alloc/vec/
mod.rs

1//! A contiguous growable array type with heap-allocated contents, written
2//! `Vec<T>`.
3//!
4//! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
5//! *O*(1) pop (from the end).
6//!
7//! Vectors ensure they never allocate more than `isize::MAX` bytes.
8//!
9//! # Examples
10//!
11//! You can explicitly create a [`Vec`] with [`Vec::new`]:
12//!
13//! ```
14//! let v: Vec<i32> = Vec::new();
15//! ```
16//!
17//! ...or by using the [`vec!`] macro:
18//!
19//! ```
20//! let v: Vec<i32> = vec![];
21//!
22//! let v = vec![1, 2, 3, 4, 5];
23//!
24//! let v = vec![0; 10]; // ten zeroes
25//! ```
26//!
27//! You can [`push`] values onto the end of a vector (which will grow the vector
28//! as needed):
29//!
30//! ```
31//! let mut v = vec![1, 2];
32//!
33//! v.push(3);
34//! ```
35//!
36//! Popping values works in much the same way:
37//!
38//! ```
39//! let mut v = vec![1, 2];
40//!
41//! let two = v.pop();
42//! ```
43//!
44//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
45//!
46//! ```
47//! let mut v = vec![1, 2, 3];
48//! let three = v[2];
49//! v[1] = v[1] + 5;
50//! ```
51//!
52//! # Memory layout
53//!
54//! When the type is non-zero-sized and the capacity is nonzero, [`Vec`] uses the [`Global`]
55//! allocator for its allocation. It is valid to convert both ways between such a [`Vec`] and a raw
56//! pointer allocated with the [`Global`] allocator, provided that the [`Layout`] used with the
57//! allocator is correct for a sequence of `capacity` elements of the type, and the first `len`
58//! values pointed to by the raw pointer are valid. More precisely, a `ptr: *mut T` that has been
59//! allocated with the [`Global`] allocator with [`Layout::array::<T>(capacity)`][Layout::array] may
60//! be converted into a vec using
61//! [`Vec::<T>::from_raw_parts(ptr, len, capacity)`](Vec::from_raw_parts). Conversely, the memory
62//! backing a `value: *mut T` obtained from [`Vec::<T>::as_mut_ptr`] may be deallocated using the
63//! [`Global`] allocator with the same layout.
64//!
65//! For zero-sized types (ZSTs), or when the capacity is zero, the `Vec` pointer must be non-null
66//! and sufficiently aligned. The recommended way to build a `Vec` of ZSTs if [`vec!`] cannot be
67//! used is to use [`ptr::NonNull::dangling`].
68//!
69//! [`push`]: Vec::push
70//! [`ptr::NonNull::dangling`]: NonNull::dangling
71//! [`Layout`]: crate::alloc::Layout
72//! [Layout::array]: crate::alloc::Layout::array
73
74#![stable(feature = "rust1", since = "1.0.0")]
75
76#[cfg(not(no_global_oom_handling))]
77use core::clone::TrivialClone;
78#[cfg(not(no_global_oom_handling))]
79use core::cmp;
80use core::cmp::Ordering;
81use core::hash::{Hash, Hasher};
82#[cfg(not(no_global_oom_handling))]
83use core::iter;
84#[cfg(not(no_global_oom_handling))]
85use core::marker::Destruct;
86use core::marker::{Freeze, PhantomData};
87use core::mem::{self, Assume, ManuallyDrop, MaybeUninit, SizedTypeProperties, TransmuteFrom};
88use core::ops::{self, Index, IndexMut, Range, RangeBounds};
89use core::ptr::{self, NonNull};
90use core::slice::{self, SliceIndex};
91use core::{fmt, hint, intrinsics, ub_checks};
92
93#[stable(feature = "extract_if", since = "1.87.0")]
94pub use self::extract_if::ExtractIf;
95use crate::alloc::{Allocator, Global};
96use crate::borrow::{Cow, ToOwned};
97use crate::boxed::Box;
98use crate::collections::TryReserveError;
99use crate::raw_vec::RawVec;
100
101mod extract_if;
102
103#[cfg(not(no_global_oom_handling))]
104#[stable(feature = "vec_splice", since = "1.21.0")]
105pub use self::splice::Splice;
106
107#[cfg(not(no_global_oom_handling))]
108mod splice;
109
110#[stable(feature = "drain", since = "1.6.0")]
111pub use self::drain::Drain;
112
113mod drain;
114
115#[cfg(not(no_global_oom_handling))]
116mod cow;
117
118#[cfg(not(no_global_oom_handling))]
119pub(crate) use self::in_place_collect::AsVecIntoIter;
120#[stable(feature = "rust1", since = "1.0.0")]
121pub use self::into_iter::IntoIter;
122
123mod into_iter;
124
125#[cfg(not(no_global_oom_handling))]
126use self::is_zero::IsZero;
127
128#[cfg(not(no_global_oom_handling))]
129mod is_zero;
130
131#[cfg(not(no_global_oom_handling))]
132mod in_place_collect;
133
134mod partial_eq;
135
136#[unstable(feature = "vec_peek_mut", issue = "122742")]
137pub use self::peek_mut::PeekMut;
138
139mod peek_mut;
140
141#[cfg(not(no_global_oom_handling))]
142use self::spec_from_elem::SpecFromElem;
143
144#[cfg(not(no_global_oom_handling))]
145mod spec_from_elem;
146
147#[cfg(not(no_global_oom_handling))]
148use self::set_len_on_drop::SetLenOnDrop;
149
150#[cfg(not(no_global_oom_handling))]
151mod set_len_on_drop;
152
153#[cfg(not(no_global_oom_handling))]
154use self::in_place_drop::{InPlaceDrop, InPlaceDstDataSrcBufDrop};
155
156#[cfg(not(no_global_oom_handling))]
157mod in_place_drop;
158
159#[cfg(not(no_global_oom_handling))]
160use self::spec_from_iter_nested::SpecFromIterNested;
161
162#[cfg(not(no_global_oom_handling))]
163mod spec_from_iter_nested;
164
165#[cfg(not(no_global_oom_handling))]
166use self::spec_from_iter::SpecFromIter;
167
168#[cfg(not(no_global_oom_handling))]
169mod spec_from_iter;
170
171#[cfg(not(no_global_oom_handling))]
172use self::spec_extend::SpecExtend;
173
174#[cfg(not(no_global_oom_handling))]
175mod spec_extend;
176
177/// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
178///
179/// # Examples
180///
181/// ```
182/// let mut vec = Vec::new();
183/// vec.push(1);
184/// vec.push(2);
185///
186/// assert_eq!(vec.len(), 2);
187/// assert_eq!(vec[0], 1);
188///
189/// assert_eq!(vec.pop(), Some(2));
190/// assert_eq!(vec.len(), 1);
191///
192/// vec[0] = 7;
193/// assert_eq!(vec[0], 7);
194///
195/// vec.extend([1, 2, 3]);
196///
197/// for x in &vec {
198///     println!("{x}");
199/// }
200/// assert_eq!(vec, [7, 1, 2, 3]);
201/// ```
202///
203/// The [`vec!`] macro is provided for convenient initialization:
204///
205/// ```
206/// let mut vec1 = vec![1, 2, 3];
207/// vec1.push(4);
208/// let vec2 = Vec::from([1, 2, 3, 4]);
209/// assert_eq!(vec1, vec2);
210/// ```
211///
212/// It can also initialize each element of a `Vec<T>` with a given value.
213/// This may be more efficient than performing allocation and initialization
214/// in separate steps, especially when initializing a vector of zeros:
215///
216/// ```
217/// let vec = vec![0; 5];
218/// assert_eq!(vec, [0, 0, 0, 0, 0]);
219///
220/// // The following is equivalent, but potentially slower:
221/// let mut vec = Vec::with_capacity(5);
222/// vec.resize(5, 0);
223/// assert_eq!(vec, [0, 0, 0, 0, 0]);
224/// ```
225///
226/// For more information, see
227/// [Capacity and Reallocation](#capacity-and-reallocation).
228///
229/// Use a `Vec<T>` as an efficient stack:
230///
231/// ```
232/// let mut stack = Vec::new();
233///
234/// stack.push(1);
235/// stack.push(2);
236/// stack.push(3);
237///
238/// while let Some(top) = stack.pop() {
239///     // Prints 3, 2, 1
240///     println!("{top}");
241/// }
242/// ```
243///
244/// # Indexing
245///
246/// The `Vec` type allows access to values by index, because it implements the
247/// [`Index`] trait. An example will be more explicit:
248///
249/// ```
250/// let v = vec![0, 2, 4, 6];
251/// println!("{}", v[1]); // it will display '2'
252/// ```
253///
254/// However be careful: if you try to access an index which isn't in the `Vec`,
255/// your software will panic! You cannot do this:
256///
257/// ```should_panic
258/// let v = vec![0, 2, 4, 6];
259/// println!("{}", v[6]); // it will panic!
260/// ```
261///
262/// Use [`get`] and [`get_mut`] if you want to check whether the index is in
263/// the `Vec`.
264///
265/// # Slicing
266///
267/// A `Vec` can be mutable. On the other hand, slices are read-only objects.
268/// To get a [slice][prim@slice], use [`&`]. Example:
269///
270/// ```
271/// fn read_slice(slice: &[usize]) {
272///     // ...
273/// }
274///
275/// let v = vec![0, 1];
276/// read_slice(&v);
277///
278/// // ... and that's all!
279/// // you can also do it like this:
280/// let u: &[usize] = &v;
281/// // or like this:
282/// let u: &[_] = &v;
283/// ```
284///
285/// In Rust, it's more common to pass slices as arguments rather than vectors
286/// when you just want to provide read access. The same goes for [`String`] and
287/// [`&str`].
288///
289/// # Capacity and reallocation
290///
291/// The capacity of a vector is the amount of space allocated for any future
292/// elements that will be added onto the vector. This is not to be confused with
293/// the *length* of a vector, which specifies the number of actual elements
294/// within the vector. If a vector's length exceeds its capacity, its capacity
295/// will automatically be increased, but its elements will have to be
296/// reallocated.
297///
298/// For example, a vector with capacity 10 and length 0 would be an empty vector
299/// with space for 10 more elements. Pushing 10 or fewer elements onto the
300/// vector will not change its capacity or cause reallocation to occur. However,
301/// if the vector's length is increased to 11, it will have to reallocate, which
302/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
303/// whenever possible to specify how big the vector is expected to get.
304///
305/// # Guarantees
306///
307/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
308/// about its design. This ensures that it's as low-overhead as possible in
309/// the general case, and can be correctly manipulated in primitive ways
310/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
311/// If additional type parameters are added (e.g., to support custom allocators),
312/// overriding their defaults may change the behavior.
313///
314/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
315/// triplet. No more, no less. The order of these fields is completely
316/// unspecified, and you should use the appropriate methods to modify these.
317/// The pointer will never be null, so this type is null-pointer-optimized.
318///
319/// However, the pointer might not actually point to allocated memory. In particular,
320/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
321/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
322/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
323/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
324/// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
325/// if <code>[size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
326/// details are very subtle --- if you intend to allocate memory using a `Vec`
327/// and use it for something else (either to pass to unsafe code, or to build your
328/// own memory-backed collection), be sure to deallocate this memory by using
329/// `from_raw_parts` to recover the `Vec` and then dropping it.
330///
331/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
332/// (as defined by the allocator Rust is configured to use by default), and its
333/// pointer points to [`len`] initialized, contiguous elements in order (what
334/// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
335/// logically uninitialized, contiguous elements.
336///
337/// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
338/// visualized as below. The top part is the `Vec` struct, it contains a
339/// pointer to the head of the allocation in the heap, length and capacity.
340/// The bottom part is the allocation on the heap, a contiguous memory block.
341///
342/// ```text
343///             ptr      len  capacity
344///        +--------+--------+--------+
345///        | 0x0123 |      2 |      4 |
346///        +--------+--------+--------+
347///             |
348///             v
349/// Heap   +--------+--------+--------+--------+
350///        |    'a' |    'b' | uninit | uninit |
351///        +--------+--------+--------+--------+
352/// ```
353///
354/// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
355/// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
356///   layout (including the order of fields).
357///
358/// `Vec` will never perform a "small optimization" where elements are actually
359/// stored on the stack for two reasons:
360///
361/// * It would make it more difficult for unsafe code to correctly manipulate
362///   a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
363///   only moved, and it would be more difficult to determine if a `Vec` had
364///   actually allocated memory.
365///
366/// * It would penalize the general case, incurring an additional branch
367///   on every access.
368///
369/// `Vec` will never automatically shrink itself, even if completely empty. This
370/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
371/// and then filling it back up to the same [`len`] should incur no calls to
372/// the allocator. If you wish to free up unused memory, use
373/// [`shrink_to_fit`] or [`shrink_to`].
374///
375/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
376/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
377/// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
378/// accurate, and can be relied on. It can even be used to manually free the memory
379/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
380/// when not necessary.
381///
382/// `Vec` does not guarantee any particular growth strategy when reallocating
383/// when full, nor when [`reserve`] is called. The current strategy is basic
384/// and it may prove desirable to use a non-constant growth factor. Whatever
385/// strategy is used will of course guarantee *O*(1) amortized [`push`].
386///
387/// It is guaranteed, in order to respect the intentions of the programmer, that
388/// all of `vec![e_1, e_2, ..., e_n]`, `vec![x; n]`, and [`Vec::with_capacity(n)`] produce a `Vec`
389/// that requests an allocation of the exact size needed for precisely `n` elements from the allocator,
390/// and no other size (such as, for example: a size rounded up to the nearest power of 2).
391/// The allocator will return an allocation that is at least as large as requested, but it may be larger.
392///
393/// It is guaranteed that the [`Vec::capacity`] method returns a value that is at least the requested capacity
394/// and not more than the allocated capacity.
395///
396/// The method [`Vec::shrink_to_fit`] will attempt to discard excess capacity an allocator has given to a `Vec`.
397/// If <code>[len] == [capacity]</code>, then a `Vec<T>` can be converted
398/// to and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
399/// `Vec` exploits this fact as much as reasonable when implementing common conversions
400/// such as [`into_boxed_slice`].
401///
402/// `Vec` will not specifically overwrite any data that is removed from it,
403/// but also won't specifically preserve it. Its uninitialized memory is
404/// scratch space that it may use however it wants. It will generally just do
405/// whatever is most efficient or otherwise easy to implement. Do not rely on
406/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
407/// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
408/// first, that might not actually happen because the optimizer does not consider
409/// this a side-effect that must be preserved. There is one case which we will
410/// not break, however: using `unsafe` code to write to the excess capacity,
411/// and then increasing the length to match, is always valid.
412///
413/// Currently, `Vec` does not guarantee the order in which elements are dropped.
414/// The order has changed in the past and may change again.
415///
416/// [`get`]: slice::get
417/// [`get_mut`]: slice::get_mut
418/// [`String`]: crate::string::String
419/// [`&str`]: type@str
420/// [`shrink_to_fit`]: Vec::shrink_to_fit
421/// [`shrink_to`]: Vec::shrink_to
422/// [capacity]: Vec::capacity
423/// [`capacity`]: Vec::capacity
424/// [`Vec::capacity`]: Vec::capacity
425/// [size_of::\<T>]: size_of
426/// [len]: Vec::len
427/// [`len`]: Vec::len
428/// [`push`]: Vec::push
429/// [`insert`]: Vec::insert
430/// [`reserve`]: Vec::reserve
431/// [`Vec::with_capacity(n)`]: Vec::with_capacity
432/// [`MaybeUninit`]: core::mem::MaybeUninit
433/// [owned slice]: Box
434/// [`into_boxed_slice`]: Vec::into_boxed_slice
435#[stable(feature = "rust1", since = "1.0.0")]
436#[rustc_diagnostic_item = "Vec"]
437#[rustc_insignificant_dtor]
438#[doc(alias = "list")]
439#[doc(alias = "vector")]
440pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
441    buf: RawVec<T, A>,
442    len: usize,
443}
444
445////////////////////////////////////////////////////////////////////////////////
446// Inherent methods
447////////////////////////////////////////////////////////////////////////////////
448
449impl<T> Vec<T> {
450    /// Constructs a new, empty `Vec<T>`.
451    ///
452    /// The vector will not allocate until elements are pushed onto it.
453    ///
454    /// # Examples
455    ///
456    /// ```
457    /// # #![allow(unused_mut)]
458    /// let mut vec: Vec<i32> = Vec::new();
459    /// ```
460    #[inline]
461    #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
462    #[rustc_diagnostic_item = "vec_new"]
463    #[stable(feature = "rust1", since = "1.0.0")]
464    #[must_use]
465    pub const fn new() -> Self {
466        Vec { buf: RawVec::new(), len: 0 }
467    }
468
469    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
470    ///
471    /// The vector will be able to hold at least `capacity` elements without
472    /// reallocating. This method is allowed to allocate for more elements than
473    /// `capacity`. If `capacity` is zero, the vector will not allocate.
474    ///
475    /// It is important to note that although the returned vector has the
476    /// minimum *capacity* specified, the vector will have a zero *length*. For
477    /// an explanation of the difference between length and capacity, see
478    /// *[Capacity and reallocation]*.
479    ///
480    /// If it is important to know the exact allocated capacity of a `Vec`,
481    /// always use the [`capacity`] method after construction.
482    ///
483    /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
484    /// and the capacity will always be `usize::MAX`.
485    ///
486    /// [Capacity and reallocation]: #capacity-and-reallocation
487    /// [`capacity`]: Vec::capacity
488    ///
489    /// # Panics
490    ///
491    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
492    ///
493    /// # Examples
494    ///
495    /// ```
496    /// let mut vec = Vec::with_capacity(10);
497    ///
498    /// // The vector contains no items, even though it has capacity for more
499    /// assert_eq!(vec.len(), 0);
500    /// assert!(vec.capacity() >= 10);
501    ///
502    /// // These are all done without reallocating...
503    /// for i in 0..10 {
504    ///     vec.push(i);
505    /// }
506    /// assert_eq!(vec.len(), 10);
507    /// assert!(vec.capacity() >= 10);
508    ///
509    /// // ...but this may make the vector reallocate
510    /// vec.push(11);
511    /// assert_eq!(vec.len(), 11);
512    /// assert!(vec.capacity() >= 11);
513    ///
514    /// // A vector of a zero-sized type will always over-allocate, since no
515    /// // allocation is necessary
516    /// let vec_units = Vec::<()>::with_capacity(10);
517    /// assert_eq!(vec_units.capacity(), usize::MAX);
518    /// ```
519    #[cfg(not(no_global_oom_handling))]
520    #[inline]
521    #[stable(feature = "rust1", since = "1.0.0")]
522    #[must_use]
523    #[rustc_diagnostic_item = "vec_with_capacity"]
524    #[rustc_const_unstable(feature = "const_heap", issue = "79597")]
525    pub const fn with_capacity(capacity: usize) -> Self {
526        Self::with_capacity_in(capacity, Global)
527    }
528
529    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
530    ///
531    /// The vector will be able to hold at least `capacity` elements without
532    /// reallocating. This method is allowed to allocate for more elements than
533    /// `capacity`. If `capacity` is zero, the vector will not allocate.
534    ///
535    /// # Errors
536    ///
537    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
538    /// or if the allocator reports allocation failure.
539    #[inline]
540    #[unstable(feature = "try_with_capacity", issue = "91913")]
541    pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
542        Self::try_with_capacity_in(capacity, Global)
543    }
544
545    /// Creates a `Vec<T>` directly from a pointer, a length, and a capacity.
546    ///
547    /// # Safety
548    ///
549    /// This is highly unsafe, due to the number of invariants that aren't
550    /// checked:
551    ///
552    /// * If `T` is not a zero-sized type and the capacity is nonzero, `ptr` must have
553    ///   been allocated using the global allocator, such as via the [`alloc::alloc`]
554    ///   function. If `T` is a zero-sized type or the capacity is zero, `ptr` need
555    ///   only be non-null and aligned.
556    /// * `T` needs to have the same alignment as what `ptr` was allocated with,
557    ///   if the pointer is required to be allocated.
558    ///   (`T` having a less strict alignment is not sufficient, the alignment really
559    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
560    ///   allocated and deallocated with the same layout.)
561    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes), if
562    ///   nonzero, needs to be the same size as the pointer was allocated with.
563    ///   (Because similar to alignment, [`dealloc`] must be called with the same
564    ///   layout `size`.)
565    /// * `length` needs to be less than or equal to `capacity`.
566    /// * The first `length` values must be properly initialized values of type `T`.
567    /// * `capacity` needs to be the capacity that the pointer was allocated with,
568    ///   if the pointer is required to be allocated.
569    /// * The allocated size in bytes must be no larger than `isize::MAX`.
570    ///   See the safety documentation of [`pointer::offset`].
571    ///
572    /// These requirements are always upheld by any `ptr` that has been allocated
573    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
574    /// upheld.
575    ///
576    /// Violating these may cause problems like corrupting the allocator's
577    /// internal data structures. For example it is normally **not** safe
578    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
579    /// `size_t`, doing so is only safe if the array was initially allocated by
580    /// a `Vec` or `String`.
581    /// It's also not safe to build one from a `Vec<u16>` and its length, because
582    /// the allocator cares about the alignment, and these two types have different
583    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
584    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
585    /// these issues, it is often preferable to do casting/transmuting using
586    /// [`slice::from_raw_parts`] instead.
587    ///
588    /// The ownership of `ptr` is effectively transferred to the
589    /// `Vec<T>` which may then deallocate, reallocate or change the
590    /// contents of memory pointed to by the pointer at will. Ensure
591    /// that nothing else uses the pointer after calling this
592    /// function.
593    ///
594    /// [`String`]: crate::string::String
595    /// [`alloc::alloc`]: crate::alloc::alloc
596    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
597    ///
598    /// # Examples
599    ///
600    /// ```
601    /// use std::ptr;
602    ///
603    /// let v = vec![1, 2, 3];
604    ///
605    /// // Deconstruct the vector into parts.
606    /// let (p, len, cap) = v.into_raw_parts();
607    ///
608    /// unsafe {
609    ///     // Overwrite memory with 4, 5, 6
610    ///     for i in 0..len {
611    ///         ptr::write(p.add(i), 4 + i);
612    ///     }
613    ///
614    ///     // Put everything back together into a Vec
615    ///     let rebuilt = Vec::from_raw_parts(p, len, cap);
616    ///     assert_eq!(rebuilt, [4, 5, 6]);
617    /// }
618    /// ```
619    ///
620    /// Using memory that was allocated elsewhere:
621    ///
622    /// ```rust
623    /// use std::alloc::{alloc, Layout};
624    ///
625    /// fn main() {
626    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
627    ///
628    ///     let vec = unsafe {
629    ///         let mem = alloc(layout).cast::<u32>();
630    ///         if mem.is_null() {
631    ///             return;
632    ///         }
633    ///
634    ///         mem.write(1_000_000);
635    ///
636    ///         Vec::from_raw_parts(mem, 1, 16)
637    ///     };
638    ///
639    ///     assert_eq!(vec, &[1_000_000]);
640    ///     assert_eq!(vec.capacity(), 16);
641    /// }
642    /// ```
643    #[inline]
644    #[stable(feature = "rust1", since = "1.0.0")]
645    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
646        unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
647    }
648
649    #[doc(alias = "from_non_null_parts")]
650    /// Creates a `Vec<T>` directly from a `NonNull` pointer, a length, and a capacity.
651    ///
652    /// # Safety
653    ///
654    /// This is highly unsafe, due to the number of invariants that aren't
655    /// checked:
656    ///
657    /// * `ptr` must have been allocated using the global allocator, such as via
658    ///   the [`alloc::alloc`] function.
659    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
660    ///   (`T` having a less strict alignment is not sufficient, the alignment really
661    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
662    ///   allocated and deallocated with the same layout.)
663    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
664    ///   to be the same size as the pointer was allocated with. (Because similar to
665    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
666    /// * `length` needs to be less than or equal to `capacity`.
667    /// * The first `length` values must be properly initialized values of type `T`.
668    /// * `capacity` needs to be the capacity that the pointer was allocated with.
669    /// * The allocated size in bytes must be no larger than `isize::MAX`.
670    ///   See the safety documentation of [`pointer::offset`].
671    ///
672    /// These requirements are always upheld by any `ptr` that has been allocated
673    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
674    /// upheld.
675    ///
676    /// Violating these may cause problems like corrupting the allocator's
677    /// internal data structures. For example it is normally **not** safe
678    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
679    /// `size_t`, doing so is only safe if the array was initially allocated by
680    /// a `Vec` or `String`.
681    /// It's also not safe to build one from a `Vec<u16>` and its length, because
682    /// the allocator cares about the alignment, and these two types have different
683    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
684    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
685    /// these issues, it is often preferable to do casting/transmuting using
686    /// [`NonNull::slice_from_raw_parts`] instead.
687    ///
688    /// The ownership of `ptr` is effectively transferred to the
689    /// `Vec<T>` which may then deallocate, reallocate or change the
690    /// contents of memory pointed to by the pointer at will. Ensure
691    /// that nothing else uses the pointer after calling this
692    /// function.
693    ///
694    /// [`String`]: crate::string::String
695    /// [`alloc::alloc`]: crate::alloc::alloc
696    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
697    ///
698    /// # Examples
699    ///
700    /// ```
701    /// #![feature(box_vec_non_null)]
702    ///
703    /// let v = vec![1, 2, 3];
704    ///
705    /// // Deconstruct the vector into parts.
706    /// let (p, len, cap) = v.into_parts();
707    ///
708    /// unsafe {
709    ///     // Overwrite memory with 4, 5, 6
710    ///     for i in 0..len {
711    ///         p.add(i).write(4 + i);
712    ///     }
713    ///
714    ///     // Put everything back together into a Vec
715    ///     let rebuilt = Vec::from_parts(p, len, cap);
716    ///     assert_eq!(rebuilt, [4, 5, 6]);
717    /// }
718    /// ```
719    ///
720    /// Using memory that was allocated elsewhere:
721    ///
722    /// ```rust
723    /// #![feature(box_vec_non_null)]
724    ///
725    /// use std::alloc::{alloc, Layout};
726    /// use std::ptr::NonNull;
727    ///
728    /// fn main() {
729    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
730    ///
731    ///     let vec = unsafe {
732    ///         let Some(mem) = NonNull::new(alloc(layout).cast::<u32>()) else {
733    ///             return;
734    ///         };
735    ///
736    ///         mem.write(1_000_000);
737    ///
738    ///         Vec::from_parts(mem, 1, 16)
739    ///     };
740    ///
741    ///     assert_eq!(vec, &[1_000_000]);
742    ///     assert_eq!(vec.capacity(), 16);
743    /// }
744    /// ```
745    #[inline]
746    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
747    pub unsafe fn from_parts(ptr: NonNull<T>, length: usize, capacity: usize) -> Self {
748        unsafe { Self::from_parts_in(ptr, length, capacity, Global) }
749    }
750
751    /// Creates a `Vec<T>` where each element is produced by calling `f` with
752    /// that element's index while walking forward through the `Vec<T>`.
753    ///
754    /// This is essentially the same as writing
755    ///
756    /// ```text
757    /// vec![f(0), f(1), f(2), …, f(length - 2), f(length - 1)]
758    /// ```
759    /// and is similar to `(0..i).map(f)`, just for `Vec<T>`s not iterators.
760    ///
761    /// If `length == 0`, this produces an empty `Vec<T>` without ever calling `f`.
762    ///
763    /// # Example
764    ///
765    /// ```rust
766    /// #![feature(vec_from_fn)]
767    ///
768    /// let vec = Vec::from_fn(5, |i| i);
769    ///
770    /// // indexes are:  0  1  2  3  4
771    /// assert_eq!(vec, [0, 1, 2, 3, 4]);
772    ///
773    /// let vec2 = Vec::from_fn(8, |i| i * 2);
774    ///
775    /// // indexes are:   0  1  2  3  4  5   6   7
776    /// assert_eq!(vec2, [0, 2, 4, 6, 8, 10, 12, 14]);
777    ///
778    /// let bool_vec = Vec::from_fn(5, |i| i % 2 == 0);
779    ///
780    /// // indexes are:       0     1      2     3      4
781    /// assert_eq!(bool_vec, [true, false, true, false, true]);
782    /// ```
783    ///
784    /// The `Vec<T>` is generated in ascending index order, starting from the front
785    /// and going towards the back, so you can use closures with mutable state:
786    /// ```
787    /// #![feature(vec_from_fn)]
788    ///
789    /// let mut state = 1;
790    /// let a = Vec::from_fn(6, |_| { let x = state; state *= 2; x });
791    ///
792    /// assert_eq!(a, [1, 2, 4, 8, 16, 32]);
793    /// ```
794    #[cfg(not(no_global_oom_handling))]
795    #[inline]
796    #[unstable(feature = "vec_from_fn", reason = "new API", issue = "149698")]
797    pub fn from_fn<F>(length: usize, f: F) -> Self
798    where
799        F: FnMut(usize) -> T,
800    {
801        (0..length).map(f).collect()
802    }
803
804    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity)`.
805    ///
806    /// Returns the raw pointer to the underlying data, the length of
807    /// the vector (in elements), and the allocated capacity of the
808    /// data (in elements). These are the same arguments in the same
809    /// order as the arguments to [`from_raw_parts`].
810    ///
811    /// After calling this function, the caller is responsible for the
812    /// memory previously managed by the `Vec`. Most often, one does
813    /// this by converting the raw pointer, length, and capacity back
814    /// into a `Vec` with the [`from_raw_parts`] function; more generally,
815    /// if `T` is non-zero-sized and the capacity is nonzero, one may use
816    /// any method that calls [`dealloc`] with a layout of
817    /// `Layout::array::<T>(capacity)`; if `T` is zero-sized or the
818    /// capacity is zero, nothing needs to be done.
819    ///
820    /// [`from_raw_parts`]: Vec::from_raw_parts
821    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
822    ///
823    /// # Examples
824    ///
825    /// ```
826    /// let v: Vec<i32> = vec![-1, 0, 1];
827    ///
828    /// let (ptr, len, cap) = v.into_raw_parts();
829    ///
830    /// let rebuilt = unsafe {
831    ///     // We can now make changes to the components, such as
832    ///     // transmuting the raw pointer to a compatible type.
833    ///     let ptr = ptr as *mut u32;
834    ///
835    ///     Vec::from_raw_parts(ptr, len, cap)
836    /// };
837    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
838    /// ```
839    #[must_use = "losing the pointer will leak memory"]
840    #[stable(feature = "vec_into_raw_parts", since = "1.93.0")]
841    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
842        let mut me = ManuallyDrop::new(self);
843        (me.as_mut_ptr(), me.len(), me.capacity())
844    }
845
846    #[doc(alias = "into_non_null_parts")]
847    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity)`.
848    ///
849    /// Returns the `NonNull` pointer to the underlying data, the length of
850    /// the vector (in elements), and the allocated capacity of the
851    /// data (in elements). These are the same arguments in the same
852    /// order as the arguments to [`from_parts`].
853    ///
854    /// After calling this function, the caller is responsible for the
855    /// memory previously managed by the `Vec`. The only way to do
856    /// this is to convert the `NonNull` pointer, length, and capacity back
857    /// into a `Vec` with the [`from_parts`] function, allowing
858    /// the destructor to perform the cleanup.
859    ///
860    /// [`from_parts`]: Vec::from_parts
861    ///
862    /// # Examples
863    ///
864    /// ```
865    /// #![feature(box_vec_non_null)]
866    ///
867    /// let v: Vec<i32> = vec![-1, 0, 1];
868    ///
869    /// let (ptr, len, cap) = v.into_parts();
870    ///
871    /// let rebuilt = unsafe {
872    ///     // We can now make changes to the components, such as
873    ///     // transmuting the raw pointer to a compatible type.
874    ///     let ptr = ptr.cast::<u32>();
875    ///
876    ///     Vec::from_parts(ptr, len, cap)
877    /// };
878    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
879    /// ```
880    #[must_use = "losing the pointer will leak memory"]
881    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
882    pub fn into_parts(self) -> (NonNull<T>, usize, usize) {
883        let (ptr, len, capacity) = self.into_raw_parts();
884        // SAFETY: A `Vec` always has a non-null pointer.
885        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity)
886    }
887
888    /// Interns the `Vec<T>`, making the underlying memory read-only. This method should be
889    /// called during compile time. (This is a no-op if called during runtime)
890    ///
891    /// This method must be called if the memory used by `Vec` needs to appear in the final
892    /// values of constants.
893    #[unstable(feature = "const_heap", issue = "79597")]
894    #[rustc_const_unstable(feature = "const_heap", issue = "79597")]
895    pub const fn const_make_global(mut self) -> &'static [T]
896    where
897        T: Freeze,
898    {
899        unsafe { core::intrinsics::const_make_global(self.as_mut_ptr().cast()) };
900        let me = ManuallyDrop::new(self);
901        unsafe { slice::from_raw_parts(me.as_ptr(), me.len) }
902    }
903}
904
905#[cfg(not(no_global_oom_handling))]
906#[rustc_const_unstable(feature = "const_heap", issue = "79597")]
907#[rustfmt::skip] // FIXME(fee1-dead): temporary measure before rustfmt is bumped
908const impl<T, A: [const] Allocator + [const] Destruct> Vec<T, A> {
909    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
910    /// with the provided allocator.
911    ///
912    /// The vector will be able to hold at least `capacity` elements without
913    /// reallocating. This method is allowed to allocate for more elements than
914    /// `capacity`. If `capacity` is zero, the vector will not allocate.
915    ///
916    /// It is important to note that although the returned vector has the
917    /// minimum *capacity* specified, the vector will have a zero *length*. For
918    /// an explanation of the difference between length and capacity, see
919    /// *[Capacity and reallocation]*.
920    ///
921    /// If it is important to know the exact allocated capacity of a `Vec`,
922    /// always use the [`capacity`] method after construction.
923    ///
924    /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
925    /// and the capacity will always be `usize::MAX`.
926    ///
927    /// [Capacity and reallocation]: #capacity-and-reallocation
928    /// [`capacity`]: Vec::capacity
929    ///
930    /// # Panics
931    ///
932    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
933    ///
934    /// # Examples
935    ///
936    /// ```
937    /// #![feature(allocator_api)]
938    ///
939    /// use std::alloc::System;
940    ///
941    /// let mut vec = Vec::with_capacity_in(10, System);
942    ///
943    /// // The vector contains no items, even though it has capacity for more
944    /// assert_eq!(vec.len(), 0);
945    /// assert!(vec.capacity() >= 10);
946    ///
947    /// // These are all done without reallocating...
948    /// for i in 0..10 {
949    ///     vec.push(i);
950    /// }
951    /// assert_eq!(vec.len(), 10);
952    /// assert!(vec.capacity() >= 10);
953    ///
954    /// // ...but this may make the vector reallocate
955    /// vec.push(11);
956    /// assert_eq!(vec.len(), 11);
957    /// assert!(vec.capacity() >= 11);
958    ///
959    /// // A vector of a zero-sized type will always over-allocate, since no
960    /// // allocation is necessary
961    /// let vec_units = Vec::<(), System>::with_capacity_in(10, System);
962    /// assert_eq!(vec_units.capacity(), usize::MAX);
963    /// ```
964    #[inline]
965    #[unstable(feature = "allocator_api", issue = "32838")]
966    pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
967        Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
968    }
969
970    /// Appends an element to the back of a collection.
971    ///
972    /// # Panics
973    ///
974    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
975    ///
976    /// # Examples
977    ///
978    /// ```
979    /// let mut vec = vec![1, 2];
980    /// vec.push(3);
981    /// assert_eq!(vec, [1, 2, 3]);
982    /// ```
983    ///
984    /// # Time complexity
985    ///
986    /// Takes amortized *O*(1) time. If the vector's length would exceed its
987    /// capacity after the push, *O*(*capacity*) time is taken to copy the
988    /// vector's elements to a larger allocation. This expensive operation is
989    /// offset by the *capacity* *O*(1) insertions it allows.
990    #[inline]
991    #[stable(feature = "rust1", since = "1.0.0")]
992    #[rustc_confusables("push_back", "put", "append")]
993    pub fn push(&mut self, value: T) {
994        let _ = self.push_mut(value);
995    }
996
997    /// Appends an element to the back of a collection, returning a reference to it.
998    ///
999    /// # Panics
1000    ///
1001    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1002    ///
1003    /// # Examples
1004    ///
1005    /// ```
1006    /// #![feature(push_mut)]
1007    ///
1008    ///
1009    /// let mut vec = vec![1, 2];
1010    /// let last = vec.push_mut(3);
1011    /// assert_eq!(*last, 3);
1012    /// assert_eq!(vec, [1, 2, 3]);
1013    ///
1014    /// let last = vec.push_mut(3);
1015    /// *last += 1;
1016    /// assert_eq!(vec, [1, 2, 3, 4]);
1017    /// ```
1018    ///
1019    /// # Time complexity
1020    ///
1021    /// Takes amortized *O*(1) time. If the vector's length would exceed its
1022    /// capacity after the push, *O*(*capacity*) time is taken to copy the
1023    /// vector's elements to a larger allocation. This expensive operation is
1024    /// offset by the *capacity* *O*(1) insertions it allows.
1025    #[inline]
1026    #[unstable(feature = "push_mut", issue = "135974")]
1027    #[must_use = "if you don't need a reference to the value, use `Vec::push` instead"]
1028    pub fn push_mut(&mut self, value: T) -> &mut T {
1029        // Inform codegen that the length does not change across grow_one().
1030        let len = self.len;
1031        // This will panic or abort if we would allocate > isize::MAX bytes
1032        // or if the length increment would overflow for zero-sized types.
1033        if len == self.buf.capacity() {
1034            self.buf.grow_one();
1035        }
1036        unsafe {
1037            let end = self.as_mut_ptr().add(len);
1038            ptr::write(end, value);
1039            self.len = len + 1;
1040            // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
1041            &mut *end
1042        }
1043    }
1044}
1045
1046impl<T, A: Allocator> Vec<T, A> {
1047    /// Constructs a new, empty `Vec<T, A>`.
1048    ///
1049    /// The vector will not allocate until elements are pushed onto it.
1050    ///
1051    /// # Examples
1052    ///
1053    /// ```
1054    /// #![feature(allocator_api)]
1055    ///
1056    /// use std::alloc::System;
1057    ///
1058    /// # #[allow(unused_mut)]
1059    /// let mut vec: Vec<i32, _> = Vec::new_in(System);
1060    /// ```
1061    #[inline]
1062    #[unstable(feature = "allocator_api", issue = "32838")]
1063    pub const fn new_in(alloc: A) -> Self {
1064        Vec { buf: RawVec::new_in(alloc), len: 0 }
1065    }
1066
1067    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
1068    /// with the provided allocator.
1069    ///
1070    /// The vector will be able to hold at least `capacity` elements without
1071    /// reallocating. This method is allowed to allocate for more elements than
1072    /// `capacity`. If `capacity` is zero, the vector will not allocate.
1073    ///
1074    /// # Errors
1075    ///
1076    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
1077    /// or if the allocator reports allocation failure.
1078    #[inline]
1079    #[unstable(feature = "allocator_api", issue = "32838")]
1080    // #[unstable(feature = "try_with_capacity", issue = "91913")]
1081    pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
1082        Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
1083    }
1084
1085    /// Creates a `Vec<T, A>` directly from a pointer, a length, a capacity,
1086    /// and an allocator.
1087    ///
1088    /// # Safety
1089    ///
1090    /// This is highly unsafe, due to the number of invariants that aren't
1091    /// checked:
1092    ///
1093    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
1094    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
1095    ///   (`T` having a less strict alignment is not sufficient, the alignment really
1096    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
1097    ///   allocated and deallocated with the same layout.)
1098    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
1099    ///   to be the same size as the pointer was allocated with. (Because similar to
1100    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
1101    /// * `length` needs to be less than or equal to `capacity`.
1102    /// * The first `length` values must be properly initialized values of type `T`.
1103    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
1104    /// * The allocated size in bytes must be no larger than `isize::MAX`.
1105    ///   See the safety documentation of [`pointer::offset`].
1106    ///
1107    /// These requirements are always upheld by any `ptr` that has been allocated
1108    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
1109    /// upheld.
1110    ///
1111    /// Violating these may cause problems like corrupting the allocator's
1112    /// internal data structures. For example it is **not** safe
1113    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
1114    /// It's also not safe to build one from a `Vec<u16>` and its length, because
1115    /// the allocator cares about the alignment, and these two types have different
1116    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
1117    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
1118    ///
1119    /// The ownership of `ptr` is effectively transferred to the
1120    /// `Vec<T>` which may then deallocate, reallocate or change the
1121    /// contents of memory pointed to by the pointer at will. Ensure
1122    /// that nothing else uses the pointer after calling this
1123    /// function.
1124    ///
1125    /// [`String`]: crate::string::String
1126    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1127    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
1128    /// [*fit*]: crate::alloc::Allocator#memory-fitting
1129    ///
1130    /// # Examples
1131    ///
1132    /// ```
1133    /// #![feature(allocator_api)]
1134    ///
1135    /// use std::alloc::System;
1136    ///
1137    /// use std::ptr;
1138    ///
1139    /// let mut v = Vec::with_capacity_in(3, System);
1140    /// v.push(1);
1141    /// v.push(2);
1142    /// v.push(3);
1143    ///
1144    /// // Deconstruct the vector into parts.
1145    /// let (p, len, cap, alloc) = v.into_raw_parts_with_alloc();
1146    ///
1147    /// unsafe {
1148    ///     // Overwrite memory with 4, 5, 6
1149    ///     for i in 0..len {
1150    ///         ptr::write(p.add(i), 4 + i);
1151    ///     }
1152    ///
1153    ///     // Put everything back together into a Vec
1154    ///     let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
1155    ///     assert_eq!(rebuilt, [4, 5, 6]);
1156    /// }
1157    /// ```
1158    ///
1159    /// Using memory that was allocated elsewhere:
1160    ///
1161    /// ```rust
1162    /// #![feature(allocator_api)]
1163    ///
1164    /// use std::alloc::{AllocError, Allocator, Global, Layout};
1165    ///
1166    /// fn main() {
1167    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1168    ///
1169    ///     let vec = unsafe {
1170    ///         let mem = match Global.allocate(layout) {
1171    ///             Ok(mem) => mem.cast::<u32>().as_ptr(),
1172    ///             Err(AllocError) => return,
1173    ///         };
1174    ///
1175    ///         mem.write(1_000_000);
1176    ///
1177    ///         Vec::from_raw_parts_in(mem, 1, 16, Global)
1178    ///     };
1179    ///
1180    ///     assert_eq!(vec, &[1_000_000]);
1181    ///     assert_eq!(vec.capacity(), 16);
1182    /// }
1183    /// ```
1184    #[inline]
1185    #[unstable(feature = "allocator_api", issue = "32838")]
1186    pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
1187        ub_checks::assert_unsafe_precondition!(
1188            check_library_ub,
1189            "Vec::from_raw_parts_in requires that length <= capacity",
1190            (length: usize = length, capacity: usize = capacity) => length <= capacity
1191        );
1192        unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
1193    }
1194
1195    #[doc(alias = "from_non_null_parts_in")]
1196    /// Creates a `Vec<T, A>` directly from a `NonNull` pointer, a length, a capacity,
1197    /// and an allocator.
1198    ///
1199    /// # Safety
1200    ///
1201    /// This is highly unsafe, due to the number of invariants that aren't
1202    /// checked:
1203    ///
1204    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
1205    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
1206    ///   (`T` having a less strict alignment is not sufficient, the alignment really
1207    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
1208    ///   allocated and deallocated with the same layout.)
1209    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
1210    ///   to be the same size as the pointer was allocated with. (Because similar to
1211    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
1212    /// * `length` needs to be less than or equal to `capacity`.
1213    /// * The first `length` values must be properly initialized values of type `T`.
1214    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
1215    /// * The allocated size in bytes must be no larger than `isize::MAX`.
1216    ///   See the safety documentation of [`pointer::offset`].
1217    ///
1218    /// These requirements are always upheld by any `ptr` that has been allocated
1219    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
1220    /// upheld.
1221    ///
1222    /// Violating these may cause problems like corrupting the allocator's
1223    /// internal data structures. For example it is **not** safe
1224    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
1225    /// It's also not safe to build one from a `Vec<u16>` and its length, because
1226    /// the allocator cares about the alignment, and these two types have different
1227    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
1228    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
1229    ///
1230    /// The ownership of `ptr` is effectively transferred to the
1231    /// `Vec<T>` which may then deallocate, reallocate or change the
1232    /// contents of memory pointed to by the pointer at will. Ensure
1233    /// that nothing else uses the pointer after calling this
1234    /// function.
1235    ///
1236    /// [`String`]: crate::string::String
1237    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1238    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
1239    /// [*fit*]: crate::alloc::Allocator#memory-fitting
1240    ///
1241    /// # Examples
1242    ///
1243    /// ```
1244    /// #![feature(allocator_api, box_vec_non_null)]
1245    ///
1246    /// use std::alloc::System;
1247    ///
1248    /// let mut v = Vec::with_capacity_in(3, System);
1249    /// v.push(1);
1250    /// v.push(2);
1251    /// v.push(3);
1252    ///
1253    /// // Deconstruct the vector into parts.
1254    /// let (p, len, cap, alloc) = v.into_parts_with_alloc();
1255    ///
1256    /// unsafe {
1257    ///     // Overwrite memory with 4, 5, 6
1258    ///     for i in 0..len {
1259    ///         p.add(i).write(4 + i);
1260    ///     }
1261    ///
1262    ///     // Put everything back together into a Vec
1263    ///     let rebuilt = Vec::from_parts_in(p, len, cap, alloc.clone());
1264    ///     assert_eq!(rebuilt, [4, 5, 6]);
1265    /// }
1266    /// ```
1267    ///
1268    /// Using memory that was allocated elsewhere:
1269    ///
1270    /// ```rust
1271    /// #![feature(allocator_api, box_vec_non_null)]
1272    ///
1273    /// use std::alloc::{AllocError, Allocator, Global, Layout};
1274    ///
1275    /// fn main() {
1276    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1277    ///
1278    ///     let vec = unsafe {
1279    ///         let mem = match Global.allocate(layout) {
1280    ///             Ok(mem) => mem.cast::<u32>(),
1281    ///             Err(AllocError) => return,
1282    ///         };
1283    ///
1284    ///         mem.write(1_000_000);
1285    ///
1286    ///         Vec::from_parts_in(mem, 1, 16, Global)
1287    ///     };
1288    ///
1289    ///     assert_eq!(vec, &[1_000_000]);
1290    ///     assert_eq!(vec.capacity(), 16);
1291    /// }
1292    /// ```
1293    #[inline]
1294    #[unstable(feature = "allocator_api", reason = "new API", issue = "32838")]
1295    // #[unstable(feature = "box_vec_non_null", issue = "130364")]
1296    pub unsafe fn from_parts_in(ptr: NonNull<T>, length: usize, capacity: usize, alloc: A) -> Self {
1297        ub_checks::assert_unsafe_precondition!(
1298            check_library_ub,
1299            "Vec::from_parts_in requires that length <= capacity",
1300            (length: usize = length, capacity: usize = capacity) => length <= capacity
1301        );
1302        unsafe { Vec { buf: RawVec::from_nonnull_in(ptr, capacity, alloc), len: length } }
1303    }
1304
1305    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity, allocator)`.
1306    ///
1307    /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
1308    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1309    /// arguments in the same order as the arguments to [`from_raw_parts_in`].
1310    ///
1311    /// After calling this function, the caller is responsible for the
1312    /// memory previously managed by the `Vec`. The only way to do
1313    /// this is to convert the raw pointer, length, and capacity back
1314    /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
1315    /// the destructor to perform the cleanup.
1316    ///
1317    /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
1318    ///
1319    /// # Examples
1320    ///
1321    /// ```
1322    /// #![feature(allocator_api)]
1323    ///
1324    /// use std::alloc::System;
1325    ///
1326    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1327    /// v.push(-1);
1328    /// v.push(0);
1329    /// v.push(1);
1330    ///
1331    /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
1332    ///
1333    /// let rebuilt = unsafe {
1334    ///     // We can now make changes to the components, such as
1335    ///     // transmuting the raw pointer to a compatible type.
1336    ///     let ptr = ptr as *mut u32;
1337    ///
1338    ///     Vec::from_raw_parts_in(ptr, len, cap, alloc)
1339    /// };
1340    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1341    /// ```
1342    #[must_use = "losing the pointer will leak memory"]
1343    #[unstable(feature = "allocator_api", issue = "32838")]
1344    pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
1345        let mut me = ManuallyDrop::new(self);
1346        let len = me.len();
1347        let capacity = me.capacity();
1348        let ptr = me.as_mut_ptr();
1349        let alloc = unsafe { ptr::read(me.allocator()) };
1350        (ptr, len, capacity, alloc)
1351    }
1352
1353    #[doc(alias = "into_non_null_parts_with_alloc")]
1354    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity, allocator)`.
1355    ///
1356    /// Returns the `NonNull` pointer to the underlying data, the length of the vector (in elements),
1357    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1358    /// arguments in the same order as the arguments to [`from_parts_in`].
1359    ///
1360    /// After calling this function, the caller is responsible for the
1361    /// memory previously managed by the `Vec`. The only way to do
1362    /// this is to convert the `NonNull` pointer, length, and capacity back
1363    /// into a `Vec` with the [`from_parts_in`] function, allowing
1364    /// the destructor to perform the cleanup.
1365    ///
1366    /// [`from_parts_in`]: Vec::from_parts_in
1367    ///
1368    /// # Examples
1369    ///
1370    /// ```
1371    /// #![feature(allocator_api, box_vec_non_null)]
1372    ///
1373    /// use std::alloc::System;
1374    ///
1375    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1376    /// v.push(-1);
1377    /// v.push(0);
1378    /// v.push(1);
1379    ///
1380    /// let (ptr, len, cap, alloc) = v.into_parts_with_alloc();
1381    ///
1382    /// let rebuilt = unsafe {
1383    ///     // We can now make changes to the components, such as
1384    ///     // transmuting the raw pointer to a compatible type.
1385    ///     let ptr = ptr.cast::<u32>();
1386    ///
1387    ///     Vec::from_parts_in(ptr, len, cap, alloc)
1388    /// };
1389    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1390    /// ```
1391    #[must_use = "losing the pointer will leak memory"]
1392    #[unstable(feature = "allocator_api", issue = "32838")]
1393    // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1394    pub fn into_parts_with_alloc(self) -> (NonNull<T>, usize, usize, A) {
1395        let (ptr, len, capacity, alloc) = self.into_raw_parts_with_alloc();
1396        // SAFETY: A `Vec` always has a non-null pointer.
1397        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity, alloc)
1398    }
1399
1400    /// Returns the total number of elements the vector can hold without
1401    /// reallocating.
1402    ///
1403    /// # Examples
1404    ///
1405    /// ```
1406    /// let mut vec: Vec<i32> = Vec::with_capacity(10);
1407    /// vec.push(42);
1408    /// assert!(vec.capacity() >= 10);
1409    /// ```
1410    ///
1411    /// A vector with zero-sized elements will always have a capacity of usize::MAX:
1412    ///
1413    /// ```
1414    /// #[derive(Clone)]
1415    /// struct ZeroSized;
1416    ///
1417    /// fn main() {
1418    ///     assert_eq!(std::mem::size_of::<ZeroSized>(), 0);
1419    ///     let v = vec![ZeroSized; 0];
1420    ///     assert_eq!(v.capacity(), usize::MAX);
1421    /// }
1422    /// ```
1423    #[inline]
1424    #[stable(feature = "rust1", since = "1.0.0")]
1425    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1426    pub const fn capacity(&self) -> usize {
1427        self.buf.capacity()
1428    }
1429
1430    /// Reserves capacity for at least `additional` more elements to be inserted
1431    /// in the given `Vec<T>`. The collection may reserve more space to
1432    /// speculatively avoid frequent reallocations. After calling `reserve`,
1433    /// capacity will be greater than or equal to `self.len() + additional`.
1434    /// Does nothing if capacity is already sufficient.
1435    ///
1436    /// # Panics
1437    ///
1438    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1439    ///
1440    /// # Examples
1441    ///
1442    /// ```
1443    /// let mut vec = vec![1];
1444    /// vec.reserve(10);
1445    /// assert!(vec.capacity() >= 11);
1446    /// ```
1447    #[cfg(not(no_global_oom_handling))]
1448    #[stable(feature = "rust1", since = "1.0.0")]
1449    #[rustc_diagnostic_item = "vec_reserve"]
1450    pub fn reserve(&mut self, additional: usize) {
1451        self.buf.reserve(self.len, additional);
1452    }
1453
1454    /// Reserves the minimum capacity for at least `additional` more elements to
1455    /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not
1456    /// deliberately over-allocate to speculatively avoid frequent allocations.
1457    /// After calling `reserve_exact`, capacity will be greater than or equal to
1458    /// `self.len() + additional`. Does nothing if the capacity is already
1459    /// sufficient.
1460    ///
1461    /// Note that the allocator may give the collection more space than it
1462    /// requests. Therefore, capacity can not be relied upon to be precisely
1463    /// minimal. Prefer [`reserve`] if future insertions are expected.
1464    ///
1465    /// [`reserve`]: Vec::reserve
1466    ///
1467    /// # Panics
1468    ///
1469    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1470    ///
1471    /// # Examples
1472    ///
1473    /// ```
1474    /// let mut vec = vec![1];
1475    /// vec.reserve_exact(10);
1476    /// assert!(vec.capacity() >= 11);
1477    /// ```
1478    #[cfg(not(no_global_oom_handling))]
1479    #[stable(feature = "rust1", since = "1.0.0")]
1480    pub fn reserve_exact(&mut self, additional: usize) {
1481        self.buf.reserve_exact(self.len, additional);
1482    }
1483
1484    /// Tries to reserve capacity for at least `additional` more elements to be inserted
1485    /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid
1486    /// frequent reallocations. After calling `try_reserve`, capacity will be
1487    /// greater than or equal to `self.len() + additional` if it returns
1488    /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1489    /// preserves the contents even if an error occurs.
1490    ///
1491    /// # Errors
1492    ///
1493    /// If the capacity overflows, or the allocator reports a failure, then an error
1494    /// is returned.
1495    ///
1496    /// # Examples
1497    ///
1498    /// ```
1499    /// use std::collections::TryReserveError;
1500    ///
1501    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1502    ///     let mut output = Vec::new();
1503    ///
1504    ///     // Pre-reserve the memory, exiting if we can't
1505    ///     output.try_reserve(data.len())?;
1506    ///
1507    ///     // Now we know this can't OOM in the middle of our complex work
1508    ///     output.extend(data.iter().map(|&val| {
1509    ///         val * 2 + 5 // very complicated
1510    ///     }));
1511    ///
1512    ///     Ok(output)
1513    /// }
1514    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1515    /// ```
1516    #[stable(feature = "try_reserve", since = "1.57.0")]
1517    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1518        self.buf.try_reserve(self.len, additional)
1519    }
1520
1521    /// Tries to reserve the minimum capacity for at least `additional`
1522    /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`],
1523    /// this will not deliberately over-allocate to speculatively avoid frequent
1524    /// allocations. After calling `try_reserve_exact`, capacity will be greater
1525    /// than or equal to `self.len() + additional` if it returns `Ok(())`.
1526    /// Does nothing if the capacity is already sufficient.
1527    ///
1528    /// Note that the allocator may give the collection more space than it
1529    /// requests. Therefore, capacity can not be relied upon to be precisely
1530    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1531    ///
1532    /// [`try_reserve`]: Vec::try_reserve
1533    ///
1534    /// # Errors
1535    ///
1536    /// If the capacity overflows, or the allocator reports a failure, then an error
1537    /// is returned.
1538    ///
1539    /// # Examples
1540    ///
1541    /// ```
1542    /// use std::collections::TryReserveError;
1543    ///
1544    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1545    ///     let mut output = Vec::new();
1546    ///
1547    ///     // Pre-reserve the memory, exiting if we can't
1548    ///     output.try_reserve_exact(data.len())?;
1549    ///
1550    ///     // Now we know this can't OOM in the middle of our complex work
1551    ///     output.extend(data.iter().map(|&val| {
1552    ///         val * 2 + 5 // very complicated
1553    ///     }));
1554    ///
1555    ///     Ok(output)
1556    /// }
1557    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1558    /// ```
1559    #[stable(feature = "try_reserve", since = "1.57.0")]
1560    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1561        self.buf.try_reserve_exact(self.len, additional)
1562    }
1563
1564    /// Shrinks the capacity of the vector as much as possible.
1565    ///
1566    /// The behavior of this method depends on the allocator, which may either shrink the vector
1567    /// in-place or reallocate. The resulting vector might still have some excess capacity, just as
1568    /// is the case for [`with_capacity`]. See [`Allocator::shrink`] for more details.
1569    ///
1570    /// [`with_capacity`]: Vec::with_capacity
1571    ///
1572    /// # Examples
1573    ///
1574    /// ```
1575    /// let mut vec = Vec::with_capacity(10);
1576    /// vec.extend([1, 2, 3]);
1577    /// assert!(vec.capacity() >= 10);
1578    /// vec.shrink_to_fit();
1579    /// assert!(vec.capacity() >= 3);
1580    /// ```
1581    #[cfg(not(no_global_oom_handling))]
1582    #[stable(feature = "rust1", since = "1.0.0")]
1583    #[inline]
1584    pub fn shrink_to_fit(&mut self) {
1585        // The capacity is never less than the length, and there's nothing to do when
1586        // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1587        // by only calling it with a greater capacity.
1588        if self.capacity() > self.len {
1589            self.buf.shrink_to_fit(self.len);
1590        }
1591    }
1592
1593    /// Shrinks the capacity of the vector with a lower bound.
1594    ///
1595    /// The capacity will remain at least as large as both the length
1596    /// and the supplied value.
1597    ///
1598    /// If the current capacity is less than the lower limit, this is a no-op.
1599    ///
1600    /// # Examples
1601    ///
1602    /// ```
1603    /// let mut vec = Vec::with_capacity(10);
1604    /// vec.extend([1, 2, 3]);
1605    /// assert!(vec.capacity() >= 10);
1606    /// vec.shrink_to(4);
1607    /// assert!(vec.capacity() >= 4);
1608    /// vec.shrink_to(0);
1609    /// assert!(vec.capacity() >= 3);
1610    /// ```
1611    #[cfg(not(no_global_oom_handling))]
1612    #[stable(feature = "shrink_to", since = "1.56.0")]
1613    pub fn shrink_to(&mut self, min_capacity: usize) {
1614        if self.capacity() > min_capacity {
1615            self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1616        }
1617    }
1618
1619    /// Converts the vector into [`Box<[T]>`][owned slice].
1620    ///
1621    /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
1622    ///
1623    /// [owned slice]: Box
1624    /// [`shrink_to_fit`]: Vec::shrink_to_fit
1625    ///
1626    /// # Examples
1627    ///
1628    /// ```
1629    /// let v = vec![1, 2, 3];
1630    ///
1631    /// let slice = v.into_boxed_slice();
1632    /// ```
1633    ///
1634    /// Any excess capacity is removed:
1635    ///
1636    /// ```
1637    /// let mut vec = Vec::with_capacity(10);
1638    /// vec.extend([1, 2, 3]);
1639    ///
1640    /// assert!(vec.capacity() >= 10);
1641    /// let slice = vec.into_boxed_slice();
1642    /// assert_eq!(slice.into_vec().capacity(), 3);
1643    /// ```
1644    #[cfg(not(no_global_oom_handling))]
1645    #[stable(feature = "rust1", since = "1.0.0")]
1646    pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1647        unsafe {
1648            self.shrink_to_fit();
1649            let me = ManuallyDrop::new(self);
1650            let buf = ptr::read(&me.buf);
1651            let len = me.len();
1652            buf.into_box(len).assume_init()
1653        }
1654    }
1655
1656    /// Shortens the vector, keeping the first `len` elements and dropping
1657    /// the rest.
1658    ///
1659    /// If `len` is greater or equal to the vector's current length, this has
1660    /// no effect.
1661    ///
1662    /// The [`drain`] method can emulate `truncate`, but causes the excess
1663    /// elements to be returned instead of dropped.
1664    ///
1665    /// Note that this method has no effect on the allocated capacity
1666    /// of the vector.
1667    ///
1668    /// # Examples
1669    ///
1670    /// Truncating a five element vector to two elements:
1671    ///
1672    /// ```
1673    /// let mut vec = vec![1, 2, 3, 4, 5];
1674    /// vec.truncate(2);
1675    /// assert_eq!(vec, [1, 2]);
1676    /// ```
1677    ///
1678    /// No truncation occurs when `len` is greater than the vector's current
1679    /// length:
1680    ///
1681    /// ```
1682    /// let mut vec = vec![1, 2, 3];
1683    /// vec.truncate(8);
1684    /// assert_eq!(vec, [1, 2, 3]);
1685    /// ```
1686    ///
1687    /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1688    /// method.
1689    ///
1690    /// ```
1691    /// let mut vec = vec![1, 2, 3];
1692    /// vec.truncate(0);
1693    /// assert_eq!(vec, []);
1694    /// ```
1695    ///
1696    /// [`clear`]: Vec::clear
1697    /// [`drain`]: Vec::drain
1698    #[stable(feature = "rust1", since = "1.0.0")]
1699    pub fn truncate(&mut self, len: usize) {
1700        // This is safe because:
1701        //
1702        // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1703        //   case avoids creating an invalid slice, and
1704        // * the `len` of the vector is shrunk before calling `drop_in_place`,
1705        //   such that no value will be dropped twice in case `drop_in_place`
1706        //   were to panic once (if it panics twice, the program aborts).
1707        unsafe {
1708            // Note: It's intentional that this is `>` and not `>=`.
1709            //       Changing it to `>=` has negative performance
1710            //       implications in some cases. See #78884 for more.
1711            if len > self.len {
1712                return;
1713            }
1714            let remaining_len = self.len - len;
1715            let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1716            self.len = len;
1717            ptr::drop_in_place(s);
1718        }
1719    }
1720
1721    /// Extracts a slice containing the entire vector.
1722    ///
1723    /// Equivalent to `&s[..]`.
1724    ///
1725    /// # Examples
1726    ///
1727    /// ```
1728    /// use std::io::{self, Write};
1729    /// let buffer = vec![1, 2, 3, 5, 8];
1730    /// io::sink().write(buffer.as_slice()).unwrap();
1731    /// ```
1732    #[inline]
1733    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1734    #[rustc_diagnostic_item = "vec_as_slice"]
1735    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1736    pub const fn as_slice(&self) -> &[T] {
1737        // SAFETY: `slice::from_raw_parts` requires pointee is a contiguous, aligned buffer of size
1738        // `len` containing properly-initialized `T`s. Data must not be mutated for the returned
1739        // lifetime. Further, `len * size_of::<T>` <= `isize::MAX`, and allocation does not
1740        // "wrap" through overflowing memory addresses.
1741        //
1742        // * Vec API guarantees that self.buf:
1743        //      * contains only properly-initialized items within 0..len
1744        //      * is aligned, contiguous, and valid for `len` reads
1745        //      * obeys size and address-wrapping constraints
1746        //
1747        // * We only construct `&mut` references to `self.buf` through `&mut self` methods; borrow-
1748        //   check ensures that it is not possible to mutably alias `self.buf` within the
1749        //   returned lifetime.
1750        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
1751    }
1752
1753    /// Extracts a mutable slice of the entire vector.
1754    ///
1755    /// Equivalent to `&mut s[..]`.
1756    ///
1757    /// # Examples
1758    ///
1759    /// ```
1760    /// use std::io::{self, Read};
1761    /// let mut buffer = vec![0; 3];
1762    /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1763    /// ```
1764    #[inline]
1765    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1766    #[rustc_diagnostic_item = "vec_as_mut_slice"]
1767    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1768    pub const fn as_mut_slice(&mut self) -> &mut [T] {
1769        // SAFETY: `slice::from_raw_parts_mut` requires pointee is a contiguous, aligned buffer of
1770        // size `len` containing properly-initialized `T`s. Data must not be accessed through any
1771        // other pointer for the returned lifetime. Further, `len * size_of::<T>` <=
1772        // `ISIZE::MAX` and allocation does not "wrap" through overflowing memory addresses.
1773        //
1774        // * Vec API guarantees that self.buf:
1775        //      * contains only properly-initialized items within 0..len
1776        //      * is aligned, contiguous, and valid for `len` reads
1777        //      * obeys size and address-wrapping constraints
1778        //
1779        // * We only construct references to `self.buf` through `&self` and `&mut self` methods;
1780        //   borrow-check ensures that it is not possible to construct a reference to `self.buf`
1781        //   within the returned lifetime.
1782        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
1783    }
1784
1785    /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
1786    /// valid for zero sized reads if the vector didn't allocate.
1787    ///
1788    /// The caller must ensure that the vector outlives the pointer this
1789    /// function returns, or else it will end up dangling.
1790    /// Modifying the vector may cause its buffer to be reallocated,
1791    /// which would also make any pointers to it invalid.
1792    ///
1793    /// The caller must also ensure that the memory the pointer (non-transitively) points to
1794    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1795    /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1796    ///
1797    /// This method guarantees that for the purpose of the aliasing model, this method
1798    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1799    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1800    /// and [`as_non_null`].
1801    /// Note that calling other methods that materialize mutable references to the slice,
1802    /// or mutable references to specific elements you are planning on accessing through this pointer,
1803    /// as well as writing to those elements, may still invalidate this pointer.
1804    /// See the second example below for how this guarantee can be used.
1805    ///
1806    ///
1807    /// # Examples
1808    ///
1809    /// ```
1810    /// let x = vec![1, 2, 4];
1811    /// let x_ptr = x.as_ptr();
1812    ///
1813    /// unsafe {
1814    ///     for i in 0..x.len() {
1815    ///         assert_eq!(*x_ptr.add(i), 1 << i);
1816    ///     }
1817    /// }
1818    /// ```
1819    ///
1820    /// Due to the aliasing guarantee, the following code is legal:
1821    ///
1822    /// ```rust
1823    /// unsafe {
1824    ///     let mut v = vec![0, 1, 2];
1825    ///     let ptr1 = v.as_ptr();
1826    ///     let _ = ptr1.read();
1827    ///     let ptr2 = v.as_mut_ptr().offset(2);
1828    ///     ptr2.write(2);
1829    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`
1830    ///     // because it mutated a different element:
1831    ///     let _ = ptr1.read();
1832    /// }
1833    /// ```
1834    ///
1835    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1836    /// [`as_ptr`]: Vec::as_ptr
1837    /// [`as_non_null`]: Vec::as_non_null
1838    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1839    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1840    #[rustc_never_returns_null_ptr]
1841    #[rustc_as_ptr]
1842    #[inline]
1843    pub const fn as_ptr(&self) -> *const T {
1844        // We shadow the slice method of the same name to avoid going through
1845        // `deref`, which creates an intermediate reference.
1846        self.buf.ptr()
1847    }
1848
1849    /// Returns a raw mutable pointer to the vector's buffer, or a dangling
1850    /// raw pointer valid for zero sized reads if the vector didn't allocate.
1851    ///
1852    /// The caller must ensure that the vector outlives the pointer this
1853    /// function returns, or else it will end up dangling.
1854    /// Modifying the vector may cause its buffer to be reallocated,
1855    /// which would also make any pointers to it invalid.
1856    ///
1857    /// This method guarantees that for the purpose of the aliasing model, this method
1858    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1859    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1860    /// and [`as_non_null`].
1861    /// Note that calling other methods that materialize references to the slice,
1862    /// or references to specific elements you are planning on accessing through this pointer,
1863    /// may still invalidate this pointer.
1864    /// See the second example below for how this guarantee can be used.
1865    ///
1866    /// The method also guarantees that, as long as `T` is not zero-sized and the capacity is
1867    /// nonzero, the pointer may be passed into [`dealloc`] with a layout of
1868    /// `Layout::array::<T>(capacity)` in order to deallocate the backing memory. If this is done,
1869    /// be careful not to run the destructor of the `Vec`, as dropping it will result in
1870    /// double-frees. Wrapping the `Vec` in a [`ManuallyDrop`] is the typical way to achieve this.
1871    ///
1872    /// # Examples
1873    ///
1874    /// ```
1875    /// // Allocate vector big enough for 4 elements.
1876    /// let size = 4;
1877    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1878    /// let x_ptr = x.as_mut_ptr();
1879    ///
1880    /// // Initialize elements via raw pointer writes, then set length.
1881    /// unsafe {
1882    ///     for i in 0..size {
1883    ///         *x_ptr.add(i) = i as i32;
1884    ///     }
1885    ///     x.set_len(size);
1886    /// }
1887    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1888    /// ```
1889    ///
1890    /// Due to the aliasing guarantee, the following code is legal:
1891    ///
1892    /// ```rust
1893    /// unsafe {
1894    ///     let mut v = vec![0];
1895    ///     let ptr1 = v.as_mut_ptr();
1896    ///     ptr1.write(1);
1897    ///     let ptr2 = v.as_mut_ptr();
1898    ///     ptr2.write(2);
1899    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1900    ///     ptr1.write(3);
1901    /// }
1902    /// ```
1903    ///
1904    /// Deallocating a vector using [`Box`] (which uses [`dealloc`] internally):
1905    ///
1906    /// ```
1907    /// use std::mem::{ManuallyDrop, MaybeUninit};
1908    ///
1909    /// let mut v = ManuallyDrop::new(vec![0, 1, 2]);
1910    /// let ptr = v.as_mut_ptr();
1911    /// let capacity = v.capacity();
1912    /// let slice_ptr: *mut [MaybeUninit<i32>] =
1913    ///     std::ptr::slice_from_raw_parts_mut(ptr.cast(), capacity);
1914    /// drop(unsafe { Box::from_raw(slice_ptr) });
1915    /// ```
1916    ///
1917    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1918    /// [`as_ptr`]: Vec::as_ptr
1919    /// [`as_non_null`]: Vec::as_non_null
1920    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1921    /// [`ManuallyDrop`]: core::mem::ManuallyDrop
1922    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1923    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1924    #[rustc_never_returns_null_ptr]
1925    #[rustc_as_ptr]
1926    #[inline]
1927    pub const fn as_mut_ptr(&mut self) -> *mut T {
1928        // We shadow the slice method of the same name to avoid going through
1929        // `deref_mut`, which creates an intermediate reference.
1930        self.buf.ptr()
1931    }
1932
1933    /// Returns a `NonNull` pointer to the vector's buffer, or a dangling
1934    /// `NonNull` pointer valid for zero sized reads if the vector didn't allocate.
1935    ///
1936    /// The caller must ensure that the vector outlives the pointer this
1937    /// function returns, or else it will end up dangling.
1938    /// Modifying the vector may cause its buffer to be reallocated,
1939    /// which would also make any pointers to it invalid.
1940    ///
1941    /// This method guarantees that for the purpose of the aliasing model, this method
1942    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1943    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1944    /// and [`as_non_null`].
1945    /// Note that calling other methods that materialize references to the slice,
1946    /// or references to specific elements you are planning on accessing through this pointer,
1947    /// may still invalidate this pointer.
1948    /// See the second example below for how this guarantee can be used.
1949    ///
1950    /// # Examples
1951    ///
1952    /// ```
1953    /// #![feature(box_vec_non_null)]
1954    ///
1955    /// // Allocate vector big enough for 4 elements.
1956    /// let size = 4;
1957    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1958    /// let x_ptr = x.as_non_null();
1959    ///
1960    /// // Initialize elements via raw pointer writes, then set length.
1961    /// unsafe {
1962    ///     for i in 0..size {
1963    ///         x_ptr.add(i).write(i as i32);
1964    ///     }
1965    ///     x.set_len(size);
1966    /// }
1967    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1968    /// ```
1969    ///
1970    /// Due to the aliasing guarantee, the following code is legal:
1971    ///
1972    /// ```rust
1973    /// #![feature(box_vec_non_null)]
1974    ///
1975    /// unsafe {
1976    ///     let mut v = vec![0];
1977    ///     let ptr1 = v.as_non_null();
1978    ///     ptr1.write(1);
1979    ///     let ptr2 = v.as_non_null();
1980    ///     ptr2.write(2);
1981    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1982    ///     ptr1.write(3);
1983    /// }
1984    /// ```
1985    ///
1986    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1987    /// [`as_ptr`]: Vec::as_ptr
1988    /// [`as_non_null`]: Vec::as_non_null
1989    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1990    #[rustc_const_unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1991    #[inline]
1992    pub const fn as_non_null(&mut self) -> NonNull<T> {
1993        self.buf.non_null()
1994    }
1995
1996    /// Returns a reference to the underlying allocator.
1997    #[unstable(feature = "allocator_api", issue = "32838")]
1998    #[inline]
1999    pub fn allocator(&self) -> &A {
2000        self.buf.allocator()
2001    }
2002
2003    /// Forces the length of the vector to `new_len`.
2004    ///
2005    /// This is a low-level operation that maintains none of the normal
2006    /// invariants of the type. Normally changing the length of a vector
2007    /// is done using one of the safe operations instead, such as
2008    /// [`truncate`], [`resize`], [`extend`], or [`clear`].
2009    ///
2010    /// [`truncate`]: Vec::truncate
2011    /// [`resize`]: Vec::resize
2012    /// [`extend`]: Extend::extend
2013    /// [`clear`]: Vec::clear
2014    ///
2015    /// # Safety
2016    ///
2017    /// - `new_len` must be less than or equal to [`capacity()`].
2018    /// - The elements at `old_len..new_len` must be initialized.
2019    ///
2020    /// [`capacity()`]: Vec::capacity
2021    ///
2022    /// # Examples
2023    ///
2024    /// See [`spare_capacity_mut()`] for an example with safe
2025    /// initialization of capacity elements and use of this method.
2026    ///
2027    /// `set_len()` can be useful for situations in which the vector
2028    /// is serving as a buffer for other code, particularly over FFI:
2029    ///
2030    /// ```no_run
2031    /// # #![allow(dead_code)]
2032    /// # // This is just a minimal skeleton for the doc example;
2033    /// # // don't use this as a starting point for a real library.
2034    /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
2035    /// # const Z_OK: i32 = 0;
2036    /// # unsafe extern "C" {
2037    /// #     fn deflateGetDictionary(
2038    /// #         strm: *mut std::ffi::c_void,
2039    /// #         dictionary: *mut u8,
2040    /// #         dictLength: *mut usize,
2041    /// #     ) -> i32;
2042    /// # }
2043    /// # impl StreamWrapper {
2044    /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
2045    ///     // Per the FFI method's docs, "32768 bytes is always enough".
2046    ///     let mut dict = Vec::with_capacity(32_768);
2047    ///     let mut dict_length = 0;
2048    ///     // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
2049    ///     // 1. `dict_length` elements were initialized.
2050    ///     // 2. `dict_length` <= the capacity (32_768)
2051    ///     // which makes `set_len` safe to call.
2052    ///     unsafe {
2053    ///         // Make the FFI call...
2054    ///         let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
2055    ///         if r == Z_OK {
2056    ///             // ...and update the length to what was initialized.
2057    ///             dict.set_len(dict_length);
2058    ///             Some(dict)
2059    ///         } else {
2060    ///             None
2061    ///         }
2062    ///     }
2063    /// }
2064    /// # }
2065    /// ```
2066    ///
2067    /// While the following example is sound, there is a memory leak since
2068    /// the inner vectors were not freed prior to the `set_len` call:
2069    ///
2070    /// ```
2071    /// let mut vec = vec![vec![1, 0, 0],
2072    ///                    vec![0, 1, 0],
2073    ///                    vec![0, 0, 1]];
2074    /// // SAFETY:
2075    /// // 1. `old_len..0` is empty so no elements need to be initialized.
2076    /// // 2. `0 <= capacity` always holds whatever `capacity` is.
2077    /// unsafe {
2078    ///     vec.set_len(0);
2079    /// #   // FIXME(https://github.com/rust-lang/miri/issues/3670):
2080    /// #   // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
2081    /// #   vec.set_len(3);
2082    /// }
2083    /// ```
2084    ///
2085    /// Normally, here, one would use [`clear`] instead to correctly drop
2086    /// the contents and thus not leak memory.
2087    ///
2088    /// [`spare_capacity_mut()`]: Vec::spare_capacity_mut
2089    #[inline]
2090    #[stable(feature = "rust1", since = "1.0.0")]
2091    pub unsafe fn set_len(&mut self, new_len: usize) {
2092        ub_checks::assert_unsafe_precondition!(
2093            check_library_ub,
2094            "Vec::set_len requires that new_len <= capacity()",
2095            (new_len: usize = new_len, capacity: usize = self.capacity()) => new_len <= capacity
2096        );
2097
2098        self.len = new_len;
2099    }
2100
2101    /// Removes an element from the vector and returns it.
2102    ///
2103    /// The removed element is replaced by the last element of the vector.
2104    ///
2105    /// This does not preserve ordering of the remaining elements, but is *O*(1).
2106    /// If you need to preserve the element order, use [`remove`] instead.
2107    ///
2108    /// [`remove`]: Vec::remove
2109    ///
2110    /// # Panics
2111    ///
2112    /// Panics if `index` is out of bounds.
2113    ///
2114    /// # Examples
2115    ///
2116    /// ```
2117    /// let mut v = vec!["foo", "bar", "baz", "qux"];
2118    ///
2119    /// assert_eq!(v.swap_remove(1), "bar");
2120    /// assert_eq!(v, ["foo", "qux", "baz"]);
2121    ///
2122    /// assert_eq!(v.swap_remove(0), "foo");
2123    /// assert_eq!(v, ["baz", "qux"]);
2124    /// ```
2125    #[inline]
2126    #[stable(feature = "rust1", since = "1.0.0")]
2127    pub fn swap_remove(&mut self, index: usize) -> T {
2128        #[cold]
2129        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2130        #[optimize(size)]
2131        fn assert_failed(index: usize, len: usize) -> ! {
2132            panic!("swap_remove index (is {index}) should be < len (is {len})");
2133        }
2134
2135        let len = self.len();
2136        if index >= len {
2137            assert_failed(index, len);
2138        }
2139        unsafe {
2140            // We replace self[index] with the last element. Note that if the
2141            // bounds check above succeeds there must be a last element (which
2142            // can be self[index] itself).
2143            let value = ptr::read(self.as_ptr().add(index));
2144            let base_ptr = self.as_mut_ptr();
2145            ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
2146            self.set_len(len - 1);
2147            value
2148        }
2149    }
2150
2151    /// Inserts an element at position `index` within the vector, shifting all
2152    /// elements after it to the right.
2153    ///
2154    /// # Panics
2155    ///
2156    /// Panics if `index > len`.
2157    ///
2158    /// # Examples
2159    ///
2160    /// ```
2161    /// let mut vec = vec!['a', 'b', 'c'];
2162    /// vec.insert(1, 'd');
2163    /// assert_eq!(vec, ['a', 'd', 'b', 'c']);
2164    /// vec.insert(4, 'e');
2165    /// assert_eq!(vec, ['a', 'd', 'b', 'c', 'e']);
2166    /// ```
2167    ///
2168    /// # Time complexity
2169    ///
2170    /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2171    /// shifted to the right. In the worst case, all elements are shifted when
2172    /// the insertion index is 0.
2173    #[cfg(not(no_global_oom_handling))]
2174    #[stable(feature = "rust1", since = "1.0.0")]
2175    #[track_caller]
2176    pub fn insert(&mut self, index: usize, element: T) {
2177        let _ = self.insert_mut(index, element);
2178    }
2179
2180    /// Inserts an element at position `index` within the vector, shifting all
2181    /// elements after it to the right, and returning a reference to the new
2182    /// element.
2183    ///
2184    /// # Panics
2185    ///
2186    /// Panics if `index > len`.
2187    ///
2188    /// # Examples
2189    ///
2190    /// ```
2191    /// #![feature(push_mut)]
2192    /// let mut vec = vec![1, 3, 5, 9];
2193    /// let x = vec.insert_mut(3, 6);
2194    /// *x += 1;
2195    /// assert_eq!(vec, [1, 3, 5, 7, 9]);
2196    /// ```
2197    ///
2198    /// # Time complexity
2199    ///
2200    /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2201    /// shifted to the right. In the worst case, all elements are shifted when
2202    /// the insertion index is 0.
2203    #[cfg(not(no_global_oom_handling))]
2204    #[inline]
2205    #[unstable(feature = "push_mut", issue = "135974")]
2206    #[track_caller]
2207    #[must_use = "if you don't need a reference to the value, use `Vec::insert` instead"]
2208    pub fn insert_mut(&mut self, index: usize, element: T) -> &mut T {
2209        #[cold]
2210        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2211        #[track_caller]
2212        #[optimize(size)]
2213        fn assert_failed(index: usize, len: usize) -> ! {
2214            panic!("insertion index (is {index}) should be <= len (is {len})");
2215        }
2216
2217        let len = self.len();
2218        if index > len {
2219            assert_failed(index, len);
2220        }
2221
2222        // space for the new element
2223        if len == self.buf.capacity() {
2224            self.buf.grow_one();
2225        }
2226
2227        unsafe {
2228            // infallible
2229            // The spot to put the new value
2230            let p = self.as_mut_ptr().add(index);
2231            {
2232                if index < len {
2233                    // Shift everything over to make space. (Duplicating the
2234                    // `index`th element into two consecutive places.)
2235                    ptr::copy(p, p.add(1), len - index);
2236                }
2237                // Write it in, overwriting the first copy of the `index`th
2238                // element.
2239                ptr::write(p, element);
2240            }
2241            self.set_len(len + 1);
2242            &mut *p
2243        }
2244    }
2245
2246    /// Removes and returns the element at position `index` within the vector,
2247    /// shifting all elements after it to the left.
2248    ///
2249    /// Note: Because this shifts over the remaining elements, it has a
2250    /// worst-case performance of *O*(*n*). If you don't need the order of elements
2251    /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
2252    /// elements from the beginning of the `Vec`, consider using
2253    /// [`VecDeque::pop_front`] instead.
2254    ///
2255    /// [`swap_remove`]: Vec::swap_remove
2256    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2257    ///
2258    /// # Panics
2259    ///
2260    /// Panics if `index` is out of bounds.
2261    ///
2262    /// # Examples
2263    ///
2264    /// ```
2265    /// let mut v = vec!['a', 'b', 'c'];
2266    /// assert_eq!(v.remove(1), 'b');
2267    /// assert_eq!(v, ['a', 'c']);
2268    /// ```
2269    #[stable(feature = "rust1", since = "1.0.0")]
2270    #[track_caller]
2271    #[rustc_confusables("delete", "take")]
2272    pub fn remove(&mut self, index: usize) -> T {
2273        #[cold]
2274        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2275        #[track_caller]
2276        #[optimize(size)]
2277        fn assert_failed(index: usize, len: usize) -> ! {
2278            panic!("removal index (is {index}) should be < len (is {len})");
2279        }
2280
2281        match self.try_remove(index) {
2282            Some(elem) => elem,
2283            None => assert_failed(index, self.len()),
2284        }
2285    }
2286
2287    /// Remove and return the element at position `index` within the vector,
2288    /// shifting all elements after it to the left, or [`None`] if it does not
2289    /// exist.
2290    ///
2291    /// Note: Because this shifts over the remaining elements, it has a
2292    /// worst-case performance of *O*(*n*). If you'd like to remove
2293    /// elements from the beginning of the `Vec`, consider using
2294    /// [`VecDeque::pop_front`] instead.
2295    ///
2296    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2297    ///
2298    /// # Examples
2299    ///
2300    /// ```
2301    /// #![feature(vec_try_remove)]
2302    /// let mut v = vec![1, 2, 3];
2303    /// assert_eq!(v.try_remove(0), Some(1));
2304    /// assert_eq!(v.try_remove(2), None);
2305    /// ```
2306    #[unstable(feature = "vec_try_remove", issue = "146954")]
2307    #[rustc_confusables("delete", "take", "remove")]
2308    pub fn try_remove(&mut self, index: usize) -> Option<T> {
2309        let len = self.len();
2310        if index >= len {
2311            return None;
2312        }
2313        unsafe {
2314            // infallible
2315            let ret;
2316            {
2317                // the place we are taking from.
2318                let ptr = self.as_mut_ptr().add(index);
2319                // copy it out, unsafely having a copy of the value on
2320                // the stack and in the vector at the same time.
2321                ret = ptr::read(ptr);
2322
2323                // Shift everything down to fill in that spot.
2324                ptr::copy(ptr.add(1), ptr, len - index - 1);
2325            }
2326            self.set_len(len - 1);
2327            Some(ret)
2328        }
2329    }
2330
2331    /// Retains only the elements specified by the predicate.
2332    ///
2333    /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
2334    /// This method operates in place, visiting each element exactly once in the
2335    /// original order, and preserves the order of the retained elements.
2336    ///
2337    /// # Examples
2338    ///
2339    /// ```
2340    /// let mut vec = vec![1, 2, 3, 4];
2341    /// vec.retain(|&x| x % 2 == 0);
2342    /// assert_eq!(vec, [2, 4]);
2343    /// ```
2344    ///
2345    /// Because the elements are visited exactly once in the original order,
2346    /// external state may be used to decide which elements to keep.
2347    ///
2348    /// ```
2349    /// let mut vec = vec![1, 2, 3, 4, 5];
2350    /// let keep = [false, true, true, false, true];
2351    /// let mut iter = keep.iter();
2352    /// vec.retain(|_| *iter.next().unwrap());
2353    /// assert_eq!(vec, [2, 3, 5]);
2354    /// ```
2355    #[stable(feature = "rust1", since = "1.0.0")]
2356    pub fn retain<F>(&mut self, mut f: F)
2357    where
2358        F: FnMut(&T) -> bool,
2359    {
2360        self.retain_mut(|elem| f(elem));
2361    }
2362
2363    /// Retains only the elements specified by the predicate, passing a mutable reference to it.
2364    ///
2365    /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
2366    /// This method operates in place, visiting each element exactly once in the
2367    /// original order, and preserves the order of the retained elements.
2368    ///
2369    /// # Examples
2370    ///
2371    /// ```
2372    /// let mut vec = vec![1, 2, 3, 4];
2373    /// vec.retain_mut(|x| if *x <= 3 {
2374    ///     *x += 1;
2375    ///     true
2376    /// } else {
2377    ///     false
2378    /// });
2379    /// assert_eq!(vec, [2, 3, 4]);
2380    /// ```
2381    #[stable(feature = "vec_retain_mut", since = "1.61.0")]
2382    pub fn retain_mut<F>(&mut self, mut f: F)
2383    where
2384        F: FnMut(&mut T) -> bool,
2385    {
2386        let original_len = self.len();
2387
2388        if original_len == 0 {
2389            // Empty case: explicit return allows better optimization, vs letting compiler infer it
2390            return;
2391        }
2392
2393        // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
2394        //      |            ^- write                ^- read             |
2395        //      |<-              original_len                          ->|
2396        // Kept: Elements which predicate returns true on.
2397        // Hole: Moved or dropped element slot.
2398        // Unchecked: Unchecked valid elements.
2399        //
2400        // This drop guard will be invoked when predicate or `drop` of element panicked.
2401        // It shifts unchecked elements to cover holes and `set_len` to the correct length.
2402        // In cases when predicate and `drop` never panick, it will be optimized out.
2403        struct PanicGuard<'a, T, A: Allocator> {
2404            v: &'a mut Vec<T, A>,
2405            read: usize,
2406            write: usize,
2407            original_len: usize,
2408        }
2409
2410        impl<T, A: Allocator> Drop for PanicGuard<'_, T, A> {
2411            #[cold]
2412            fn drop(&mut self) {
2413                let remaining = self.original_len - self.read;
2414                // SAFETY: Trailing unchecked items must be valid since we never touch them.
2415                unsafe {
2416                    ptr::copy(
2417                        self.v.as_ptr().add(self.read),
2418                        self.v.as_mut_ptr().add(self.write),
2419                        remaining,
2420                    );
2421                }
2422                // SAFETY: After filling holes, all items are in contiguous memory.
2423                unsafe {
2424                    self.v.set_len(self.write + remaining);
2425                }
2426            }
2427        }
2428
2429        let mut read = 0;
2430        loop {
2431            // SAFETY: read < original_len
2432            let cur = unsafe { self.get_unchecked_mut(read) };
2433            if hint::unlikely(!f(cur)) {
2434                break;
2435            }
2436            read += 1;
2437            if read == original_len {
2438                // All elements are kept, return early.
2439                return;
2440            }
2441        }
2442
2443        // Critical section starts here and at least one element is going to be removed.
2444        // Advance `g.read` early to avoid double drop if `drop_in_place` panicked.
2445        let mut g = PanicGuard { v: self, read: read + 1, write: read, original_len };
2446        // SAFETY: previous `read` is always less than original_len.
2447        unsafe { ptr::drop_in_place(&mut *g.v.as_mut_ptr().add(read)) };
2448
2449        while g.read < g.original_len {
2450            // SAFETY: `read` is always less than original_len.
2451            let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.read) };
2452            if !f(cur) {
2453                // Advance `read` early to avoid double drop if `drop_in_place` panicked.
2454                g.read += 1;
2455                // SAFETY: We never touch this element again after dropped.
2456                unsafe { ptr::drop_in_place(cur) };
2457            } else {
2458                // SAFETY: `read` > `write`, so the slots don't overlap.
2459                // We use copy for move, and never touch the source element again.
2460                unsafe {
2461                    let hole = g.v.as_mut_ptr().add(g.write);
2462                    ptr::copy_nonoverlapping(cur, hole, 1);
2463                }
2464                g.write += 1;
2465                g.read += 1;
2466            }
2467        }
2468
2469        // We are leaving the critical section and no panic happened,
2470        // Commit the length change and forget the guard.
2471        // SAFETY: `write` is always less than or equal to original_len.
2472        unsafe { g.v.set_len(g.write) };
2473        mem::forget(g);
2474    }
2475
2476    /// Removes all but the first of consecutive elements in the vector that resolve to the same
2477    /// key.
2478    ///
2479    /// If the vector is sorted, this removes all duplicates.
2480    ///
2481    /// # Examples
2482    ///
2483    /// ```
2484    /// let mut vec = vec![10, 20, 21, 30, 20];
2485    ///
2486    /// vec.dedup_by_key(|i| *i / 10);
2487    ///
2488    /// assert_eq!(vec, [10, 20, 30, 20]);
2489    /// ```
2490    #[stable(feature = "dedup_by", since = "1.16.0")]
2491    #[inline]
2492    pub fn dedup_by_key<F, K>(&mut self, mut key: F)
2493    where
2494        F: FnMut(&mut T) -> K,
2495        K: PartialEq,
2496    {
2497        self.dedup_by(|a, b| key(a) == key(b))
2498    }
2499
2500    /// Removes all but the first of consecutive elements in the vector satisfying a given equality
2501    /// relation.
2502    ///
2503    /// The `same_bucket` function is passed references to two elements from the vector and
2504    /// must determine if the elements compare equal. The elements are passed in opposite order
2505    /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
2506    ///
2507    /// If the vector is sorted, this removes all duplicates.
2508    ///
2509    /// # Examples
2510    ///
2511    /// ```
2512    /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
2513    ///
2514    /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
2515    ///
2516    /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
2517    /// ```
2518    #[stable(feature = "dedup_by", since = "1.16.0")]
2519    pub fn dedup_by<F>(&mut self, mut same_bucket: F)
2520    where
2521        F: FnMut(&mut T, &mut T) -> bool,
2522    {
2523        let len = self.len();
2524        if len <= 1 {
2525            return;
2526        }
2527
2528        // Check if we ever want to remove anything.
2529        // This allows to use copy_non_overlapping in next cycle.
2530        // And avoids any memory writes if we don't need to remove anything.
2531        let mut first_duplicate_idx: usize = 1;
2532        let start = self.as_mut_ptr();
2533        while first_duplicate_idx != len {
2534            let found_duplicate = unsafe {
2535                // SAFETY: first_duplicate always in range [1..len)
2536                // Note that we start iteration from 1 so we never overflow.
2537                let prev = start.add(first_duplicate_idx.wrapping_sub(1));
2538                let current = start.add(first_duplicate_idx);
2539                // We explicitly say in docs that references are reversed.
2540                same_bucket(&mut *current, &mut *prev)
2541            };
2542            if found_duplicate {
2543                break;
2544            }
2545            first_duplicate_idx += 1;
2546        }
2547        // Don't need to remove anything.
2548        // We cannot get bigger than len.
2549        if first_duplicate_idx == len {
2550            return;
2551        }
2552
2553        /* INVARIANT: vec.len() > read > write > write-1 >= 0 */
2554        struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
2555            /* Offset of the element we want to check if it is duplicate */
2556            read: usize,
2557
2558            /* Offset of the place where we want to place the non-duplicate
2559             * when we find it. */
2560            write: usize,
2561
2562            /* The Vec that would need correction if `same_bucket` panicked */
2563            vec: &'a mut Vec<T, A>,
2564        }
2565
2566        impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
2567            fn drop(&mut self) {
2568                /* This code gets executed when `same_bucket` panics */
2569
2570                /* SAFETY: invariant guarantees that `read - write`
2571                 * and `len - read` never overflow and that the copy is always
2572                 * in-bounds. */
2573                unsafe {
2574                    let ptr = self.vec.as_mut_ptr();
2575                    let len = self.vec.len();
2576
2577                    /* How many items were left when `same_bucket` panicked.
2578                     * Basically vec[read..].len() */
2579                    let items_left = len.wrapping_sub(self.read);
2580
2581                    /* Pointer to first item in vec[write..write+items_left] slice */
2582                    let dropped_ptr = ptr.add(self.write);
2583                    /* Pointer to first item in vec[read..] slice */
2584                    let valid_ptr = ptr.add(self.read);
2585
2586                    /* Copy `vec[read..]` to `vec[write..write+items_left]`.
2587                     * The slices can overlap, so `copy_nonoverlapping` cannot be used */
2588                    ptr::copy(valid_ptr, dropped_ptr, items_left);
2589
2590                    /* How many items have been already dropped
2591                     * Basically vec[read..write].len() */
2592                    let dropped = self.read.wrapping_sub(self.write);
2593
2594                    self.vec.set_len(len - dropped);
2595                }
2596            }
2597        }
2598
2599        /* Drop items while going through Vec, it should be more efficient than
2600         * doing slice partition_dedup + truncate */
2601
2602        // Construct gap first and then drop item to avoid memory corruption if `T::drop` panics.
2603        let mut gap =
2604            FillGapOnDrop { read: first_duplicate_idx + 1, write: first_duplicate_idx, vec: self };
2605        unsafe {
2606            // SAFETY: we checked that first_duplicate_idx in bounds before.
2607            // If drop panics, `gap` would remove this item without drop.
2608            ptr::drop_in_place(start.add(first_duplicate_idx));
2609        }
2610
2611        /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
2612         * are always in-bounds and read_ptr never aliases prev_ptr */
2613        unsafe {
2614            while gap.read < len {
2615                let read_ptr = start.add(gap.read);
2616                let prev_ptr = start.add(gap.write.wrapping_sub(1));
2617
2618                // We explicitly say in docs that references are reversed.
2619                let found_duplicate = same_bucket(&mut *read_ptr, &mut *prev_ptr);
2620                if found_duplicate {
2621                    // Increase `gap.read` now since the drop may panic.
2622                    gap.read += 1;
2623                    /* We have found duplicate, drop it in-place */
2624                    ptr::drop_in_place(read_ptr);
2625                } else {
2626                    let write_ptr = start.add(gap.write);
2627
2628                    /* read_ptr cannot be equal to write_ptr because at this point
2629                     * we guaranteed to skip at least one element (before loop starts).
2630                     */
2631                    ptr::copy_nonoverlapping(read_ptr, write_ptr, 1);
2632
2633                    /* We have filled that place, so go further */
2634                    gap.write += 1;
2635                    gap.read += 1;
2636                }
2637            }
2638
2639            /* Technically we could let `gap` clean up with its Drop, but
2640             * when `same_bucket` is guaranteed to not panic, this bloats a little
2641             * the codegen, so we just do it manually */
2642            gap.vec.set_len(gap.write);
2643            mem::forget(gap);
2644        }
2645    }
2646
2647    /// Appends an element and returns a reference to it if there is sufficient spare capacity,
2648    /// otherwise an error is returned with the element.
2649    ///
2650    /// Unlike [`push`] this method will not reallocate when there's insufficient capacity.
2651    /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
2652    ///
2653    /// [`push`]: Vec::push
2654    /// [`reserve`]: Vec::reserve
2655    /// [`try_reserve`]: Vec::try_reserve
2656    ///
2657    /// # Examples
2658    ///
2659    /// A manual, panic-free alternative to [`FromIterator`]:
2660    ///
2661    /// ```
2662    /// #![feature(vec_push_within_capacity)]
2663    ///
2664    /// use std::collections::TryReserveError;
2665    /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
2666    ///     let mut vec = Vec::new();
2667    ///     for value in iter {
2668    ///         if let Err(value) = vec.push_within_capacity(value) {
2669    ///             vec.try_reserve(1)?;
2670    ///             // this cannot fail, the previous line either returned or added at least 1 free slot
2671    ///             let _ = vec.push_within_capacity(value);
2672    ///         }
2673    ///     }
2674    ///     Ok(vec)
2675    /// }
2676    /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
2677    /// ```
2678    ///
2679    /// # Time complexity
2680    ///
2681    /// Takes *O*(1) time.
2682    #[inline]
2683    #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
2684    // #[unstable(feature = "push_mut", issue = "135974")]
2685    pub fn push_within_capacity(&mut self, value: T) -> Result<&mut T, T> {
2686        if self.len == self.buf.capacity() {
2687            return Err(value);
2688        }
2689
2690        unsafe {
2691            let end = self.as_mut_ptr().add(self.len);
2692            ptr::write(end, value);
2693            self.len += 1;
2694
2695            // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
2696            Ok(&mut *end)
2697        }
2698    }
2699
2700    /// Removes the last element from a vector and returns it, or [`None`] if it
2701    /// is empty.
2702    ///
2703    /// If you'd like to pop the first element, consider using
2704    /// [`VecDeque::pop_front`] instead.
2705    ///
2706    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2707    ///
2708    /// # Examples
2709    ///
2710    /// ```
2711    /// let mut vec = vec![1, 2, 3];
2712    /// assert_eq!(vec.pop(), Some(3));
2713    /// assert_eq!(vec, [1, 2]);
2714    /// ```
2715    ///
2716    /// # Time complexity
2717    ///
2718    /// Takes *O*(1) time.
2719    #[inline]
2720    #[stable(feature = "rust1", since = "1.0.0")]
2721    #[rustc_diagnostic_item = "vec_pop"]
2722    pub fn pop(&mut self) -> Option<T> {
2723        if self.len == 0 {
2724            None
2725        } else {
2726            unsafe {
2727                self.len -= 1;
2728                core::hint::assert_unchecked(self.len < self.capacity());
2729                Some(ptr::read(self.as_ptr().add(self.len())))
2730            }
2731        }
2732    }
2733
2734    /// Removes and returns the last element from a vector if the predicate
2735    /// returns `true`, or [`None`] if the predicate returns false or the vector
2736    /// is empty (the predicate will not be called in that case).
2737    ///
2738    /// # Examples
2739    ///
2740    /// ```
2741    /// let mut vec = vec![1, 2, 3, 4];
2742    /// let pred = |x: &mut i32| *x % 2 == 0;
2743    ///
2744    /// assert_eq!(vec.pop_if(pred), Some(4));
2745    /// assert_eq!(vec, [1, 2, 3]);
2746    /// assert_eq!(vec.pop_if(pred), None);
2747    /// ```
2748    #[stable(feature = "vec_pop_if", since = "1.86.0")]
2749    pub fn pop_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T> {
2750        let last = self.last_mut()?;
2751        if predicate(last) { self.pop() } else { None }
2752    }
2753
2754    /// Returns a mutable reference to the last item in the vector, or
2755    /// `None` if it is empty.
2756    ///
2757    /// # Examples
2758    ///
2759    /// Basic usage:
2760    ///
2761    /// ```
2762    /// #![feature(vec_peek_mut)]
2763    /// let mut vec = Vec::new();
2764    /// assert!(vec.peek_mut().is_none());
2765    ///
2766    /// vec.push(1);
2767    /// vec.push(5);
2768    /// vec.push(2);
2769    /// assert_eq!(vec.last(), Some(&2));
2770    /// if let Some(mut val) = vec.peek_mut() {
2771    ///     *val = 0;
2772    /// }
2773    /// assert_eq!(vec.last(), Some(&0));
2774    /// ```
2775    #[inline]
2776    #[unstable(feature = "vec_peek_mut", issue = "122742")]
2777    pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T, A>> {
2778        PeekMut::new(self)
2779    }
2780
2781    /// Moves all the elements of `other` into `self`, leaving `other` empty.
2782    ///
2783    /// # Panics
2784    ///
2785    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2786    ///
2787    /// # Examples
2788    ///
2789    /// ```
2790    /// let mut vec = vec![1, 2, 3];
2791    /// let mut vec2 = vec![4, 5, 6];
2792    /// vec.append(&mut vec2);
2793    /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
2794    /// assert_eq!(vec2, []);
2795    /// ```
2796    #[cfg(not(no_global_oom_handling))]
2797    #[inline]
2798    #[stable(feature = "append", since = "1.4.0")]
2799    pub fn append(&mut self, other: &mut Self) {
2800        unsafe {
2801            self.append_elements(other.as_slice() as _);
2802            other.set_len(0);
2803        }
2804    }
2805
2806    /// Appends elements to `self` from other buffer.
2807    #[cfg(not(no_global_oom_handling))]
2808    #[inline]
2809    unsafe fn append_elements(&mut self, other: *const [T]) {
2810        let count = other.len();
2811        self.reserve(count);
2812        let len = self.len();
2813        unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2814        self.len += count;
2815    }
2816
2817    /// Removes the subslice indicated by the given range from the vector,
2818    /// returning a double-ended iterator over the removed subslice.
2819    ///
2820    /// If the iterator is dropped before being fully consumed,
2821    /// it drops the remaining removed elements.
2822    ///
2823    /// The returned iterator keeps a mutable borrow on the vector to optimize
2824    /// its implementation.
2825    ///
2826    /// # Panics
2827    ///
2828    /// Panics if the range has `start_bound > end_bound`, or, if the range is
2829    /// bounded on either end and past the length of the vector.
2830    ///
2831    /// # Leaking
2832    ///
2833    /// If the returned iterator goes out of scope without being dropped (due to
2834    /// [`mem::forget`], for example), the vector may have lost and leaked
2835    /// elements arbitrarily, including elements outside the range.
2836    ///
2837    /// # Examples
2838    ///
2839    /// ```
2840    /// let mut v = vec![1, 2, 3];
2841    /// let u: Vec<_> = v.drain(1..).collect();
2842    /// assert_eq!(v, &[1]);
2843    /// assert_eq!(u, &[2, 3]);
2844    ///
2845    /// // A full range clears the vector, like `clear()` does
2846    /// v.drain(..);
2847    /// assert_eq!(v, &[]);
2848    /// ```
2849    #[stable(feature = "drain", since = "1.6.0")]
2850    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
2851    where
2852        R: RangeBounds<usize>,
2853    {
2854        // Memory safety
2855        //
2856        // When the Drain is first created, it shortens the length of
2857        // the source vector to make sure no uninitialized or moved-from elements
2858        // are accessible at all if the Drain's destructor never gets to run.
2859        //
2860        // Drain will ptr::read out the values to remove.
2861        // When finished, remaining tail of the vec is copied back to cover
2862        // the hole, and the vector length is restored to the new length.
2863        //
2864        let len = self.len();
2865        let Range { start, end } = slice::range(range, ..len);
2866
2867        unsafe {
2868            // set self.vec length's to start, to be safe in case Drain is leaked
2869            self.set_len(start);
2870            let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
2871            Drain {
2872                tail_start: end,
2873                tail_len: len - end,
2874                iter: range_slice.iter(),
2875                vec: NonNull::from(self),
2876            }
2877        }
2878    }
2879
2880    /// Clears the vector, removing all values.
2881    ///
2882    /// Note that this method has no effect on the allocated capacity
2883    /// of the vector.
2884    ///
2885    /// # Examples
2886    ///
2887    /// ```
2888    /// let mut v = vec![1, 2, 3];
2889    ///
2890    /// v.clear();
2891    ///
2892    /// assert!(v.is_empty());
2893    /// ```
2894    #[inline]
2895    #[stable(feature = "rust1", since = "1.0.0")]
2896    pub fn clear(&mut self) {
2897        let elems: *mut [T] = self.as_mut_slice();
2898
2899        // SAFETY:
2900        // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2901        // - Setting `self.len` before calling `drop_in_place` means that,
2902        //   if an element's `Drop` impl panics, the vector's `Drop` impl will
2903        //   do nothing (leaking the rest of the elements) instead of dropping
2904        //   some twice.
2905        unsafe {
2906            self.len = 0;
2907            ptr::drop_in_place(elems);
2908        }
2909    }
2910
2911    /// Returns the number of elements in the vector, also referred to
2912    /// as its 'length'.
2913    ///
2914    /// # Examples
2915    ///
2916    /// ```
2917    /// let a = vec![1, 2, 3];
2918    /// assert_eq!(a.len(), 3);
2919    /// ```
2920    #[inline]
2921    #[stable(feature = "rust1", since = "1.0.0")]
2922    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2923    #[rustc_confusables("length", "size")]
2924    pub const fn len(&self) -> usize {
2925        let len = self.len;
2926
2927        // SAFETY: The maximum capacity of `Vec<T>` is `isize::MAX` bytes, so the maximum value can
2928        // be returned is `usize::checked_div(size_of::<T>()).unwrap_or(usize::MAX)`, which
2929        // matches the definition of `T::MAX_SLICE_LEN`.
2930        unsafe { intrinsics::assume(len <= T::MAX_SLICE_LEN) };
2931
2932        len
2933    }
2934
2935    /// Returns `true` if the vector contains no elements.
2936    ///
2937    /// # Examples
2938    ///
2939    /// ```
2940    /// let mut v = Vec::new();
2941    /// assert!(v.is_empty());
2942    ///
2943    /// v.push(1);
2944    /// assert!(!v.is_empty());
2945    /// ```
2946    #[stable(feature = "rust1", since = "1.0.0")]
2947    #[rustc_diagnostic_item = "vec_is_empty"]
2948    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2949    pub const fn is_empty(&self) -> bool {
2950        self.len() == 0
2951    }
2952
2953    /// Splits the collection into two at the given index.
2954    ///
2955    /// Returns a newly allocated vector containing the elements in the range
2956    /// `[at, len)`. After the call, the original vector will be left containing
2957    /// the elements `[0, at)` with its previous capacity unchanged.
2958    ///
2959    /// - If you want to take ownership of the entire contents and capacity of
2960    ///   the vector, see [`mem::take`] or [`mem::replace`].
2961    /// - If you don't need the returned vector at all, see [`Vec::truncate`].
2962    /// - If you want to take ownership of an arbitrary subslice, or you don't
2963    ///   necessarily want to store the removed items in a vector, see [`Vec::drain`].
2964    ///
2965    /// # Panics
2966    ///
2967    /// Panics if `at > len`.
2968    ///
2969    /// # Examples
2970    ///
2971    /// ```
2972    /// let mut vec = vec!['a', 'b', 'c'];
2973    /// let vec2 = vec.split_off(1);
2974    /// assert_eq!(vec, ['a']);
2975    /// assert_eq!(vec2, ['b', 'c']);
2976    /// ```
2977    #[cfg(not(no_global_oom_handling))]
2978    #[inline]
2979    #[must_use = "use `.truncate()` if you don't need the other half"]
2980    #[stable(feature = "split_off", since = "1.4.0")]
2981    #[track_caller]
2982    pub fn split_off(&mut self, at: usize) -> Self
2983    where
2984        A: Clone,
2985    {
2986        #[cold]
2987        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2988        #[track_caller]
2989        #[optimize(size)]
2990        fn assert_failed(at: usize, len: usize) -> ! {
2991            panic!("`at` split index (is {at}) should be <= len (is {len})");
2992        }
2993
2994        if at > self.len() {
2995            assert_failed(at, self.len());
2996        }
2997
2998        let other_len = self.len - at;
2999        let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
3000
3001        // Unsafely `set_len` and copy items to `other`.
3002        unsafe {
3003            self.set_len(at);
3004            other.set_len(other_len);
3005
3006            ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
3007        }
3008        other
3009    }
3010
3011    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
3012    ///
3013    /// If `new_len` is greater than `len`, the `Vec` is extended by the
3014    /// difference, with each additional slot filled with the result of
3015    /// calling the closure `f`. The return values from `f` will end up
3016    /// in the `Vec` in the order they have been generated.
3017    ///
3018    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
3019    ///
3020    /// This method uses a closure to create new values on every push. If
3021    /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
3022    /// want to use the [`Default`] trait to generate values, you can
3023    /// pass [`Default::default`] as the second argument.
3024    ///
3025    /// # Panics
3026    ///
3027    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3028    ///
3029    /// # Examples
3030    ///
3031    /// ```
3032    /// let mut vec = vec![1, 2, 3];
3033    /// vec.resize_with(5, Default::default);
3034    /// assert_eq!(vec, [1, 2, 3, 0, 0]);
3035    ///
3036    /// let mut vec = vec![];
3037    /// let mut p = 1;
3038    /// vec.resize_with(4, || { p *= 2; p });
3039    /// assert_eq!(vec, [2, 4, 8, 16]);
3040    /// ```
3041    #[cfg(not(no_global_oom_handling))]
3042    #[stable(feature = "vec_resize_with", since = "1.33.0")]
3043    pub fn resize_with<F>(&mut self, new_len: usize, f: F)
3044    where
3045        F: FnMut() -> T,
3046    {
3047        let len = self.len();
3048        if new_len > len {
3049            self.extend_trusted(iter::repeat_with(f).take(new_len - len));
3050        } else {
3051            self.truncate(new_len);
3052        }
3053    }
3054
3055    /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
3056    /// `&'a mut [T]`.
3057    ///
3058    /// Note that the type `T` must outlive the chosen lifetime `'a`. If the type
3059    /// has only static references, or none at all, then this may be chosen to be
3060    /// `'static`.
3061    ///
3062    /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
3063    /// so the leaked allocation may include unused capacity that is not part
3064    /// of the returned slice.
3065    ///
3066    /// This function is mainly useful for data that lives for the remainder of
3067    /// the program's life. Dropping the returned reference will cause a memory
3068    /// leak.
3069    ///
3070    /// # Examples
3071    ///
3072    /// Simple usage:
3073    ///
3074    /// ```
3075    /// let x = vec![1, 2, 3];
3076    /// let static_ref: &'static mut [usize] = x.leak();
3077    /// static_ref[0] += 1;
3078    /// assert_eq!(static_ref, &[2, 2, 3]);
3079    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
3080    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
3081    /// # drop(unsafe { Box::from_raw(static_ref) });
3082    /// ```
3083    #[stable(feature = "vec_leak", since = "1.47.0")]
3084    #[inline]
3085    pub fn leak<'a>(self) -> &'a mut [T]
3086    where
3087        A: 'a,
3088    {
3089        let mut me = ManuallyDrop::new(self);
3090        unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
3091    }
3092
3093    /// Returns the remaining spare capacity of the vector as a slice of
3094    /// `MaybeUninit<T>`.
3095    ///
3096    /// The returned slice can be used to fill the vector with data (e.g. by
3097    /// reading from a file) before marking the data as initialized using the
3098    /// [`set_len`] method.
3099    ///
3100    /// [`set_len`]: Vec::set_len
3101    ///
3102    /// # Examples
3103    ///
3104    /// ```
3105    /// // Allocate vector big enough for 10 elements.
3106    /// let mut v = Vec::with_capacity(10);
3107    ///
3108    /// // Fill in the first 3 elements.
3109    /// let uninit = v.spare_capacity_mut();
3110    /// uninit[0].write(0);
3111    /// uninit[1].write(1);
3112    /// uninit[2].write(2);
3113    ///
3114    /// // Mark the first 3 elements of the vector as being initialized.
3115    /// unsafe {
3116    ///     v.set_len(3);
3117    /// }
3118    ///
3119    /// assert_eq!(&v, &[0, 1, 2]);
3120    /// ```
3121    #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
3122    #[inline]
3123    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
3124        // Note:
3125        // This method is not implemented in terms of `split_at_spare_mut`,
3126        // to prevent invalidation of pointers to the buffer.
3127        unsafe {
3128            slice::from_raw_parts_mut(
3129                self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
3130                self.buf.capacity() - self.len,
3131            )
3132        }
3133    }
3134
3135    /// Returns vector content as a slice of `T`, along with the remaining spare
3136    /// capacity of the vector as a slice of `MaybeUninit<T>`.
3137    ///
3138    /// The returned spare capacity slice can be used to fill the vector with data
3139    /// (e.g. by reading from a file) before marking the data as initialized using
3140    /// the [`set_len`] method.
3141    ///
3142    /// [`set_len`]: Vec::set_len
3143    ///
3144    /// Note that this is a low-level API, which should be used with care for
3145    /// optimization purposes. If you need to append data to a `Vec`
3146    /// you can use [`push`], [`extend`], [`extend_from_slice`],
3147    /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
3148    /// [`resize_with`], depending on your exact needs.
3149    ///
3150    /// [`push`]: Vec::push
3151    /// [`extend`]: Vec::extend
3152    /// [`extend_from_slice`]: Vec::extend_from_slice
3153    /// [`extend_from_within`]: Vec::extend_from_within
3154    /// [`insert`]: Vec::insert
3155    /// [`append`]: Vec::append
3156    /// [`resize`]: Vec::resize
3157    /// [`resize_with`]: Vec::resize_with
3158    ///
3159    /// # Examples
3160    ///
3161    /// ```
3162    /// #![feature(vec_split_at_spare)]
3163    ///
3164    /// let mut v = vec![1, 1, 2];
3165    ///
3166    /// // Reserve additional space big enough for 10 elements.
3167    /// v.reserve(10);
3168    ///
3169    /// let (init, uninit) = v.split_at_spare_mut();
3170    /// let sum = init.iter().copied().sum::<u32>();
3171    ///
3172    /// // Fill in the next 4 elements.
3173    /// uninit[0].write(sum);
3174    /// uninit[1].write(sum * 2);
3175    /// uninit[2].write(sum * 3);
3176    /// uninit[3].write(sum * 4);
3177    ///
3178    /// // Mark the 4 elements of the vector as being initialized.
3179    /// unsafe {
3180    ///     let len = v.len();
3181    ///     v.set_len(len + 4);
3182    /// }
3183    ///
3184    /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
3185    /// ```
3186    #[unstable(feature = "vec_split_at_spare", issue = "81944")]
3187    #[inline]
3188    pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
3189        // SAFETY:
3190        // - len is ignored and so never changed
3191        let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
3192        (init, spare)
3193    }
3194
3195    /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
3196    ///
3197    /// This method provides unique access to all vec parts at once in `extend_from_within`.
3198    unsafe fn split_at_spare_mut_with_len(
3199        &mut self,
3200    ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
3201        let ptr = self.as_mut_ptr();
3202        // SAFETY:
3203        // - `ptr` is guaranteed to be valid for `self.len` elements
3204        // - but the allocation extends out to `self.buf.capacity()` elements, possibly
3205        // uninitialized
3206        let spare_ptr = unsafe { ptr.add(self.len) };
3207        let spare_ptr = spare_ptr.cast_uninit();
3208        let spare_len = self.buf.capacity() - self.len;
3209
3210        // SAFETY:
3211        // - `ptr` is guaranteed to be valid for `self.len` elements
3212        // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
3213        unsafe {
3214            let initialized = slice::from_raw_parts_mut(ptr, self.len);
3215            let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
3216
3217            (initialized, spare, &mut self.len)
3218        }
3219    }
3220
3221    /// Groups every `N` elements in the `Vec<T>` into chunks to produce a `Vec<[T; N]>`, dropping
3222    /// elements in the remainder. `N` must be greater than zero.
3223    ///
3224    /// If the capacity is not a multiple of the chunk size, the buffer will shrink down to the
3225    /// nearest multiple with a reallocation or deallocation.
3226    ///
3227    /// This function can be used to reverse [`Vec::into_flattened`].
3228    ///
3229    /// # Examples
3230    ///
3231    /// ```
3232    /// #![feature(vec_into_chunks)]
3233    ///
3234    /// let vec = vec![0, 1, 2, 3, 4, 5, 6, 7];
3235    /// assert_eq!(vec.into_chunks::<3>(), [[0, 1, 2], [3, 4, 5]]);
3236    ///
3237    /// let vec = vec![0, 1, 2, 3];
3238    /// let chunks: Vec<[u8; 10]> = vec.into_chunks();
3239    /// assert!(chunks.is_empty());
3240    ///
3241    /// let flat = vec![0; 8 * 8 * 8];
3242    /// let reshaped: Vec<[[[u8; 8]; 8]; 8]> = flat.into_chunks().into_chunks().into_chunks();
3243    /// assert_eq!(reshaped.len(), 1);
3244    /// ```
3245    #[cfg(not(no_global_oom_handling))]
3246    #[unstable(feature = "vec_into_chunks", issue = "142137")]
3247    pub fn into_chunks<const N: usize>(mut self) -> Vec<[T; N], A> {
3248        const {
3249            assert!(N != 0, "chunk size must be greater than zero");
3250        }
3251
3252        let (len, cap) = (self.len(), self.capacity());
3253
3254        let len_remainder = len % N;
3255        if len_remainder != 0 {
3256            self.truncate(len - len_remainder);
3257        }
3258
3259        let cap_remainder = cap % N;
3260        if !T::IS_ZST && cap_remainder != 0 {
3261            self.buf.shrink_to_fit(cap - cap_remainder);
3262        }
3263
3264        let (ptr, _, _, alloc) = self.into_raw_parts_with_alloc();
3265
3266        // SAFETY:
3267        // - `ptr` and `alloc` were just returned from `self.into_raw_parts_with_alloc()`
3268        // - `[T; N]` has the same alignment as `T`
3269        // - `size_of::<[T; N]>() * cap / N == size_of::<T>() * cap`
3270        // - `len / N <= cap / N` because `len <= cap`
3271        // - the allocated memory consists of `len / N` valid values of type `[T; N]`
3272        // - `cap / N` fits the size of the allocated memory after shrinking
3273        unsafe { Vec::from_raw_parts_in(ptr.cast(), len / N, cap / N, alloc) }
3274    }
3275
3276    /// This clears out this `Vec` and recycles the allocation into a new `Vec`.
3277    /// The item type of the resulting `Vec` needs to have the same size and
3278    /// alignment as the item type of the original `Vec`.
3279    ///
3280    /// # Examples
3281    ///
3282    ///  ```
3283    /// #![feature(vec_recycle, transmutability)]
3284    /// let a: Vec<u8> = vec![0; 100];
3285    /// let capacity = a.capacity();
3286    /// let addr = a.as_ptr().addr();
3287    /// let b: Vec<i8> = a.recycle();
3288    /// assert_eq!(b.len(), 0);
3289    /// assert_eq!(b.capacity(), capacity);
3290    /// assert_eq!(b.as_ptr().addr(), addr);
3291    /// ```
3292    ///
3293    /// The `Recyclable` bound prevents this method from being called when `T` and `U` have different sizes; e.g.:
3294    ///
3295    ///  ```compile_fail,E0277
3296    /// #![feature(vec_recycle, transmutability)]
3297    /// let vec: Vec<[u8; 2]> = Vec::new();
3298    /// let _: Vec<[u8; 1]> = vec.recycle();
3299    /// ```
3300    /// ...or different alignments:
3301    ///
3302    ///  ```compile_fail,E0277
3303    /// #![feature(vec_recycle, transmutability)]
3304    /// let vec: Vec<[u16; 0]> = Vec::new();
3305    /// let _: Vec<[u8; 0]> = vec.recycle();
3306    /// ```
3307    ///
3308    /// However, due to temporary implementation limitations of `Recyclable`,
3309    /// this method is not yet callable when `T` or `U` are slices, trait objects,
3310    /// or other exotic types; e.g.:
3311    ///
3312    /// ```compile_fail,E0277
3313    /// #![feature(vec_recycle, transmutability)]
3314    /// # let inputs = ["a b c", "d e f"];
3315    /// # fn process(_: &[&str]) {}
3316    /// let mut storage: Vec<&[&str]> = Vec::new();
3317    ///
3318    /// for input in inputs {
3319    ///     let mut buffer: Vec<&str> = storage.recycle();
3320    ///     buffer.extend(input.split(" "));
3321    ///     process(&buffer);
3322    ///     storage = buffer.recycle();
3323    /// }
3324    /// ```
3325    #[unstable(feature = "vec_recycle", issue = "148227")]
3326    #[expect(private_bounds)]
3327    pub fn recycle<U>(mut self) -> Vec<U, A>
3328    where
3329        U: Recyclable<T>,
3330    {
3331        self.clear();
3332        const {
3333            // FIXME(const-hack, 146097): compare `Layout`s
3334            assert!(size_of::<T>() == size_of::<U>());
3335            assert!(align_of::<T>() == align_of::<U>());
3336        };
3337        let (ptr, length, capacity, alloc) = self.into_parts_with_alloc();
3338        debug_assert_eq!(length, 0);
3339        // SAFETY:
3340        // - `ptr` and `alloc` were just returned from `self.into_raw_parts_with_alloc()`
3341        // - `T` & `U` have the same layout, so `capacity` does not need to be changed and we can safely use `alloc.dealloc` later
3342        // - the original vector was cleared, so there is no problem with "transmuting" the stored values
3343        unsafe { Vec::from_parts_in(ptr.cast::<U>(), length, capacity, alloc) }
3344    }
3345}
3346
3347/// Denotes that an allocation of `From` can be recycled into an allocation of `Self`.
3348///
3349/// # Safety
3350///
3351/// `Self` is `Recyclable<From>` if `Layout::new::<Self>() == Layout::new::<From>()`.
3352unsafe trait Recyclable<From: Sized>: Sized {}
3353
3354#[unstable_feature_bound(transmutability)]
3355// SAFETY: enforced by `TransmuteFrom`
3356unsafe impl<From, To> Recyclable<From> for To
3357where
3358    for<'a> &'a MaybeUninit<To>: TransmuteFrom<&'a MaybeUninit<From>, { Assume::SAFETY }>,
3359    for<'a> &'a MaybeUninit<From>: TransmuteFrom<&'a MaybeUninit<To>, { Assume::SAFETY }>,
3360{
3361}
3362
3363impl<T: Clone, A: Allocator> Vec<T, A> {
3364    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
3365    ///
3366    /// If `new_len` is greater than `len`, the `Vec` is extended by the
3367    /// difference, with each additional slot filled with `value`.
3368    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
3369    ///
3370    /// This method requires `T` to implement [`Clone`],
3371    /// in order to be able to clone the passed value.
3372    /// If you need more flexibility (or want to rely on [`Default`] instead of
3373    /// [`Clone`]), use [`Vec::resize_with`].
3374    /// If you only need to resize to a smaller size, use [`Vec::truncate`].
3375    ///
3376    /// # Panics
3377    ///
3378    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3379    ///
3380    /// # Examples
3381    ///
3382    /// ```
3383    /// let mut vec = vec!["hello"];
3384    /// vec.resize(3, "world");
3385    /// assert_eq!(vec, ["hello", "world", "world"]);
3386    ///
3387    /// let mut vec = vec!['a', 'b', 'c', 'd'];
3388    /// vec.resize(2, '_');
3389    /// assert_eq!(vec, ['a', 'b']);
3390    /// ```
3391    #[cfg(not(no_global_oom_handling))]
3392    #[stable(feature = "vec_resize", since = "1.5.0")]
3393    pub fn resize(&mut self, new_len: usize, value: T) {
3394        let len = self.len();
3395
3396        if new_len > len {
3397            self.extend_with(new_len - len, value)
3398        } else {
3399            self.truncate(new_len);
3400        }
3401    }
3402
3403    /// Clones and appends all elements in a slice to the `Vec`.
3404    ///
3405    /// Iterates over the slice `other`, clones each element, and then appends
3406    /// it to this `Vec`. The `other` slice is traversed in-order.
3407    ///
3408    /// Note that this function is the same as [`extend`],
3409    /// except that it also works with slice elements that are Clone but not Copy.
3410    /// If Rust gets specialization this function may be deprecated.
3411    ///
3412    /// # Panics
3413    ///
3414    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3415    ///
3416    /// # Examples
3417    ///
3418    /// ```
3419    /// let mut vec = vec![1];
3420    /// vec.extend_from_slice(&[2, 3, 4]);
3421    /// assert_eq!(vec, [1, 2, 3, 4]);
3422    /// ```
3423    ///
3424    /// [`extend`]: Vec::extend
3425    #[cfg(not(no_global_oom_handling))]
3426    #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
3427    pub fn extend_from_slice(&mut self, other: &[T]) {
3428        self.spec_extend(other.iter())
3429    }
3430
3431    /// Given a range `src`, clones a slice of elements in that range and appends it to the end.
3432    ///
3433    /// `src` must be a range that can form a valid subslice of the `Vec`.
3434    ///
3435    /// # Panics
3436    ///
3437    /// Panics if starting index is greater than the end index, if the index is
3438    /// greater than the length of the vector, or if the new capacity exceeds
3439    /// `isize::MAX` _bytes_.
3440    ///
3441    /// # Examples
3442    ///
3443    /// ```
3444    /// let mut characters = vec!['a', 'b', 'c', 'd', 'e'];
3445    /// characters.extend_from_within(2..);
3446    /// assert_eq!(characters, ['a', 'b', 'c', 'd', 'e', 'c', 'd', 'e']);
3447    ///
3448    /// let mut numbers = vec![0, 1, 2, 3, 4];
3449    /// numbers.extend_from_within(..2);
3450    /// assert_eq!(numbers, [0, 1, 2, 3, 4, 0, 1]);
3451    ///
3452    /// let mut strings = vec![String::from("hello"), String::from("world"), String::from("!")];
3453    /// strings.extend_from_within(1..=2);
3454    /// assert_eq!(strings, ["hello", "world", "!", "world", "!"]);
3455    /// ```
3456    #[cfg(not(no_global_oom_handling))]
3457    #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
3458    pub fn extend_from_within<R>(&mut self, src: R)
3459    where
3460        R: RangeBounds<usize>,
3461    {
3462        let range = slice::range(src, ..self.len());
3463        self.reserve(range.len());
3464
3465        // SAFETY:
3466        // - `slice::range` guarantees that the given range is valid for indexing self
3467        unsafe {
3468            self.spec_extend_from_within(range);
3469        }
3470    }
3471}
3472
3473impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
3474    /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
3475    ///
3476    /// # Panics
3477    ///
3478    /// Panics if the length of the resulting vector would overflow a `usize`.
3479    ///
3480    /// This is only possible when flattening a vector of arrays of zero-sized
3481    /// types, and thus tends to be irrelevant in practice. If
3482    /// `size_of::<T>() > 0`, this will never panic.
3483    ///
3484    /// # Examples
3485    ///
3486    /// ```
3487    /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
3488    /// assert_eq!(vec.pop(), Some([7, 8, 9]));
3489    ///
3490    /// let mut flattened = vec.into_flattened();
3491    /// assert_eq!(flattened.pop(), Some(6));
3492    /// ```
3493    #[stable(feature = "slice_flatten", since = "1.80.0")]
3494    pub fn into_flattened(self) -> Vec<T, A> {
3495        let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
3496        let (new_len, new_cap) = if T::IS_ZST {
3497            (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
3498        } else {
3499            // SAFETY:
3500            // - `cap * N` cannot overflow because the allocation is already in
3501            // the address space.
3502            // - Each `[T; N]` has `N` valid elements, so there are `len * N`
3503            // valid elements in the allocation.
3504            unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
3505        };
3506        // SAFETY:
3507        // - `ptr` was allocated by `self`
3508        // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
3509        // - `new_cap` refers to the same sized allocation as `cap` because
3510        // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
3511        // - `len` <= `cap`, so `len * N` <= `cap * N`.
3512        unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
3513    }
3514}
3515
3516impl<T: Clone, A: Allocator> Vec<T, A> {
3517    #[cfg(not(no_global_oom_handling))]
3518    /// Extend the vector by `n` clones of value.
3519    fn extend_with(&mut self, n: usize, value: T) {
3520        self.reserve(n);
3521
3522        unsafe {
3523            let mut ptr = self.as_mut_ptr().add(self.len());
3524            // Use SetLenOnDrop to work around bug where compiler
3525            // might not realize the store through `ptr` through self.set_len()
3526            // don't alias.
3527            let mut local_len = SetLenOnDrop::new(&mut self.len);
3528
3529            // Write all elements except the last one
3530            for _ in 1..n {
3531                ptr::write(ptr, value.clone());
3532                ptr = ptr.add(1);
3533                // Increment the length in every step in case clone() panics
3534                local_len.increment_len(1);
3535            }
3536
3537            if n > 0 {
3538                // We can write the last element directly without cloning needlessly
3539                ptr::write(ptr, value);
3540                local_len.increment_len(1);
3541            }
3542
3543            // len set by scope guard
3544        }
3545    }
3546}
3547
3548impl<T: PartialEq, A: Allocator> Vec<T, A> {
3549    /// Removes consecutive repeated elements in the vector according to the
3550    /// [`PartialEq`] trait implementation.
3551    ///
3552    /// If the vector is sorted, this removes all duplicates.
3553    ///
3554    /// # Examples
3555    ///
3556    /// ```
3557    /// let mut vec = vec![1, 2, 2, 3, 2];
3558    ///
3559    /// vec.dedup();
3560    ///
3561    /// assert_eq!(vec, [1, 2, 3, 2]);
3562    /// ```
3563    #[stable(feature = "rust1", since = "1.0.0")]
3564    #[inline]
3565    pub fn dedup(&mut self) {
3566        self.dedup_by(|a, b| a == b)
3567    }
3568}
3569
3570////////////////////////////////////////////////////////////////////////////////
3571// Internal methods and functions
3572////////////////////////////////////////////////////////////////////////////////
3573
3574#[doc(hidden)]
3575#[cfg(not(no_global_oom_handling))]
3576#[stable(feature = "rust1", since = "1.0.0")]
3577#[rustc_diagnostic_item = "vec_from_elem"]
3578pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
3579    <T as SpecFromElem>::from_elem(elem, n, Global)
3580}
3581
3582#[doc(hidden)]
3583#[cfg(not(no_global_oom_handling))]
3584#[unstable(feature = "allocator_api", issue = "32838")]
3585pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
3586    <T as SpecFromElem>::from_elem(elem, n, alloc)
3587}
3588
3589#[cfg(not(no_global_oom_handling))]
3590trait ExtendFromWithinSpec {
3591    /// # Safety
3592    ///
3593    /// - `src` needs to be valid index
3594    /// - `self.capacity() - self.len()` must be `>= src.len()`
3595    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
3596}
3597
3598#[cfg(not(no_global_oom_handling))]
3599impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3600    default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3601        // SAFETY:
3602        // - len is increased only after initializing elements
3603        let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
3604
3605        // SAFETY:
3606        // - caller guarantees that src is a valid index
3607        let to_clone = unsafe { this.get_unchecked(src) };
3608
3609        iter::zip(to_clone, spare)
3610            .map(|(src, dst)| dst.write(src.clone()))
3611            // Note:
3612            // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
3613            // - len is increased after each element to prevent leaks (see issue #82533)
3614            .for_each(|_| *len += 1);
3615    }
3616}
3617
3618#[cfg(not(no_global_oom_handling))]
3619impl<T: TrivialClone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3620    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3621        let count = src.len();
3622        {
3623            let (init, spare) = self.split_at_spare_mut();
3624
3625            // SAFETY:
3626            // - caller guarantees that `src` is a valid index
3627            let source = unsafe { init.get_unchecked(src) };
3628
3629            // SAFETY:
3630            // - Both pointers are created from unique slice references (`&mut [_]`)
3631            //   so they are valid and do not overlap.
3632            // - Elements implement `TrivialClone` so this is equivalent to calling
3633            //   `clone` on every one of them.
3634            // - `count` is equal to the len of `source`, so source is valid for
3635            //   `count` reads
3636            // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
3637            //   is valid for `count` writes
3638            unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
3639        }
3640
3641        // SAFETY:
3642        // - The elements were just initialized by `copy_nonoverlapping`
3643        self.len += count;
3644    }
3645}
3646
3647////////////////////////////////////////////////////////////////////////////////
3648// Common trait implementations for Vec
3649////////////////////////////////////////////////////////////////////////////////
3650
3651#[stable(feature = "rust1", since = "1.0.0")]
3652impl<T, A: Allocator> ops::Deref for Vec<T, A> {
3653    type Target = [T];
3654
3655    #[inline]
3656    fn deref(&self) -> &[T] {
3657        self.as_slice()
3658    }
3659}
3660
3661#[stable(feature = "rust1", since = "1.0.0")]
3662impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
3663    #[inline]
3664    fn deref_mut(&mut self) -> &mut [T] {
3665        self.as_mut_slice()
3666    }
3667}
3668
3669#[unstable(feature = "deref_pure_trait", issue = "87121")]
3670unsafe impl<T, A: Allocator> ops::DerefPure for Vec<T, A> {}
3671
3672#[cfg(not(no_global_oom_handling))]
3673#[stable(feature = "rust1", since = "1.0.0")]
3674impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
3675    fn clone(&self) -> Self {
3676        let alloc = self.allocator().clone();
3677        <[T]>::to_vec_in(&**self, alloc)
3678    }
3679
3680    /// Overwrites the contents of `self` with a clone of the contents of `source`.
3681    ///
3682    /// This method is preferred over simply assigning `source.clone()` to `self`,
3683    /// as it avoids reallocation if possible. Additionally, if the element type
3684    /// `T` overrides `clone_from()`, this will reuse the resources of `self`'s
3685    /// elements as well.
3686    ///
3687    /// # Examples
3688    ///
3689    /// ```
3690    /// let x = vec![5, 6, 7];
3691    /// let mut y = vec![8, 9, 10];
3692    /// let yp: *const i32 = y.as_ptr();
3693    ///
3694    /// y.clone_from(&x);
3695    ///
3696    /// // The value is the same
3697    /// assert_eq!(x, y);
3698    ///
3699    /// // And no reallocation occurred
3700    /// assert_eq!(yp, y.as_ptr());
3701    /// ```
3702    fn clone_from(&mut self, source: &Self) {
3703        crate::slice::SpecCloneIntoVec::clone_into(source.as_slice(), self);
3704    }
3705}
3706
3707/// The hash of a vector is the same as that of the corresponding slice,
3708/// as required by the `core::borrow::Borrow` implementation.
3709///
3710/// ```
3711/// use std::hash::BuildHasher;
3712///
3713/// let b = std::hash::RandomState::new();
3714/// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
3715/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
3716/// assert_eq!(b.hash_one(v), b.hash_one(s));
3717/// ```
3718#[stable(feature = "rust1", since = "1.0.0")]
3719impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
3720    #[inline]
3721    fn hash<H: Hasher>(&self, state: &mut H) {
3722        Hash::hash(&**self, state)
3723    }
3724}
3725
3726#[stable(feature = "rust1", since = "1.0.0")]
3727impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
3728    type Output = I::Output;
3729
3730    #[inline]
3731    fn index(&self, index: I) -> &Self::Output {
3732        Index::index(&**self, index)
3733    }
3734}
3735
3736#[stable(feature = "rust1", since = "1.0.0")]
3737impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
3738    #[inline]
3739    fn index_mut(&mut self, index: I) -> &mut Self::Output {
3740        IndexMut::index_mut(&mut **self, index)
3741    }
3742}
3743
3744/// Collects an iterator into a Vec, commonly called via [`Iterator::collect()`]
3745///
3746/// # Allocation behavior
3747///
3748/// In general `Vec` does not guarantee any particular growth or allocation strategy.
3749/// That also applies to this trait impl.
3750///
3751/// **Note:** This section covers implementation details and is therefore exempt from
3752/// stability guarantees.
3753///
3754/// Vec may use any or none of the following strategies,
3755/// depending on the supplied iterator:
3756///
3757/// * preallocate based on [`Iterator::size_hint()`]
3758///   * and panic if the number of items is outside the provided lower/upper bounds
3759/// * use an amortized growth strategy similar to `pushing` one item at a time
3760/// * perform the iteration in-place on the original allocation backing the iterator
3761///
3762/// The last case warrants some attention. It is an optimization that in many cases reduces peak memory
3763/// consumption and improves cache locality. But when big, short-lived allocations are created,
3764/// only a small fraction of their items get collected, no further use is made of the spare capacity
3765/// and the resulting `Vec` is moved into a longer-lived structure, then this can lead to the large
3766/// allocations having their lifetimes unnecessarily extended which can result in increased memory
3767/// footprint.
3768///
3769/// In cases where this is an issue, the excess capacity can be discarded with [`Vec::shrink_to()`],
3770/// [`Vec::shrink_to_fit()`] or by collecting into [`Box<[T]>`][owned slice] instead, which additionally reduces
3771/// the size of the long-lived struct.
3772///
3773/// [owned slice]: Box
3774///
3775/// ```rust
3776/// # use std::sync::Mutex;
3777/// static LONG_LIVED: Mutex<Vec<Vec<u16>>> = Mutex::new(Vec::new());
3778///
3779/// for i in 0..10 {
3780///     let big_temporary: Vec<u16> = (0..1024).collect();
3781///     // discard most items
3782///     let mut result: Vec<_> = big_temporary.into_iter().filter(|i| i % 100 == 0).collect();
3783///     // without this a lot of unused capacity might be moved into the global
3784///     result.shrink_to_fit();
3785///     LONG_LIVED.lock().unwrap().push(result);
3786/// }
3787/// ```
3788#[cfg(not(no_global_oom_handling))]
3789#[stable(feature = "rust1", since = "1.0.0")]
3790impl<T> FromIterator<T> for Vec<T> {
3791    #[inline]
3792    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
3793        <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
3794    }
3795}
3796
3797#[stable(feature = "rust1", since = "1.0.0")]
3798impl<T, A: Allocator> IntoIterator for Vec<T, A> {
3799    type Item = T;
3800    type IntoIter = IntoIter<T, A>;
3801
3802    /// Creates a consuming iterator, that is, one that moves each value out of
3803    /// the vector (from start to end). The vector cannot be used after calling
3804    /// this.
3805    ///
3806    /// # Examples
3807    ///
3808    /// ```
3809    /// let v = vec!["a".to_string(), "b".to_string()];
3810    /// let mut v_iter = v.into_iter();
3811    ///
3812    /// let first_element: Option<String> = v_iter.next();
3813    ///
3814    /// assert_eq!(first_element, Some("a".to_string()));
3815    /// assert_eq!(v_iter.next(), Some("b".to_string()));
3816    /// assert_eq!(v_iter.next(), None);
3817    /// ```
3818    #[inline]
3819    fn into_iter(self) -> Self::IntoIter {
3820        unsafe {
3821            let me = ManuallyDrop::new(self);
3822            let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
3823            let buf = me.buf.non_null();
3824            let begin = buf.as_ptr();
3825            let end = if T::IS_ZST {
3826                begin.wrapping_byte_add(me.len())
3827            } else {
3828                begin.add(me.len()) as *const T
3829            };
3830            let cap = me.buf.capacity();
3831            IntoIter { buf, phantom: PhantomData, cap, alloc, ptr: buf, end }
3832        }
3833    }
3834}
3835
3836#[stable(feature = "rust1", since = "1.0.0")]
3837impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
3838    type Item = &'a T;
3839    type IntoIter = slice::Iter<'a, T>;
3840
3841    fn into_iter(self) -> Self::IntoIter {
3842        self.iter()
3843    }
3844}
3845
3846#[stable(feature = "rust1", since = "1.0.0")]
3847impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
3848    type Item = &'a mut T;
3849    type IntoIter = slice::IterMut<'a, T>;
3850
3851    fn into_iter(self) -> Self::IntoIter {
3852        self.iter_mut()
3853    }
3854}
3855
3856#[cfg(not(no_global_oom_handling))]
3857#[stable(feature = "rust1", since = "1.0.0")]
3858impl<T, A: Allocator> Extend<T> for Vec<T, A> {
3859    #[inline]
3860    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
3861        <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
3862    }
3863
3864    #[inline]
3865    fn extend_one(&mut self, item: T) {
3866        self.push(item);
3867    }
3868
3869    #[inline]
3870    fn extend_reserve(&mut self, additional: usize) {
3871        self.reserve(additional);
3872    }
3873
3874    #[inline]
3875    unsafe fn extend_one_unchecked(&mut self, item: T) {
3876        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
3877        unsafe {
3878            let len = self.len();
3879            ptr::write(self.as_mut_ptr().add(len), item);
3880            self.set_len(len + 1);
3881        }
3882    }
3883}
3884
3885impl<T, A: Allocator> Vec<T, A> {
3886    // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3887    // they have no further optimizations to apply
3888    #[cfg(not(no_global_oom_handling))]
3889    fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
3890        // This is the case for a general iterator.
3891        //
3892        // This function should be the moral equivalent of:
3893        //
3894        //      for item in iterator {
3895        //          self.push(item);
3896        //      }
3897        while let Some(element) = iterator.next() {
3898            let len = self.len();
3899            if len == self.capacity() {
3900                let (lower, _) = iterator.size_hint();
3901                self.reserve(lower.saturating_add(1));
3902            }
3903            unsafe {
3904                ptr::write(self.as_mut_ptr().add(len), element);
3905                // Since next() executes user code which can panic we have to bump the length
3906                // after each step.
3907                // NB can't overflow since we would have had to alloc the address space
3908                self.set_len(len + 1);
3909            }
3910        }
3911    }
3912
3913    // specific extend for `TrustedLen` iterators, called both by the specializations
3914    // and internal places where resolving specialization makes compilation slower
3915    #[cfg(not(no_global_oom_handling))]
3916    fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) {
3917        let (low, high) = iterator.size_hint();
3918        if let Some(additional) = high {
3919            debug_assert_eq!(
3920                low,
3921                additional,
3922                "TrustedLen iterator's size hint is not exact: {:?}",
3923                (low, high)
3924            );
3925            self.reserve(additional);
3926            unsafe {
3927                let ptr = self.as_mut_ptr();
3928                let mut local_len = SetLenOnDrop::new(&mut self.len);
3929                iterator.for_each(move |element| {
3930                    ptr::write(ptr.add(local_len.current_len()), element);
3931                    // Since the loop executes user code which can panic we have to update
3932                    // the length every step to correctly drop what we've written.
3933                    // NB can't overflow since we would have had to alloc the address space
3934                    local_len.increment_len(1);
3935                });
3936            }
3937        } else {
3938            // Per TrustedLen contract a `None` upper bound means that the iterator length
3939            // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
3940            // Since the other branch already panics eagerly (via `reserve()`) we do the same here.
3941            // This avoids additional codegen for a fallback code path which would eventually
3942            // panic anyway.
3943            panic!("capacity overflow");
3944        }
3945    }
3946
3947    /// Creates a splicing iterator that replaces the specified range in the vector
3948    /// with the given `replace_with` iterator and yields the removed items.
3949    /// `replace_with` does not need to be the same length as `range`.
3950    ///
3951    /// `range` is removed even if the `Splice` iterator is not consumed before it is dropped.
3952    ///
3953    /// It is unspecified how many elements are removed from the vector
3954    /// if the `Splice` value is leaked.
3955    ///
3956    /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
3957    ///
3958    /// This is optimal if:
3959    ///
3960    /// * The tail (elements in the vector after `range`) is empty,
3961    /// * or `replace_with` yields fewer or equal elements than `range`'s length
3962    /// * or the lower bound of its `size_hint()` is exact.
3963    ///
3964    /// Otherwise, a temporary vector is allocated and the tail is moved twice.
3965    ///
3966    /// # Panics
3967    ///
3968    /// Panics if the range has `start_bound > end_bound`, or, if the range is
3969    /// bounded on either end and past the length of the vector.
3970    ///
3971    /// # Examples
3972    ///
3973    /// ```
3974    /// let mut v = vec![1, 2, 3, 4];
3975    /// let new = [7, 8, 9];
3976    /// let u: Vec<_> = v.splice(1..3, new).collect();
3977    /// assert_eq!(v, [1, 7, 8, 9, 4]);
3978    /// assert_eq!(u, [2, 3]);
3979    /// ```
3980    ///
3981    /// Using `splice` to insert new items into a vector efficiently at a specific position
3982    /// indicated by an empty range:
3983    ///
3984    /// ```
3985    /// let mut v = vec![1, 5];
3986    /// let new = [2, 3, 4];
3987    /// v.splice(1..1, new);
3988    /// assert_eq!(v, [1, 2, 3, 4, 5]);
3989    /// ```
3990    #[cfg(not(no_global_oom_handling))]
3991    #[inline]
3992    #[stable(feature = "vec_splice", since = "1.21.0")]
3993    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
3994    where
3995        R: RangeBounds<usize>,
3996        I: IntoIterator<Item = T>,
3997    {
3998        Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
3999    }
4000
4001    /// Creates an iterator which uses a closure to determine if an element in the range should be removed.
4002    ///
4003    /// If the closure returns `true`, the element is removed from the vector
4004    /// and yielded. If the closure returns `false`, or panics, the element
4005    /// remains in the vector and will not be yielded.
4006    ///
4007    /// Only elements that fall in the provided range are considered for extraction, but any elements
4008    /// after the range will still have to be moved if any element has been extracted.
4009    ///
4010    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
4011    /// or the iteration short-circuits, then the remaining elements will be retained.
4012    /// Use `extract_if().for_each(drop)` if you do not need the returned iterator,
4013    /// or [`retain_mut`] with a negated predicate if you also do not need to restrict the range.
4014    ///
4015    /// [`retain_mut`]: Vec::retain_mut
4016    ///
4017    /// Using this method is equivalent to the following code:
4018    ///
4019    /// ```
4020    /// # let some_predicate = |x: &mut i32| { *x % 2 == 1 };
4021    /// # let mut vec = vec![0, 1, 2, 3, 4, 5, 6];
4022    /// # let mut vec2 = vec.clone();
4023    /// # let range = 1..5;
4024    /// let mut i = range.start;
4025    /// let end_items = vec.len() - range.end;
4026    /// # let mut extracted = vec![];
4027    ///
4028    /// while i < vec.len() - end_items {
4029    ///     if some_predicate(&mut vec[i]) {
4030    ///         let val = vec.remove(i);
4031    ///         // your code here
4032    /// #         extracted.push(val);
4033    ///     } else {
4034    ///         i += 1;
4035    ///     }
4036    /// }
4037    ///
4038    /// # let extracted2: Vec<_> = vec2.extract_if(range, some_predicate).collect();
4039    /// # assert_eq!(vec, vec2);
4040    /// # assert_eq!(extracted, extracted2);
4041    /// ```
4042    ///
4043    /// But `extract_if` is easier to use. `extract_if` is also more efficient,
4044    /// because it can backshift the elements of the array in bulk.
4045    ///
4046    /// The iterator also lets you mutate the value of each element in the
4047    /// closure, regardless of whether you choose to keep or remove it.
4048    ///
4049    /// # Panics
4050    ///
4051    /// If `range` is out of bounds.
4052    ///
4053    /// # Examples
4054    ///
4055    /// Splitting a vector into even and odd values, reusing the original vector:
4056    ///
4057    /// ```
4058    /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
4059    ///
4060    /// let evens = numbers.extract_if(.., |x| *x % 2 == 0).collect::<Vec<_>>();
4061    /// let odds = numbers;
4062    ///
4063    /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
4064    /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
4065    /// ```
4066    ///
4067    /// Using the range argument to only process a part of the vector:
4068    ///
4069    /// ```
4070    /// let mut items = vec![0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2];
4071    /// let ones = items.extract_if(7.., |x| *x == 1).collect::<Vec<_>>();
4072    /// assert_eq!(items, vec![0, 0, 0, 0, 0, 0, 0, 2, 2, 2]);
4073    /// assert_eq!(ones.len(), 3);
4074    /// ```
4075    #[stable(feature = "extract_if", since = "1.87.0")]
4076    pub fn extract_if<F, R>(&mut self, range: R, filter: F) -> ExtractIf<'_, T, F, A>
4077    where
4078        F: FnMut(&mut T) -> bool,
4079        R: RangeBounds<usize>,
4080    {
4081        ExtractIf::new(self, filter, range)
4082    }
4083}
4084
4085/// Extend implementation that copies elements out of references before pushing them onto the Vec.
4086///
4087/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
4088/// append the entire slice at once.
4089///
4090/// [`copy_from_slice`]: slice::copy_from_slice
4091#[cfg(not(no_global_oom_handling))]
4092#[stable(feature = "extend_ref", since = "1.2.0")]
4093impl<'a, T: Copy + 'a, A: Allocator> Extend<&'a T> for Vec<T, A> {
4094    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
4095        self.spec_extend(iter.into_iter())
4096    }
4097
4098    #[inline]
4099    fn extend_one(&mut self, &item: &'a T) {
4100        self.push(item);
4101    }
4102
4103    #[inline]
4104    fn extend_reserve(&mut self, additional: usize) {
4105        self.reserve(additional);
4106    }
4107
4108    #[inline]
4109    unsafe fn extend_one_unchecked(&mut self, &item: &'a T) {
4110        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
4111        unsafe {
4112            let len = self.len();
4113            ptr::write(self.as_mut_ptr().add(len), item);
4114            self.set_len(len + 1);
4115        }
4116    }
4117}
4118
4119/// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison).
4120#[stable(feature = "rust1", since = "1.0.0")]
4121impl<T, A1, A2> PartialOrd<Vec<T, A2>> for Vec<T, A1>
4122where
4123    T: PartialOrd,
4124    A1: Allocator,
4125    A2: Allocator,
4126{
4127    #[inline]
4128    fn partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering> {
4129        PartialOrd::partial_cmp(&**self, &**other)
4130    }
4131}
4132
4133#[stable(feature = "rust1", since = "1.0.0")]
4134impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
4135
4136/// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison).
4137#[stable(feature = "rust1", since = "1.0.0")]
4138impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
4139    #[inline]
4140    fn cmp(&self, other: &Self) -> Ordering {
4141        Ord::cmp(&**self, &**other)
4142    }
4143}
4144
4145#[stable(feature = "rust1", since = "1.0.0")]
4146unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
4147    fn drop(&mut self) {
4148        unsafe {
4149            // use drop for [T]
4150            // use a raw slice to refer to the elements of the vector as weakest necessary type;
4151            // could avoid questions of validity in certain cases
4152            ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
4153        }
4154        // RawVec handles deallocation
4155    }
4156}
4157
4158#[stable(feature = "rust1", since = "1.0.0")]
4159#[rustc_const_unstable(feature = "const_default", issue = "143894")]
4160impl<T> const Default for Vec<T> {
4161    /// Creates an empty `Vec<T>`.
4162    ///
4163    /// The vector will not allocate until elements are pushed onto it.
4164    fn default() -> Vec<T> {
4165        Vec::new()
4166    }
4167}
4168
4169#[stable(feature = "rust1", since = "1.0.0")]
4170impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
4171    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4172        fmt::Debug::fmt(&**self, f)
4173    }
4174}
4175
4176#[stable(feature = "rust1", since = "1.0.0")]
4177impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
4178    fn as_ref(&self) -> &Vec<T, A> {
4179        self
4180    }
4181}
4182
4183#[stable(feature = "vec_as_mut", since = "1.5.0")]
4184impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
4185    fn as_mut(&mut self) -> &mut Vec<T, A> {
4186        self
4187    }
4188}
4189
4190#[stable(feature = "rust1", since = "1.0.0")]
4191impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
4192    fn as_ref(&self) -> &[T] {
4193        self
4194    }
4195}
4196
4197#[stable(feature = "vec_as_mut", since = "1.5.0")]
4198impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
4199    fn as_mut(&mut self) -> &mut [T] {
4200        self
4201    }
4202}
4203
4204#[cfg(not(no_global_oom_handling))]
4205#[stable(feature = "rust1", since = "1.0.0")]
4206impl<T: Clone> From<&[T]> for Vec<T> {
4207    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4208    ///
4209    /// # Examples
4210    ///
4211    /// ```
4212    /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
4213    /// ```
4214    fn from(s: &[T]) -> Vec<T> {
4215        s.to_vec()
4216    }
4217}
4218
4219#[cfg(not(no_global_oom_handling))]
4220#[stable(feature = "vec_from_mut", since = "1.19.0")]
4221impl<T: Clone> From<&mut [T]> for Vec<T> {
4222    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4223    ///
4224    /// # Examples
4225    ///
4226    /// ```
4227    /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
4228    /// ```
4229    fn from(s: &mut [T]) -> Vec<T> {
4230        s.to_vec()
4231    }
4232}
4233
4234#[cfg(not(no_global_oom_handling))]
4235#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4236impl<T: Clone, const N: usize> From<&[T; N]> for Vec<T> {
4237    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4238    ///
4239    /// # Examples
4240    ///
4241    /// ```
4242    /// assert_eq!(Vec::from(&[1, 2, 3]), vec![1, 2, 3]);
4243    /// ```
4244    fn from(s: &[T; N]) -> Vec<T> {
4245        Self::from(s.as_slice())
4246    }
4247}
4248
4249#[cfg(not(no_global_oom_handling))]
4250#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4251impl<T: Clone, const N: usize> From<&mut [T; N]> for Vec<T> {
4252    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4253    ///
4254    /// # Examples
4255    ///
4256    /// ```
4257    /// assert_eq!(Vec::from(&mut [1, 2, 3]), vec![1, 2, 3]);
4258    /// ```
4259    fn from(s: &mut [T; N]) -> Vec<T> {
4260        Self::from(s.as_mut_slice())
4261    }
4262}
4263
4264#[cfg(not(no_global_oom_handling))]
4265#[stable(feature = "vec_from_array", since = "1.44.0")]
4266impl<T, const N: usize> From<[T; N]> for Vec<T> {
4267    /// Allocates a `Vec<T>` and moves `s`'s items into it.
4268    ///
4269    /// # Examples
4270    ///
4271    /// ```
4272    /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
4273    /// ```
4274    fn from(s: [T; N]) -> Vec<T> {
4275        <[T]>::into_vec(Box::new(s))
4276    }
4277}
4278
4279#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
4280impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
4281where
4282    [T]: ToOwned<Owned = Vec<T>>,
4283{
4284    /// Converts a clone-on-write slice into a vector.
4285    ///
4286    /// If `s` already owns a `Vec<T>`, it will be returned directly.
4287    /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
4288    /// filled by cloning `s`'s items into it.
4289    ///
4290    /// # Examples
4291    ///
4292    /// ```
4293    /// # use std::borrow::Cow;
4294    /// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]);
4295    /// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]);
4296    /// assert_eq!(Vec::from(o), Vec::from(b));
4297    /// ```
4298    fn from(s: Cow<'a, [T]>) -> Vec<T> {
4299        s.into_owned()
4300    }
4301}
4302
4303// note: test pulls in std, which causes errors here
4304#[stable(feature = "vec_from_box", since = "1.18.0")]
4305impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
4306    /// Converts a boxed slice into a vector by transferring ownership of
4307    /// the existing heap allocation.
4308    ///
4309    /// # Examples
4310    ///
4311    /// ```
4312    /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
4313    /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
4314    /// ```
4315    fn from(s: Box<[T], A>) -> Self {
4316        s.into_vec()
4317    }
4318}
4319
4320// note: test pulls in std, which causes errors here
4321#[cfg(not(no_global_oom_handling))]
4322#[stable(feature = "box_from_vec", since = "1.20.0")]
4323impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
4324    /// Converts a vector into a boxed slice.
4325    ///
4326    /// Before doing the conversion, this method discards excess capacity like [`Vec::shrink_to_fit`].
4327    ///
4328    /// [owned slice]: Box
4329    /// [`Vec::shrink_to_fit`]: Vec::shrink_to_fit
4330    ///
4331    /// # Examples
4332    ///
4333    /// ```
4334    /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
4335    /// ```
4336    ///
4337    /// Any excess capacity is removed:
4338    /// ```
4339    /// let mut vec = Vec::with_capacity(10);
4340    /// vec.extend([1, 2, 3]);
4341    ///
4342    /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
4343    /// ```
4344    fn from(v: Vec<T, A>) -> Self {
4345        v.into_boxed_slice()
4346    }
4347}
4348
4349#[cfg(not(no_global_oom_handling))]
4350#[stable(feature = "rust1", since = "1.0.0")]
4351impl From<&str> for Vec<u8> {
4352    /// Allocates a `Vec<u8>` and fills it with a UTF-8 string.
4353    ///
4354    /// # Examples
4355    ///
4356    /// ```
4357    /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
4358    /// ```
4359    fn from(s: &str) -> Vec<u8> {
4360        From::from(s.as_bytes())
4361    }
4362}
4363
4364#[stable(feature = "array_try_from_vec", since = "1.48.0")]
4365impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
4366    type Error = Vec<T, A>;
4367
4368    /// Gets the entire contents of the `Vec<T>` as an array,
4369    /// if its size exactly matches that of the requested array.
4370    ///
4371    /// # Examples
4372    ///
4373    /// ```
4374    /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
4375    /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
4376    /// ```
4377    ///
4378    /// If the length doesn't match, the input comes back in `Err`:
4379    /// ```
4380    /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
4381    /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
4382    /// ```
4383    ///
4384    /// If you're fine with just getting a prefix of the `Vec<T>`,
4385    /// you can call [`.truncate(N)`](Vec::truncate) first.
4386    /// ```
4387    /// let mut v = String::from("hello world").into_bytes();
4388    /// v.sort();
4389    /// v.truncate(2);
4390    /// let [a, b]: [_; 2] = v.try_into().unwrap();
4391    /// assert_eq!(a, b' ');
4392    /// assert_eq!(b, b'd');
4393    /// ```
4394    fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
4395        if vec.len() != N {
4396            return Err(vec);
4397        }
4398
4399        // SAFETY: `.set_len(0)` is always sound.
4400        unsafe { vec.set_len(0) };
4401
4402        // SAFETY: A `Vec`'s pointer is always aligned properly, and
4403        // the alignment the array needs is the same as the items.
4404        // We checked earlier that we have sufficient items.
4405        // The items will not double-drop as the `set_len`
4406        // tells the `Vec` not to also drop them.
4407        let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
4408        Ok(array)
4409    }
4410}