C++ Program to Find the Convex Hull using Graham Scan Algorithm

This is a C++ Program to implement Graham Scan algorithm. Graham’s scan is a method of computing the convex hull of a finite set of points in the plane with time complexity O(n log n).

Here is source code of the C++ Program to Implement Graham Scan Algorithm to Find the Convex Hull. The C++ program is successfully compiled and run on a Linux system. The program output is also shown below.

  1. // A C++ program to find convex hull of a set of points
  2. // Refer http://www.geeksforgeeks.org/check-if-two-given-line-segments-intersect/
  3. // for explanation of orientation()
  4. #include <iostream>
  5. #include <stack>
  6. #include <stdlib.h>
  7. using namespace std;
  8.  
  9. struct Point
  10. {
  11.         int x;
  12.         int y;
  13. };
  14.  
  15. Point p0;
  16.  
  17. // A utility function to find next to top in a stack
  18. Point nextToTop(stack<Point> &S)
  19. {
  20.     Point p = S.top();
  21.     S.pop();
  22.     Point res = S.top();
  23.     S.push(p);
  24.     return res;
  25. }
  26.  
  27. // A utility function to swap two points
  28. int swap(Point &p1, Point &p2)
  29. {
  30.     Point temp = p1;
  31.     p1 = p2;
  32.     p2 = temp;
  33. }
  34.  
  35. // A utility function to return square of distance between p1 and p2
  36. int dist(Point p1, Point p2)
  37. {
  38.     return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);
  39. }
  40.  
  41. int orientation(Point p, Point q, Point r)
  42. {
  43.     int val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
  44.  
  45.     if (val == 0)
  46.         return 0; // colinear
  47.     return (val > 0) ? 1 : 2; // clock or counterclock wise
  48. }
  49.  
  50. // A function used by library function qsort() to sort an array of
  51. // points with respect to the first point
  52. int compare(const void *vp1, const void *vp2)
  53. {
  54.     Point *p1 = (Point *) vp1;
  55.     Point *p2 = (Point *) vp2;
  56.  
  57.     // Find orientation
  58.     int o = orientation(p0, *p1, *p2);
  59.     if (o == 0)
  60.         return (dist(p0, *p2) >= dist(p0, *p1)) ? -1 : 1;
  61.  
  62.     return (o == 2) ? -1 : 1;
  63. }
  64.  
  65. // Prints convex hull of a set of n points.
  66. void convexHull(Point points[], int n)
  67. {
  68.     // Find the bottommost point
  69.     int ymin = points[0].y, min = 0;
  70.     for (int i = 1; i < n; i++)
  71.     {
  72.         int y = points[i].y;
  73.  
  74.         // Pick the bottom-most or chose the left most point in case of tie
  75.         if ((y < ymin) || (ymin == y && points[i].x < points[min].x))
  76.             ymin = points[i].y, min = i;
  77.     }
  78.  
  79.     // Place the bottom-most point at first position
  80.     swap(points[0], points[min]);
  81.  
  82.     // Sort n-1 points with respect to the first point.  A point p1 comes
  83.     // before p2 in sorted ouput if p2 has larger polar angle (in
  84.     // counterclockwise direction) than p1
  85.     p0 = points[0];
  86.     qsort(&points[1], n - 1, sizeof(Point), compare);
  87.  
  88.     // Create an empty stack and push first three points to it.
  89.     stack<Point> S;
  90.     S.push(points[0]);
  91.     S.push(points[1]);
  92.     S.push(points[2]);
  93.  
  94.     // Process remaining n-3 points
  95.     for (int i = 3; i < n; i++)
  96.     {
  97.         // Keep removing top while the angle formed by points next-to-top,
  98.         // top, and points[i] makes a non-left turn
  99.         while (orientation(nextToTop(S), S.top(), points[i]) != 2)
  100.             S.pop();
  101.         S.push(points[i]);
  102.     }
  103.  
  104.     // Now stack has the output points, print contents of stack
  105.     while (!S.empty())
  106.     {
  107.         Point p = S.top();
  108.         cout << "(" << p.x << ", " << p.y << ")" << endl;
  109.         S.pop();
  110.     }
  111. }
  112.  
  113. // Driver program to test above functions
  114. int main()
  115. {
  116.     Point points[] = { { 0, 3 }, { 1, 1 }, { 2, 2 }, { 4, 4 }, { 0, 0 },
  117.             { 1, 2 }, { 3, 1 }, { 3, 3 } };
  118.     int n = sizeof(points) / sizeof(points[0]);
  119.     cout << "The points in the convex hull are: \n";
  120.     convexHull(points, n);
  121.     return 0;
  122. }

Output:

$ g++ GrahamScan.cpp
$ a.out
 
The points in the convex hull are: 
(0, 3)
(4, 4)
(3, 1)
(0, 0)
 
------------------
(program exited with code: 0)
Press return to continue

Sanfoundry Global Education & Learning Series – 1000 C++ Programs.

advertisement

Here’s the list of Best Books in C++ Programming, Data Structures and Algorithms.

advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
I’m Manish - Founder and CTO at Sanfoundry. I’ve been working in tech for over 25 years, with deep focus on Linux kernel, SAN technologies, Advanced C, Full Stack and Scalable website designs.

You can connect with me on LinkedIn, watch my Youtube Masterclasses, or join my Telegram tech discussions.

If you’re in your 20s–40s and exploring new directions in your career, I also offer mentoring. Learn more here.