Center for Visual Information Technology IIIT Hyderabad

Linear Algebra - Groups, Vector Spaces, Matrix Transformations

Lovish, Vikram lovish1234@gmail.com, vikram.voleti@gmail.com

Contents

Overview

Groups, Rings, Fields
6 properties in number theory

Vector Space

Transformation of vector spaces

Affine Transformation

Overview

- ▶ 6 properties in number theory
- Groups, Rings, Fields
- ▶ Vector Space <- Field</p>
- ► Matrix Transformation <- Group
- Affine Transformation

Groups, Rings, Fields

6 properties in number theory

Set: a set of elements

Binary operator: an operator than works on two elements and produces one element

6 properties in number theory:

One binary operator (eg.: +):

- ▶ Closure
- Associative
- Identity
- Inverse
- Commutative

Two binary operators (eg. +, .):

Distributive

Groups, Rings, Fields

6 properties in number theory

6 properties in number theory:

One binary operator (eg.: +):

- ▶ Closure $\forall a, b \in S \Rightarrow a \star b \in S$
- ▶ Associative $a \star (b \star c) = (a \star b) \star c$
- ▶ Identity \exists **0** ∈ $S \mid a \star \mathbf{0} = a$
- ▶ Inverse $\exists b \in S \mid a \star b = 0$
- ▶ Commutative a * b = b * a

Two binary operators (eg. +, .):

▶ Distributive — $a\triangle(b \star c) = (a\triangle b) \star (a\triangle c)$

Example:

$$S = \mathbb{N}, \mathbb{W}, \mathbb{Z}$$

With **addition** operation, check closure, associative, identity, inverse, commutative.

With addition and multiplication, check distributive.

Groups, Rings, Fields

Group:

A group consists of a non-empty set G and a binary operator \star s.t. (assume $a, b, c \in G$):

- ▶ \star is **closed** under *G*, i.e. $\forall a, b \in G, (a \star b) \in G$
- ▶ \star is associative, i.e. $\forall a, b, c \in G, a \star (b \star c) = (a \star b) \star c$
- ▶ G contains the **identity** element e of \star , defined as: $\exists e \in G \mid \forall a \in G, a \star e = e \star a = a$
- ▶ G contains **inverse** elements, i.e. $\forall a \in G, \exists z \in G \mid (a \star z) = e$

In addition, if \star is **commutative** in G, i.e. $\forall a, b \in G, a \star b = b \star a$, G is called an **abelian group**.

Example:

Check if $(\mathbb{N},+)$, $(\mathbb{Z},+)$, $(\mathbb{R},.)$ are groups, and/or abelian groups.

Ring:

A structure (R,+,.) is a **ring** if R is a non-empty set, + and . are binary operations s.t.:

- ► (R, +) is an abelian group, i.e. Closure, Associative, Identity, Inverse, Commutative
- ► (R, .) satisfies Closure, Associative
- ▶ . **distributes** over +, i.e. $\forall a, b, c \in R$, a.(b+c) = a.b + a.c and (a+b).c = a.c + b.c

Example:

Check if $(\mathbb{Z}, +, .)$, $(\mathbb{Z}_n, +, .)$, $(\mathbb{R}, +, .)$ are rings.

Field:

A structure (R,+,.) is a **field** if R is a non-empty set, + and . are binary operations s.t.:

- ► (R, +) is an abelian group, i.e. Closure, Associative, Identity, Inverse, Commutative
- ► (R\{0},.) is an abelian group, i.e. Closure, Associative, Identity, Inverse, Commutative
- ▶ . **distributes** over +, i.e. $\forall a, b, c \in R$, a.(b+c) = a.b + a.c and (a+b).c = a.c + b.c

Example:

Check if $(\mathbb{Z}, +, .)$, $(\mathbb{Q}, +, .)$, $(\mathbb{R}, +, .)$ are fields.

Vector Space

Vector Space:

V is a **vector space** or **linear space** over the field R if $(a, b \in R, u, v \in V)$:

- ► Addition (V, +) is an abelian group, i.e. Closure, Associative, Identity, Inverse, Commutative
- ► Scalar Multiplication is **Associative**, i.e. $a.(b.\mathbf{v}) = (a.b).\mathbf{v}$
- ▶ Scalar Multiplicative **Identity**, i.e. $\exists 1 \in R \mid 1.v = v$
- Addition and Scalar Multiplication are **Distributive**, i.e. $a.(\mathbf{u} + \mathbf{v}) = a.\mathbf{u} + a.\mathbf{v}$ and $a.(\mathbf{u} + \mathbf{v}) = a.\mathbf{u} + a.\mathbf{v}$

Example:

Check if \mathbb{R}^n is a vector space.

Transformation of vector spaces

Linear Transformation:

$$L: \mathbb{R}^n \to \mathbb{R}^m$$

such that

$$L(\mathbf{u} + \mathbf{v}) = L(\mathbf{u}) + L(\mathbf{v})$$

$$ightharpoonup L(a.\mathbf{v}) = a.L(\mathbf{v})$$

L can be represented as a matrix $A \in \mathbb{R}^{m \times n}$ s.t.

$$L(\mathbf{v}) = \mathbf{A}\mathbf{v}$$

The set of all real (non-singular) $n \times n$ matrices with matrix multiplication forms a **group**.

Affine Transformation

Affine Transformation:

