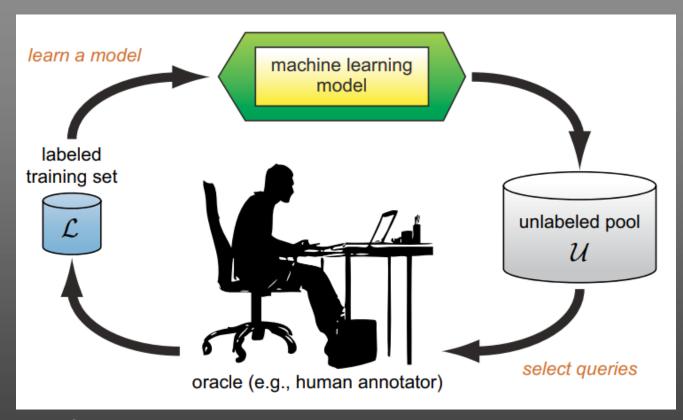


Semi-Supervised Active Learning with Temporal Output Discrepancy

Siyu Huang, Tianyang Wang, Haoyi Xiong, Jun Huan, Dejing Dou Baidu Research & Austin Peay State University & Styling AI

Active Learning



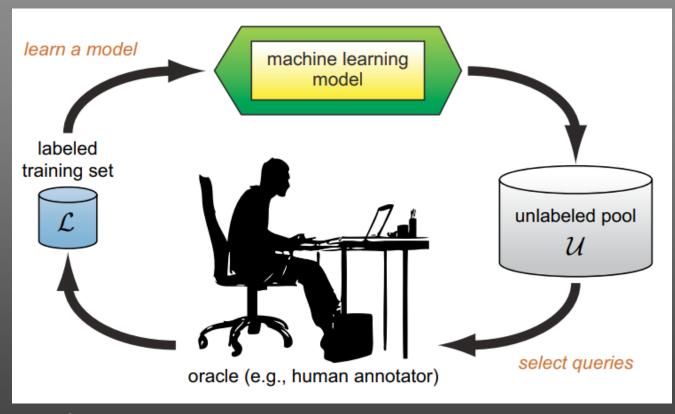
Settles 2010

Diversity-aware Approaches Uncertainty-aware Approaches

- *Margin between posterior probabilities*
- Entropy of posterior probabilities
- Expected model change
- Expected error reduction
- Distance to decision boundary
- Adversarial discrimination

Hybrid Methods

Active Learning



Settles 2010

Diversity-aware Approaches Uncertainty-aware Approaches

- *Margin between posterior probabilities*
- Entropy of posterior probabilities
- Expected model change
- Expected error reduction
- Distance to decision boundary
- Adversarial discrimination

Hybrid Methods

Loss Estimation via Temporal Output Discrepancy (TOD)

• Temporal Output Discrepancy (TOD):

The discrepancy of outputs of a neural network f at different GD steps.

$$D_t^{\{T\}}(x) \stackrel{\text{def}}{=} ||f(x; w_{t+T}) - f(x; w_t)||$$

Why can TOD estimate sample loss?

With an appropriate setting of learning rate η , we have

• Theorem 1

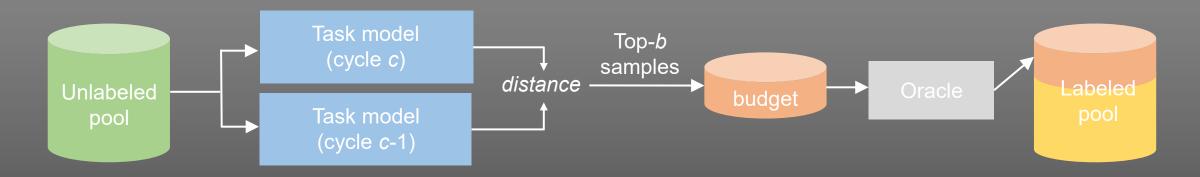
$$D_t^{\{1\}}(x) \le \eta \sqrt{2L_t(x)} \|\nabla_w f(x; w_t)\|^2$$

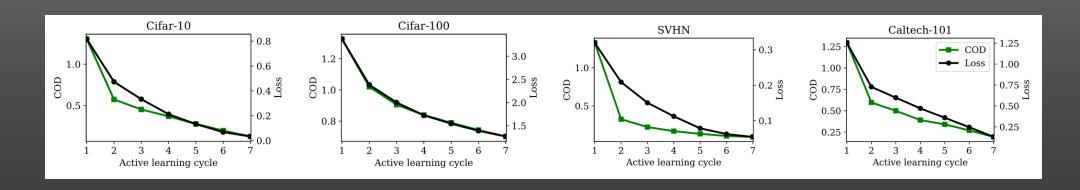
Corollary 2

$$D_t^{\{T\}}(x) \le \sqrt{2T\eta} C \sqrt{\sum_{\tau=t}^{t+T-1} L_\tau(x)}.$$

TOD-based Active Learning

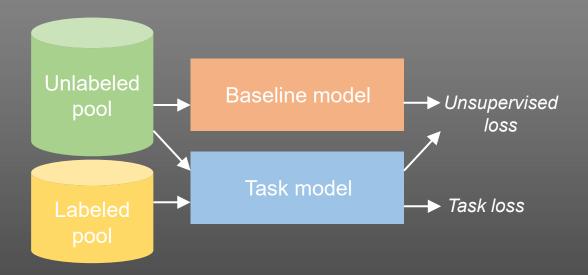
• Cyclic Output Discrepancy (COD) as data sampling strategy





TOD-based Active Learning

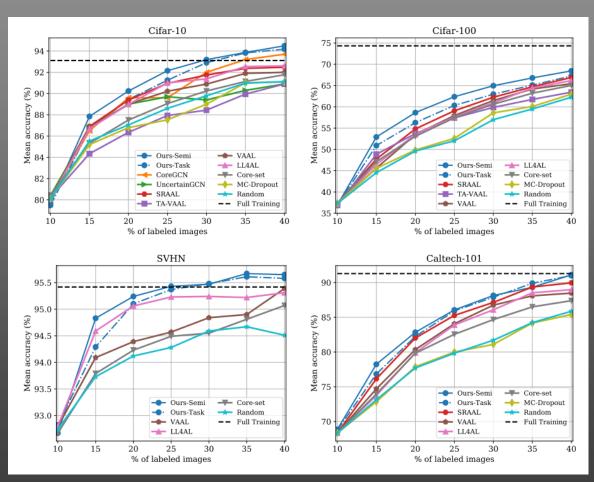
• Semi-supervised task training



Baseline model

Mean Teacher [Tarvainen and Harri, NeurIPS 2017] The exponential moving average of historical model parameters

Experimental Comparison of Active Learning Methods



	Cifar10	SVHN	Caltech-101	Extra model?
Coreset (ICLR'18)	91.4s	168.7s	48.2s	×
VAAL (ICCV'19)	13.0s	17.2s	32.6s	$\sqrt{}$
LL4AL (CVPR'19)	7.7s	10.8s	39.6s	$\sqrt{}$
Ours	7.2s	10.1s	26.9s	×

Efficiency of active sampling strategies (One active sampling iteration)

Active learning performance on four datasets

Summary

- Temporal Output Discrepancy (TOD) estimates the loss of unlabeled samples by evaluating the discrepancy of neural network outputs at different GD steps.
- TOD is a lower-bound of accumulated sample loss.
- Based on TOD, we develop an unlabeled data sampling strategy (COD) and a semi-supervised training scheme for active learning.

https://github.com/siyuhuang/TOD