# Q-Edge ### Federated Hybrid Quantum-Neural Network Platform Research [![Python](https://img.shields.io/badge/Python-3.10+-3776AB?style=for-the-badge&logo=python&logoColor=white)](https://python.org) [![PennyLane](https://img.shields.io/badge/PennyLane-Quantum-00D4AA?style=for-the-badge&logo=atom&logoColor=white)](https://pennylane.ai) [![Flutter](https://img.shields.io/badge/Flutter-Mobile-02569B?style=for-the-badge&logo=flutter&logoColor=white)](https://flutter.dev) [![FastAPI](https://img.shields.io/badge/FastAPI-Backend-009688?style=for-the-badge&logo=fastapi&logoColor=white)](https://fastapi.tiangolo.com) [![License](https://img.shields.io/badge/License-Apache_2.0-green?style=flat-square)](LICENSE) [![Stars](https://img.shields.io/github/stars/rasidi3112/q-edge?style=flat-square)](https://github.com/rasidi3112/q-edge/stargazers) [![Forks](https://img.shields.io/github/forks/rasidi3112/q-edge?style=flat-square)](https://github.com/rasidi3112/q-edge/network/members)
**Exploring the future of AI: Where Quantum Computing meets Federated Learning** *Research/Educational Project — Not Production Ready*
[Documentation](#-quick-start) • [Quick Start](#-quick-start) • [Contributing](#-contributing) • [License](#-license)

What is Q-Edge?

Q-Edge is an experimental platform that explores the intersection of three cutting-edge technologies:

Technology Description Status
Federated Learning Distributed ML without exposing raw data Simulated
Quantum ML Variational Quantum Circuits (VQC) & Quantum Kernel PennyLane Simulator
Post-Quantum Crypto Kyber & Dilithium (NIST standards) Placeholder
Azure Quantum Cloud quantum hardware integration Code Ready

Why Quantum?

"Why does FL aggregation need quantum?"

Aspect Classical FL Quantum-Enhanced FL
Aggregation FedAvg (linear) Quantum kernel for non-linear patterns
Privacy Differential privacy + Quantum key distribution potential
Optimization Gradient descent Variational quantum optimization
Scalability O(n) parameters Quantum parallelism for high-dim data

Honest take: At this stage, quantum advantages are still theoretical and only running on simulators. But research shows potential for:

  • Better resistance against adversarial attacks
  • More efficient loss function landscape exploration
  • Quantum-secure communication between FL clients

Key Features

ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”
│                        Q-EDGE ARCHITECTURE                      │
ā”œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”¤
│                                                                 │
│   Mobile Clients            Backend              Quantum        │
│   ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”          ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”      ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”   │
│   │ Flutter App │ ──PQC──▶ │  FastAPI    │ ───▶ │ PennyLane │   │
│   │ FL Client   │          │  + Celery   │      │ Circuits  │   │
│   ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜          ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜      ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜   │
│                                                                 │
│   Security: Kyber-1024 KEM + Dilithium-5 Signatures             │
│   Aggregation: FedAvg + Quantum-Enhanced                        │
│   Error Mitigation: Zero-Noise Extrapolation                    │
│                                                                 │
ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜

Important Disclaimer

### What This IS - Educational/research project - Working quantum circuits on simulator - Learning resource for FL + QML + PQC - Architecture proof-of-concept ### What This is NOT - Production-ready software - Connected to real quantum hardware - Real Kyber/Dilithium (simulated) - Trained on real datasets

Quick Start

Prerequisites

Python 3.10+
Flutter 3.0+
Docker (optional)

Installation

# Clone the repository
git clone https://github.com/rasidi3112/q-edge.git
cd q-edge

# Create virtual environment
python -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

# Run demo
python demo.py

Run Flutter App

cd mobile_app
flutter pub get
flutter run -d chrome  # or your preferred device

Project Structure

q-edge/
ā”œā”€ā”€ src/
│   ā”œā”€ā”€ quantum/              # Quantum ML modules
│   │   ā”œā”€ā”€ circuits.py       # Variational Quantum Circuits
│   │   ā”œā”€ā”€ kernels.py        # Quantum Kernel Alignment
│   │   ā”œā”€ā”€ error_mitigation.py # Zero-Noise Extrapolation
│   │   ā”œā”€ā”€ aggregator.py     # Quantum-Enhanced Aggregation
│   │   └── azure_connector.py # Azure Quantum Integration
│   │
│   ā”œā”€ā”€ backend/              # FastAPI Backend
│   │   ā”œā”€ā”€ main.py           # API endpoints
│   │   ā”œā”€ā”€ security.py       # PQC implementation
│   │   └── celery_app.py     # Async task queue
│   │
│   └── mobile/               # Mobile FL Client
│       ā”œā”€ā”€ fl_client.py      # Flower-based FL client
│       └── pqc_transport.py  # PQC transport layer
│
ā”œā”€ā”€ mobile_app/               # Flutter UI
│   └── lib/main.dart         # Mobile dashboard
│
ā”œā”€ā”€ tests/                    # Unit & integration tests
ā”œā”€ā”€ docs/                     # Documentation
ā”œā”€ā”€ demo.py                   # Demo script
ā”œā”€ā”€ requirements.txt          # Python dependencies
└── docker-compose.yml        # Container orchestration

How It Works

1. Federated Learning Flow

Mobile Device A ─┐
                 │    Encrypted
Mobile Device B ─┼──────────────▶ Q-Edge Server ──▶ Quantum Aggregation
                 │    Weights
Mobile Device C ā”€ā”˜

2. Quantum Circuit

# Variational Quantum Circuit for Global Aggregation
@qml.qnode(dev)
def vqc(params, data):
    # Data encoding
    for i, x in enumerate(data):
        qml.RY(x, wires=i)

    # Parameterized layers
    qml.StronglyEntanglingLayers(params, wires=range(n_qubits))

    return qml.probs(wires=range(n_qubits))

3. Post-Quantum Security

Algorithm Purpose Security Level
Kyber-1024 Key Encapsulation NIST Level 5
Dilithium-5 Digital Signatures NIST Level 5
AES-256-GCM Symmetric Encryption NIST Approved

Simulation Results

āš ļø Note: Results from local simulator with synthetic data

Quantum Circuit Performance

Qubits Layers Parameters Execution Time
4 2 24 ~12ms
8 4 96 ~45ms
16 6 288 ~180ms

Federated Learning Simulation

Clients Rounds Convergence
5 10 ~95%
10 20 ~97%

Simulated convergence with synthetic random data


Tech Stack

| Category | Technologies | |----------|-------------| | **Quantum** | PennyLane, NumPy, SciPy | | **Backend** | FastAPI, Celery, Redis | | **Mobile** | Flutter, Dart | | **Security** | cryptography, python-jose | | **Cloud** | Azure Quantum (ready) | | **DevOps** | Docker, GitHub Actions |

Roadmap

  • [x] Variational Quantum Circuits
  • [x] Quantum Kernel Alignment
  • [x] Zero-Noise Extrapolation
  • [x] Federated Learning Simulation
  • [x] Flutter Mobile App
  • [x] FastAPI Backend
  • [ ] Real PQC with liboqs
  • [ ] Azure Quantum Integration
  • [ ] Real Dataset Training
  • [ ] Mobile Device Testing

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.


Acknowledgments


**Star this repo if you find it interesting!** Made for the Quantum Computing Community

Built With

Share this project:

Updates