Site icon DataFlair

NumPy Array Iterating

Machine Learning courses with 110+ Real-time projects Start Now!!

Program 1

# how to Iterating Numpy Arrays
# 1D Array , 2D Array , 3D Array 
# nditer()
# How to iterating Numpy array with different data types
#How to iterating with different step size
#ndenumerate()
import numpy as np

# myar=np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
# print(myar)
# for indx , m in np.ndenumerate(myar):
#     print(indx,m)

# myar=np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
# print(myar)
# for n in np.nditer(myar[:, ::3]):
#   print(n)








# myar=np.array([10,20,30,40,50,60,70,80,90,100])
# for indx , m in np.ndenumerate(myar):
#     print(indx,":",m)

# for i in range(0,myar.size):
#     print(i,":",myar[i])

#ar3=np.array([[[5,10,20],[30,40,50]],[[2,7,9],[6,45,89]]])
# for x in ar3:
#     for y in x:
#         for z in y:
#             print(z)

# for m in np.nditer(ar3):
#     print(m)

# print(ar3.shape)
# for m in ar3:
#     print(m)
    
#myar=np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
# for m in myar:
#     for n in m:
#         print(n)
# print(myar)
# print(myar.shape)
#count=0
# even=0
# for m in myar:
#     print(m)
#     count=count+1
# print("Total rows: ",count)    

# print("------------------------------------------")
# for m in np.nditer(myar):
#     print(m)
#     if(m%2==0):
#         even+=1
# print("Total even: ",even)        


#myar=np.array([1,2,3,4,5,6,7,8,9,10])
# for m in myar:
#     print(m)
# for m in np.nditer(myar,flags=['buffered'],op_dtypes='S'):
#     print(m)

# print(myar)

 

Exit mobile version