Skip to content

bioc/SCArray

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

78 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Large-scale single-cell omics data manipulation using GDS files

GPLv3 GNU General Public License, GPLv3

Features

SCArray provides large-scale single-cell omics data manipulation using Genomic Data Structure (GDS) files. It combines dense and sparse matrices stored in GDS files and the Bioconductor infrastructure framework (SingleCellExperiment and DelayedArray) to provide out-of-memory data storage and large-scale manipulation using the R programming language.

Bioconductor

v1.12.0 (http://bioconductor.org/packages/SCArray/)

Package News: NEWS

Package Maintainer

Xiuwen Zheng

Installation

  • Requires R (≥ v3.5.0), gdsfmt (≥ v1.36.0)

  • Bioconductor repository

if (!requireNamespace("BiocManager", quietly=TRUE))
    install.packages("BiocManager")
BiocManager::install("SCArray")

Examples

suppressPackageStartupMessages(library(SCArray))

# the GDS file for SingleCellExperiment
fn <- system.file("extdata", "example.gds", package="SCArray")
sce <- scExperiment(fn)

sce
## class: SingleCellExperiment
## dim: 1000 850
## metadata(0):
## assays(1): counts
## rownames(1000): MRPL20 GNB1 ... RPS4Y1 CD24
## rowData names(0):
## colnames(850): 1772122_301_C02 1772122_180_E05 ... 1772122_180_B06 1772122_180_D09
## colData names(3): Cell_ID Cell_type Timepoint
## reducedDimNames(0):
## mainExpName: NULL
## altExpNames(0):

counts(sce)
## <1000 x 850> sparse matrix of class SC_GDSMatrix and type "double":
##              1772122_301_C02 1772122_180_E05 1772122_300_H02 ... 1772122_180_B06
##       MRPL20               3               2               3   .               0
##         GNB1              11               6              15   .               0
##        RPL22               3               5               7   .               6
##        PARK7               1               7               3   .               2
##         ENO1               8              19              20   .               7
##          ...               .               .               .   .               .
##         SSR4               0               6               3   .               5
##        RPL10              11               4               8   .               1
## SLC25A6_loc1               4               5               5   .               3
##       RPS4Y1               0               5               0   .               2
##         CD24              18               3               7   .               0

Optimized implementation of GDS-based DelayedMatrix

Method Optimized Notes
colAlls() ⦿
colAnyNAs() Check if any NA in a column
colAnys() ⦿
colAvgsPerRowSet() Summary statistic for equally sized subsets of rows
colCollapse() Extract one cell from each column
colCounts() ⦿
colCummaxs() ⦿
colCummins() ⦿
colCumprods() ⦿
colCumsums() ⦿
colDiffs() Difference between each element of a column
colIQRDiffs() ⦿
colIQRs() ⦿
colLogSumExps() Log of the sum of exponentials for each column
colMadDiffs() ⦿
colMads() ⦿
colMaxs() Maximum for each column
colMeans() Mean for each column
colMeans2() Mean for each column
colMedians() ⦿
colMins() Minimum for each column
colOrderStats() ⦿
colProds() Product for each column
colQuantiles() ⦿
colRanges() Minimum and maximum for each column
colRanks() ⦿
colSdDiffs() Standard deviation of the difference between each element of a column
colSds() Standard deviation for each column
colsum() Row sums across columns
colSums() Sum for each column
colSums2() Sum for each column
colTabulates() ⦿
colVarDiffs() Variance of the difference between each element of a column
colVars() Variance for each column
colWeightedMads() ⦿
colWeightedMeans() Weighted mean for each column
colWeightedMedians() ⦿
colWeightedSds() Weighted standard deviation for each column
colWeightedVars() Weighted variance for each column
rowAlls() ⦿
rowAnyNAs() Check if any NA in a row
rowAnys() ⦿
rowAvgsPerColSet() Summary statistic for equally sized subsets of columns
rowCollapse() Extract one cell from each row
rowCounts() ⦿
rowCummaxs() ⦿
rowCummins() ⦿
rowCumprods() ⦿
rowCumsums() ⦿
rowDiffs() Difference between each element of a row
rowIQRDiffs() ⦿
rowIQRs() ⦿
rowLogSumExps() Log of the sum of exponentials for each row
rowMadDiffs() ⦿
rowMads() ⦿
rowMaxs() Maximum for each row
rowMeans() Mean for each row
rowMeans2() Mean for each row
rowMedians() ⦿
rowMins() Minimum for each row
rowOrderStats() ⦿
rowProds() Product for each row
rowQuantiles()
rowRanges() Minimum and maximum for each column
rowRanks() ⦿
rowSdDiffs() Standard deviation of the difference between each element of a row
rowSds() Standard deviation for each row
rowsum() Column sums across rows
rowSums() Sum for each row
rowSums2() Sum for each row
rowTabulates() ⦿
rowVarDiffs() Variance of the difference between each element of a row
rowVars() Variance for each row
rowWeightedMads() ⦿
rowWeightedMeans() Weighted mean for each row
rowWeightedMedians() ⦿
rowWeightedSds() Weighted standard deviation for each row
rowWeightedVars() Weighted variance for each row

About

This is a read-only mirror of the git repos at https://bioconductor.org

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •