Java Program to Implement Dijkstra’s Algorithm using Queue

This Java program,to Implement Dijkstra’s algorithm using Queue.Dijkstra’s algorithm is a graph search algorithm that solves the single-source shortest path problem for a graph with non-negative edge path costs, producing a shortest path tree.

Here is the source code of the Java program to implement Dijkstra’s algorithm using Queue. The Java program is successfully compiled and run on a Linux system. The program output is also shown below.

  1. import java.util.HashSet;
  2. import java.util.InputMismatchException;
  3. import java.util.LinkedList;
  4. import java.util.Queue;
  5. import java.util.Scanner;
  6. import java.util.Set;
  7.  
  8. public class DijkstraQueue
  9. {
  10.     private int distances[];
  11.     private Queue<Integer> queue;
  12.     private Set<Integer> settled;
  13.     private int number_of_nodes;
  14.     private int adjacencyMatrix[][];
  15.  
  16.     public DijkstraQueue(int number_of_nodes)
  17.     {
  18.         this.number_of_nodes = number_of_nodes;
  19.         distances = new int[number_of_nodes + 1];
  20.         settled = new HashSet<Integer>();
  21.         queue = new LinkedList<Integer>();
  22.         adjacencyMatrix = new int[number_of_nodes + 1][number_of_nodes + 1];
  23.     }
  24.  
  25.     public void dijkstra_algorithm(int adjacency_matrix[][], int source)
  26.     {
  27.         int evaluationNode;
  28.         for (int i = 1; i <= number_of_nodes; i++)
  29.             for (int j = 1; j <= number_of_nodes; j++)
  30.                 adjacencyMatrix[i][j] = adjacency_matrix[i][j];
  31.  
  32.         for (int i = 1; i <= number_of_nodes; i++)
  33.         {
  34.             distances[i] = Integer.MAX_VALUE;
  35.         }
  36.  
  37.         queue.add(source);
  38.         distances[source] = 0;
  39.  
  40.         while (!queue.isEmpty())
  41.         {
  42.             evaluationNode = getNodeWithMinimumDistanceFromQueue();
  43.             settled.add(evaluationNode);
  44.             evaluateNeighbours(evaluationNode);
  45.         }
  46.     }
  47.  
  48.     private int getNodeWithMinimumDistanceFromQueue()
  49.     {
  50.         int min ;
  51.         int node = 0;
  52.         Iterator<Integer> iterator = queue.iterator();
  53.         node = iterator.next();
  54.         min = distances[node];
  55.  
  56.         for (int i = 1; i <= distances.length; i++)
  57.         {
  58.             if (queue.contains(i))
  59.             {
  60.                 if (distances[i] <= min)
  61.                 {
  62.                     min = distances[i];
  63.                     node = i;			
  64.                 }
  65.             }
  66.         }
  67.         queue.remove(node);
  68.         return node;
  69.     }
  70.  
  71.     private void evaluateNeighbours(int evaluationNode)
  72.     {
  73.         int edgeDistance = -1;
  74.         int newDistance = -1;
  75.  
  76.         for (int destinationNode = 1; destinationNode <= number_of_nodes; destinationNode++)
  77.         {
  78.             if (!settled.contains(destinationNode))
  79.             {
  80.                 if (adjacencyMatrix[evaluationNode][destinationNode] != Integer.MAX_VALUE)
  81.                 {
  82.                     edgeDistance = adjacencyMatrix[evaluationNode][destinationNode];
  83.                     newDistance = distances[evaluationNode] + edgeDistance;
  84.                     if (newDistance < distances[destinationNode])
  85.                     {
  86.                         distances[destinationNode] = newDistance;
  87.                     }
  88.                     queue.add(destinationNode);
  89.                 }
  90.             }
  91.         }
  92.     }
  93.  
  94.     public static void main(String... arg)
  95.     {
  96.         int adjacency_matrix[][];
  97.         int number_of_vertices;
  98.         int source = 0;
  99.         Scanner scan = new Scanner(System.in);
  100.  
  101.         try
  102.         {
  103.             System.out.println("Enter the number of vertices");
  104.             number_of_vertices = scan.nextInt();
  105.             adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1];
  106.  
  107.             System.out.println("Enter the Weighted Matrix for the graph");
  108.             for (int i = 1; i <= number_of_vertices; i++)
  109.             {
  110.                 for (int j = 1; j <= number_of_vertices; j++)
  111.                 {
  112.                     adjacency_matrix[i][j] = scan.nextInt();
  113.                     if (i == j)
  114.                     {
  115.                         adjacency_matrix[i][j] = 0;
  116.                         continue;
  117.                     }
  118.                     if (adjacency_matrix[i][j] == 0)
  119.                     {
  120.                         adjacency_matrix[i][j] = Integer.MAX_VALUE;
  121.                     }
  122.                 }
  123.             }
  124.  
  125.             System.out.println("Enter the source ");
  126.             source = scan.nextInt();
  127.             DijkstraQueue dijkstrasQueue = new DijkstraQueue(number_of_vertices);
  128.             dijkstrasQueue.dijkstra_algorithm(adjacency_matrix, source);
  129.  
  130.             System.out.println("The Shorted Path to all nodes are ");
  131.             for (int i = 1; i <= dijkstrasQueue.distances.length - 1; i++)
  132.             {
  133.                 System.out.println(source + " to " + i + " is " + dijkstrasQueue.distances[i]);
  134.             }
  135.         } catch (InputMismatchException inputMismatch)
  136.         {
  137.             System.out.println("Wrong Input Format");
  138.         }
  139.         scan.close();
  140.     }
  141. }

$javac DijkstraQueue.java
$java DijkstraQueue 
Enter the number of vertices
5
Enter the Weighted Matrix for the graph
0 7 0 0 2
0 0 1 0 2
0 0 0 4 0
0 0 5 0 0
0 3 8 5 0
Enter the source 
1
The Shorted Path to all nodes are 
1 to 1 is 0
1 to 2 is 5
1 to 3 is 6
1 to 4 is 7
1 to 5 is 2

Sanfoundry Global Education & Learning Series – 1000 Java Programs.

advertisement
If you wish to look at all Java Programming examples, go to Java Programs.

advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
I’m Manish - Founder and CTO at Sanfoundry. I’ve been working in tech for over 25 years, with deep focus on Linux kernel, SAN technologies, Advanced C, Full Stack and Scalable website designs.

You can connect with me on LinkedIn, watch my Youtube Masterclasses, or join my Telegram tech discussions.

If you’re in your 20s–40s and exploring new directions in your career, I also offer mentoring. Learn more here.