IBM Generative AI Engineering Professional Certificate

IBM Generative AI Engineering Professional Certificate

English | MP4 | AVC 1280×720 | AAC 44KHz 2ch | 283 Lessons (26h 56m) | 5.50 GB

Develop job-ready gen AI skills employers need. Build highly sought-after gen AI engineering skills and practical experience in just 6 months. No prior experience required.

What you’ll learn

  • Job-ready skills employers are crying out for in gen AI, machine learning, deep learning, NLP apps, and large language models in just 6 months.
  • Build and deploy generative AI applications, agents and chatbots using Python libraries like Flask, SciPy and ScikitLearn, Keras, and PyTorch.
  • Key gen AI architectures and NLP models, and how to apply techniques like prompt engineering, model training, and fine-tuning.
  • Apply transformers like BERT and LLMs like GPT for NLP tasks, with frameworks like RAG and LangChain.

Skills you’ll gain

  • PyTorch (Machine Learning Library)
  • Hugging Face (NLP Framework)
  • RAG
  • LangChain
  • Large Language Models

The generative AI market is expected to grow over 46% CAGR to 2030 (Statista). The demand for tech professionals with gen AI engineering skills is exploding!

The IBM Generative AI Engineering Professional Certificate gives aspiring gen AI engineers, AI developers, data scientists, machine learning engineers, and AI research engineers the essential skills in gen AI, large language models (LLMs), and natural language processing (NLP) required to catch the eye of an employer.

A gen AI engineer designs AI systems that produce new data—like images, text, audio, and video—using transformers and LLMs. In this program, you’ll dive into AI, gen AI, and prompt engineering, along with data analysis, machine learning, and deep learning using Python. You’ll work with libraries like SciPy and scikit-learn and build apps using frameworks and models such as BERT, GPT, and LLaMA. You’ll use Hugging Face Transformers, PyTorch, RAG, and LangChain for developing and deploying LLM NLP-based apps, while exploring tokenization, language models, and transformer techniques.

You’ll also get plenty of practical experience in hands-on labs and projects that you can talk about in interviews. Plus, you’ll complete a significant guided project where you’ll create your own real-world gen AI application.

If you’re keen to stand out from the crowd with gen AI skills employers desperately need, ENROLL TODAY and transform your career opportunities in less than 6 months.

Applied Learning Project
Practical Experience Employers Look For

Practical experience speaks volumes in a job interview. This Professional Certificate gives you valuable hands-on experience that confirms to employers you’ve got what it takes!

The hands-on work includes:

  • Generating text, images, and code through gen AI
  • Applying prompt engineering techniques and best practices
  • Creating multiple gen AI-powered applications with Python and deploying them using Flask
  • Creating an NLP data loader
  • Developing and training a simple language model with a neural network
  • Applying transformers for classification, and building and evaluating a translation model
  • Performing prompt engineering and in-context learning
  • Fine-tuning models to improve performance
  • Using LangChain tools and components for different applications
  • Building AI agents and applications with RAG and LangChain in a significant guided project.
Table of Contents

building-gen-ai-powered-applications

image-captioning-with-generative-ai

welcome-to-the-course
1 course-introduction
2 course-syllabus-and-prerequisites_instructions
3 generative-ai-models
4 foundation-models

captioning-photos-with-generative-ai
5 project-overview-image-captioning-with-generative-ai
6 hugging-face

module-summary-and-assessment
7 module-summary-image-captioning-with-generative-ai_instructions

create-your-own-chatgpt-like-website

create-chatbot-with-open-source-llms
8 project-overview-create-your-own-chatgpt-like-website

module-summary-and-assessment
9 module-summary-create-your-own-chatgpt-like-website_instructions

create-a-voice-assistant

create-a-voice-assistant-with-openai-s-gpt-3-and-ibm-watson
10 project-overview-create-a-voice-assistant
11 introduction-to-docker

module-summary-and-assessment
12 module-summary-create-a-voice-assistant_instructions

generative-ai-powered-meeting-assistant

create-an-app-for-summarizing-meetings
13 project-overview-generative-ai-powered-meeting-assistant
14 ibm-watsonx-ai

module-summary-and-assessment
15 module-summary-generative-ai-powered-meeting-assistant_instructions

summarize-your-private-data-with-generative-ai-and-rag

create-an-app-for-summarizing-your-private-data
16 project-overview-summarize-your-private-data-with-generative-ai-rag
17 introduction-to-langchain
18 enhancing-llm-accuracy-with-rag

module-summary-and-assessment
19 module-summary-summarize-your-private-data-with-generative-ai_instructions

babel-fish-universal-language-translator-with-llm-and-stt-tts

create-a-translation-assistant
20 introduction-to-project-babel-fish-with-llm-and-stt-tts

module-summary-and-assessment
21 module-summary-babel-fish-with-llm-and-stt-tts_instructions

course-wrap-up
22 congratulations-and-next-steps_instructions
23 thanks-from-the-course-team_instructions

bonus-module-7-build-an-ai-career-coach

create-a-personalized-job-application-coach
24 introduction-to-project-build-an-ai-career-coach

module-summary-and-assessment
25 module-summary-build-an-ai-career-coach_instructions

data-analysis-with-python

importing-data-sets

importing-data-sets
26 course-introduction
27 understanding-the-data
28 python-packages-for-data-science
29 importing-and-exporting-data-in-python
30 getting-started-analyzing-data-in-python
31 accessing-databases-with-python
32 lesson-summary_instructions

data-wrangling

data-wrangling
33 pre-processing-data-in-python
34 dealing-with-missing-values-in-python
35 data-formatting-in-python
36 data-normalization-in-python
37 binning-in-python
38 turning-categorical-variables-into-quantitative-variables-in-python
39 lesson-summary_instructions

exploratory-data-analysis

exploratory-data-analysis
40 exploratory-data-analysis
41 descriptive-statistics
42 groupby-in-python
43 correlation
44 correlation-statistics
45 lesson-summary_instructions

model-development

model-development
46 model-development
47 linear-regression-and-multiple-linear-regression
48 model-evaluation-using-visualization
49 polynomial-regression-and-pipelines
50 measures-for-in-sample-evaluation
51 prediction-and-decision-making
52 lesson-summary_instructions

model-evaluation-and-refinement

model-evaluation-and-refinement
53 model-evaluation-and-refinement
54 overfitting-underfitting-and-model-selection
55 ridge-regression
56 grid-search
57 lesson-summary_instructions

final-assignment

final-project
58 final-project-scenario_instructions

final-exam
59 cheat-sheet-data-analysis-for-python_instructions

digital-badge
60 ibm-digital-badge_instructions

acknowledgments
61 congratulations-and-next-steps_instructions
62 thanks-from-the-course-team_instructions

fundamentals-of-ai-agents-using-rag-and-langchain

rag-framework

welcome-to-the-course
63 course-introduction
64 course-overview_instructions
65 specialization-overview_instructions

introduction-to-rag
66 rag
67 rag-encoders-and-faiss
68 reading-summary-and-highlights_instructions

prompt-engineering-and-langchain

prompt-engineering-and-langchain
69 introduction-to-langchain
70 introduction-to-prompt-engineering-and-in-context-learning
71 advanced-methods-of-prompt-engineering
72 langchain-core-concepts
73 langchain-documents-for-building-rag-applications
74 langchain-chains-and-agents-for-building-applications
75 summary-and-highlights_instructions

course-wrap-up
76 course-conclusion_instructions
77 congratulations-and-next-steps_instructions
78 thanks-from-the-course-team_instructions

gen-ai-foundational-models-for-nlp-and-language-understanding

fundamentals-of-language-understanding

welcome
79 course-introduction
80 course-overview_instructions
81 specialization-overview_instructions

language-understanding-with-neural-networks
82 converting-words-to-features
83 document-categorization-prediction-with-torchtext
84 document-categorization-training-with-torchtext
85 training-the-model-in-pytorch
86 summary-and-highlights_instructions

n-gram-model
87 language-modeling-with-n-grams
88 n-grams-as-neural-networks-with-pytorch
89 summary-and-highlights_instructions

word2vec-and-sequence-to-sequence-models

word2vec-sequence-to-sequence-models-and-evaluation
90 word2vec-introduction-and-cbow-models
91 word2vec-skip-gram-and-pretrained-models
92 introduction-to-sequence-to-sequence-models-and-recurrent-neural-networks
93 encoder-decoder-rnn-models-training-and-inference
94 encoder-decoder-rnn-models-translation
95 ethical-implications-of-word-embeddings-and-language-models_instructions
96 metrics-for-evaluating-the-quality-of-generated-text
97 summary-and-highlights_instructions

course-wrap-up
98 course-conclusion_instructions
99 congratulations-and-next-steps_instructions
100 team-and-acknowledgements_instructions

generative-ai-advanced-fine-tuning-for-llms

different-approaches-to-fine-tuning

welcome-to-the-course
101 course-introduction
102 course-overview_instructions
103 specialization-overview_instructions

instruction-tuning-and-reward-modeling
104 basics-of-instruction-tuning
105 instruction-tuning-with-hugging-face
106 best-practices-for-instruction-tuning-large-language-models_instructions
107 reward-modeling-response-evaluation
108 reward-model-training
109 reward-modeling-with-hugging-face
110 summary-and-highlights_instructions

fine-tuning-causal-llms-with-human-feedback-and-direct-preference

ppo
111 large-language-models-llms-as-distributions
112 from-distributions-to-policies
113 reinforcement-learning-from-human-feedback-rlhf
114 proximal-policy-optimization-ppo
115 ppo-with-hugging-face
116 ppo-trainer
117 summary-and-highlights_instructions

dpo
118 dpo-partition-function
119 dpo-optimal-solution
120 from-optimal-policy-to-dpo
121 dpo-with-hugging-face
122 summary-and-highlights_instructions

course-wrap-up
123 course-conclusion_instructions
124 congratulations-and-next-steps_instructions
125 thanks-from-the-course-team_instructions

generative-ai-engineering-and-fine-tuning-transformers

transformers-and-fine-tuning

course-introduction
126 course-introduction
127 course-overview_instructions
128 specialization-overview_instructions
129 helpful-tips-for-course-completion_Helpful_Tips_IBM_SkillsNetwork
130 helpful-tips-for-course-completion_instructions

transfer-learning-in-nlp
131 hugging-face-vs-pytorch
132 using-pre-trained-transformers-and-fine-tuning
133 fine-tuning-with-pytorch
134 fine-tuning-with-hugging-face
135 reading-summary-and-highlights_instructions

parameter-efficient-fine-tuning-peft

parameter-efficient-fine-tuning-peft
136 video-introduction-to-peft
137 low-rank-adaptation-lora
138 lora-with-hugging-face-and-pytorch
139 from-quantization-to-qlora
140 ethical-considerations-in-fine-tuning-large-language-models_instructions
141 summary-and-highlights_instructions

course-wrap-up
142 course-conclusion_instructions
143 congratulations-and-next-steps_instructions
144 thanks-from-the-course-team_instructions

generative-ai-introduction-and-applications

introduction-and-capabilities-of-generative-ai

welcome-to-the-course
145 course-introduction
146 why-learn-generative-ai-with-ibm
147 specialization-overview_instructions
148 generative-ai-fundamentals-specialization-introduction
149 course-overview_instructions
150 helpful-tips-for-course-completion_Helpful_Tips_IBM_SkillsNetwork
151 helpful-tips-for-course-completion_instructions
152 expert-viewpoints-sme-introductions

generative-ai-and-its-capabilities
153 introduction-to-generative-ai
154 capabilities-of-generative-ai
155 expert-viewpoints-generative-ai-capabilities
156 expert-viewpoints-exploring-the-evolution-of-generative-ai
157 lesson-summary-generative-ai-and-its-capabilities_instructions

applications-and-tools-of-generative-ai

generative-ai-applications-and-tools
158 applications-of-generative-ai
159 tools-for-text-generation
160 tools-for-image-generation
161 tools-for-audio-and-video-generation
162 tools-for-code-generation
163 expert-viewpoints-leveraging-generative-ai-tools
164 expert-viewpoints-exploring-generative-ai-applications-across-domains
165 generative-versus-agentic-ai
166 reading-lesson-summary-applications-and-tools-of-generative-ai_instructions

course-quiz-project-and-wrap-up

graded-quiz-and-wrap-up

generative-ai-language-modeling-with-transformers

fundamental-concepts-of-transformer-architecture

welcome
167 course-introduction
168 course-overview_instructions
169 specialization-overview_instructions

positional-encoding-attention-and-application-in-classification
170 positional-encoding
171 attention-mechanism
172 self-attention-mechanism
173 from-attention-to-transformers
174 transformers-for-classification-encoder
175 optimization-techniques-for-efficient-transformer-training_instructions
176 summary-and-highlights_instructions

advanced-concepts-of-transformer-architecture

decoder-models
177 language-modeling-with-the-decoders-and-gpt-like-models
178 training-decoder-models
179 decoder-models-pytorch-implementation-causal-lm
180 decoder-models-pytorch-implementation-using-training-and-inference
181 summary-and-highlights_instructions

encoder-models
182 encoder-models-with-bert-pretraining-using-mlm
183 encoder-models-with-bert-pretraining-using-nsp
184 data-preparation-for-bert-with-pytorch
185 pretraining-bert-models-with-pytorch
186 summary-and-highlights_instructions

application-of-transformers-for-translation
187 transformer-architecture-for-language-translation
188 transformer-architecture-for-translation-pytorch-implementation
189 summary-and-highlights_instructions

course-wrap-up
190 course-conclusion_instructions
191 thanks-from-the-course-team_instructions
192 congratulations-and-next-steps_instructions

generative-ai-llm-architecture-data-preparation

generative-ai-architecture

welcome
193 overview-of-ai-engineering-with-llms
194 course-introduction
195 course-overview_instructions

generative-ai-overview-and-architecture
196 significance-of-generative-ai
197 generative-ai-architectures-and-models
198 generative-ai-for-nlp
199 summary-and-highlights_instructions

data-preparation-for-llms

preparing-data
200 tokenization
201 overview-of-data-loaders
202 data-quality-and-diversity-for-effective-llm-training_instructions
203 summary-and-highlights_instructions

course-wrap-up
204 course-conclusion_instructions
205 congratulations-and-next-steps_instructions
206 team-and-acknowledgments_instructions

generative-ai-prompt-engineering-for-everyone

prompt-engineering-for-generative-ai

course-introduction
207 course-introduction
208 course-overview_instructions
209 specialization-overview_instructions
210 helpful-tips-for-course-completion_Helpful_Tips_IBM_SkillsNetwork
211 helpful-tips-for-course-completion_instructions

concept-of-prompt-engineering
212 what-is-a-prompt
213 what-is-prompt-engineering
214 best-practices-for-prompt-creation
215 common-prompt-engineering-tools
216 expert-viewpoints-best-practices-for-effective-prompts
217 expert-viewpoints-exploring-prompt-engineering-in-generative-ai
218 reading-lesson-summary-concept-of-prompt-engineering_instructions

prompt-engineering-techniques-and-approaches

techniques-and-approaches-for-writing-effective-prompts
219 text-to-text-prompt-techniques
220 interview-pattern-approach
221 chain-of-thought-approach
222 tree-of-thought-approach
223 expert-viewpoints-key-considerations-in-choosing-prompt-engineering-approach
224 reading-lesson-summary-key-techniques-of-prompt-engineering_instructions

course-quiz-project-and-wrap-up

text-to-image-prompting
225 text-to-image-prompts-techniques

glossary-and-final-project

course-wrap-up
226 course-wrap-up

introduction-to-ai

introduction-and-applications-of-ai

welcome
227 course-introduction
228 course-overview_instructions

introduction-to-ai
229 introducing-ai
230 artificial-intelligence-vs-augmented-intelligence
231 introducing-generative-ai-and-its-use-cases
232 the-evolution-of-ai-traditional-ai-vs-generative-ai
233 artificial-intelligence-are-we-there-yet

impact-and-applications-of-ai
234 ai-in-daily-life
235 ai-chatbots-and-smart-assistants
236 what-is-a-chatbot
237 applications-of-ai-in-different-industries
238 generative-ai-tools-and-applications
239 ten-everyday-ai-and-machine-learning-use-cases

module-1-module-summary-and-graded-quiz

ai-concepts-terminology-and-application-domains

fundamental-concepts-of-ai
240 cognitive-computing
241 terminologies-and-related-concepts-of-ai
242 machine-learning
243 machine-learning-techniques-and-training
244 deep-learning
245 neural-networks
246 machine-learning-vs-deep-learning
247 generative-ai-models
248 large-language-models
249 machine-learning-vs-deep-learning-vs-foundation-models

domains-of-ai
250 natural-language-processing-speech-and-computer-vision
251 what-is-nlp-natural-language-processing
252 self-driving-cars
253 ai-and-cloud-computing-edge-computing-and-iot

module-2-summary-and-graded-quiz

business-and-career-transformation-through-ai

ai-domains-for-industries
254 ai-agents
255 what-are-ai-agents
256 robotics-and-automation

ai-for-businesses
257 transforming-businesses-through-ai
258 the-rise-of-generative-ai-for-business
259 become-a-value-creator-with-generative-ai
260 what-is-retrieval-augmented-generation-rag
261 adopting-ai-in-your-business
262 frameworks-for-ai-adoption

ai-for-your-work-and-career
263 transforming-your-work-through-ai-tools
264 career-opportunities-with-ai
265 humans-vs-ai-who-should-make-the-decision

module-3-summary-and-graded-quiz

issues-concerns-and-ethical-considerations

ai-concerns-and-ethical-considerations
266 ethical-considerations-and-responsible-use-of-ai
267 considerations-around-generative-ai
268 why-large-language-models-hallucinate
269 perspective-of-key-players-around-ai-ethics
270 the-importance-of-ai-governance
271 how-to-implement-ai-ethics
272 lesson-summary_instructions

graded-assignment-and-wrap-up
273 course-wrap-up
274 congratulations-and-next-steps_instructions
275 thanks-from-the-course-team_instructions

introduction-to-deep-learning-with-keras

introduction-to-deep-learning-and-neural-networks

welcome
276 course-introduction
277 course-overview_instructions

introduction-to-deep-learning-neurons-and-artificial-neural-networks
278 introduction-to-deep-learning
279 neurons-and-neural-networks
280 artificial-neural-networks

module-1-summary-and-evaluation
281 module-summary-introduction-to-neural-networks-and-deep-learning_instructions

basics-of-deep-learning

deep-learning-fundamentals
282 gradient-descent
283 backpropagation
284 vanishing-gradient
285 activation-functions

module-2-summary-and-evaluation
286 module-2-summary-basics-of-deep-learning_instructions

keras-and-deep-learning-libraries

modeling-with-keras
287 deep-learning-libraries
288 regression-models-with-keras
289 classification-models-with-keras

module-3-summary-and-evaluation
290 module-3-summary-keras-and-deep-learning-libraries_instructions

deep-learning-models

supervised-and-unsupervised-neural-networks
291 shallow-versus-deep-neural-networks
292 convolutional-neural-networks
293 recurrent-neural-networks
294 transformers
295 autoencoders
296 using-pre-trained-models

module-4-summary-and-evaluation
297 module-4-summary-deep-learning-models_instructions

final-project-and-course-wrap-up

course-wrap-up
298 course-wrap-up
299 congratulations-and-next-steps_instructions
300 team-and-acknowledgments_instructions

machine-learning-with-python

introduction-to-machine-learning

welcome-to-the-course
301 course-introduction
302 course-overview_instructions
303 ibm-ai-engineering-pc-overview

machine-learning-in-action
304 an-overview-of-machine-learning
305 machine-learning-model-lifecycle
306 a-day-in-the-life-of-a-machine-learning-engineer
307 data-scientist-vs-ai-engineer
308 tools-for-machine-learning
309 scikit-learn-machine-learning-ecosystem

module-summary-evaluation
310 module-1-summary-and-highlights_instructions

linear-and-logistic-regression

linear-regression
311 introduction-to-regression
312 introduction-to-simple-linear-regression
313 multiple-linear-regression
314 polynomial-and-non-linear-regression

logistic-regression
315 introduction-to-logistic-regression
316 training-a-logistic-regression-model

module-summary-cheat-sheet-evaluation
317 module-2-summary-and-highlights_instructions

building-supervised-learning-models

classification-and-regression
318 classification
319 decision-trees
320 regression-trees

other-supervised-learning-models
321 supervised-learning-with-svms
322 supervised-learning-with-knn
323 bias-variance-and-ensemble-models

module-summary-cheat-sheet-evaluation
324 module-3-summary-and-highlights_instructions

building-unsupervised-learning-models

clustering
325 clustering-strategies-and-real-world-applications
326 k-means-and-more-on-k-means
327 dbscan-and-hdbscan-clustering

dimension-reduction-feature-engineering
328 clustering-dimension-reduction-and-feature-engineering
329 dimension-reduction-algorithms

module-summary-cheat-sheet-evaluation
330 module-4-summary-and-highlights_instructions

evaluating-and-validating-machine-learning-models

evaluating-machine-learning-models
331 classification-metrics-and-evaluation-techniques
332 regression-metrics-and-evaluation-techniques
333 evaluating-unsupervised-learning-models-heuristics-and-techniques

best-practices-for-ensuring-model-generalizability
334 cross-validation-and-advanced-model-validation-techniques
335 regularization-in-regression-and-classification
336 data-leakage-and-other-pitfalls

module-summary-cheat-sheet-evaluation
337 module-5-summary-and-highlights_instructions

final-project-and-exam

final-project
338 final-project-scenario_instructions

course-summary-and-final-exam
339 course-wrap-up

course-wrap-up
340 congratulations-and-next-steps_instructions
341 thanks-from-the-course-team_instructions

project-generative-ai-applications-with-rag-and-langchain

document-loader-using-langchain

welcome-to-the-course
342 course-introduction
343 course-overview_instructions
344 specialization-overview_instructions

different-document-loaders-from-langchain
345 load-your-document-from-different-sources
346 best-practices-for-loading-documents-in-langchain-applications_instructions

text-splitter
347 strategies-for-splitting-text-for-optimal-processing

module-summary
348 reading-summary-and-highlights_instructions

rag-using-langchain

embedding-the-document
349 introduction-to-vector-databases-for-storing-embeddings

retriever
350 explore-advanced-retrievers-in-langchain-part-1
351 explore-advanced-retrievers-in-langchain-part-2

rag-using-langchain-summary
352 module-summary-rag-using-langchain_instructions

create-a-qa-bot-to-read-your-document

introduction-to-gradio
353 getting-started-with-gradio

build-a-qa-bot-web-app-summary
354 module-summary-create-a-qa-bot-to-read-your-document_instructions

course-wrap-up
355 course-conclusion_instructions
356 congratulations-and-next-steps_instructions
357 thanks-from-the-course-team_instructions

python-for-applied-data-science-ai

python-basics

about-the-course
358 course-introduction
359 about-this-course_instructions
360 course-overview_instructions
361 helpful-tips-for-course-completion_Helpful_Tips_IBM_SkillsNetwork
362 helpful-tips-for-course-completion_instructions

getting-started-with-python-and-jupyter
363 introduction-to-python
364 introduction-to-jupyter_instructions
365 getting-started-with-jupyter

types
366 types

expressions-and-variables
367 expressions-and-variables

string-operations
368 string-operations

module-1-summary-cheatsheet-graded-quiz-and-glossary

python-data-structures

lists-and-tuples
369 lists-and-tuples

dictionaries
370 dictionaries

sets
371 sets

module-2-summary-cheatsheet-graded-quiz-and-glossary

python-programming-fundamentals

conditions-and-branching
372 conditions-and-branching

loops
373 loops

functions
374 functions

exception-handling
375 exception-handling

objects-and-classes
376 objects-and-classes

module-3-summary-cheatsheet-graded-quiz-and-glossary

working-with-data-in-python

reading-and-writing-files-with-open
377 reading-files-with-open
378 writing-files-with-open

pandas
379 pandas-loading-data
380 pandas-working-with-and-saving-data

numpy-in-python
381 one-dimensional-numpy
382 two-dimensional-numpy

module-4-summary-cheatsheet-graded-quiz-and-glossary

apis-and-data-collection

simple-apis
383 application-program-interface

rest-apis-web-scraping-and-working-with-files
384 rest-apis-http-requests-part-1
385 rest-apis-http-requests-part-2
386 optional-html-for-web-scraping
387 optional-web-scraping
388 working-with-different-file-formats

module-5-summary-cheatsheet-graded-quiz-and-glossary

course-wrap-up
389 congratulations-and-next-steps_instructions
390 python-cheat-sheet-the-basics_instructions

Resources

python-cheat-sheet-the-basics
391 resources

python-project-for-ai-application-development

python-coding-practices-and-packaging-concepts

welcome
392 introduction-to-the-course
393 helpful-tips-for-completing-this-course_instructions
394 prerequisites-and-course-syllabus_instructions

application-development-and-packaging-using-python
395 application-development-lifecycle
396 introduction-to-web-applications-and-apis
397 demo-working-with-an-ide
398 python-style-guide-and-coding-practices
399 unit-testing
400 packaging
401 module-1-summary-python-coding-practices-and-packaging-concepts_instructions

web-app-deployment-using-flask

web-application-deployment-using-flask
402 python-libraries-and-frameworks-for-application-development
403 introduction-to-flask
404 flask-basic-applications-and-routes
405 request-and-response-objects-using-get-and-post-modes
406 dynamic-routes
407 error-handling
408 deploying-web-apps-using-flask
409 module-2-lesson-summary-web-app-deployment-using-flask_instructions

creating-ai-application-and-deploy-using-flask

graded-final-project
410 module-3-summary-creating-ai-application-and-deploy-using-flask_instructions

course-wrap-up
411 congratulations-next-steps_instructions
412 thanks-from-the-course-team_instructions

Homepage