Pandas isnull() and notnull() Method Last Updated : 31 Oct, 2025 Comments Improve Suggest changes 15 Likes Like Report Missing or null values are common in real-world datasets. Pandas provides isnull() and notnull() to detect such values in a DataFrame or Series.isnull(): Returns True for missing (NaN) values and False for non-missing values.notnull(): Returns True for non-missing values and False for missing values.These methods are essential for locating, filtering, or counting missing values during data cleaning.To download the csv file used in this article, click hereDetecting Missing Values with isnull()isnull() identifies NULL or NaN values and returns a boolean Series or DataFrame.Syntax: pd.isnull(obj)Parameters:obj: can be a Series, DataFrame, or scalar value.Returns: Boolean Series/DataFrame with True for missing values.Example: Python import pandas as pd data = pd.read_csv(r'enter the path to dataset here') bool_series = pd.isnull(data["Team"]) missing_values_count = bool_series.sum() filtered_data = data[bool_series] print("Count of missing values in 'Team':", missing_values_count) print("Rows with missing 'Team':") print(filtered_data) Output Explanation:pd.isnull(data["Team"]): Creates a boolean Series marking missing valuesbool_series.sum(): Counts missing entries.data[bool_series]: Filters rows with missing values in the Team columnDetecting Non-Missing Values with notnull()notnull() method is the inverse of isnull(). It identifies non-missing (valid) values.Syntax:pd.notnull(obj)Parameters:obj: can be a scalar, Series, or DataFrame.Returns: Boolean Series/DataFrame where True indicates non-null values.Example: Python import pandas as pd data = pd.read_csv(r'enter path to dataset here') bool_series = pd.notnull(data["Gender"]) filtered_data = data[bool_series] print(filtered_data) Output Explanation:pd.notnull(data["Gender"]): marks all non-missing values as True.data[bool_series]:Filters rows that have non-null values in GenderFiltering Data Based on Null ValuesYou can combine isnull() and notnull() for efficient filtering in data cleaning tasks.Syntax:pd.notnull(obj)Parameters:obj: Can be a scalar value, Series, or DataFrame. It is the input to check for non-missing (non-NaN) values.Returns: A boolean Series or DataFrame of the same shape as the input, where True indicates non-null (valid) entries.Example: Python import pandas as pd data = pd.read_csv("employees.csv") bool_series = pd.notnull(data["Gender"]) filtered_data = data[bool_series] print("Data with non-null 'Gender' values:") print(filtered_data) Output Explanation:bool_series = pd.notnull(data["Gender"]): Creates a Boolean Series; True for non-missing "Gender" values.filtered_data = data[bool_series]: Filters rows where "Gender" is not null.Related Articles:Replacing missing values using Pandas in PythonCount NaN or missing values in Pandas DataFramePython | Pandas DataFrame.fillna() to replace Null values in dataframe Create Quiz Comment K Kartikaybhutani Follow 15 Improve K Kartikaybhutani Follow 15 Improve Article Tags : Misc Python python-modules Python-pandas Python pandas-dataFrame Pandas-DataFrame-Methods +2 More Explore Python FundamentalsPython Introduction 2 min read Input and Output in Python 4 min read Python Variables 4 min read Python Operators 4 min read Python Keywords 2 min read Python Data Types 8 min read Conditional Statements in Python 3 min read Loops in Python - For, While and Nested Loops 5 min read Python Functions 5 min read Recursion in Python 4 min read Python Lambda Functions 5 min read Python Data StructuresPython String 5 min read Python Lists 4 min read Python Tuples 4 min read Python Dictionary 3 min read Python Sets 6 min read Python Arrays 7 min read List Comprehension in Python 4 min read Advanced PythonPython OOP Concepts 11 min read Python Exception Handling 5 min read File Handling in Python 4 min read Python Database Tutorial 4 min read Python MongoDB Tutorial 3 min read Python MySQL 9 min read Python Packages 10 min read Python Modules 3 min read Python DSA Libraries 15 min read List of Python GUI Library and Packages 3 min read Data Science with PythonNumPy Tutorial - Python Library 3 min read Pandas Tutorial 4 min read Matplotlib Tutorial 5 min read Python Seaborn Tutorial 3 min read StatsModel Library - Tutorial 3 min read Learning Model Building in Scikit-learn 6 min read TensorFlow Tutorial 2 min read PyTorch Tutorial 6 min read Web Development with PythonFlask Tutorial 8 min read Django Tutorial | Learn Django Framework 7 min read Django ORM - Inserting, Updating & Deleting Data 4 min read Templating With Jinja2 in Flask 6 min read Django Templates 5 min read Build a REST API using Flask - Python 3 min read Building a Simple API with Django REST Framework 3 min read Python PracticePython Quiz 1 min read Python Coding Practice 1 min read Python Interview Questions and Answers 15+ min read Like