Package: AdaSampling 1.3

AdaSampling: Adaptive Sampling for Positive Unlabeled and Label Noise Learning

Implements the adaptive sampling procedure, a framework for both positive unlabeled learning and learning with class label noise. Yang, P., Ormerod, J., Liu, W., Ma, C., Zomaya, A., Yang, J. (2018) <doi:10.1109/TCYB.2018.2816984>.

Authors:Pengyi Yang

AdaSampling_1.3.tar.gz
AdaSampling_1.3.zip(r-4.6)AdaSampling_1.3.zip(r-4.5)AdaSampling_1.3.zip(r-4.4)
AdaSampling_1.3.tgz(r-4.5-any)
AdaSampling_1.3.tar.gz(r-4.6-any)AdaSampling_1.3.tar.gz(r-4.5-any)
AdaSampling_1.3.tgz(r-4.5-emscripten)
AdaSampling.pdf |AdaSampling.html
AdaSampling/json (API)

# Install 'AdaSampling' in R:
install.packages('AdaSampling', repos = c('https://pyanglab.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/pengyiyang/adasampling/issues

Datasets:
  • brca - Wisconsin Breast Cancer Database

On CRAN:

Conda:

5.04 score 10 stars 11 scripts 182 downloads 1 mentions 4 exports 73 dependencies

Last updated from:c815f1bf8d. Checks:9 OK. Indexed: yes.

TargetResultTotal timeArtifact
linux-devel-x86_64OK172
source / vignettesOK360
linux-release-x86_64OK248
macos-release-arm64OK153
macos-oldrel-arm64OK118
windows-develOK112
windows-releaseOK111
windows-oldrelOK111
wasm-releaseOK172

Exports:adaSampleadaSvmBenchmarksingleIterweightedKNN

Dependencies:caretclasscliclockcodetoolscpp11data.tablediagramdigestdplyre1071farverforeachfuturefuture.applygenericsggplot2globalsgluegowergtablehardhatipredisobanditeratorsKernSmoothlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixModelMetricsnlmennetnumDerivparallellypillarpkgconfigplyrpROCprodlimprogressrproxypurrrR6RColorBrewerRcpprecipesreshape2rlangrpartS7scalesshapesparsevctrsSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithr

Breast cancer classification with AdaSampling

Rendered fromvignette.Rmdusingknitr::rmarkdownon Dec 09 2025.

Last update: 2018-06-10
Started: 2018-05-31

  • Image