C++ Program to Implement Dijkstra’s Algorithm using Priority Queue

This C++ program displays the Djikstra’s Algorithm of finding shortest paths from one node to others using the concept of a priority queue. a priority queue is an abstract data type which is like a regular queue or stack data structure, but where additionally each element has a “priority” associated with it.

Here is the source code of the C++ program to display the shortest distance and the source node associated with the shortest distance. This C++ program is successfully compiled and run on DevCpp,a C++ compiler.The program output is given below.

  1. /*
  2.  * C++ Program to Implement Dijkstra's Algorithm using Priority_queue(Heap)
  3.  */
  4. #include<iostream>
  5. #include<stdio.h>
  6. using namespace std;
  7. #include<conio.h>
  8. #define INFINITY 999
  9. struct node
  10. {
  11.     int cost;
  12.     int value;
  13.     int from;
  14. }a[7];
  15. void min_heapify(int *b, int i, int n)
  16. {
  17.     int j, temp;
  18.     temp = b[i];
  19.     j = 2 * i;
  20.     while (j <= n)
  21.     {
  22.         if (j < n && b[j + 1] < b[j])
  23.         {
  24.             j = j + 1;
  25.         }
  26.         if (temp < b[j])
  27.         {
  28.             break;
  29.         }
  30.         else if (temp >= b[j])
  31.         {
  32.             b[j / 2] = b[j];
  33.             j = 2 * j;
  34.         }
  35.     }
  36.     b[j / 2] = temp;
  37.     return;
  38. }
  39. void build_minheap(int *b, int n)
  40. {
  41.     int i;
  42.     for(i = n / 2; i >= 1; i--)
  43.     {
  44.         min_heapify(b, i, n);
  45.     }
  46. }
  47. void addEdge(int am[][7], int src, int dest, int cost)
  48. {
  49.      am[src][dest] = cost;
  50.      return;
  51. }
  52. void bell(int am[][7])
  53. {
  54.     int i, j, k, c = 0, temp;
  55.     a[0].cost = 0;
  56.     a[0].from = 0;
  57.     a[0].value = 0;
  58.     for (i = 1; i < 7; i++)
  59.     {
  60.         a[i].from = 0;
  61.         a[i].cost = INFINITY;
  62.         a[i].value = 0;
  63.     }
  64.     while (c < 7)
  65.     {
  66.         int min = 999;
  67.         for (i = 0; i < 7; i++)
  68.         {
  69.             if (min > a[i].cost && a[i].value == 0)
  70.             {
  71.                 min = a[i].cost;
  72.             }
  73.             else
  74.             {
  75.                 continue;
  76.             }
  77.         }
  78.         for (i = 0; i < 7; i++)
  79.         {
  80.             if (min == a[i].cost && a[i].value == 0)
  81.             {
  82.                 break;
  83.             }
  84.             else
  85.             {
  86.                 continue;
  87.             }
  88.         }
  89.         temp = i;
  90.         for (k = 0; k < 7; k++)
  91.         {
  92.             if (am[temp][k] + a[temp].cost < a[k].cost)
  93.             {
  94.                 a[k].cost = am[temp][k] + a[temp].cost;
  95.                 a[k].from = temp;
  96.             }
  97.             else
  98.             {
  99.                 continue;
  100.             }
  101.         }
  102.         a[temp].value = 1;
  103.         c++;
  104.     }
  105.     cout<<"Cost"<<"\t"<<"Source Node"<<endl; 
  106.     for (j = 0; j < 7; j++)
  107.     {
  108.         cout<<a[j].cost<<"\t"<<a[j].from<<endl;
  109.     }
  110. }
  111. int main()
  112. {
  113.     int n, am[7][7], c = 0, i, j, cost;
  114.     for (int i = 0; i < 7; i++)
  115.     {
  116.         for (int j = 0; j < 7; j++)
  117.         {
  118.             am[i][j] = INFINITY;
  119.         }
  120.     }
  121.     while (c < 12)
  122.     {
  123.         cout<<"Enter the source, destination and cost of edge\n";
  124.         cin>>i>>j>>cost;
  125.         addEdge(am, i, j, cost);
  126.         c++;
  127.     }
  128.     bell(am);
  129.     getch();
  130. }

Output
 
Enter the source, destination and cost of edge
0
1
3
Enter the source, destination and cost of edge
0
2
6
Enter the source, destination and cost of edge
1
2
2
Enter the source, destination and cost of edge
1
3
4
Enter the source, destination and cost of edge
2
3
1
Enter the source, destination and cost of edge
2
4
4
Enter the source, destination and cost of edge
2
5
2
Enter the source, destination and cost of edge
3
4
2
Enter the source, destination and cost of edge
3
6
4
Enter the source, destination and cost of edge
4
6
1
Enter the source, destination and cost of edge
4
5
2
Enter the source, destination and cost of edge
5
6
1
Cost    Source Node
0       0
3       0
5       1
6       2
8       3
7       2
8       5

Sanfoundry Global Education & Learning Series – 1000 C++ Programs.

advertisement
If you wish to look at all C++ Programming examples, go to C++ Programs.

advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
I’m Manish - Founder and CTO at Sanfoundry. I’ve been working in tech for over 25 years, with deep focus on Linux kernel, SAN technologies, Advanced C, Full Stack and Scalable website designs.

You can connect with me on LinkedIn, watch my Youtube Masterclasses, or join my Telegram tech discussions.

If you’re in your 20s–40s and exploring new directions in your career, I also offer mentoring. Learn more here.