
 © BASIS International Ltd. - March 2010

 - DocOut -
Interfacing Reports with the Barista Document Management System

By Chris Hawkins

Introduction

'AddonSoftware by Barista' takes advantage of Barista®’s versatile Document
Management System knows as DocOut. With DocOut, users can preview reports on
the screen, save them in any of several formats – Portable Document File (.pdf), tab-
delimited text (.txt), or comma-separated text (.csv), etc. – and also print or send as an
e-mail or fascimile.

Developers can easily convert any report that currently prints in a well-defined tabular
format to use DocOut. This tutorial describes how to alter a traditional report program,
that is, a report that prints directly to a print channel, into a program that interfaces with
DocOut.

Overview

DocOut report programs use a series of vectors and string arrays to store all of the
output data for a report rather than printing lines directly to a printer or file. The report
program, therefore, does not actually print, but simply builds the necessary vectors and
string arrays.

When the report program finishes, it runs the Barista public bas_process_end.bbj. Aside
from other housekeeping functions, bas_process_end.bbj checks to see if the main
output vector contains data. If so, it calls the DocOut utility, which processes and then
presents the formatted output in the DocOut display window. When the user closes the
DocOut window, bas_process_end.bbj either runs the next overlay or terminates in the
usual manner. The next overlay is optional, and typically is used in register/update pair
of programs.

From the DocOut display window, users can adjust print settings such as column or font
size, as well as generate a print version or any of several file versions of the report. With
appropriate setup on the users' system, they can send the saved files as an e-mail or
fax.

DocOut: Interfacing Reports with the Barista Document Management System

 © BASIS International Ltd. - March 2010

DocOut Basics

String Arrays
DocOut reports must use the headings$[] and columns$[] string arrays for report and
column headings, respectively. Dim the headings$[] array to number of banner lines
you want such as the report title, from/to customer name, etc. (most Addon reports use
this array already). If you are using forced page breaks and subheadings (more on that
later), dim headings$[] with an additional item and set it to

headings$[n]= "[HEADER]"

so DocOut can replace the "[HEADER]" token with the actual subheading as it processes
data in the various vectors.

Dim the columns$[] array to have 12 slots for each report column. For each column,
initialize the column heading text, column type (C=character, N=numeric), size (number
of characters), formatting mask (if numeric), and whether or not to underline the column
as part of a total row. Although not required by DocOut, use a numeric variable such
as "columns" to specify the number of columns in the report. This makes it easier to add
blank lines and use the BrkVect! and TotVect! vectors, all described below.

 Important: Name these arrays headings$[] and columns$[]. In addition,
the second coordinate in the columns$[] array is fixed: [n,0] is the column
heading text, [n,1] is the column type (C/N), [n,2] is the column size in
characters, [n,3] is the mask, if applicable, and [n,10]="T" if this column is
underlined in a total row.

The following parameters are available for the columns$[] array:
[col,0] = Header text
[col,1] = Data type
[col,2] = Column width original - Characters
[col,3] = Output mask
[col,4] = Control type on form
[col,5] = Justification (L, R or C); overrides default based on [col,1] type
[col,6] = Column width defined by Inquiry/Query export (reserved by Barista)
[col,7] = Truncated data length
[col,8] = Column width adjusted - Pixels
[col,9] = Column width adjusted - Characters

DocOut: Interfacing Reports with the Barista Document Management System

 © BASIS International Ltd. - March 2010

[col,10] = Column flags. One or more of the following:
"T" = Underlined total column
"1-9" Repeated data on new page. (By row: 1=first row, 2=second row, etc.)

[col,11] = Number of columns to span header text
[col,12] = Not used

The following code shows how we might create headings$[] and columns$[] for a
simple customer report:

rem --- Retrieve sysinfo data

 sysinfo_template$=stbl("+SYSINFO_TPL",err=*next)
 dim sysinfo$:sysinfo_template$
 sysinfo$=stbl("+SYSINFO",err=*next)

rem --- Document headings

 dim headings$[3]
 headings$[0]=sysinfo.firm_name$
 headings$[1]=sysinfo.task_desc$
 headings$[2]="Customer Report"
 headings$[3]="[HEADER]"

rem --- Document columns

 columns=3
 dim columns$[columns,10]
 columns$[0,0]="Customer",columns$[0,1]="C",columns$[0,2]="10"
 columns$[1,0]="Name",columns$[1,1]="C",columns$[1,2]="30"
 columns$[2,0]="Phone",columns$[2,1]="C",columns$[2,2]="15"
 columns$[3,0]="Balance",columns$[3,1]="N",columns$[3,2]="15",
: columns$[3,3]=m$,columns$[3,10]="T"

You can create multiline headings by using the ^ character in the [n,0] element of the
columns$[] array as follows:

columns$[0,0]="Customer^Number"

formats the column headings like:

Customer

DocOut: Interfacing Reports with the Barista Document Management System

 © BASIS International Ltd. - March 2010

 Number Name Phone Balance

Enter the alignment for the heading within the column: C=center, R=right, L=left.
The default is R, right justified. For multi-line headings, use ^ (Shift-6) to separate
alignments for each line. For example, for a 3-line heading, entering C^L^R will center
the first line, left justify the second line, and right justify the third line.
The above example uses simple literals to create the column headings. Addon reports
use a different syntax that resolves a column heading key to the appropriate translation
for the language in use by the client. The key/translation pairs are stored in translation
bundles - a series of flat files containing translations for the desired languages. See
the BBjabber section of the Barista Language Utilities document to learn how you can
localize DocOut reports.

Vectors

A BBj vector is an array, the elements of which can contain any allowed data type or
object (see BBjVector for more information). All of the vectors used in DocOut contain
string data only.

 Important: The formatting and presentation of DocOut reports are in grids
(think of a spreadsheet). Every report row must contain the same number of
fields/cells to avoid a wrapping or stair-stepping effect. Therefore, when adding
data to the main report vector, you always need to add enough items – even if
some are blank – to constitute a complete row.

Place the following piece of code in the initialization section of a report program to
create the vectors and set up some other standard strings for DocOut:

rem --- Document initializations

 OutVect!=bbjAPI().getSysGui().makeVector()
 HdrVect!=bbjAPI().getSysGui().makeVector()
 BrkVect!=bbjAPI().getSysGui().makeVector()
 TotVect!=bbjAPI().getSysGui().makeVector()
 rep_date$=date(0:"%Mz/%Dz/%Yd")
 rep_date_stamp$=date(0:"%Yd%Mz%Dz")
 rep_time$=date(0:"%hz:%mz %p")
 rep_time_stamp$=date(0:"%Hz%mz%sz")
 rep_prog$=pgm(-2)

DocOut: Interfacing Reports with the Barista Document Management System

https://docs.google.com/a/basis.com/document/d/1MP-0n2T63NvTvWLfqJ-ZKDzHVDGmPD2TIztu7G_TQu0/edit
http://www.basis.com/onlinedocs/documentation/index.htm#%3Cid=219

 © BASIS International Ltd. - March 2010

OutVect!
OutVect! is the main vector, containing the majority of the report data. Replace lines that
print data to a printer channel with code that adds the data to OutVect!:

from

print (prt_chan) @(10),cust_rec.cust_id$,
: @(20),cust_rec.name$,
: @(50),cust_rec.phone$,
: @(65),str(cust_rec.balance:m$)

to

OutVect!.addItem(cust_rec.cust_id$)
OutVect!.addItem(cust_rec.name $)
OutVect!.addItem(cust_rec.phone$)
OutVect!.addItem(str(cust_rec.balance))

Remember, since you need to add a complete row’s worth of items to the vector for
each row, you may have some blank items. Add blanks to the vector one at a time like
this:

OutVect!.addItem("")

or by creating a function like this:

def fnblank(q0)
 for q1=1 to q0
 OutVect!.addItem("")
 next q1
 return q1
fnend

and using instead of OutVect!.addItem("")in this manner:

x=fnblank(3)

BrkVect! and HdrVect!
Many reports are built to break and start a new page when certain data changes.
DocOut uses BrkVect! and HdrVect! to determine where in OutVect! a break should
occur and what heading information should appear at the top of the new page. For
example, suppose we have a report that breaks when the customer changes. The

DocOut: Interfacing Reports with the Barista Document Management System

 © BASIS International Ltd. - March 2010

traditional code may look like this:

customer_break:
 while old_cust_id$
 print (prt_dev)@(80),"Total for: "+old_cust_id$,@(100),cust_tot
 break
 wend
 read record (cust_chan,key=new_cust_id$) cust_rec$
 gosub report_headings
 print (prt_dev)@(5),"Customer: "+cust_rec.cust_id$+" "+cust_rec.name$
return

In a DocOut version of the report, we would alter this code slightly:

customer_break:
 while old_cust_id$
 OutVect!.addItem("")
 OutVect!.addItem("")
 OutVect!.addItem("Total for: "+old_cust_id$)
 OutVect!.addItem(str(cust_tot))
 break
 wend
 read record (cust_chan,key=new_cust_id$) cust_rec$

 BrkVect!.addItem(str(OutVect!.size()/(columns+1)))
 HdrVect!.addItem("Customer: "+cust_rec.cust_id$+" "+cust_rec.name$)
return

The calculation for BrkVect! tells DocOut at what point to force a page break. Here,
we are using the zero-based variable "columns" to store our row size so "columns" of
3 indicates that each row holds 4 cells/fields. If the size of OutVect! is 60, then setting
BrkVect! to 60/4 tells DocOut to begin a new page after row 15. The "[header]" token
loaded in the headings$[] array is replaced with the data in HdrVect! corresponding
to the row calculation stored in BrkVect!. You might also notice that when printing the
subtotal line, we added some blanks to OutVect! in order to construct a complete row.

If you want to force a page break but are not concerned with a subheading, or you are
including your subheading information in OutVect!, then you can use BrkVect! without
HdrVect!. You cannot, however, use HdrVect! alone, because without BrkVect!, DocOut
has no idea where to place the HdrVect! data.

DocOut: Interfacing Reports with the Barista Document Management System

 © BASIS International Ltd. - March 2010

 Important: The DocOut preview window displays as one continuous grid
with a scrollbar. Report headings are at the top of the window, outside of the grid.
As such, the preview window will not show subheadings (unless you explicitly
repeated them in an OutVect! row), but they will be incorporated into print and
PDF output.

TotVect!
If a report contains underlines, as is often the case when printing totals, use TotVect!
in conjunction with columns$[n,10]="T" to instruct DocOut to underline (in print or
PDF output) specified columns. TotVect! is set the same way as BrkVect!; it contains a
calculated row count where the underlining should occur. When DocOut processes a
row specified in TotVect!, it underlines any column marked with a "T" in the columns$[]
array. Given the following in the columns$[] array,

columns$[3,0]="Balance",columns$[3,1]="N",columns$[3,2]="15"
columns$[3,3]=m$,columns$[3,10]="T"

we can add a line to our customer break routine to underline the customer balance line
prior to printing the subtotal as follows:

customer_break:
 while old_cust_id$
 TotVect!.addItem(str(OutVect!.size()/(columns+1)))
 OutVect!.addItem("")
 OutVect!.addItem("")
 OutVect!.addItem("Total for: "+old_cust_id$)
 OutVect!.addItem(str(cust_tot))
 break
 wend

Special Formatting

In more complex situations such as header/detail reports, you might use a single
column for both character and numeric data. In this case, tell DocOut how to position
the data you are adding to OutVect!. As you add your data to OutVect!, you can apply
bold, italics, or increase/decrease the font size by concatenating a 00 plus these
formatting characters:

DocOut: Interfacing Reports with the Barista Document Management System

 © BASIS International Ltd. - March 2010

B bold
I italics
R right justify
L left justify
C center
+ increase font size
– decrease font size

For example, this entry makes the customer name appear bold and in italics:

OutVect!.addItem(cust_rec.name$")+$00$+"BI

When using special formatting, be sure to include this line of code near the end of your
program, so DocOut knows to process OutVect! with special formatting in mind:

out_action$="FORMAT"

Running an Overlay

Frequently, once a report is finished, you would want to continue with an update
program. With a report program that prints directly to a printer, you would most likely
run the update program directly from the report. We need a different approach when
interfacing with DocOut, since the report program itself does not create any output.
We don't want to continue with an update until we handed control over to DocOut so
the user can view and/or print the report. Use next_overlay$ to specify a program
that should be run after DocOut. When DocOut finishes, it runs the Barista public
bas_process_end, which in turn runs next_overlay$. You can "chain together" several
related programs in this manner.

Miscellaneous

Cleanup

Once converted to interface with DocOut, a traditional report program will likely
have "leftovers" that you can remove, such as code to increment line counts, print report
headings, and open the printer.

Non-tabular Reports

Some reports have a format that does not lend itself to a grid-type display like the
Addon Vendor Detail Listing. In this case, set up your columns$[] array to be a single

DocOut: Interfacing Reports with the Barista Document Management System

 © BASIS International Ltd. - March 2010

column and leave the description blank. Then, instead of replacing each item in the print
row with an OutVect!.addItem() assignment as we saw in the example, dim a string,
subscript your column heading and print data into it. Then add the string to OutVect! like
this:

dim columns$[0,10]
columns$[0,0]="",columns$[0,1]="C",columns$[0,2]="80"
...
dim pbuf$(80)
pbuf$(1,10)="Cust ID",pbuf$(15,10)="Name",pbuf$(50,10)="Phone",pbuf$(70)
="Balance"
OutVect!.addItem(pbuf$)
...
dim pbuf$(80)
pbuf$(1,10)=cust_rec.cust_id$,pbuf$(15,30)=cust_rec.name$
pbuf$(50,15)=fnphone$(cust_rec.phone$),pbuf$(70)=str(cust_rec.balance:m$)
OutVect!.addItem(pbuf$)

 Note: The default font for DocOut is proportional. If you use this single-
column method for any reports, they will only display and line-up correctly if you
change the Print Settings for DocOut to a fixed-width font.

Report Width

DocOut does have some capability to merge columns when creating print or PDF
output. Suppose you have a report that lists a customer ID and name on one line, with
several periodic amounts on the line(s) below. It is possible that you will run out of room
across the page if you size the name column large enough to accommodate the full
name always. You have two options. First, you can keep the name column large and
let DocOut split the report page in two when it prints or creates a PDF (this is the same
mechanism used by most spreadsheets when the data is larger than the print area).
Alternatively, you can design the report so that the customer name column is under-
sized. This appears as a truncation in the DocOut display window, but when DocOut
generates the print or PDF output, it allows the customer name to merge into the cells to
the right, as long as they are empty.

DocOut: Interfacing Reports with the Barista Document Management System

