Java Program to Implement Hamiltonian Cycle Algorithm

This is a Java Program to Implement Hamiltonian Cycle Algorithm. Hamiltonian cycle is a path in a graph that visits each vertex exactly once and back to starting vertex. This program is to determine if a given graph is a hamiltonian cycle or not. This program assumes every vertex of the graph to be a part of hamiltonian path.

Here is the source code of the Java Program to Implement Hamiltonian Cycle Algorithm. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.

  1. /**
  2.  **   Java Program to Implement Hamiltonian Cycle Algorithm
  3.  **/
  4.  
  5. import java.util.Scanner;
  6. import java.util.Arrays;
  7.  
  8. /** Class HamiltonianCycle **/
  9. public class HamiltonianCycle
  10. {
  11.     private int V, pathCount;
  12.     private int[] path;     
  13.     private int[][] graph;
  14.  
  15.     /** Function to find cycle **/
  16.     public void findHamiltonianCycle(int[][] g)
  17.     {
  18.         V = g.length;
  19.         path = new int[V];
  20.  
  21.         Arrays.fill(path, -1);
  22.         graph = g;        
  23.         try
  24.         {            
  25.             path[0] = 0;
  26.             pathCount = 1;            
  27.             solve(0);
  28.             System.out.println("No solution");
  29.         }
  30.         catch (Exception e)
  31.         {
  32.             System.out.println(e.getMessage());
  33.             display();
  34.         }
  35.     }
  36.     /** function to find paths recursively **/
  37.     public void solve(int vertex) throws Exception
  38.     {
  39.         /** solution **/
  40.         if (graph[vertex][0] == 1 && pathCount == V)
  41.             throw new Exception("Solution found");
  42.         /** all vertices selected but last vertex not linked to 0 **/
  43.         if (pathCount == V)
  44.             return;
  45.  
  46.         for (int v = 0; v < V; v++)
  47.         {
  48.             /** if connected **/
  49.             if (graph[vertex][v] == 1 )
  50.             {
  51.                 /** add to path **/            
  52.                 path[pathCount++] = v;    
  53.                 /** remove connection **/            
  54.                 graph[vertex][v] = 0;
  55.                 graph[v][vertex] = 0;
  56.  
  57.                 /** if vertex not already selected  solve recursively **/
  58.                 if (!isPresent(v))
  59.                     solve(v);
  60.  
  61.                 /** restore connection **/
  62.                 graph[vertex][v] = 1;
  63.                 graph[v][vertex] = 1;
  64.                 /** remove path **/
  65.                 path[--pathCount] = -1;                    
  66.             }
  67.         }
  68.     }    
  69.     /** function to check if path is already selected **/
  70.     public boolean isPresent(int v)
  71.     {
  72.         for (int i = 0; i < pathCount - 1; i++)
  73.             if (path[i] == v)
  74.                 return true;
  75.         return false;                
  76.     }
  77.     /** display solution **/
  78.     public void display()
  79.     {
  80.         System.out.print("\nPath : ");
  81.         for (int i = 0; i <= V; i++)
  82.             System.out.print(path[i % V] +" ");
  83.         System.out.println();
  84.     }    
  85.     /** Main function **/
  86.     public static void main (String[] args) 
  87.     {
  88.         Scanner scan = new Scanner(System.in);
  89.         System.out.println("HamiltonianCycle Algorithm Test\n");
  90.         /** Make an object of HamiltonianCycle class **/
  91.         HamiltonianCycle hc = new HamiltonianCycle();
  92.  
  93.         /** Accept number of vertices **/
  94.         System.out.println("Enter number of vertices\n");
  95.         int V = scan.nextInt();
  96.  
  97.         /** get graph **/
  98.         System.out.println("\nEnter matrix\n");
  99.         int[][] graph = new int[V][V];
  100.         for (int i = 0; i < V; i++)
  101.             for (int j = 0; j < V; j++)
  102.                 graph[i][j] = scan.nextInt();
  103.  
  104.         hc.findHamiltonianCycle(graph);        
  105.     }    
  106. }

HamiltonianCycle Algorithm Test
 
Enter number of vertices
 
8
 
Enter matrix
 
0 1 0 1 1 0 0 0
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
1 0 1 0 0 0 0 1
1 0 0 0 0 1 0 1
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 1 1 0 1 0
Solution found
 
Path : 0 1 2 3 7 6 5 4 0

Sanfoundry Global Education & Learning Series – 1000 Java Programs.

advertisement
If you wish to look at all Java Programming examples, go to Java Programs.

advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
I’m Manish - Founder and CTO at Sanfoundry. I’ve been working in tech for over 25 years, with deep focus on Linux kernel, SAN technologies, Advanced C, Full Stack and Scalable website designs.

You can connect with me on LinkedIn, watch my Youtube Masterclasses, or join my Telegram tech discussions.

If you’re in your 20s–40s and exploring new directions in your career, I also offer mentoring. Learn more here.