Topos



Previously: Subobject Classifier.

In category theory, objects are devoid of internal structure. We’ve seen however that in certain categories we can define relationships between objects that mimic the set-theoretic idea of one set being the subset of another. We do this using the subobject classifier.

We would like to define a subobject classifier in the category of presheaves, so we could easily characterize subfunctors of a given presheaf. This will help us work with sieves, which are subfunctors of the hom-functor C(-, a); and coverages, which are special kinds of sieves.

Recall that a presheaf S is a subfunctor of another presheaf P \colon C^{op} \to Set if it satisfies two conditions.

  • For every object a, we have a set inclusion: S a \subseteq P a,
  • For every morphism f \colon c \to a, the function S f \colon S a \to S c is a restriction of the function P f \colon P a \to P c. In other words, P f and S f must agree on the subset S a.

As category theory goes, this is a very low-level definition. We need something more abstract: We need to construct a subobject classifier in the category of presheaves. Recall that a subobject classifier is defined by the following pullback diagram:

Image

This time, however, the objects are presheaves and the arrows are natural transformations.

To begin with we have to define a terminal presheaf, 1 \colon C^{op} \to Set that satisfies the condition that, for any presheaf P, there is a unique natural transformation ! \colon P \to 1. This will work if every component !_a \colon P a \to 1 a of this natural transformation is unique, which is true if we choose 1 a to be the terminal singleton set \{ * \}. Thus the terminal presheaf maps all objects to the terminal set, and all morphisms to the identity on \{ * \}.

Next, let’s instantiate the subobject classifier diagram at a particular object a.

Image

Here, the component true_a picks a special “True” element in the set \Omega_a. If the presheaf S is a subfunctor of P, the set S a is a subset of P a. The function \chi_a must therefore map the whole subset S a to “True”. This is consistent with our definition of the subobject classifier for sets.

The second condition in the definition of a subfunctor is more interesting. It involves the mapping of morphisms.

The restriction condition

We have to consider all morphisms converging on our object of interest a. For instance, lets take f \colon c \to a. The presheaf P lifts it to a function P f \colon P a \to P c. If S is a subfunctor of P, S f is a restriction of P f.

Image

Specifically the restriction condition tells us that, if we pick an element x \in S a, then both P f and S f will map it to the same element of S c. In fact, when defining a subobject, we only care if the embedding of S c in P c is injective (monomorphic). It’s okay if it permutes the elements of S c. So it’s enough that, for all x \in S a, the following condition is satisfied:

(P f) x \in S c

Image

Now consider an arbitrary x \in P a (not necessarily an element of S a). We can gather all arrows f converging on a for which the subset-mapping condition is satisfied:

(P f) x \in S c

If S is a subfunctor of P, these arrows form a sieve on a, as any composition f \circ g also satisfies the subset-mapping condition:

Image

Moreover, if x is in fact an element of S a, this sieve is the maximal sieve. A maximal sieve on a is a collection of all arrows converging on a.

We can now define a function \chi_a that assigns to each x \in P a the sieve of arrows that satisfy the subset-mapping condition.

\chi_a x = \{f \colon c \to a \, |  \, (P f) x \in S c\}

The function \chi_a has the property that, if x is an element of S a, the result is the maximal sieve on a.

It makes sense then to define \Omega_a as a set of sieves on a, and “True” as the maximal sieve on a. (Thus \Omega_a is a set whose elements are sets.)

The mapping \Omega \colon a \to \Omega_a can be made into a presheaf by defining its action on morphisms. The lifting of f \colon c \to a takes a sieve s_a \in \Omega_a to a sieve s'_{c} \in \Omega c, defined as a set of arrows h \colon c' \to c, such that f \circ h \in s_a.

Image

Notice that the resulting sieve s_c' is maximal if and only if f \in \Omega_a. (Hint: If a sieve is maximal, then it contains identity.)

It can be shown that the the functions \chi_a combine to form a natural transformation \chi \colon P \to \Omega.

What remains to be shown is that this \chi is a unique such natural transformation that completes the pullback:

Image

To show that, let’s assume that there is another natural transformation \theta \colon P \to \Omega making this diagram into a pullback. Let’s redraw the subfunctor condition for arrows, replacing \chi with \theta:

Image

Let’s pick an x \in P a and call y = (P f) x. We’ll follow a set of equivalences.

The pullback condition:

Image

tells us that y \in S c is equivalent to \theta_c y = true_c. In other words:

\theta_c ((P f) x) = true_c

Using naturality of \theta:

Image

we can rewrite it as:

(\Omega f) (\theta_a x) = true_c.

Both sides of this equation are sieves. By definition, the lifting of f, \Omega f, acting on \theta_a x is a sieve defined by the following set of arrows:

(\Omega f) (\theta_a x) = \{ h \colon c' \to c \, | \, f \circ h \in \theta_a x \}

Since true_c is a maximal sieve, it must be that f \in \theta_a x.

We have shown that the condition (P f) x \in S c is equivalent to f \in \theta_a x. But the first condition is exactly the one we used to define \chi_a x. Therefore \chi is the only function that makes the subobject classifier diagram into a pullback.

Subfunctor classifier

The subobject classifier in the category of presheaves is thus a presheaf \Omega that maps objects to sieves, together with the natural transformation true \colon 1 \to \Omega that picks maximal sieves.

Every natural transformation \chi \colon P \to \Omega defines a subfunctor of the presheaf P. The components of this natural transformation serve as characteristic functions for the sets P a. A given element x is in the subset S a iff \chi_a maps it to the maximal sieve on a.

But there’s not one but many different ways of failing the subset test. They are given by non-maximal sieves. We may think of them as satisfying the Anna Karenina principle, “All happy families are alike; each unhappy family is unhappy in its own way.”

Why sieves? Because once an element of a set P a is mapped by P f to an element of a subset S c, it will continue to be mapped into consecutive subsets S c', etc. The network of “happy” morphisms keeps growing outward. By contrast, the “unhappy” elements of x \in P a have at least one morphism f \colon c \to a, whose lifting maps it outside the subset S c. That’s the morphism that’s absent from the non-maximal sieve \chi_a. Finally, naturality of \chi ensures that subset conditions propagate coherently from object to object.

Next: Fibrations and Cofibrations.


Proviously Sieves and Sheaves.

We have seen how topology can be defined by working with sets of continuous functions over coverages. Categorically speaking, a coverage is a special case of a sieve, which is defined as a subfunctor of the hom-functor C(-, a).

We’d like to characterize the relationship between a functor and its subfunctor by looking at them as objects in the category of presheaves. For that we need to introduce the idea of a subobject.

We’ll start by defining subobjects in the category of sets in a way that avoids talking about elements. Here we have two options.

The first one uses a characteristic function. It’s a predicate that answers the question: Is some element x a member of a given subset or not? Notice that any Boolean-valued function uniquely defines a subset of its domain, so we don’t really need to talk about elements, just a function.

But we still have to define a Boolean set. Let’s call this set \Omega, and designate one of its element as “True.” Selecting “True” can be done by defining a function true \colon 1 \to \Omega, where 1 is the terminal object (here, a singleton set). In principle we should insist that \Omega contains two elements, “True” and “False,” but that would make it more difficult to generalize.

The second way to define a subset S \subseteq P is to provide an injective function m \colon S \rightarrowtail P that embeds S in P. Injectivity guarantees that no two elements are mapped to the same element. The image of m then defines the subset of P. In a general category, injective functions are replaced by monics (monomorphisms).

Notice that there can be many injections that define the same subset. It’s okay for them to permute the image of m as long as it covers exactly the same subset of P. (These injections form an equivalence class.)

The fact that the two definitions coincide can be summarized by one commuting diagram. In the category of sets, given a characteristic function \chi, the subset S and the monic m are uniquely (up to isomorphism) defined as a pullback of this diagram.

Image

We can now turn the tables and use this diagram to define the object \Omega called the subobject classifier, together with the monic true \colon 1 \rightarrowtail \Omega. We do it by means of a universal construction. We postulate that: For every monic S \rightarrowtail P between two arbitrary objects there exist a unique arrow \chi \colon P \to \Omega such that the above diagram constitutes a pullback.

This is a slightly unusual definition. Normally we think of a pullback as defining the northwest part of the diagram given its southeast part. Here, we are solving a sudoku puzzle, trying to fill the southeast part to uniquely complete a pullback diagram.

Let’s see how this works for sets. To construct a pullback (a.k.a., a fibered product P \times_{\Omega} 1) we first create a set of pairs (x, *) where x \in P and * \in 1 (the only element of the singleton set). But not all x‘s are acceptable, because we have a pullback condition, which says that \chi x = \text{True}, where \text{True} is the element of \Omega pointed to by true. This tells us that S is isomorphic to the subset of P for which \chi is \text{True}.

Image

The question is: What happens to the other elements of P? They cannot be mapped to \text{True}, so \Omega must contain at least one more element (in case m is not an isomorphism). Can it contain more?

This is where the universal construction comes into play. Any monic m (here, an injective function) must uniquely determine a \chi that completes the pullback. In particular, we can pick S to be a singleton set and P to be a two-element set. We see that if \Omega contained only \text{True} and nothing else, no \chi would complete the pullback. And if \Omega contained more than two elements, there would be not one but at least two such \chi‘s. So, by the Goldilock principle, \Omega must have exactly two elements.

Image

We’ll see later that this is not necessarily true in a more general category.

Next: Subfunctor Classifier.