Thursday, December 09, 2010

Ari Shatkin's Pirkei Avos Presentation

Ari Shatkin is a talmid at MTA in the 1oth grade class to which I teach Tanach. Recently, one of my talmidim from last year, Yaakov Schonzeit, has begun giving a chaburah in Pirkei Avos to some boys in the Tanach class. They are required to make presentations to the entire class. Ari typed up his presentation, so I am pleased to share it:


The following terms that I chose to interpret for you today is the terms to “love work”, “despise lordliness”, and to “remove yourself from uncertainty”. All of these topics or terms interest me because I feel like they mean something to me.


The way I interpret the term “love work” is to mean that you should simply love the thing you do. This term affects me because I feel it everyday. I take school as my “job”. On days I like it I feel a lot better about myself than days that I hate it. It’s teaching us a life long lesson, which is “If you hate what you do, then what’s the point of living?” If one doesn’t like the thing they do daily, such as work, then it can lead to many bad things, like being depressed or other bad things that can effect you for your life.


The way I interpret the term “despise lordliness” to mean that you should not get into politics. This term does not affect me as much but I can understand the term. People who are in politics have such a huge responsibility. If we look back at the last term “love work” I feel like people who are politicians will be lead to not loving work because of the stress of the job.


The way I interpret the final term “remove yourself from uncertainty” is to not get into stuff you don’t know the result to. This affects me because I do invest some money in the stock market. I also find that as a small job that I have right now. When I put my hard earned money into the market I will always consult with my uncle or another person who is a stock broker before putting it in the market. If you mean this as a job I feel like it goes back to the first thing to “love work” If someone doesn’t remove themselves from uncertainty then they may not be successful in there job which can make them hate it. It doesn’t even have to do with the market or a job. It can also do with something like school. You should go into a test knowing you will get a good grade. If you don’t then you are not ready.


In conclusion you see that the 3 terms I use not only affect me a little bit but you also see how they connect to each other. I believe that we are trying to learn life long lessons to make us live better and have a peaceful and happy life.

Thursday, November 25, 2010

Follow up on krumbagel's "Yeshiva guy says over a vort" video



OK, there is a lot to comment on in this uproariously funny video, which implicitly libels yeshiva guys, and is oblivious to the concept of תורתך שעשועי.


But what has really been preoccupying my attention since I first saw it yesterday, is the "missing vort" - i.e., which way did Yaakov Avinu read Parashas Zachor, with a segol (zecher) or with a tzeirei (zeicher)?!


Now, the actual issue is presented very nicely in the Hebrew Wikipedia entry on פרשת זכור:


http://tinyurl.com/244t2wq


But, in a derech that is typical for him, Rabbi Shternbuch (Moadim u'Zmanim vol. 2 p. 138) suggests that at the end of Beshalach it is zecher, while in Ki Teitzei it is zeicher.

He bases this on an idea that he cites in the name of R' Meshulam Roth, the Kol Mevaser (this, BTW, is in and of itself a fascinating phenomenon! RMR - a Hungarian, no less - is the sole posek of stature to have ruled that one should say Hallel with a berachah on Yom HaAtzmaut, and here is the eventually-to-be "Nasi" of the Eida Charedis quoting him with approbation, and even with a zt"l!), to explain the Gemara in Bava Basra (21b), in which Yoav kills his Rebbe for having erroneously taught him that the obligation is only to kill the males of Amalek, not the females as well. The obvious question is, how dumb could the Rebbe have been to have heard the keriyah year after year and heard zochor (i.e., with a double kamatz) rather than zeicher or zecher?

So RMR suggests that the Rebbe actually heard and taught zecher, with a segol. But he knew that we have a word כעשן, as in וכל הרשעה כולה כעשן תכלה, which is spelled with a double kamatz that appears in Vayeira with two segols, in כעשן הכבשן. So the Rebbe interpreted the word that he heard, zecher, according to its alternative reading,  zachar. ודפח"ח!

Now, although Rabbi Sternbuch does not mention it, the Gra asks why in Beshalach Hashem tells Moshe both to write down his pledge to eliminate Amalek and to relate it to Yehoshua as well? Kinda' belt and suspenders? So his answer is that the verbal relating to Yehoshua was to preclude the Yoav situation - i.e., that he should not read it as zachar, but as (get ready for this contradiction!), according to the version of the vort in Kol Eliyahu, with a segol, zecher; and according to the version of the vort in Divrei Eliyahu with a tzerei, zeicher.

But according to RMR, the answer would be different: Hashem told Moshe to tell Yehoshua that although the word which was to be read zecher (with a segol), Yehoshua should not make the mistake of interpreting the word according to its alternative spelling as in the case of כעשן.

So, suggests Rabbi Sternbuch, that precaution of the verbal explanation would work for Yehoshua, so indeed in Beshalach the reading should be zecher. Whereas in Ki Teitzei, which is the parashah that is read in public to fulfill the mitzvah of Zechiras Ma'aseh Amalek, in order to remove any doubts, it must be read zeicher.

(Another interesting thing is that in the discussion in Maaseh Rav the phrasing is whether to read with שש נקודות or חמש נקודות. It would seem al pi Kabbalah that five nekudos (tzeiri-segol) are in order, as we find in Tikkunei Zohar:
תיקוני זהר דף נה/א 
ורשיעייא דאינון ערב רב אתמר בהון סו"ף פסו"ק, דאינון מזרעא דעמלק דאתמר ביה ויאמר כי יד על כס י"ה, ואינון חמש מינים עמלקים גבורים נפילים ענקים רפאים, דכלהו מסתלקין ומתגברין על ישראל בגלותא, הדא הוא דכתיב (בראשית ז') ויגברו המים וירבו מאד על הארץ, ארבע זמנין כתיב ויגברו וגברו, לקבל ארבע גלוון, ועלייהו אתמר סו"ף פסו"ק, דפסיק לון קודשא בריך הוא לסוף יומיא מעלמא:
Thus, the five nekudos represent the broader categories of wickedness subsumed under the name Amalek. But the same source provides a rationale for six nekudos:
תיקוני זהר דף נה/א 
בההוא זמנא סליק ו' על דרגא דיליה דאיהו שש מעלות לכסא, ודא איהו דרג"א, תר"י טעמ"י, מאי תר"י טעמ"י, אלא בתר דסליק לדרגיה יימר לישראל ועשה לי מטעמים כאשר אהבתי, מפקודין דעשה דכלילן בה' דאברהם, דכליל רמ"ח פקודין, דבהון אתקריב ה' לגבי ו', וקרבנא דא איהו קריבו דקודשא בריך הוא עם שכינתיה:
There is an additional reason for שש נקודות, which is that the word sheish can also be read sas, as in:
ספר תפארת שמואל - לפורים 
ש' תר"ע:
ליהודים היתה אורה ושמחה וששון ויקר ואמרו חז"ל (מגילה) אורה זו תורה שמחה זה יו"ט וששון זה מילה שנאמר שש אנכי על אמרתיך. אולי הענין היא עפ"י אז"ל (מד"ת תשא) עמלק היה זורק מילות כלפי מעלה
but it does not seem that this will bear on which way it is read in each location.)

Now, among the other inaccuracies in the video is the notion that the Avos knew the Torah - Chazal say they fulfilled (קיימו) the Torah.  

(And, it was not literal fulfillment, but aspects, as we see:
ספר שם משמואל פרשת צו - שביעי של פסח 
שביעי של פסח:
במכילתא (פ' בשלח) תבוא אסרה של יוסף שאסר לילך לקראת אביו ותעמוד על אסרה של פרעה הרשע לילך לרדוף את ישראל. נראה לפרש דהנה כתיב (בראשית ל"ז) והנה אנחנו מאלמים אלומים מתרגם איסורין לשון קישור העמרים, והיינו כי כל השבטים היתה מדתם לקשר כל הכחות להשם ית', אבל קמה אלומתי וגם נצבה. והטעם יובן בהפרש הראשונים שהיו מקיימין ענין המצוות בלבושים שונים כמ"ש הזוה"ק (ח"א קס"ב.) ביעק"א שכיוון מצוות תפילין במקלות, אבל אחר מתן תורה הכל בכלים מוגבלים משוערים מאת יוצר כל, והנה יתרון שאת לכלים שצותה התורה מהכלים שעשו הראשונים כל אחד לפי הגות לבו תבונות, שמצוות התורה הן אלקות וכאשר נצטוינו עליהם אנחנו נעשים שלוחי הש"י ושלוחו של אדם כמותו ומתיחסים המעשים למשלח, אבל קודם מ"ת היתה העשי' עשיית בו"ד. וממילא ההפרש נמי בדבר הקיום, כי מעשה האלקים הוא יהי' לעולם אבל מעשה בו"ד כשם שהוא עובר כך מעשיו עוברים. וע"כ אף שכל מעשי השבטים לקשר כל הכחות להש"י, אבל הי' רק מעשה בו"ד שאין לו קיום. אך יוסף בנסיונו הגדול שהי' יצרו מתגבר עליו ונמתחה הקשת וחזרה וישב ולא עבר עבירה כשיצרו מתגבר עליו, נותנים לו שכר כעושה מצוה, והי' נחשב מעשה מצוה ממש, ובאשר ב"נ נצטוו על עריות, הנה מעשיו שוב היו נחשבים מעשה שמים לפי ההנחה הנ"ל, ע"כ שוב הי' למדתו קיום, וזהו קמה אלומתי וגם נצבה, והנה תסובנה אלומותיכם ותשתחוין לאלומתי, היינו שכל קיומם הוא באמצעות יוסף:
but for these purposes, we'll assume it was literal, because otherwise this whole approach doesn't work!)

But even if we assume that they had a written Torah, as the Yad Ramah evidently suggests (!):
יד רמה על סנהדרין דף קח/ב 
והא דאמרינן אמר ליה אליעזר לשם רבא כתיב למשפחותיהם יצאו מן התיבה, אף ע"ג דאכתי לא איתיהיבא אוריתא עד משה רבינו, גמרא הוה בידיהו דהכי הוה, ואיבעי תימא כולה אוריתא מיכתב הוה כתיבא גבי אברהם ואיפקודי הוא דלא הוו מיפקדי עילוה עד דאתא משה:
It cannot, obviously, have been in the format that we have, but rather in the format to which the Gra alludes:
Image

But... since the keriyah of Parashas Zachor is a mitzvah d'orysa, that parasha at the end of Ki Teitzei is the "cheftza shel mitzvah" of that mitzvah. So Yaakov had to have had that parashah to be fulfill the mitzvah!

So, we who read (according to Rabbi Shternbuch) zecher in Beshalach read it also me'safek in Ki Teitzei (not because of a regular safek, but because of the "din safek" a la Bein HaShemashos a la the Rogatchover and RYBS - which is why the end of Rabbi Shternbuch's note is incorrect, ואכמ"ל). But Yaakov Avinu either did not have the parashah in Beshalach, or had it in the form of the Gra's tzirufim. He only had the parashah in Ki Teitzei, which in and of itself would be read only as zeicher. And that is מסתמא how he read it.

:-) I guess we've made an early start on Purim Torah... :-)

Sunday, October 31, 2010

Addendum to the previous post

The Ba'alas HaMa'aseh, Reb. SRRL Horowitz (18th cent.), wrote the following extraordinary techinah:

תחינת אימהות

מתוך ויקיטקסט
יָה רִבּוֹן עָלַם וְעָלְמַיָא
אַנְתְּ בָּרָאתָ בְּשִׁיתּ יוֹמַיָא
שְׁמַיָא וְאַרְעָא וְכָל יְצִיבָא
בְּעֶשֶׂר אֲמָרַיָא.
וּבַשְּׁבִיעִי נַחֲתָּ מִכּוּלְהוֹן אֲמָרַיָא
וּפָּקַדְתָּ(א) לְעַמָא קַדִישָׁא
דִלְהוֹן נַחְתָא מִכָּל דִבְּרַיָא
בְּרַם יַתְהוֹן עַסְקִין
בְּחֶפְצֵי שְׁמַיָא וְרָזֵי סְתָרַיָא
וְעַמַיָא דְאַרְעָא וּנְשַׁיָא
יְהוֹן עַסְקִין בְּדָרֵיהוֹן בְּלִישְׁנָא קְלִילַיָא [יידיש]
מַה דְחַיְיבִין בְּפִקוּדַיָא.

וְכֵן יְהַבְתָּ לָן מוֹעֲדַיָא לְשְׂמִחַיָא
וְיַרְחַיָא לְדוּכְרָנַיָא
וְכַד הֲוֵינָה בִּירוּשָׁלַיִם קַרְתָּא דְשׁוּפְרַיָא
אֲתַר בֵּית מוֹתְבָנָא דְאִמְנָא שְׁכִינְתָּא דְכָל שׁוּפְרַיָא
וְעֵינֵי הָעֵדָה הַוִין מְקַדְשִׁין לְפִי רְאוֹת עֵנַיָא.
וּבְעִידְנָא דְגָלִינָא
לֹא אִשְׁתָּאַר לָן בְּרָם לְבָרֵךְ יַרְחַיָא.
וְעֵת לְחָנְנָה כִּי בָא מוֹעֵד לְבָרֵךְ יַרְחַיָא.
אֲנַן מְפָרְשִׁין כַּפַּיָא לְאָבוּנָא רַחֲמָנָא דְבִשְׁמַיָא
תִּיב לָן כִּימֵי קֶדֶם
כִּי כָּשַׁל כֹּחַ הַסַבָּל לְגַדְיָא רְכִיכָא
כְּחוֹם צַהֲרַיָא.
שָׁבַת מְשׂוֹשֵׂינוּ חַגֵינוּ וְחָדְשֵׁנו.
אַנַן כְּיַתְמֵי בְּלָא אָבוּהָ
וּכְעָנָא בְּלָא רַעֲיָא

יָדוֹ פָּרַשׂ צַר עַל כָּל מַחֲמַדֵי עַיִן
וְאִין אוֹמֵר הָשֵׁב!
אֵל נְקָמוֹת יְיָ הוֹפִיעַ מֵהַר פָארָן!
מַאן דְעָנָה לְאַהְבָתָנָא
הוּא יַעֲנֶה אוֹתָנָא בְּיַרְחַיָא דָא
בִּזְכוּתָא דְהַרְרֵי קֶדֶם וּגְבָעוֹת.

שָׂרָה – דְפַקִידַת עָלֶיהָ אַל תִּגְעוּ בִּמְשִׁיחִי: כֵּן צֶאֱצָאֶיהָ כָּל דְנָגַע בְּהוּ יִדְמוּ.
רִבְקָה – דְגָמַרְתָּ לָן בִּרְכָתָא: בַּעֲגָלָא תִּתְקַיֵּם כֵּן.
רָחֵל – דְאַבְטַחֲתָּא וְשׁוּבוּ בָּנִים לִגְבוּלָם: הָשֵׁב שְׁבוּתֵינוּ מַהֵר בְּדִילָה.
לֵאָה – דְהַווּן עֵינַיָא רְכְּיכָא
דְלָא תִּפּוֹל בְּגוֹרָלָא דִרְשִׁיעֲיָא:
בִּזְכוּתָא הֵאִיר עֵינַיָא
מֵחֲשׁוֹכָא דְגָלוּתָא
יוֹנָה פּוֹתָה בּחֶרֶב רַוְתָה
כָּל הַיּוֹם רְצוּצָה וַחֲמוּסָה.
בַּת אַבְרָהָם אָבִינוּ בְּרֶתָּא דְגָלוּתָא דְנַחֲתָא
בַּת אַבְרָהָם אָבִינוּ יוֹשֶׁבֶת תַּחַת בְּעַלִים קָשִׁים: זֶה אוֹמֵר הַךְ וְזֶה אוֹמֵר אַף אֲנִי כָּמוֹהוּ.
הֶרֶב כַּבְּסֵנוּ כִּי כְּבַר לָקִינוּ כִּפְלַיִם בְּמֶרְיֵינוּ.
וְחַדֵשׁ וְהָבֵא לָן חוֹדֶשׁ הַזֶּה לְחֶדְוָה
יוֹמַיָא יַרְחַייָא דְמִתְהַפְּכִין מִבִּישָׁא לְטָבָא.
גָאוֹן עוּזֵינוּ הָרֵם קַרְנֵינוּ
הַב לָן מוֹהַר מַתָּנָתָא טַבְתָא בְּלִי צָרָה וְעַקְתָא
בִּזְכוּת יַעֲקֹב בְּחִיר שֶׁבְּאָבוֹת
בְּזְכוּתוֹ הַטּוֹבָה לְרַבּוֹת.

סְגוּלָתִי קָרָאתָ לָן
וַאֲנָן קָרְאָן לָךְ דוֹדִי
וְלַךְ אֲנַן מַצְלִין צְלוּתָא תֵיתַב לָן
וּלְכָל מוֹרָנָא מֵחַבְרַיָא סַפְרַיָא קַדִישַׁיָא
וּמְסַדְרִין צְלוּתַיָא וּבְעוּתַיָא
בְּנִין דוּכְרִין מֵעַלְמָא דִדְּכוּרָא מִסִּיטְרָא דְיַמִינָא חֲכִּימַיָא בְּאוֹרַיְתָא
וְנֶעֱבְדִין רְעוּתָא דַאֲהָבוּתָא דְבִּשְׁמַיָא
בִּדְחִילָא וּרְחִימָא עִילָאָה דְּעִילָאָה כְּמֹשֶׁה רַעֲיָא מְהֶמְנַיָא
בְּרָא רְחִימָא דְאַבָּא דְאִימָא עִילָאִי.
אָמֵן כִּן יְהִי רָצוֹן


-- שרה רבקה רחל לאה הורוביץ, ראשית המאה ה-18

A great story I was told this morning that I tracked down through Google Books

Image

page 10 in:

Image

Wednesday, October 13, 2010

Sha'alvim's 50th

http://www.ynet.co.il/articles/0,7340,L-3965187,00.html

Yesterday, one of my alma-maters, Yeshivat Sha'alvim, celebrated it's 50th anniversary. I can say definitively that my three years in Sha'alvim were the most formative years of my life. I owe a debt of gratitude to many Rabbeim there, some already zt"l, some lbcl"c still shlita, B"H.

But part of what made those years so special for me was a phenomenon that has passed into extinction. As the current Rosh Yeshiva notes in the cited article (added emphasis is mine):

הכל משתנה

מייסדי הישיבה כמובן לא חלמו על התמודדויות מעין אלה. הישיבה הוקמה על ידי "פועלי אגודת ישראל" - חרדים ציונים - שהנחילו מסורת לימוד עם אוריינצטיה חרדית-ליטאית. במהלך השנים עמדו בראשה ולימדו בה בוגרי ישיבות חרדיות מובחרות כמו "קול תורה", חברון פוניביז' ואחרות. השנים שחלפו שינו את אופי הישיבה ואת צוות ההוראה, שכיום מורכב כמעט כולו מבוגרי המקום.

"מקימי הישיבה היו למעשה ציבור שישב על הגדר", מסביר הרב יעקבזון "זו היתה קבוצה שהיתה שייכת לעולם התורני-חרדי, אבל הרגישו צורך להיות מעורבים במה שקורה בארץ. ההקצנה בעולם החרדי גרמה לכך שהם ייעלמו מן העולם כפלג בפני עצמו. בתחילת דרכה הגיעו לישיבה תלמידים מישיבות חרדיות, והיום
 
בעיקר מישיבות תיכוניות. מה שכן נשאר זה משהו משיטת הלימוד הליטאית שמדגישה עיון ובקיאות בגמרא.

"לצד זאת, מאחר שהדור שלנו דורש יותר 'להתחבר', במהלך השנים שולבו בתוכניות הלימוד גם ספרי חסידות, ונושאים נוספים כמו תורותיהם של הרב קוק, הרב סולובייצ'יק, והגר"א. הנוער של היום מודע לזרמים הקיימים ואנחנו מרגישים שצריך לתת להם מענה אישי".

Monday, October 11, 2010

A She'eilah I was asked as Hoshanna Rabba turned into Shemini Atzeres

Someone said in Ya'aleh v'Yavo of Mincha on Hoshanna Rabba, just before the onset of Shemini Atzeres, SA instead of Sukkos. What is the halacha? I could not find anyone who discusses it directly. But acharei ha'iyun there are two tzedadim to be lenient:

1. The shittah that so long as you said YvY it is considered mei'ein ha'meora, even if you mentioned the wrong mo'ed.

2. That the Mincha was after plag, and therefore at a time suitable to be mekabbel SA anyway.

The Rogatchover's Heter to Dye a Beard

The Rogatchover's Heter to dye beards. The Tzitz Eliezer 22:14 paskens like him. Shu"t Tzofnas Panei'ach (Warsaw) #258, at the end:

Image

Sunday, September 26, 2010

More Velikovsky!

התנ"ך והכרונולוגיה של העולם העתיק
שיטתו של ד"ר עמנואל וליקובסקי

  
ImageImageImageImageImageImageImageImageImage
עמנואל
וליקובסקי
הבעיה 
המרכזית
הפיתרון 
המוצע
טבלת 
המחשה
ספריו
ומאמריו
ממצאים
מאשרים
מאמרים 
בנושא
 
הפולמוס אתגרי 
מחקר


  • א. פתיחת צוהר להכרת שיטתו של עמנואל וליקובסקי, בה מובא פתרון יחודי ומקורי לבעיית חוסר ההתאמה בין הממצאים הארכיאולוגים למסופר בתנ"ך 

    .ב. לעודד תלמידים וחוקרים להמשיך ולפתח את השיטה, המיוחדת בכך שאינה פונדמנטליסטית, ולמרות זאת בונה בסיס לפיתרון כוללני של הנושא. 
 

להצטרפות לרשימת התפוצה הכנס את כתובת הדואר האלקטרוני שלך:
 שלח


הבעיה המרכזית
ארכיאולוגים רבים טוענים שהממצאים בקרקע אינם תואמים את תולדות עם ישראל כמתועד בתנ“ך. 

במאמר שהופיע בעיתון ”הארץ" (29.10.99) תחת הכותרת "התנ"ך - אין ממצאים בשטח", הגיע הארכיאולוג למסקנה: "לא ירדנו למצרים ולא עלינו משם, לא כבשנו את הארץ ואין זכר לאימפריה של דוד ושלמה" 
Image
 על סמך מה מתוארכות השכבות הארכיאולוגיות בארץ? 

האם מחפשים הארכיאולוגים בשכבות הנכונות
?
"ד“ר וליקובסקי מגלה בקיאות עצומה וחריפות יוצאת דופן… אם ד“ר וליקובסקי צודק, זוהי התרומה הגדולה ביותר לחקר ההיסטוריה העתיקה שנכתבה אי פעם.“פרופ' רוברט פפייפר, אוניברסיטת הארווארד
הפתרון המוצע
וליקובסקי מצא הקבלות רבות בין המתועד בתנ“ך לבין ההיסטוריה המצרית, דור אחר דור, המורות על כך שיש לקצר את הכרונולוגיה המצרית בלמעלה מ-500 שנה,כמובא בטבלה.

כאשר בדק וליקובסקי את היסודות ההיסטוריים והאסטרונומיים שעליהם מושתתת הכרונולוגיה המצרית נוכח כי בטעות יסודם

מאחר שהשכבות הארכיאולוגיות בארץ מתוארכות לפי הכרונולוגיה המצרית - מתוך תיקונה, באות על פתרונן הסתירות שמוצאים הארכיאולוגים עם התיעוד התנ“כי. 

קיצור הכרונולוגיה המצרית פותר גם את בעיית ”תקופת החושך“ ביוון. 
Image
 Image
Image 

"ועתה צא ולמד, כיצד יתקוממו, יעמדו על נפשותיהם כל המלומדים האלה על וליקובסקי זה. כי הוא חטא בשני העוונות שאין להם כפרה גם יחד: גם בגאוניות וגם בכל מקצועיות..." 
ד"ר עזריאל קרליבך, 
עורך מעריב
Image

 

Go Back  Print  Send Page

בניית אתרים - לייבסיטי

Mah Rabbu Ma'asecha Hashem!!!

HomeImageMolecularMovies.org - A Portal to Cell & Molecular Animation
Directory
Showcase
Learning
Toolkit
News/Blog
Image
ImageImageImageImage
ImageImageBy Scientific Area    |    By Animator / Studio
 Adhesion / Extracellular Matrix
Angiogenesis / Metastasis
Apoptosis
Cell Division / Cell Cycle 
Chemistry / Organic Synthesis 
Cytoskeleton / Molecular Motors 
Developmental Processes 
Disease / Immune System 
DNA / Chromatin 
Drug / Mechanism of Action 
Evolution / Origins of Life 
ImageMetabolic / Respiration
Neuronal Signaling

Prokaryotes
Protein Folding & Stability
Replication
RNA Stability / RNAi 
RTKs & Signal Transduction
Stem Cells
Transcription
Translation
Viruses / Infectious Disease
ImageImageImage
ImageImage
ImageImageImageImage
ImageCell Invasions    |   Jason Sharpe, Donald Ly, Charles Lumsden et al
 Image 
This Maya animation provides a visual simulation of fibroblasts moving through extracellular matrix - the 3D matrix and behavior of the cell population through the matrix are based on mathematical models implemented in MEL.
ImageImageImageImage
ImageThe Inner Life of the Cell    |   XVIVO & Harvard Univeristy
 Image 
This Siggraph award-winning animation depicts the molecular players and signaling processes underlying leukocyte migration, adhesion and extravasation. Structural components of the cytoskeleton and the extracellular matrix, in particular, are highlighted.
ImageImageImageImage
ImageT-Cell Mobility from Blood to Lymph    |   Marc Dryer
 Image 
An interpretative visualization of T-cell mobility from blood to lymph through the thymus-dependent zone of the lymph node using evidence-based research.
ImageImageImage
ImageImage
ImageImageImageImage
ImageAngiogenesis   |   Drew Berry
 Image 
This animation shows the process by which tumors recruit new blood vessels thereby facilitating the metastatic behavior of stray cells that enter the circulation.
ImageImageImageImage
ImageAngiogenesis   |   Greg Leuenberger / Sabertooth Productions
 Image 
A solid tumor secretes angiogenic molecules that induce new blood vessels to form in the vicinity of the mass. These new vessels eventually grow into the tumor providing it with the necessary oxygen and nutrients for continued growth.
ImageImageImage
ImageImage
ImageImageImageImage
ImageApoptosis   |   Drew Berry
 Image 
This stunning Maya animation covers the death receptor signaling pathway that originates with binding of the Fas/TNF family of ligands, triggering of the caspase cascade, cytochrome C release from the mitochondria, apoptosome activation, and ensuing signal amplification.
ImageImageImage
ImageImage
ImageImageImageImage
ImageBacterial Septosome    |   Damien Lariviere
 Image 
A 3D model of the cell-division machinery. In bacteria like E. coli, FtsZ proteins assembles into the Z ring at the cell centre. The ring then recruits at least ten membrane-associated proteins to assemble the cell-division protein machinery.
ImageImageImage
ImageImage
ImageImageImageImage
ImageDiversity Oriented Synthesis    |   Eric Keller
 Image 
A step-by-step depiction of a diversity-oriented organic synthesis reaction on beads (created for Professor Stuart Schreiber at Harvard/Broad). At the same time as the camera follows the reaction in 3D showing bond rearrangements, the viewer can simultaneously follow the reaction in standard stick notation at the bottom of the screen.

ImageImageImageImage
ImageMelamine-PTCDI Self-Assembly on Si(111)-Ag Surface    |   Yan Liang
 Image 
The first part of the animation describes the structure of Si(111)-Ag surface, which is another surface that took the surface science community 25 years to determine. The second part describes the melamine-PTCDI self-assembly on this surface.

ImageImageImageImage
ImageSi(111) Surface 7x7 Reconstruction    |   Yan Liang
 Image 
The Si(111) 7×7 reconstruction was one of the most intriguing problems in surface science. It took surface scientists over 25 years to determine its structure. This 4-minute long animation tries to help the viewers understand and enjoy the beauty of this complicated surface structure.
ImageImageImage
ImageImage
ImageImageImageImage
ImageActin Polymerization & Spire    |   Janet Iwasa
 Image 
Spire mechanism - The protein Spire contains 4 WH2 domains which are each able to bind an actin monomer. A conformational change in linker 3 is thought to catalyze the formation of an actin nucleus.

ImageImageImageImage
ImageActin Polymerization - Model for Spire & Formin    |   Janet Iwasa
 Image 
Spire & formin - The formin cappucino binds to Spire's KIND domain. While bound to Spire, cappucino is unable to act as an actin nucleator, but does not inhibit Spire's nucleation activity.

ImageImageImageImage
ImageCell Quakes - Actin & Actinin    |   Anthony Zielinksi, Charles Lumsden et al
 Image 
This movie presents a simulation of the behavior of selected cytoskeletal components as external forces are applied to the model (representing the forces of cell migration).

ImageImageImageImage
ImageDynamics of ParM Filaments    |   Janet Iwasa
 Image 
ParM polymerization dynamics - ParM polymerizes bidirectionally at the same rate at either end. ATP hydrolysis (shown as color change to red) occurs spontaneously. When a filament end loses its ATP 'cap,' the filament undergoes rapid depolymerization from that end in a process termed dynamic instability.
ImageImageImageImage
ImageKinesin Mechanism   |   Graham Johnson
 Image 
Kinesin walking along a microtubule protofilament demonstrating how energy exchanges combine with binding events to create forward motion.

ImageImageImageImage
Image
Microtubules: Structure, Function & Dynamics   |   Geordie Martinez, Steve Davy
Stylus Visuals
 Image 
This Maya animation depicts the dynamic self-assembly and dissassembly processes of microtubules. The animation incoporates atomic resolution structural information for tubulin (as it undergoes a GTP vs GDP-induced conformational change), as well as cryoEM data for 'protofilament peels' and 'helical ribbons' from the Nogales lab.
ImageImageImageImage
ImageMyosin Mechanism   |   Graham Johnson
 Image 
This animation describes the translation of chemical bond energy of ATP into the sliding motion of thick/thin filaments in our muscle fibers.

ImageImageImageImage
ImageParM and Plasmid Segregation    |   Janet Iwasa
 Image 
DNA segregation by ParM - ParM binds to DNA-binding proteins, called ParR (orange proteins) around which segments of genomic DNA are coiled. Sister plasmid segregation is achieved through bidirectional insertional polymerization of the ParM filaments.
ImageImageImageImage
ImageTensegrity Model    |   Eddy Xuan
 Image 
Mechanotransduction through the cytoskeleton: a hypothetical model of mechano-biochemical conversion through protein-protein interaction. This animation depicts the tensegrity model of the cell's cytoskeleton. 
ImageImageImage
ImageImage
ImageImageImageImage
ImageEmbryonic Development    |   Blake Porch, HHMI / Biointeractive.org
 Image 
Covers the early stages of embyronic development (including fertilization, cleavage, blastocyst formation, implantation, cell migration in the inner cell mass and formation of the embryo's germ layers and neural tube formation).
ImageImageImageImage
ImageEmbryonic Germ Layers    |   Blake Porch, HHMI / Biointeractive.org
 Image 
This animation briefly summarizes the early stages of development and highlights/maps the organ systems in the adult that result from the 3 embryonic germ layers.
ImageImageImage
ImageImage
ImageImageImageImage
ImageClonal Selection Theory    |   Etsuko Uno
 Image 
‘Fighting Infection by Clonal Selection’ was created to commemorate the 50th anniversary of a revolutionary theory called ‘Clonal Selection’ by Nobel Laureate, Sir Frank Macfarlane Burnet.  The animation shows how clonal selection works during a bacterial infection of the throat.
ImageImageImageImage
ImageCrohn's Disease    |   Gardenia Gonzalez Gil / Living Pixels
 Image 
The first two parts of this animation illustrate  features of innate and adaptive immunity relevant to Crohn's disease. The third part describes the mechanism of action of lipoxin resolving infection and inflammation, leading to restoration of healthy  gastrointestinal function.
ImageImageImageImage
ImageDIabetes (type I)    |   Etsuko Uno
 Image 
Approximately 25 million people worldwide, many of them children, suffer from type 1 diabetes.  There is currently no cure for diabetes and those affected with this disease must endure daily insulin injections for the duration of their lives.  This animation illustrates how insulin is normally produced in the body and how its production is destroyed in this disease.
ImageImageImageImage
ImageMultiple Sclerosis    |   Gardenia Gonzalez Gil / Living Pixels
 Image 
This Maya animation describes some immunological and brain barrier defects found in patients with Multiple Sclerosis. It illustrates how these defects progressively deteriorate neuronal signal transmission.
ImageImageImage
ImageImage
ImageImageImageImage
ImageChromatin   |   Drew Berry
 Image 
This animation shows the different levels of chromatin packing - starting with wrapping of DNA around histone octamers and nucleosome assembly, all the way to chromosome condensation during mitosis. 
ImageImageImageImage
ImageDNA structure    |   Drew Berry
 Image 
A series of short animations highlighting the structureand flexibility of the DNA double-helix.


ImageImageImageImage
ImageRestriction Endonuclease Digestion & Ligation   |   Drew Berry
 Image 
This animation depicts the proces of DNA recombination. The DNA plasmid is first digested with the restriction endonuclease enzyme ecoRI. Then, a piece of DNA encoding a gene is inserted into the plasmid by DNA ligase.
ImageImageImage
ImageImage
ImageImageImageImage
ImageRapamycin, FKBP12 & FRAP    |   Eric Keller / Biointeractive.org
 Image 
Dimerization of FKBP12 & FRAP is shown upon binding of the small molecule rapamycin.


ImageImageImage
ImageImage
ImageImageImageImage
ImageFatty Acid Formation in a Geyser    |   Janet Iwasa
 Image 
This animation illustrates a theoretical means by which fatty acids may have been synthesized along the sides of mineral walls of hydrothermal vents or (in this case) a geyser

ImageImageImageImage
ImageFatty Acid Vesicle Formation    |   Janet Iwasa
 Image 
De novo vesicle formation from fatty acid micelles - Protons are represented by the small glowing spheres. Upon protonation, the micelle structure becomes more fluid and may allow for larger numbers of micelles to join together. Vesicle formation occurs by chance after the fatty acid sheet has reached a threshold surface area.
ImageImageImageImage
ImageFatty Acid Vesicle Dynamics    |   Janet Iwasa
 Image 
Although the vesicle structure itself as a whole is extremely stable, individual fatty acids within vesicles are extremely dynamic and are constantly joining and leaving the vesicle membrane.  Protonated fatty acids (shown by the glowing hydrogen in the head group and the lighter colored tail) readily flip between the inner and outer leaflets of the membrane.
ImageImageImageImage
ImageVesicle Entry of Adenosine Mono-Phosphate   |   Janet Iwasa
 Image 
Polar molecules such as AMP may enter fatty acid vesicles through interactions between the fatty acid head groups and the small molecule.

ImageImageImage
ImageImage
ImageImageImageImage
ImageATP Synthase    |   Graham Johnson
 Image 
This animation describes the transfer of chemiosmotic energy into rotational energy, and ultimately into the chemical bond energy of ATP.

ImageImageImageImage
ImageATP Synthase - Part I    |   Said Sannuga
 Image 
The rotary mechanism of mitochondrial ATP synthase.


ImageImageImageImage
ImageATP Synthase - Part II    |   Said Sannuga
 Image 
View from above and then below the F1 domain along the rotating γ-subunit.


ImageImageImageImage
ImageATP Synthase - Part III    |   Said Sannuga
 Image 
How the rotating γ-subunit imposes the conformational states on a β-subunit required for substrate binding, ATP formation and ATP release.

ImageImageImageImage
ImageATP Synthase - Part IV    |   Said Sannuga
 Image 
Three conformations of a catalytic β-subunit produced by 120º rotations of the central γ-subunit.

ImageImageImageImage
ImageATP Synthase - Part V    |   Said Sannuga
 Image 
Changes in the positions of sidechains in the catalytic site of F1-ATPase bringing about binding and subsequent hydrolysis of ATP.

ImageImageImageImage
ImageF1-F0 ATPase - Part I    |   Dale Muzzey
 Image 
This Maya animation describes the mechanism of the F1-Fo ATPase.


ImageImageImageImage
ImageF1-F0 ATPase - Part II    |   Dale Muzzey
 Image 
A fly-through of the morphing ATPase structure in surface representation

.
ImageImageImageImage
ImageF1-F0 ATPase - Part III    |   Dale Muzzey
 Image 
A detailed atomic look at the molecular interactions that stabilize ADP/ATP in the F1-F0 ATPase active site.


ImageImageImageImage
ImageHemoglobin    |   Janet Iwasa
 Image 
A series of short movies decribing the structure of hemoglobin and the conformational changes that accompany binding of oxygen. Page also includes other useful resources.

ImageImageImageImage
ImageSickle Cell Hemoglobin    |   Drew Berry
 Image 
This animation depicts hemoglobin molecules binding to oxygen. The mutant form of hemoglobin is also shown and results in the assembly of the long stiff protein fibers characteristic of the disease sickle cell anemia.
ImageImageImageImage
ImageVillus Capillary - Hemoglobin    |   Gaël McGill
 Image 
An animation that takes the viewer from the tissue level (i.e. a capillary inside a gut villus) all the way to the molecular level (by taking a look at the conformational changes that occur as a result of oxygen release by hemoglobin). 
ImageImageImage
ImageImage
ImageImageImageImage
ImageNeural Long Term Potentiation (LTP)    |   Jason Raine
 Image 
A 3D animation depicting the early molecular events underlying long term potentiation in the spinal cord of pain pathways. (Click on the icon in the "Master's Research Project Examples 2002-2005 area of the page).
ImageImageImageImage
ImageThe Whole Brain Catalog   |   Drew Berry
 Image 
A visualization of the possibilities of the Whole Brain Catalog (http://wholebraincatalog.org), an open source, multi-scale virtual catalog of the mouse brain.
ImageImageImage
ImageImage
ImageImageImageImage
ImageBacterial Flagellum    |   ERATO
 Image 
This series of animations depicts the processes of flagellar motion and assembly in molecular detail (also called the "Protonic Nanomachine Project").

ImageImageImageImage
ImageE. coli Cytoplasm Brownian Dynamics Simulation  |  Sean McGuffee & Adrian Elcock
 Image 
The simulation shows 1000 individual macromolecules diffusing, colliding and transiently associating with each other over the course of 10 microseconds of simulation; the translational diffusion coefficient of the GFP in this model is in agreement with experimental measurements.
ImageImageImageImage
ImageE. coli Cytoplasm    |   Julio Ortiz
 Image 
This 3DS Max fly-through animation uses experimentally-derived concentrations of the 50 most abundant components of the E. coli cytoplasm (not counting DNA).
ImageImageImageImage
ImageSpiroplasma Tomography    |   Julio Ortiz
 Image 
This animation shows the mapping of 70S ribosome positioning and orientation data from a tomogram of Sprioplasma melliferum using pattern recognition.
ImageImageImage
ImageImage
ImageImageImageImage
ImageProteasome   |   Janet Iwasa
 Image 
This Maya animation provides an introduction to proteasome structure as well as an explanation for proteasome-mediated degradation of a target protein (including potential "wobble" of the regulatory particle as it interacts with the core particle).

ImageImageImageImage
ImageProteasome & Ataxin    |   Eric Keller / BioInteractive.org - HHMI
 Image 
This Maya animation depicts the process of ubiquitin-dependent degradation in the proteasome. The effect of mutant ataxin no this process is also shown.

ImageImageImage
ImageImage
ImageImageImageImage
ImageReplication   |   Drew Berry
 Image 
Still one of the more complex and beautiful molecular animations ever made, this movie shows the components and dynamic processes involved in the replication of both the leading and lagging strands of DNA. 

ImageImageImageImage
ImageT7 Primase/Helicase    |   David Gohara / SciAna FilmWorks
 Image 
This animation shows the dancing heptameric complex responsible for unwinding the DNA double helix in bacteriophage and how it is subsequently used as a site for primer synthesis.

ImageImageImageImage
ImageTri Nucleotide Repeat    |   Drew Berry / Biointeractive.org - HHMI
 Image 
This animation shows how a tri-nucletoide repeat can cause the DNA polymerase to 'slip' and incorporate additional nucleotides during the replication process.
ImageImageImage
ImageImage
ImageImageImageImage
ImageDicer   |   Steve Davy, Geordie Martinez / Stylus Visuals
 Image 
This Maya animation shows cleavage of double-stranded RNA into short RNA fragements by the Dicer ribonuclease.

ImageImageImageImage
ImageRNA Folding    |   Biointeractive.org - HHMI
 Image 
A short animated sequence showing how RNA can fold back onto itself (through the formation of intramolecula base-pairing).

ImageImageImage
ImageImage
ImageImageImageImage
ImageClathrin Mediated Receptor Endocytosis    |   Janet Iwasa
 Image 
Dynamics of Lck in the T cell synapse - Upon T cell activation, clusters of signaling proteins form microdomains in the cell membrane. Some proteins, like the tyrosine kinase Lck (white) can freely diffuse between these clusters. Interactions between Lck and proteins in the signalling cluster can cause Lck to become immobilized.
ImageImageImageImage
ImageProtein Expressions - Study N3    |   Monica Zoppe/Scientific Visualization Unit
 Image 
"The video PROTEIN EXPRESSIONS - Study N. 3D is the third (and last) re-elaboration of the movie on which we have been developing our studies in the last two years.

ImageImageImage
ImageImage
ImageImageImageImage
ImageCSF Receptor    |   Drew Berry
 Image 
A molecular view of the surface of a stem cell highlighting the binding of G-CSF by its receptor, dimerization, signal transduction and the resulting effect on cell division and growth.

ImageImageImageImage
ImageIntestinal Crypt Stem Cells - A Clonal Conveyor Belt    |   Eric Keller / Digizyme Inc.
 Image 
This animation, created for Hans Clevers' lab, shows how the entire surface of the intestine is populated via a "clonal conveyor belt" mechanism. Daughter cells born from stem cells located at the base of the crypts travel up and differentiate, thereby pushing existing cells up towards the villus tip (the oldest cells are jetisoned via apoptosis at the villus tip). Adenoma formation is also shown.
ImageImageImageImage
ImageStem Cell Differentiation & Division    |   Drew Berry
 Image 
An animation showing stem cell colonies expanding in the bone marrow. Some daughter cells differentiate intowhite blood cells and migrate into the blood, while others remain stem cells.

ImageImageImageImage
ImageStem Cell Introduction    |   Arkitek Studios
 Image 
A series of animations with audio and text commentary that clearly explain the basics od stem cell biology (including their unique characteristics, pluripotency in the early embryo, presence in adult tissues and embryonic stem cels in culture).

ImageImageImage
ImageImage
ImageImageImageImage
ImageIntroduction to Transcription - part I    |   Drew Berry
 Image 
Transcription factors assemble at a DNA promoter region found at the start of a gene. Promoter regions are characterised by the DNA's base sequence, which contains the repetition TATATA É and for this reason is known as the "TATA box".
ImageImageImageImage
ImageIntroduction to Transcription - part II    |   Drew Berry
 Image 
The RNA polymerase unzips a small portion of the DNA helix exposing the bases on each strand. One of the strands acts as a template for the synthesis of an RNA molecule. The base-sequence code is transcribed by matching these DNA bases with RNA subunits, forming a long RNA polymer chain.
ImageImageImageImage
ImageMECP2 transcription factor    |   Eric Keller / Biointeractive.org - HHMI
 Image 
This animation show the effects of MECP2 DNA methylation (CpG islands) on recruitment of Sina3/HDAC, nuclesome modification and gene silencing.

ImageImageImageImage
Imagep53 transcription factor    |   Eric Keller / Biointeractive.org - HHMI
 Image 
This animation highlights the structure of p53 protein and its binding to a cognate promoter. Recruitment of RNA polymerase and transcription are also shown.


ImageImageImageImage
ImagePolymerase mechanism   |   David Gohara / SciAna FilmWorks
 Image 
A detailed animation highlighting the key residues and side chains within a polymerase active site and the polymerization mechanism.

ImageImageImageImage
ImagePPAR Delta transcription factor    |   Eric Keller / Biointeractive.org - HHMI
 Image 
Shows the effects of drug-binding to the PPAR-delta transcription factor receptor on DNA - a repressor is released thereby turning on the muscle delta network on genes. Oxidative metabolism is activated and leads to reduction of fat pads in adipose tissue.
ImageImageImageImage
ImagePPAR Gamma transcription factor    |   Eric Keller / Biointeractive.org - HHMI
 Image 
Shows fat cells in the adipose tissue adjacent to muscle - storage / breakdown of the cell's fat droplet affects the balance of secreted adiponectin and resistin hormones. The effect of drugs against PPAR gamma is also shown to affect this balance and resulting insulin sensitivity.
ImageImageImage
ImageImage
ImageImageImageImage
ImageElongation Cycle of Protein Biosynthesis    |   A.H. Whiting, J. Frank, R. Agarwal
 Image 
This visualization rotates the assembled ribosome and then shows (using a cut-away) the path of entry of the tRNA during the elongation cycle.

ImageImageImageImage
ImageElongation Factor Tu   |   Graham Johnson
 Image 
An animation highlighting the structural domains of elongation factor Tu and the surface involved in tRNA binding. The conformational change in the switch helix that occurs as a result of GTP hydrolysis results in the release of the tRNA.
ImageImageImageImage
ImageGolgi /ER Visualization    |   Drew Berry
 Image 
A visualization of a cell's cytosplasm derived from electron tomography data from Brad Marsh's laboratory. The different components - nucleus, microtubules, mitochondria, ribosomes, smooth ER, rough ER, Golgi - are highlighted in separate 'passes' and then overaid as one. A great reminder of how crowded cellular interiors are!
ImageImageImageImage
ImageIRES   |   Stylus Visuals
 Image 
This animation compares the structure of ribosome complexes in either IRES-mRNA (Internal RIbosome Entry Sequence) or capped-mRNA conformations.

ImageImageImageImage
ImageRibosome Function    |   Said Sannuga
 Image 
A detailed animation that covers all the central steps in prokaryotic translation (including initiation, elongation and termination steps with many of the invidual protein factors involved in each).
ImageImageImageImage
ImageRIbosome Molecular Ratchet Motion    |   A.H. Whiting, J. Frank, R. Agarwal
 Image 
Shows the 70S ribosome conformation change that occurs upon binding of elongation factor G.


ImageImageImageImage
ImageSignal Recognition Particle    |   Eric Keller, Steve Davy / Stylus Visuals
 Image 
This Maya animation depicts the process by which the translating ribosome is halted by the signal recognition particle (SRP). The ribosome is subsequently brought to the membrane and docked with a channel to translocate the nascent polypeptide chain.
ImageImageImageImage
ImageTranslation   |   Drew Berry
 Image 
Part 3 in Drew Berry's "Central Dogma" animations - the mRNA (yellow) is decoded inside the ribosome (purple and light blue) and translated into a chain of amino acids (red) as aminoacyl-tRNAs (green) deliver each amino-acid cargo (red/pink tip) to the ribosome.
ImageImageImageImage
ImagetRNA-Ribosome Molecular Dynamics Simulation    |   K.Y. Sanbomatsu et al.
 Image 
One of the largest molecular dynamic simulations in biology - studies the interactions of tRNA as it enters the ribosome.

ImageImageImageImage
ImagetRNA acts as a flexible molecular spring during codon recognition    |   Yu Chen
 Image 
A movie showing how aminoacyl-tRNA acts as a flexible molecular spring during codon recognition and accomodation.

ImageImageImage
ImageImage
ImageImageImageImage
ImageBacteriophage T4    |   Seyet, LLC
 Image 
An accurate visualization of the Bacteriophage T4 based on Cryo-EM datasets of the virus. The scope of the animation is to show the infection process of T4 into an E. coli cell. All scientific data sets and motion based off of research from Michael Rossmann Laboratory (Purdue University).

ImageImageImageImage
ImageCapsid Molecular Dynamics Simulation    |   Geordie Martinez / Stylus Visuals
 Image 
A Maya-rendered visualization of a VMD molecular dynamics simulation. Created for David Chandler's lab at UC Berkeley, this movie depicts the physics of viral capsid formation while summarizing some of the technical steps involved in its creation.
ImageImageImageImage
ImageDengue Virus Entry    |   Janet Iwasa, Gaël McGill (Digizyme) & Michael Astrachan (XVIVO)
 Image 
A narrated animation depicting the events that lead to Dengue virus entry into a host cell. In particular, rearrangements and conformational changes in the Dengue glycoprotein E are shown. These lead to membrane fusion and subsequent release of the viral payload into the host cell cytoplasm. Created for WGBH.
ImageImageImageImage
ImageHIV Assembly, Budding and Maturation    |   Ken VanderStoep
 Image 
A visualization of the capsid protein lattice structure that forms during the assembly of immature HIV-1 particles. (Click on the icon in the "Master's Research Project Examples 2002-2005 area of the page).

ImageHIV Entry - gp41-mediated membrane fusion    |   Gaël McGill
 Image 
This Maya animation depicts the process by which HIV's gp41 protein mediates the fusion of viral and cellular membranes during virus entry. In addition, strategies for inhibiting this process with peptide or small molecule inhibitors are shown.
ImageImageImageImage

ImageThe Lifecycle of Malaria (Part 1)    |   Drew Berry
 Image 
This animation represents part-1 of a 2-part series depicting the events of the malaria parasite lifecycle.
The parasite is shown entering the human host following a mosquito bite and we follow its progression initially to the liver and subsequently targeting erythrocytes on a large scale.
ImageImageImageImage

ImageThe Lifecycle of Malaria (Part 2)    |   Drew Berry
 Image 
Part 2 depicts events in the mosquito host.
The malaria parasite is shown reproducing in the mosquito's stomach followed by the development of cysts and infection of the salivary glands.
ImageImageImageImage

ImagePoliovirus    |   Art Olson, Dan Bloch
 Image 
This 1985 animation (programmed in GRAMPS) describes the structure of the poliovirus (seen here at near-atomic resolution). Icoshedral symmetry of the capsid, positioning and interaction of each of the V 1 - 4 proteins is described in detail. 
ImageImageImageImage
ImageImageImageImage
ImagePseudomonas    |   Graham Johnson
 Image 
A sequence depicting Pseudomonas infection of lung epithelial cells.


ImageImageImageImage
ImageReovirus Entry    |   Dale Muzzey / Digizyme
 Image 
This animation highlights the structure of the reovirus - we follow the virus as it gets cleaved/activated in the gut lumen, undergoes endocytosis and subsequently begins replication and export of its viral RNA once in the cytosol of the target cell.
ImageImageImageImage
ImageEarly Events in Reovirus Entry    |   Gaël McGill, Janet Iwasa
 Image 
A more in-depth look at the early events of reovirus entry. This current version highlights each of the 8 proteins that make up the virus as well as its icosahedral symmetry. The virus is activated upon trypsin 'attack' and cleavage of the outer protein layer. The virus then binds to and enters the cell via the JAM-1 receptor and clathrin-mediated endocytosis.
ImageImageImageImage
ImageTomato Bushy Stunt Virus    |   Art Olson
 Image 
This 1981 landmark molecular animation was programmed in GRAMPS and captured from a computer screen with a Bolex 16 mm movie camera. Elegantly choreographed and paced, the movie presents the structure of the tomato bushy stunt virus (TBSV) - the first viral structure solved at atomic-resolution (2.9 angstroms) by Steve Harrison in 1978. Morphing animations of capsid proteins are also shown and explain the swelling of the viral particle observed at high pH.
ImageImageImageImage
ImageViral DNA Packaging - Part I    |   Eric Keller / Stylus Visuals
 Image 
This 2-part Maya animation depicts the process of nucleic acid packing/assembly into the viral capsid. Part I shows the process simultaneous with the measured kinetics of packing and force (displayed on the right). 
ImageImageImageImage
ImageViral DNA Packaging - Part II    |   Eric Keller / Stylus Visuals
 Image 
This 2-part Maya animation depicts the process of nucleic acid packing/assembly into the viral capsid. Part II focuses on the molecular machinery responsible for pulling the nucleic aacid strand inside the capsid.
ImageImageImageImageImage
 
ImageImageImage
ImageAbout     Sitemap     Contact