When I was working on a project, I needed to validate user input for a customer registration system. The challenge was determining whether the entered data contained only numeric digits.
This is where Python’s isdigit() method became invaluable. It’s one of the most useful string methods for checking if a string contains only digits.
In this guide, I’ll walk you through everything you need to know about the isdigit() method. From basic syntax to real-world applications.
isdigit() Method in Python
The isdigit() method is a built-in string method in Python that returns True if all characters in the string are digits (0-9), and False otherwise.
I’ve used this method countless times for input validation, data cleaning, and processing numeric strings. It’s particularly useful when working with user inputs or parsing data files.
The method only considers Unicode decimal characters as digits. This means it works with standard digits 0-9 but also includes other numeric characters from different languages.
Syntax and Parameters
The syntax for the isdigit() method is easy:
string.isdigit()Parameters: The isdigit() method doesn’t take any parameters. You simply call it on a string object.
Return Value: It returns a boolean value (True or False).
Here’s a basic example to illustrate the syntax:
# Basic syntax demonstration
user_input = "12345"
result = user_input.isdigit()
print(f"Is '{user_input}' all digits? {result}")
# Output: Is '12345' all digits? TrueBasic Examples of isdigit() Method
Let me show you some fundamental examples that demonstrate how isdigit() works in different scenarios.
Example 1: Validate Numeric Strings
This example checks if given strings consist only of digits using isdigit().
# Example 1: Basic digit validation
test_strings = ["123", "456789", "0", "999"]
for string in test_strings:
if string.isdigit():
print(f"'{string}' contains only digits")
else:
print(f"'{string}' contains non-digit characters")You can see the output in the screenshot below.

All tested strings pass since they contain digits only.
Example 2: Mixed Content Validation
This example tests how isdigit() behaves with strings containing non-digit characters.
# Example 2: Testing mixed content
mixed_strings = ["abc123", "123abc", "12.34", "1,000", "-123"]
for string in mixed_strings:
print(f"'{string}': {string.isdigit()}")You can see the output in the screenshot below.

All mixed-content strings fail because they include characters other than digits.
Real-World Applications of the isdigit() Method
Let me explain to you the real-world applications of the isdigit() method.
Validate ZIP Codes
Here’s a practical example I use for validating US ZIP codes:
def validate_zip_code(zip_code):
"""
Validate US ZIP code format (5 digits or 5+4 digits)
"""
# Remove any spaces
zip_code = zip_code.strip()
# Check for 5-digit ZIP code
if len(zip_code) == 5 and zip_code.isdigit():
return True
# Check for ZIP+4 format (12345-6789)
if len(zip_code) == 10 and zip_code[5] == '-':
first_part = zip_code[:5]
second_part = zip_code[6:]
return first_part.isdigit() and second_part.isdigit()
return False
# Test the function
test_zip_codes = ["90210", "12345-6789", "abc12", "90210-", "123456"]
for zip_code in test_zip_codes:
is_valid = validate_zip_code(zip_code)
print(f"ZIP Code '{zip_code}': {'Valid' if is_valid else 'Invalid'}")You can see the output in the screenshot below.

This function ensures only correctly formatted 5-digit or ZIP+4 codes pass validation, rejecting all invalid formats.
Process Customer Phone Numbers
Here’s a simple approach to clean, validate, and format customer phone numbers for consistency and accuracy.
def clean_phone_number(phone):
"""
Extract digits from phone number and validate
"""
# Remove common phone number characters
cleaned = phone.replace('(', '').replace(')', '').replace('-', '').replace(' ', '')
if cleaned.isdigit() and len(cleaned) == 10:
# Format as (XXX) XXX-XXXX
formatted = f"({cleaned[:3]}) {cleaned[3:6]}-{cleaned[6:]}"
return formatted
else:
return "Invalid phone number"
# Test with various phone number formats
phone_numbers = [
"(555) 123-4567",
"5551234567",
"555-123-4567",
"555 123 4567",
"invalid123",
"123-456-789" # Too short
]
for phone in phone_numbers:
result = clean_phone_number(phone)
print(f"'{phone}' -> {result}")You can see the output in the screenshot below.

The method extracts digits, validates length, and standardizes phone numbers into a consistent, user-friendly format.
Advanced Usage: Combine isdigit() with Other Methods
Let me show you the advanced usage of combining isdigit() with other methods.
Data Validation for Financial Applications
This example cleans and validates currency inputs by combining isdigit() with additional checks for decimals.
def process_financial_data(data_list):
"""
Process a list of financial data, separating valid amounts from invalid ones
"""
valid_amounts = []
invalid_entries = []
for entry in data_list:
# Remove dollar signs and commas
cleaned = entry.replace('$', '').replace(',', '')
# Check if it's all digits (for whole dollar amounts)
if cleaned.isdigit():
valid_amounts.append(int(cleaned))
# Check for decimal amounts
elif '.' in cleaned:
parts = cleaned.split('.')
if len(parts) == 2 and parts[0].isdigit() and parts[1].isdigit():
valid_amounts.append(float(cleaned))
else:
invalid_entries.append(entry)
else:
invalid_entries.append(entry)
return valid_amounts, invalid_entries
# Test with financial data
financial_data = [
"$1,500",
"$250.75",
"$1000",
"invalid_amount",
"$50.99",
"$abc123",
"$100.00",
"1500"
]
valid, invalid = process_financial_data(financial_data)
print("Valid amounts:", valid)
print("Invalid entries:", invalid)
# Output:
# Valid amounts: [1500, 250.75, 1000, 50.99, 100.0, 1500]
# Invalid entries: ['invalid_amount', '$abc123']Only properly formatted amounts are accepted, while malformed or non-numeric values are rejected.
User Input Validation System
This validator uses isdigit() alongside other checks to enforce strict rules for age, student ID, and course codes.
class UserInputValidator:
"""
A comprehensive user input validation system
"""
@staticmethod
def validate_age(age_input):
"""Validate age input (1-120)"""
if age_input.isdigit():
age = int(age_input)
return 1 <= age <= 120
return False
@staticmethod
def validate_student_id(student_id):
"""Validate student ID (exactly 8 digits)"""
return len(student_id) == 8 and student_id.isdigit()
@staticmethod
def validate_course_code(course_code):
"""Validate course code format (e.g., CS101, MATH250)"""
if len(course_code) < 4:
return False
# Extract letters and numbers
letters = ""
numbers = ""
for char in course_code:
if char.isalpha():
letters += char
elif char.isdigit():
numbers += char
# Course code should have 2-4 letters followed by 3-4 digits
return (2 <= len(letters) <= 4 and
3 <= len(numbers) <= 4 and
numbers.isdigit())
# Test the validator
validator = UserInputValidator()
# Test data
test_data = [
("Age", "25", validator.validate_age),
("Age", "abc", validator.validate_age),
("Student ID", "12345678", validator.validate_student_id),
("Student ID", "123456", validator.validate_student_id),
("Course Code", "CS101", validator.validate_course_code),
("Course Code", "MATH250", validator.validate_course_code),
("Course Code", "XYZ", validator.validate_course_code)
]
for field_name, test_input, validator_func in test_data:
is_valid = validator_func(test_input)
print(f"{field_name} '{test_input}': {'Valid' if is_valid else 'Invalid'}")
# Output:
# Age '25': Valid
# Age 'abc': Invalid
# Student ID '12345678': Valid
# Student ID '123456': Invalid
# Course Code 'CS101': Valid
# Course Code 'MATH250': Valid
# Course Code 'XYZ': InvalidInputs that meet the required format and numeric constraints are marked valid, and all others are flagged invalid.
I’ve learned that the isdigit() method is an essential tool for string validation and data processing. It excels at checking for pure digit strings but requires careful consideration for more complex numeric formats.
The key to mastering isdigit() lies in understanding its limitations and combining it with other validation techniques when needed. Whether you’re building user input systems, processing financial data, or cleaning datasets, this method will serve you well when used appropriately.
You may like to read:
- Access Variables Outside a Function in Python
- Call a Function in Python
- Define a Function in Python
- Get the Name of a Function in Python

I am Bijay Kumar, a Microsoft MVP in SharePoint. Apart from SharePoint, I started working on Python, Machine learning, and artificial intelligence for the last 5 years. During this time I got expertise in various Python libraries also like Tkinter, Pandas, NumPy, Turtle, Django, Matplotlib, Tensorflow, Scipy, Scikit-Learn, etc… for various clients in the United States, Canada, the United Kingdom, Australia, New Zealand, etc. Check out my profile.