NumPy Array Iterating
Machine Learning courses with 100+ Real-time projects Start Now!!
Program 1
# how to Iterating Numpy Arrays
# 1D Array , 2D Array , 3D Array
# nditer()
# How to iterating Numpy array with different data types
#How to iterating with different step size
#ndenumerate()
import numpy as np
# myar=np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
# print(myar)
# for indx , m in np.ndenumerate(myar):
# print(indx,m)
# myar=np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
# print(myar)
# for n in np.nditer(myar[:, ::3]):
# print(n)
# myar=np.array([10,20,30,40,50,60,70,80,90,100])
# for indx , m in np.ndenumerate(myar):
# print(indx,":",m)
# for i in range(0,myar.size):
# print(i,":",myar[i])
#ar3=np.array([[[5,10,20],[30,40,50]],[[2,7,9],[6,45,89]]])
# for x in ar3:
# for y in x:
# for z in y:
# print(z)
# for m in np.nditer(ar3):
# print(m)
# print(ar3.shape)
# for m in ar3:
# print(m)
#myar=np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
# for m in myar:
# for n in m:
# print(n)
# print(myar)
# print(myar.shape)
#count=0
# even=0
# for m in myar:
# print(m)
# count=count+1
# print("Total rows: ",count)
# print("------------------------------------------")
# for m in np.nditer(myar):
# print(m)
# if(m%2==0):
# even+=1
# print("Total even: ",even)
#myar=np.array([1,2,3,4,5,6,7,8,9,10])
# for m in myar:
# print(m)
# for m in np.nditer(myar,flags=['buffered'],op_dtypes='S'):
# print(m)
# print(myar)
Did you like this article? If Yes, please give DataFlair 5 Stars on Google

