Site icon DataFlair

NumPy Iterating Over Array

Machine Learning courses with 110+ Real-time projects Start Now!!

Program 1

# how to Iterating Numpy Arrays
# 1D Array , 2D Array , 3D Array 
# nditer()
# How to iterating Numpy array with different data types
#How to iterating with different step size
#ndenumerate()
import numpy as np
ar3=np.array([[[5,10,20],[30,40,50]],[[2,7,9],[6,45,89]]])

print(ar3)
print("---------------------------------------")
for indx, n in np.ndenumerate(ar3):
   print(indx, n)

# ar=np.array([[10,20,30],[40,50,60],[70,80,90]])
# print(ar)
# print("------------------------------")
# for indx, n in np.ndenumerate(ar):
#   print(indx, n)

# for i in range(0,ar.size):
#     print(i , ": " , ar[i])    

# ar=np.array([[1,2,3],[4,5,6],[7,8,9]])
# print(ar)
# for n in np.nditer(ar[:, ::2]):
#   print(n)

# for x in np.nditer(ar,flags=['buffered'],op_dtypes='S'):
#     print(x)


#ar3=np.array([[[5,10,20],[30,40,50]],[[2,7,9],[6,45,89]]])
# print(ar3)
# print(ar3.shape)

# for x in  ar3:
#     print(x)

# for  x in ar3:
#     for y in x:
#         for z in y:
#             print(z)


# ar=np.array([[10,20,30],[40,50,60],[70,80,90]])

# for m in ar:  
#     for n in m:
#         print(n)


# ar=np.array([10,20,30,40,50,60,70,80,90,100])
# for m in ar:
#     print(m)

 

Exit mobile version