C++ Program to Implement Edmonds Karp Algorithm

This C++ program implements the Edmonds_Karp Algorithm which is used to compute the maximum flow between the sink and source vertex. It is the same as the Ford-Fulkersson Algorithm except that it uses breadth first search to reduce time complexity.

Here is the source code of the C++ program to display the maximum flow by giving the sink and source nodes as input along with the directed graph. This C++ program is successfully compiled and run on DevCpp, a C++ compiler.The program output is given below.

  1. /*
  2.  * C++ Program to Implement The Edmonds-Karp Algorithm
  3.  */
  4. #include<cstdio>
  5. #include<cstdio>
  6. #include<queue>
  7. #include<cstring>
  8. #include<vector>
  9. #include<iostream>
  10. #include<conio.h>
  11.  
  12. using namespace std; 
  13.  
  14. int capacities[10][10];
  15. int flowPassed[10][10];
  16. vector<int> graph[10];
  17. int parentsList[10];       
  18. int currentPathCapacity[10];  
  19.  
  20. int bfs(int startNode, int endNode)
  21. {
  22.     memset(parentsList, -1, sizeof(parentsList));
  23.     memset(currentPathCapacity, 0, sizeof(currentPathCapacity));
  24.  
  25.     queue<int> q;
  26.     q.push(startNode);
  27.  
  28.     parentsList[startNode] = -2;
  29.     currentPathCapacity[startNode] = 999;
  30.  
  31.     while(!q.empty())
  32.     {
  33.         int currentNode = q.front();
  34.         q.pop();
  35.  
  36.         for(int i=0; i<graph[currentNode].size(); i++)
  37.         {
  38.             int to = graph[currentNode][i];
  39.             if(parentsList[to] == -1)
  40.             {
  41.                 if(capacities[currentNode][to] - flowPassed[currentNode][to] > 0)
  42.                 {
  43.                     parentsList[to] = currentNode;
  44.                     currentPathCapacity[to] = min(currentPathCapacity[currentNode], 
  45.                     capacities[currentNode][to] - flowPassed[currentNode][to]);
  46.                     if(to == endNode)
  47.                     {
  48.                         return currentPathCapacity[endNode];
  49.                     }
  50.                     q.push(to);
  51.                 }
  52.             }
  53.         }
  54.     }
  55.     return 0;
  56. }
  57.  
  58. int edmondsKarp(int startNode, int endNode)
  59. {
  60.     int maxFlow = 0;
  61.       while(true)
  62.     {
  63.         int flow = bfs(startNode, endNode);
  64.         if (flow == 0) 
  65.         {
  66.             break;
  67.         }
  68.         maxFlow += flow;
  69.         int currentNode = endNode;
  70.         while(currentNode != startNode)
  71.         {
  72.             int previousNode = parentsList[currentNode];
  73.             flowPassed[previousNode][currentNode] += flow;
  74.             flowPassed[currentNode][previousNode] -= flow;
  75.             currentNode = previousNode;
  76.         }
  77.     }
  78.     return maxFlow;
  79. }
  80. int main()
  81. {
  82.     int nodesCount, edgesCount;
  83.     cout<<"enter the number of nodes and edges\n";
  84.     cin>>nodesCount>>edgesCount;
  85.  
  86.     int source, sink;
  87.     cout<<"enter the source and sink\n";
  88.     cin>>source>>sink;
  89.  
  90.     for(int edge = 0; edge < edgesCount; edge++)
  91.     {
  92.         cout<<"enter the start and end vertex alongwith capacity\n";
  93.         int from, to, capacity;
  94.         cin>>from>>to>>capacity;
  95.  
  96.         capacities[from][to] = capacity;
  97.         graph[from].push_back(to);
  98.  
  99.         graph[to].push_back(from);
  100.     }
  101.  
  102.     int maxFlow = edmondsKarp(source, sink);
  103.  
  104.     cout<<endl<<endl<<"Max Flow is:"<<maxFlow<<endl;
  105.  
  106.     getch();
  107. }

Output
enter the number of nodes and edges
6
10
enter the source and sink
0
5
enter the start and end vertex alongwith capacity
0
1
16
enter the start and end vertex alongwith capacity
0
2
13
enter the start and end vertex alongwith capacity
1
2
10
enter the start and end vertex alongwith capacity
2
1
4
enter the start and end vertex alongwith capacity
1
3
12
enter the start and end vertex alongwith capacity
3
2
9
enter the start and end vertex alongwith capacity
2
4
14
enter the start and end vertex alongwith capacity
4
3
7
enter the start and end vertex alongwith capacity
4
5
4
enter the start and end vertex alongwith capacity
3
5
20
 
 
Max Flow is:23

Sanfoundry Global Education & Learning Series – 1000 C++ Programs.

advertisement
If you wish to look at all C++ Programming examples, go to C++ Programs.

advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
I’m Manish - Founder and CTO at Sanfoundry. I’ve been working in tech for over 25 years, with deep focus on Linux kernel, SAN technologies, Advanced C, Full Stack and Scalable website designs.

You can connect with me on LinkedIn, watch my Youtube Masterclasses, or join my Telegram tech discussions.

If you’re in your 20s–40s and exploring new directions in your career, I also offer mentoring. Learn more here.