-signal-components
92 demo-forecasting-with-esm

arimax-models

module-overview
93 about-this-module

arma-models
94 models-for-stationary-data
95 autoregressive-moving-average-models
96 identifying-arma-models-part-1
97 identifying-arma-models-part-2
98 demo-arma-model-properties
99 automatic-order-identification
100 demo-identifying-arma-orders

arima-models-trend
101 non-stationary-data-trend
102 differencing-and-integration
103 trend-functions
104 demo-trend-two-ways-in-an-arima-framework
105 the-augmented-dickey-fuller-unit-root-adf-test-part-1
106 the-augmented-dickey-fuller-unit-root-adf-test-part-2
107 demo-an-application-of-the-adf-test

arima-models-seasonality
108 seasonal-variation-part-1
109 seasonal-variation-part-2
110 the-adf-test-for-seasonality
111 demo-seasonality-two-ways-in-an-arima-framework

arimax-models-inputs
112 time-series-regression
113 demo-ordinary-regression-using-outliers
114 the-cross-correlation-function-ccf
115 the-transfer-function
116 interpreting-the-ccf
117 demo-dynamic-regression-with-event-variables
118 cross-correlation-pitfalls

bayesian-time-series-analysis

module-overview
119 about-this-module
120 classical-analysis-versus-bayesian-analysis

bayesian-time-series-structure
121 accessing-lag-and-next-values
122 demo-setting-up-autoregressive-components
123 dynamic-linear-model-setup
124 demo-setting-up-seasonality-components

exogenous-variables
125 adding-exogenous-variables
126 demo-setting-up-exogenous-components

forecasting-in-bayesian
127 preddist-and-forecasting
128 demo-forecast-output

machine-learning-approaches-to-time-series-modeling

module-overview
129 about-this-module

using-machine-learning-models-for-time-series-forecasting
130 preparing-time-series-data-for-machine-learning
131 brief-introduction-to-gradient-boosting-models
132 demo-preparing-time-series-data-and-building-a-gradient-boosting-model

deep-learning-with-recurrent-neural-networks-for-time-series-forecasting
133 introduction-to-recurrent-neural-networks
134 long-short-term-memory-blocks-in-rnns
135 demo-building-a-recurrent-neural-network-with-lstm-blocks-to-forecast-time
136 limitations-of-machine-learning-methods-for-time-series-forecasting
137 about-the-next-three-practices_instructions

hybrid-modeling-approaches-and-external-forecasts

module-overview
138 about-this-module

a-hybrid-or-ensemble-approach-to-forecasting
139 external-models-and-combined-forecasts
140 combination-forecast-details
141 combined-forecasts-using-the-tsm-package
142 demo-generating-combined-forecasts-with-the-cfc-object
143 demo-combining-forecasts-from-multiple-modeling-approaches

combining-traditional-time-series-methods-with-machine-learning-methods
144 strengths-of-machine-learning-methods-modeling-multiple-time-series
145 weighting-combined-forecasts-with-machine-learning
146 demo-using-gradient-boosting-to-find-the-best-weighted-combination-of

time-series-features

specialization-overview

welcome
147 overview
148 getting-the-most-from-this-specialization_instructions

course-overview

introduction-to-time-series-mining-and-creation
149 meet-the-instructor
150 prerequisites_instructions
151 finding-the-course-files-and-practicing-in-this-course-required_instructions
152 using-forum-and-getting-help_instructions
153 frequently-asked-questions_instructions

time-series-basics

time-series-essentials
154 introduction-to-time-series
155 time-series-data-creation

accumulation-exploration-and-binning
156 selecting-an-interval-for-accumulation-part-1
157 selecting-an-interval-for-accumulation-part-2
158 demo-accumulating-transactional-data-to-time-series
159 summary-measures-on-time-series
160 demo-exploring-time-series-summary-characteristics
161 binning-time-series
162 demo-exploring-time-series-using-binning

signal
163 signal-versus-noise
164 signal-types-and-decompositions
165 demo-decompositions-using-the-tsa-package
166 demo-feature-creation-using-the-data-step-like-syntax-in-the-tsmodel-procedure

distance-measures

sequence-distance-basics
167 introduction-to-distance-measures-for-time-series
168 measuring-sequence-similarity
169 direct-mapping-and-time-warping
170 demo-an-example-of-time-warping-and-relative-path-costs
171 demo-time-series-clustering

symbolic-representation-of-sequences
172 introduction-to-symbolic-representation-of-sequences
173 the-symbolic-aggregate-approximation-sax
174 demo-sax-distance-for-input-variable-ranking-based-on-similarity-to-the-target

spectral-analysis-and-singular-spectrum-analysis-ssa

spectral-analysis-basics
175 introduction-to-spectral-analysis
176 spectral-analysis-fundamentals
177 demo-introduction-to-spectral-analysis

the-periodogram-and-spectral-density
178 basic-ideas-from-trigonometry
179 a-regression-approach-to-cycle-identification
180 estimating-the-spectral-density
181 demo-implementing-information-from-the-periodogram

singular-spectrum-analysis
182 an-introduction-to-singular-spectrum-analysis-ssa
183 ssa-step-by-step
184 demo-singular-spectrum-analysis
185 demo-application-of-univariate-singular-spectrum-analysis

motif-analysis

motif-analysis-basics
186 introduction-to-motif-analysis
187 motif-discovery-basics
188 two-approaches-to-motif-discovery
189 demo-motif-discovery-using-the-brute-force-method
190 demo-motif-discovery-using-the-probabilistic-model-method
191 demo-motif-scoring

Homepage