Partner – Orkes – NPI EA (cat=Spring)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Partner – Orkes – NPI EA (tag=Microservices)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

eBook – Guide Spring Cloud – NPI EA (cat=Spring Cloud)
announcement - icon

Let's get started with a Microservice Architecture with Spring Cloud:

>> Join Pro and download the eBook

eBook – Mockito – NPI EA (tag = Mockito)
announcement - icon

Mocking is an essential part of unit testing, and the Mockito library makes it easy to write clean and intuitive unit tests for your Java code.

Get started with mocking and improve your application tests using our Mockito guide:

Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Reactive – NPI EA (cat=Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Jackson – NPI EA (cat=Jackson)
announcement - icon

Do JSON right with Jackson

Download the E-book

eBook – HTTP Client – NPI EA (cat=Http Client-Side)
announcement - icon

Get the most out of the Apache HTTP Client

Download the E-book

eBook – Maven – NPI EA (cat = Maven)
announcement - icon

Get Started with Apache Maven:

Download the E-book

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

eBook – RwS – NPI EA (cat=Spring MVC)
announcement - icon

Building a REST API with Spring?

Download the E-book

Course – LS – NPI EA (cat=Jackson)
announcement - icon

Get started with Spring and Spring Boot, through the Learn Spring course:

>> LEARN SPRING
Course – RWSB – NPI EA (cat=REST)
announcement - icon

Explore Spring Boot 3 and Spring 6 in-depth through building a full REST API with the framework:

>> The New “REST With Spring Boot”

Course – LSS – NPI EA (cat=Spring Security)
announcement - icon

Yes, Spring Security can be complex, from the more advanced functionality within the Core to the deep OAuth support in the framework.

I built the security material as two full courses - Core and OAuth, to get practical with these more complex scenarios. We explore when and how to use each feature and code through it on the backing project.

You can explore the course here:

>> Learn Spring Security

Course – All Access – NPI EA (cat= Spring)
announcement - icon

All Access is finally out, with all of my Spring courses. Learn JUnit is out as well, and Learn Maven is coming fast. And, of course, quite a bit more affordable. Finally.

>> GET THE COURSE
Partner – Orkes – NPI EA (cat=Java)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Course – LSD – NPI EA (tag=Spring Data JPA)
announcement - icon

Spring Data JPA is a great way to handle the complexity of JPA with the powerful simplicity of Spring Boot.

Get started with Spring Data JPA through the guided reference course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (cat=Spring Boot)
announcement - icon

Refactor Java code safely — and automatically — with OpenRewrite.

Refactoring big codebases by hand is slow, risky, and easy to put off. That’s where OpenRewrite comes in. The open-source framework for large-scale, automated code transformations helps teams modernize safely and consistently.

Each month, the creators and maintainers of OpenRewrite at Moderne run live, hands-on training sessions — one for newcomers and one for experienced users. You’ll see how recipes work, how to apply them across projects, and how to modernize code with confidence.

Join the next session, bring your questions, and learn how to automate the kind of work that usually eats your sprint time.

Partner – LambdaTest – NPI EA (cat=Testing)
announcement - icon

Regression testing is an important step in the release process, to ensure that new code doesn't break the existing functionality. As the codebase evolves, we want to run these tests frequently to help catch any issues early on.

The best way to ensure these tests run frequently on an automated basis is, of course, to include them in the CI/CD pipeline. This way, the regression tests will execute automatically whenever we commit code to the repository.

In this tutorial, we'll see how to create regression tests using Selenium, and then include them in our pipeline using GitHub Actions:, to be run on the LambdaTest cloud grid:

>> How to Run Selenium Regression Tests With GitHub Actions

eBook – Java Concurrency – NPI (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

1. Overview

In this tutorial, we’ll be looking at the ThreadLocal construct from the java.lang package. This gives us the ability to store data individually for the current thread and simply wrap it within a special type of object.

2. ThreadLocal API

The TheadLocal construct allows us to store data that will be accessible only by a specific thread.

Let’s say that we want to have an Integer value that will be bundled with the specific thread:

ThreadLocal<Integer> threadLocalValue = new ThreadLocal<>();

Next, when we want to use this value from a thread, we only need to call a get() or set() method. Simply put, we can imagine that ThreadLocal stores data inside of a map with the thread as the key.

As a result, when we call a get() method on the threadLocalValue, we’ll get an Integer value for the requesting thread:

threadLocalValue.set(1);
Integer result = threadLocalValue.get();

We can construct an instance of the ThreadLocal by using the withInitial() static method and passing a supplier to it:

ThreadLocal<Integer> threadLocal = ThreadLocal.withInitial(() -> 1);

To remove the value from the ThreadLocal, we can call the remove() method:

threadLocal.remove();

To see how to use the ThreadLocal properly, we’ll first look at an example that doesn’t use a ThreadLocal, and then we’ll rewrite our example to leverage that construct.

3. Storing User Data in a Map

Let’s consider a program that needs to store the user-specific Context data per given user id:

public class Context {
    private String userName;

    public Context(String userName) {
        this.userName = userName;
    }
}

We want to have one thread per user id. We’ll create a SharedMapWithUserContext class that implements the Runnable interface. The implementation in the run() method calls some database through the UserRepository class that returns a Context object for a given userId.

Next, we store that context in the ConcurentHashMap keyed by userId:

public class SharedMapWithUserContext implements Runnable {
 
    public static Map<Integer, Context> userContextPerUserId
      = new ConcurrentHashMap<>();
    private Integer userId;
    private UserRepository userRepository = new UserRepository();

    @Override
    public void run() {
        String userName = userRepository.getUserNameForUserId(userId);
        userContextPerUserId.put(userId, new Context(userName));
    }

    // standard constructor
}

We can easily test our code by creating and starting two threads for two different userIds, and asserting that we have two entries in the userContextPerUserId map:

SharedMapWithUserContext firstUser = new SharedMapWithUserContext(1);
SharedMapWithUserContext secondUser = new SharedMapWithUserContext(2);
new Thread(firstUser).start();
new Thread(secondUser).start();

assertEquals(SharedMapWithUserContext.userContextPerUserId.size(), 2);

4. Storing User Data in ThreadLocal

We can rewrite our example using a shared ThreadLocal instance. Each thread will have its own Context stored in the ThreadLocal object.

When using ThreadLocal, we need to be very careful because every object stored in ThreadLocal is associated with a specific thread. In our example, we have a dedicated thread for each particular userId, and this thread is created by us, so we have full control over it.

The run() method will fetch the user context and store it into the ThreadLocal variable using the set() method:

public class ThreadLocalWithUserContext implements Runnable {
 
    private static ThreadLocal<Context> userContext 
      = new ThreadLocal<>();
    private Integer userId;
    private UserRepository userRepository = new UserRepository();

    @Override
    public void run() {
        String userName = userRepository.getUserNameForUserId(userId);
        userContext.set(new Context(userName));
        System.out.println("thread context for given userId: " 
          + userId + " is: " + userContext.get());
    }
    
    // standard constructor
}

We can test it by starting two threads that will execute the action for a given userId:

ThreadLocalWithUserContext firstUser 
  = new ThreadLocalWithUserContext(1);
ThreadLocalWithUserContext secondUser 
  = new ThreadLocalWithUserContext(2);
new Thread(firstUser).start();
new Thread(secondUser).start();

After running this code, we’ll see on the standard output that ThreadLocal was set per given thread:

thread context for given userId: 1 is: Context{userNameSecret='18a78f8e-24d2-4abf-91d6-79eaa198123f'}
thread context for given userId: 2 is: Context{userNameSecret='e19f6a0a-253e-423e-8b2b-bca1f471ae5c'}

We can see that each of the users has its own Context.

5. ThreadLocals and Thread Pools

ThreadLocal provides an easy-to-use API to confine some values to each thread. This is a reasonable way of achieving thread-safety in Java. However, we should be extra careful when we’re using ThreadLocals and thread pools together.

In order to better understand this possible caveat, let’s consider the following scenario:

  1. First, the application borrows a thread from the pool.
  2. Then it stores some thread-confined values into the current thread’s ThreadLocal.
  3. Once the current execution finishes, the application returns the borrowed thread to the pool.
  4. After a while, the application borrows the same thread to process another request.
  5. Since the application didn’t perform the necessary cleanups last time, it may re-use the same ThreadLocal data for the new request.

This may cause surprising consequences in highly concurrent applications.

One way to solve this problem is to manually remove each ThreadLocal once we’re done using it. Because this approach needs rigorous code reviews, it can be error-prone.

5.1. Extending the ThreadPoolExecutor

As it turns out, it’s possible to extend the ThreadPoolExecutor class and provide a custom hook implementation for the beforeExecute() and afterExecute() methods. The thread pool will call the beforeExecute() method before running anything using the borrowed thread. On the other hand, it’ll call the afterExecute() method after executing our logic.

Therefore, we can extend the ThreadPoolExecutor class and remove the ThreadLocal data in the afterExecute() method:

public class ThreadLocalAwareThreadPool extends ThreadPoolExecutor {

    @Override
    protected void afterExecute(Runnable r, Throwable t) {
        // Call remove on each ThreadLocal
    }
}

If we submit our requests to this implementation of ExecutorService, then we can be sure that using ThreadLocal and thread pools won’t introduce safety hazards for our application.

6. Conclusion

In this brief article, we examined the ThreadLocal construct. We implemented the logic that uses ConcurrentHashMap that was shared between threads to store the context associated with a particular userId. Then we rewrote our example to leverage ThreadLocal to store data associated with a particular userId and a particular thread.

The code backing this article is available on GitHub. Once you're logged in as a Baeldung Pro Member, start learning and coding on the project.
Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

Partner – Orkes – NPI EA (cat = Spring)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Partner – Orkes – NPI EA (tag = Microservices)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

eBook – HTTP Client – NPI EA (cat=HTTP Client-Side)
announcement - icon

The Apache HTTP Client is a very robust library, suitable for both simple and advanced use cases when testing HTTP endpoints. Check out our guide covering basic request and response handling, as well as security, cookies, timeouts, and more:

>> Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

Course – LS – NPI EA (cat=REST)

announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (tag=Refactoring)
announcement - icon

Modern Java teams move fast — but codebases don’t always keep up. Frameworks change, dependencies drift, and tech debt builds until it starts to drag on delivery. OpenRewrite was built to fix that: an open-source refactoring engine that automates repetitive code changes while keeping developer intent intact.

The monthly training series, led by the creators and maintainers of OpenRewrite at Moderne, walks through real-world migrations and modernization patterns. Whether you’re new to recipes or ready to write your own, you’ll learn practical ways to refactor safely and at scale.

If you’ve ever wished refactoring felt as natural — and as fast — as writing code, this is a good place to start.

eBook – Java Concurrency – NPI (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook Jackson – NPI EA – 3 (cat = Jackson)