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automobile Data concerning automobile prices.

Description

The automobile data frame has 201 rows and 25 columns and concerns automobiles in the 1985
Auto Imports Database. The response variable, price, is the log selling price of the automobile.
There are 7 categorical predictors and 17 continuous / integer predictors which are features of the
automobiles. 41 automobiles have missing data in one or more of the feature entries. This dataset
is true to the original except with a few of the predictors dropped.

Usage

data(automobile)
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Source

K Bache and M Lichman. UCI machine learning repository, 2013

. http://archive.ics.uci.edu/ml/datasets/Automobile

bartMachine Build a BART Model

Description

Builds a BART model for regression or classification.

Usage
bartMachine(
X = NULL,
y = NULL,
Xy = NULL,

num_trees = 50,

num_burn_in = 250,
num_iterations_after_burn_in = 1000,
alpha = 0.95,

beta = 2,

k =2,

q=0.9,

nu = 3,

prob_rule_class = 0.5,
mh_prob_steps = c(2.5, 2.5, 4)/9,
debug_log = FALSE,

run_in_sample = TRUE,

s_sq_y = "mse",

sig_sqg_est = NULL,
print_tree_illustrations = FALSE,
cov_prior_vec = NULL,
interaction_constraints = NULL,
use_missing_data = FALSE,
covariates_to_permute = NULL,
num_rand_samps_in_library = 10000,

use_missing_data_dummies_as_covars = FALSE,
replace_missing_data_with_x_j_bar = FALSE,
impute_missingness_with_rf_impute = FALSE,

impute_missingness_with_x_j_bar_for_1m =
mem_cache_for_speed = TRUE,
flush_indices_to_save_RAM = TRUE,
serialize = FALSE,

seed = NULL,

use_xoshiro = FALSE,

verbose = TRUE
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build_bart_machine(

X = NULL,
y = NULL,
Xy = NULL,

num_trees = 50,

num_burn_in = 250,
num_iterations_after_burn_in = 1000,

alpha = 0.95,

beta = 2,

k =2,

q=0.9,

nu = 3,

prob_rule_class = 0.5,

mh_prob_steps = c(2.5, 2.5, 4)/9,
debug_log = FALSE,

run_in_sample = TRUE,

s_sq_y = "mse",

sig_sqg_est = NULL,
print_tree_illustrations = FALSE,
cov_prior_vec = NULL,
interaction_constraints = NULL,
use_missing_data = FALSE,
covariates_to_permute = NULL,
num_rand_samps_in_library = 10000,
use_missing_data_dummies_as_covars = FALSE,
replace_missing_data_with_x_j_bar = FALSE,
impute_missingness_with_rf_impute = FALSE,
impute_missingness_with_x_j_bar_for_lm = TRUE,
mem_cache_for_speed = TRUE,
flush_indices_to_save_RAM = TRUE,
serialize = FALSE,

seed = NULL,

use_xoshiro = FALSE,

verbose = TRUE

)
Arguments

X Data frame of predictors. Factors are automatically converted to dummies inter-
nally.

y Vector of response variable. If y is numeric or integer, a BART model for re-
gression is built. If y is a factor with two levels, a BART model for classification
is built.

Xy A data frame of predictors and the response. The response column must be
named “y”.

num_trees The number of trees to be grown in the sum-of-trees model.

num_burn_in Number of MCMC samples to be discarded as “burn-in”.
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num_iterations_after_burn_in

alpha
beta
k

nu

prob_rule_class

mh_prob_steps

debug_log

run_in_sample

S_sq-y

sig_sq_est

Number of MCMC samples to draw from the posterior distribution of f (2).
Base hyperparameter in tree prior for whether a node is nonterminal or not.
Power hyperparameter in tree prior for whether a node is nonterminal or not.

For regression, k determines the prior probability that £(Y'|X) is contained in
the interval (Ymin, Ymaz)> based on a normal distribution. For example, when
k = 2, the prior probability is 95%. For classification, k determines the prior
probability that E(Y|X) is between (—3, 3). Note that a larger value of k results
in more shrinkage and a more conservative fit.

Quantile of the prior on the error variance at which the data-based estimate is
placed. Note that the larger the value of g, the more aggressive the fit as you
are placing more prior weight on values lower than the data-based estimate. Not
used for classification.

Degrees of freedom for the inverse x? prior. Not used for classification.

Threshold for classification. Any observation with a conditional probability
greater than prob_class_rule is assigned the “positive” outcome. Note that
the first level of the response is treated as the “positive” outcome and the second
is treated as the “negative” outcome.

Vector of prior probabilities for proposing changes to the tree structures: (GROW,
PRUNE, CHANGE)

If TRUE, additional information about the model construction are printed to a
file in the working directory.

If TRUE, in-sample statistics such as f (x), Pseudo-R?, and RMSE are com-
puted. Setting this to FALSE when not needed can decrease computation time.

If “mse”, a data-based estimated of the error variance is computed as the MSE
from ordinary least squares regression. If “var”., the data-based estimate is com-
puted as the variance of the response. Not used in classification.

Pass in an estimate of the maximum sig_sq of the model. This is useful to cache
somewhere and then pass in during cross-validation since the default method
of estimation is a linear model. In large dimensions, linear model estimation is
slow.

print_tree_illustrations

cov_prior_vec

For every Gibbs iteration, print out an illustration of the trees side-by-side. This
is excruciatingly SLOW!

Vector assigning relative weights to how often a particular variable should be
proposed as a candidate for a split. The vector is internally normalized so that the
weights sum to 1. Note that the length of this vector must equal the length of the
design matrix after dummification and augmentation of indicators of missing-
ness (if used). To see what the dummified matrix looks like, use dummify_data.
See Bleich et al. (2013) for more details on when this feature is most appropri-
ate.

interaction_constraints

A list of vectors indicating where the vectors are sets of elements allowed to
interact with one another. The elements in each vector correspond to features
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in the data frame X specified by either the column number as a numeric value
or the column name as a string e.g. list(c(1, 2), c("nox”, "rm")). The
elements of the vectors can be reused among components for any level of inter-
action complexity you wish. Default is NULL which corresponds to the vanilla
modeling procedure where all interactions are legal. For a pure generalized
added model, use as.list(seq(1 : p)) where p is the number of columns in
the design matrix X.

use_missing_data

If TRUE, the missing data feature is used to automatically handle missing data
without imputation. See Kapelner and Bleich (2013) for details.

covariates_to_permute

Private argument for cov_importance_test. Not needed by user.

num_rand_samps_in_library

Before building a BART model, samples from the Standard Normal and x?(v)
are drawn to be used in the MCMC steps. This parameter determines the number
of samples to be taken.

use_missing_data_dummies_as_covars

If TRUE, additional indicator variables for whether or not an observation in a
particular column is missing are included. See Kapelner and Bleich (2013) for
details.

replace_missing_data_with_x_j_bar

If TRUE ,missing entries in X are imputed with average value or modal category.

impute_missingness_with_rf_impute

If TRUE, missing entries are filled in using the rf.impute() function from the
randomForest library.

impute_missingness_with_x_j_bar_for_1m

If TRUE, when computing the data-based estimate of o2, missing entries are
imputed with average value or modal category.

mem_cache_for_speed

Speed enhancement that caches the predictors and the split values that are avail-
able at each node for selecting new rules. If the number of predictors is large, the
memory requirements become large. We recommend keeping this on (default)
and turning it off if you experience out-of-memory errors.

flush_indices_to_save_RAM

serialize

seed

use_xoshiro

verbose

Setting this flag to TRUE saves memory with the downside that you cannot use the
functions node_prediction_training_data_indicesnorget_projection_weights.

Setting this option to TRUE will allow serialization of bartMachine objects which
allows for persistence between R sessions if the object is saved and reloaded.
Note that serialized objects can take up a large amount of memory. Thus, the
default is FALSE.

Optional: sets the seed in both R and Java. Default is NULL which does not set the
seed in R nor Java. Setting the seed enforces deterministic behavior only in the
case when one core is used (the default before set_bart_machine_num_cores()
was invoked.

if TRUE, use the Xoshiro256PlusPlus random number generator; if FALSE, use
the legacy MersenneTwister random number generator (default is FALSE)

Prints information about progress of the algorithm to the screen.
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Value

Returns an object of class “bartMachine”. The “bartMachine” object contains a list of the following
components:

java_bart_machine
A pointer to the BART Java object.
train_data_features
The names of the variables used in the training data.
training_data_features_with_missing_features.
The names of the variables used in the training data. If use_missing_data_dummies_as_covars
= TRUE, this also includes dummies for any predictors that contain at least one
missing entry (named “M_<feature>").

y The values of the response for the training data.
y_levels The levels of the response (for classification only).
pred_type Whether the model was build for regression of classification.

model_matrix_training_data
The training data with factors converted to dummies.

num_cores The number of cores used to build the BART model.

sig_sq_est The data-based estimate of o2 used to create the prior on the error variance for
the BART model.

time_to_build Total time to build the BART model.

y_hat_train The posterior means of f (z) for each observation. Only returned if run_in_sample
= TRUE.

residuals The model residuals given by y - y_hat_train. Only returned if run_in_sample
= TRUE.

L1_err_train LI error on the training set. Only returned if run_in_sample = TRUE.
L2_err_train L2 error on the training set. Only returned if run_in_sample = TRUE.

PseudoRsq Calculated as 1 - SSE / SST where SSE is the sum of square errors in the training
data and SST is the sample variance of the response times n — 1. Only returned
if run_in_sample = TRUE.

rmse_train Root mean square error on the training set. Only returned if run_in_sample =
TRUE.

Additionally, the parameters passed to the function bartMachine are also components of the list.

Note

This function is parallelized by the number of cores set by set_bart_machine_num_cores. Each
core will create an independent MCMC chain of size
num_burn_in 4 num_iterations_after_burn_in / bart_machine_num_cores.

Author(s)

Adam Kapelner and Justin Bleich
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References
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See Also

bartMachineCV

Examples

## Not run:
##regression example

##generate Friedman data
set.seed(11)

n = 200

p=>5

X = data.frame(matrix(runif(n * p), ncol = p))

y =10 x sin(pi* X[ ,1] %= X[,2]) +20 * (X[,3] -.5)"2 + 1@ * X[ ,4] + 5 x X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y)
summary (bart_machine)

##Build another BART regression model
bart_machine = bartMachine(X,y, num_trees = 200, num_burn_in = 500,
num_iterations_after_burn_in = 1000)

##Classification example

#get data and only use 2 factors
data(iris)

iris2 = iris[51:150,]

iris2$Species = factor(iris2$Species)

#build BART classification model
bart_machine = build_bart_machine(iris2[ ,1:4], iris2$Species)

#itget estimated probabilities

phat = bart_machine$p_hat_train
##look at in-sample confusion matrix
bart_machine$confusion_matrix

## End(Not run)
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bartMachineArr Create an array of BART models for the same data.

Description
If BART creates models that are variable, running many on the same dataset and averaging is a good
strategy. This function is a convenience method for this procedure.

Usage

bartMachineArr(bart_machine, R = 10)

Arguments

bart_machine An object of class “bartMachine”.
R The number of replicated BART models in the array.

Value

A bartMachineArr object which is just a list of the R bartMachine models.

Author(s)

Adam Kapelner

Examples

## Not run:

#Regression example
#generate Friedman data
set.seed(11)

n = 200

p=25

X = data.frame(matrix(runif(n * p), ncol = p))

y =10 x sin(pi* X[ ,1]1 %= X[,2]) +20 * (X[,3] -.5)"2 + 1@ * X[ ,4] + 5 x X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y)
bart_machine_arr = bartMachineArr(bart_machine)

#Classification example

data(iris)

iris2 = iris[51 : 150, ] #do not include the third type of flower for this example
iris2$Species = factor(iris2$Species)

bart_machine = bartMachine(iris2[ ,1:4], iris2$Species)

bart_machine_arr = bartMachineArr(bart_machine)

## End(Not run)



10
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bartMachineCV

Build BART-CV

Description

Builds a BART-CV model by cross-validating over a grid of hyperparameter choices.

Usage
ba

)

build_bart_machine_cv(

rtMachineCV(
X = NULL,
y = NULL,
Xy = NULL,

num_tree_cvs = c(50, 200),

k_cvs = c(2, 3, 5),
nu_g_cvs = NULL,
k_folds = 5,
folds_vec = NULL,
use_xoshiro = FALSE,
verbose = FALSE,

X = NULL,
y = NULL,
Xy = NULL,

num_tree_cvs = c(50, 200),

k_cvs = ¢c(2, 3, 5),
nu_qg_cvs = NULL,
k_folds = 5,
folds_vec = NULL,
use_xoshiro = FALSE,
verbose = TRUE,

Data frame of predictors. Factors are automatically converted to dummies inter-

Vector of response variable. If y is numeric or integer, a BART model for re-
gression is built. If y is a factor with two levels, a BART model for classification

)
Arguments
X
nally.
y
is built.
Xy

A data frame of predictors and the response. The response column must be

named “y”.
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num_tree_cvs Vector of sizes for the sum-of-trees models to cross-validate over.
k_cvs Vector of choices for the hyperparameter k to cross-validate over.

nu_g_cvs Only for regression. List of vectors containing (nu, q) ordered pair choices to
cross-validate over. If NULL, then it defaults to the three values 1ist(c(3, 0.9),
c(3,0.99), c(10, 0.75)).

k_folds Number of folds for cross-validation
folds_vec An integer vector of indices specifying which fold each observation belongs to.

use_xoshiro if TRUE, use the Xoshiro256PlusPlus random number generator; if FALSE, use
the legacy MersenneTwister random number generator (default is FALSE)

verbose Prints information about progress of the algorithm to the screen.

Additional arguments to be passed to bartMachine.

Value
Returns an object of class “bartMachine” with the set of hyperparameters chosen via cross-validation.
We also return a matrix “cv_stats” which contains the out-of-sample RMSE for each hyperparame-
ter set tried and “folds” which gives the fold in which each observation fell across the k-folds.

Note
This function may require significant run-time. This function is parallelized by the number of cores
setin set_bart_machine_num_cores via calling bartMachine.

Author(s)

Adam Kapelner and Justin Bleich

References
Adam Kapelner, Justin Bleich (2016). bartMachine: Machine Learning with Bayesian Additive
Regression Trees. Journal of Statistical Software, 70(4), 1-40. doi:10.18637/jss.v070.104

See Also

bartMachine

Examples

## Not run:
#generate Friedman data
set.seed(11)

n = 200

p=5

X = data.frame(matrix(runif(n * p), ncol = p))

y = 10 x sin(pi* X[ ,1] %= X[,2]) +20 * (X[,3] -.5)"2 + 1@ * X[ ,4] + 5 x X[,5] + rnorm(n)

##build BART regression model
bart_machine_cv = bartMachineCV(X, y)
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#information about cross-validated model
summary (bart_machine_cv)

## End(Not run)

bart_machine_get_posterior
Get Full Posterior Distribution

Description

Generates draws from posterior distribution of f (x) for a specified set of observations.

Usage

bart_machine_get_posterior(bart_machine, new_data, verbose = TRUE)

Arguments

bart_machine  An object of class “bartMachine”.

new_data A data frame containing observations at which draws from posterior distribution
of f(x) are to be obtained.
verbose If TRUE, prints preprocessing-related messages.
Value

Returns a list with the following components:
y_hat Posterior mean estimates. For regression, the estimates have the same units as
the response. For classification, the estimates are probabilities.

new_data The data frame with rows at which the posterior draws are to be generated.
Column names should match that of the training data.

y_hat_posterior_samples
The full set of posterior samples of size num_iterations_after_burn_in for
each observation. For regression, the estimates have the same units as the re-
sponse. For classification, the estimates are probabilities.

Note

This function is parallelized by the number of cores set in set_bart_machine_num_cores.

Author(s)

Adam Kapelner and Justin Bleich
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See Also

calc_credible_intervals, calc_prediction_intervals

Examples

## Not run:
#Regression example

#generate Friedman data
set.seed(11)

n = 200

p=25

X = data.frame(matrix(runif(n * p), ncol = p))

y =10 x sin(pi* X[ ,1]1 %= X[,2]) +20 * (X[,3] -.5)"2 + 1@ * X[ ,4] + 5 x X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y)

#get posterior distribution
posterior = bart_machine_get_posterior(bart_machine, X)
print(posterior$y_hat)

#Classification example

#get data and only use 2 factors
data(iris)

iris2 = iris[51:150,]

iris2$Species = factor(iris2$Species)

#build BART classification model
bart_machine = bartMachine(iris2[ ,1 : 4], iris2$Species)

#get posterior distribution
posterior = bart_machine_get_posterior(bart_machine, iris2[ ,1 : 41)

print(posterior$y_hat)

## End(Not run)

bart_machine_num_cores
Get Number of Cores Used by BART

Description

Returns number of cores used by BART

Usage

bart_machine_num_cores()
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Details

Returns the number of cores currently being used by parallelized BART functions

Value

Number of cores currently being used by parallelized BART functions.

Author(s)

Adam Kapelner and Justin Bleich

See Also

set_bart_machine_num_cores

Examples

## Not run:
bart_machine_num_cores()

## End(Not run)

bart_predict_for_test_data
Predict for Test Data with Known Outcomes

Description

Utility wrapper function for computing out-of-sample metrics for a BART model when the test set
outcomes are known.

Usage

bart_predict_for_test_data(
bart_machine,
Xtest,
ytest,
prob_rule_class = NULL,
verbose = TRUE

Arguments

bart_machine  An object of class “bartMachine”.

Xtest Data frame for test data containing rows at which predictions are to be made.
Colnames should match that of the training data.

ytest Actual outcomes for test data.
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prob_rule_class
Threshold for classification.

verbose If TRUE, prints prediction-related messages.

Value

For regression models, a list with the following components is returned:

y_hat Predictions (as posterior means) for the test observations.
L1_err L1 error for predictions.

L2_err L2 error for predictions.

rmse RMSE for predictions.

For classification models, a list with the following components is returned:

y_hat Class predictions for the test observations.

p_hat Probability estimates for the test observations.
confusion_matrix
A confusion matrix for the test observations.

Author(s)

Adam Kapelner and Justin Bleich

See Also

predict

Examples

## Not run:
#tgenerate Friedman data
set.seed(11)

n = 250

p=5

X = data.frame(matrix(runif(n * p), ncol = p))

y = 10 x sin(pi* X[ ,1]1 %= X[,2]) +20 * (X[,3] -.5)"2 + 1@ * X[ ,4] + 5 x X[,5] + rnorm(n)

#i#split into train and test
train_X = X[1 : 200, ]
test_X = X[201 : 250, ]
train_y = y[1 : 200]

test_y = y[201 : 250]

##build BART regression model
bart_machine = bartMachine(train_X, train_y)

#explore performance on test data
oos_perf = bart_predict_for_test_data(bart_machine, test_X, test_y)
print(oos_perf$rmse)
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## End(Not run)

benchmark_datasets benchmark_datasets

Description
Nine diverse datasets which were used for benchmarking bartMachine’s out of sample performance
in the vignette for this package.

Usage

data(benchmark_datasets)

Source

See vignette for details.

calc_credible_intervals
Calculate Credible Intervals

Description

Generates credible intervals for f (x) for a specified set of observations.

Usage

calc_credible_intervals(bart_machine, new_data, ci_conf = 0.95)

Arguments

bart_machine  An object of class “bartMachine”.

new_data A data frame containing observations at which credible intervals for f (x) are to
be computed.
ci_conf Confidence level for the credible intervals. The default is 95%.
Details

This interval is the appropriate quantiles based on the confidence level, ci_conf, of the predictions
for each of the Gibbs samples post-burn in.
Value

Returns a matrix of the lower and upper bounds of the credible intervals for each observation in
new_data.
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Note

This function is parallelized by the number of cores set in set_bart_machine_num_cores.

Author(s)

Adam Kapelner and Justin Bleich

See Also

calc_prediction_intervals, bart_machine_get_posterior

Examples

## Not run:
#generate Friedman data
set.seed(11)

n = 200

p=5

X = data.frame(matrix(runif(n * p), ncol = p))

y = 10 *x sin(pix X[ ,1] * X[,2]) +20 * (X[,3] -.5)*2 + 10 x X[ ,4] + 5 x X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y)

#get credible interval
cred_int = calc_credible_intervals(bart_machine, X)

print(head(cred_int))

## End(Not run)

calc_prediction_intervals
Calculate Prediction Intervals

Description

Generates prediction intervals for ¢ for a specified set of observations.

Usage

calc_prediction_intervals(
bart_machine,
new_data,
pi_conf = 0.95,
num_samples_per_data_point = 1000

)
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Arguments

bart_machine  An object of class “bartMachine”.

new_data A data frame containing observations at which prediction intervals for ¢ are to
be computed.

pi_conf Confidence level for the prediction intervals. The default is 95%.
num_samples_per_data_point

The number of samples taken from the predictive distribution. The default is
1000.

Details

Credible intervals (see calc_credible_intervals) are the appropriate quantiles of the prediction

for each of the Gibbs samples post-burn in. Prediction intervals also make use of the noise estimate

at each Gibbs sample and hence are wider. For each Gibbs sample, we record the § estimate of the
response and the o2 estimate of the noise variance. We then sample normal_samples_per_gibbs_sample
times from a N (§, C;Q) random variable to simulate many possible disturbances for that Gibbs sam-

ple. Then, all normal_samples_per_gibbs_sample times the number of Gibbs sample post burn-

in are collected and the appropriate quantiles are taken based on the confidence level, pi_conf.

Value
Returns a matrix of the lower and upper bounds of the prediction intervals for each observation in
new_data.

Note

This function is parallelized by the number of cores set in set_bart_machine_num_cores.

Author(s)

Adam Kapelner and Justin Bleich

References

Adam Kapelner, Justin Bleich (2016). bartMachine: Machine Learning with Bayesian Additive
Regression Trees. Journal of Statistical Software, 70(4), 1-40. doi:10.18637/jss.v070.104

See Also

calc_credible_intervals, bart_machine_get_posterior

Examples

## Not run:
#tgenerate Friedman data
set.seed(11)

n = 200
p=>5
X = data.frame(matrix(runif(n * p), ncol = p))
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y =10 x sin(pi* X[ ,1]1 %= X[,2]) +20 * (X[,3] -.5)"2 + 1@ * X[ ,4] + 5 x X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y)

#get prediction interval
pred_int = calc_prediction_intervals(bart_machine, X)

print(head(pred_int))

## End(Not run)

check_bart_error_assumptions
Check BART Error Assumptions

Description

Diagnostic tools to assess whether the errors of the BART model for regression are normally dis-
tributed and homoskedastic, as assumed by the model. This function generates a normal quantile
plot of the residuals with a Shapiro-Wilks p-value as well as a residual plot.

Usage

check_bart_error_assumptions(
bart_machine,
hetero_plot = "yhats”,
verbose = TRUE

Arguments

bart_machine  An object of class “bartMachine”.

hetero_plot If “yhats”, the residuals are plotted against the fitted values of the response. If
“ys”, the residuals are plotted against the actual values of the response.

verbose If TRUE, prints plots to the active device.

Value

None.

Author(s)

Adam Kapelner and Justin Bleich

See Also

plot_convergence_diagnostics
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Examples

## Not run:
#tgenerate Friedman data
set.seed(11)

n

p
X
y

= 300
=5

= data.frame(matrix(runif(n * p), ncol = p))
10 x sin(pix X[ ,1]1 * X[,2]) +20 * (X[,3] -.5)"2 + 10 * X[ ,4] + 5 x X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y)

#check error diagnostics

check_bart_error_assumptions(bart_machine)

## End(Not run)

cov_importance_ test

cov_importance_test

Importance Test for Covariate(s) of Interest

Description

This function tests the null hypothesis Hy: These covariates of interest do not affect the response

under the assumptions of the BART model.

Usage

cov_importance_test(

bart_machine,

covariates = NULL,
num_permutation_samples = 100,
plot = TRUE,

verbose = TRUE

Arguments

bart_machine

covariates

An object of class “bart_machine”.

A vector of names of covariates of interest to be tested for having an effect on the

response. A value of NULL indicates an omnibus test for all covariates having
an effect on the response. If the name of a covariate is a factor, the entire factor
will be permuted. We do not recommend entering the names of factor covariate

dummies.

num_permutation_samples
The number of times to permute the covariates of interest and create a corre-

sponding new BART model (see details).
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plot If TRUE, this produces a histogram of the Pseudo-Rsq’s / total misclassifica-
tion error rates from the num_permutations BART models created with the
covariates permuted. The plot also illustrates the observed Pseudo-Rsq’s / to-
tal misclassification error rate from the original training data and indicates the
test’s p-value.

verbose If TRUE, prints progress and summary messages.

Details

To test the importance of a covariate or a set of covariates of interest on the response, this function
generates num_permutations BART models with the covariate(s) of interest permuted (differently
each time). On each run, a measure of fit is recorded. For regression, the metric is Pseudo-Rsq; for
classification, it is total misclassification error.

A p-value can then be generated as follows. For regression, the p-value is the number of permutation-
sampled Pseudo-Rsq’s greater than the observed Pseudo-Rsq divided by num_permutations + 1.
For classification, the p-value is the number of permutation-sampled total misclassification errors
less than the observed total misclassification error divided by num_permutations + 1.

Value

permutation_samples_of_error

A vector which records the error metric of the BART models with the covariates
permuted (see details).

observed_error_estimate

For regression, this is the Pseudo-Rsq on the original training data set. For
classification, this is the observed total misclassification error on the original
training data set.

pval The approximate p-value for this test (see details).

Note

This function is parallelized by the number of cores set in set_bart_machine_num_cores.

Author(s)

Adam Kapelner and Justin Bleich

References

Adam Kapelner, Justin Bleich (2016). bartMachine: Machine Learning with Bayesian Additive
Regression Trees. Journal of Statistical Software, 70(4), 1-40. doi:10.18637/jss.v070.104

Examples

## Not run:
#i#regression example

#itgenerate Friedman data
set.seed(11)
n = 200
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p=>5
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pix X[ ,1] * X[,2]) +20 * (X[,3] -.5)*2 + 10 x X[ ,4] + 5 x X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y)

##now test if X[, 1] affects Y nonparametrically under the BART model assumptions

cov_importance_test(bart_machine, covariates = c(1))
## note the plot and the printed p-value

## End(Not run)

dummify_data Dummify Design Matrix

Description

Create a data frame with factors converted to dummies.

Usage

dummify_data(data)

Arguments

data Data frame to be dummified.

Details

The column names of the dummy variables are given by the “FactorName_LevelName” and are
augmented to the end of the design matrix. See the example below.

Value

Returns a data frame with factors converted to dummy indicator variables.

Note

BART handles dummification internally. This function is provided as a utility function.

Author(s)

Adam Kapelner and Justin Bleich
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Examples

## Not run:

#generate data

set.seed(11)

x1 = rnorm(20)

x2 = as.factor(ifelse(x1 > @, "A", "B"))
x3 = runif(20)

X = data.frame(x1,x2,x3)

#dummify data

X_dummified = dummify_data(X)
print(X_dummified)

## End(Not run)

extract_raw_node_data Gets Raw Node data

Description

Returns a list object that contains all the information for all trees in a given Gibbs sample. Daughter
nodes are nested in the list structure recursively.

Usage

extract_raw_node_data(bart_machine, g = 1)

Arguments

bart_machine An object of class “bartMachine”.

g The gibbs sample number. It must be a natural number between 1 and the num-
ber of iterations after burn in. Default is 1.

Value

Returns a list object that contains all the information for all trees in a given Gibbs sample.

Examples

## Not run:
options(java.parameters = c("-Xmx20g", "--add-modules=jdk.incubator.vector”, "-XX:+UseZGC"))
pacman: :p_load(bartMachine)

seed = 1984

set.seed(seed)

n = 100

x = rnorm(n, @, 1)

sigma = 0.1

y = x + rnorm(n, @, sigma)
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num_trees = 200

num_iterations_after_burn_in = 1000

bart_mod = bartMachine(data.frame(x = x), vy,
flush_indices_to_save_RAM = FALSE,

num_trees = num_trees,

num_iterations_after_burn_in = num_iterations_after_burn_in,
seed = seed)

raw_node_data = extract_raw_node_data(bart_mod)

## End(Not run)

get_projection_weights
Gets Training Sample Projection / Weights

Description

Returns the matrix H where yhat is approximately equal to H y where yhat is the predicted values
for new_data. If new_data is unspecified, yhat will be the in-sample fits. If BART was the same as
OLS, H would be an orthogonal projection matrix. Here it is a projection matrix, but clearly non-
orthogonal. Unfortunately, I cannot get this function to work correctly because of three possible
reasons (1) BART does not work by averaging tree predictions: it is a sum of trees model where
each tree sees the residuals via backfitting (2) the prediction in each node is a bayesian posterior
draw which is close to ybar of the observations contained in the node if noise is gauged to be small
and (3) there are transformations of the original y variable. I believe I got close and I think I’'m off
by a constant multiple which is a function of the number of trees. I can use regression to estimate
the constant multiple and correct for it. Turn regression_kludge to TRUE for this. Note that the
weights do not add up to one here. The intuition is because due to the backfitting there is multiple
counting. But I'm not entirely sure.

Usage

get_projection_weights(
bart_machine,
new_data = NULL,
regression_kludge = FALSE

Arguments

bart_machine An object of class “bartMachine”.

new_data Data that you wish to investigate the training sample projection / weights. If
NULL, the original training data is used.

regression_kludge
See explanation in the description. Default is FALSE.
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Value

Returns a matrix of proportions with number of rows equal to the number of rows of new_data and
number of columns equal to the number of rows of the original training data, n.

Examples

## Not run:
options(java.parameters = c("-Xmx20g", "--add-modules=jdk.incubator.vector”, "-XX:+UseZGC"))
pacman: :p_load(bartMachine, tidyverse)

seed = 1984

set.seed(seed)

n = 100

x = rnorm(n, @, 1)

sigma = 0.1

y = x + rnorm(n, @, sigma)

num_trees = 200

num_iterations_after_burn_in = 1000

bart_mod = bartMachine(data.frame(x = x), vy,
flush_indices_to_save_RAM = FALSE,

num_trees = num_trees,

num_iterations_after_burn_in = num_iterations_after_burn_in,
seed = seed)

bart_mod

n_star = 100

x_star = rnorm(n_star)

y_star = as.numeric(x_star + rnorm(n_star, @, sigma))
yhat_star_bart = predict(bart_mod, data.frame(x = x_star))

Hstar = get_projection_weights(bart_mod, data.frame(x = x_star))
rowSums (Hstar)
yhat_star_projection = as.numeric(Hstar %*% y)

ggplot(data.frame(

yhat_star = yhat_star_bart,

yhat_star_projection = yhat_star_projection,

y_star = y_star)) +
geom_point(aes(x = yhat_star_bart, y = yhat_star_projection), col = "green") +
geom_abline(slope = 1, intercept = 0)

Hstar = get_projection_weights(bart_mod, data.frame(x = x_star), regression_kludge = TRUE)
rowSums (Hstar)
yhat_star_projection = as.numeric(Hstar %*% y)

ggplot(data. frame(

yhat_star = yhat_star_bart,

yhat_star_projection = yhat_star_projection,

y_star = y_star)) +
geom_point(aes(x = yhat_star_bart, y = yhat_star_projection), col = "green") +
geom_abline(slope = 1, intercept = 0)
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## End(Not run)

get_sigsqs Get Posterior Error Variance Estimates

Description

Returns the posterior estimates of the error variance from the Gibbs samples with an option to create
a histogram of the posterior estimates of the error variance with a credible interval overlaid.

Usage

get_sigsqs(
bart_machine,
after_burn_in = TRUE,
plot_hist = FALSE,
plot_CI = 0.95,
plot_sigma = F,
verbose = TRUE

Arguments

bart_machine  An object of class “bartMachine”.

after_burn_in If TRUE, only the o? draws after the burn-in period are returned.

plot_hist If TRUE, a histogram of the posterior o2 draws is generated.
plot_CI Confidence level for credible interval on histogram.
plot_sigma If TRUE, plots o instead of o2.
verbose If TRUE, prints plots to the active device.

Value

Returns a vector of posterior o2 draws (with or without the burn-in samples).

Author(s)

Adam Kapelner and Justin Bleich

See Also

get_sigsqs
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Examples

## Not run:
#generate Friedman data
set.seed(11)

n = 300

p=5

X = data.frame(matrix(runif(n * p), ncol = p))

y = 10 x sin(pi* X[ ,1]1 %= X[,2]) +20 * (X[,3] -.5)"2 + 1@ * X[ ,4] + 5 x X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y)

#get posterior sigma’2's after burn-in and plot
sigsgs = get_sigsqgs(bart_machine, plot_hist = TRUE)

## End(Not run)

get_var_counts_over_chain
Get the Variable Inclusion Counts

Description

Computes the variable inclusion counts for a BART model.

Usage

get_var_counts_over_chain(bart_machine, type = "splits")

Arguments

bart_machine  An object of class “bartMachine”.

type If “splits”, then the number of times each variable is chosen for a splitting rule
is computed. If “trees”, then the number of times each variable appears in a tree
is computed.

Value

Returns a matrix of counts of each predictor across all trees by Gibbs sample. Thus, the dimension is
num_iterations_after_burn_in by p (where p is the number of predictors after dummifying fac-
tors and adding missingness dummies if specified by use_missing_data_dummies_as_covars).

Author(s)

Adam Kapelner and Justin Bleich

See Also

get_var_props_over_chain



28 get_var_props_over_chain
Examples
## Not run:

#generate Friedman data
set.seed(11)

n = 200

p =10

X = data.frame(matrix(runif(n * p), ncol = p))

y = 10 x sin(pi* X[ ,1] %= X[,2]) +20 * (X[,3] -.5)"2 + 1@ * X[ ,4] + 5 x X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y, num_trees = 20)

#get variable inclusion counts
var_counts = get_var_counts_over_chain(bart_machine)

print(var_counts)

## End(Not run)

get_var_props_over_chain
Get the Variable Inclusion Proportions

Description

Computes the variable inclusion proportions for a BART model.

Usage

get_var_props_over_chain(bart_machine, type = "splits")

Arguments

bart_machine An object of class “bartMachine”.

type If “splits”, then the proportion of times each variable is chosen for a splitting
rule versus all splitting rules is computed. If “trees”, then the proportion of
times each variable appears in a tree versus all appearances of variables in trees
is computed.

Value

Returns a vector of the variable inclusion proportions.

Author(s)

Adam Kapelner and Justin Bleich
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See Also

get_var_counts_over_chain

Examples

## Not run:
#tgenerate Friedman data
set.seed(11)

n = 200

p =10

X = data.frame(matrix(runif(n * p), ncol = p))

y =10 x sin(pi* X[ ,1] %= X[,2]) +20 * (X[,3] -.5)"2 + 1@ * X[ ,4] + 5 x X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y, num_trees = 20)

#Get variable inclusion proportions
var_props = get_var_props_over_chain(bart_machine)

print(var_props)

## End(Not run)

interaction_investigator
Explore Pairwise Interactions in BART Model

Description

Explore the pairwise interaction counts for a BART model to learn about interactions fit by the
model. This function includes an option to generate a plot of the pairwise interaction counts.

Usage

interaction_investigator(
bart_machine,
plot = TRUE,
num_replicates_for_avg
num_trees_bottleneck =
num_var_plot = 50,
cut_bottom = NULL,
bottom_margin = 10,
verbose = TRUE

’

20,

Arguments

bart_machine  An object of class “bartMachine”.

plot If TRUE, a plot of the pairwise interaction counts is generated.



30 interaction_investigator

num_replicates_for_avg
The number of replicates of BART to be used to generate pairwise interaction
inclusion counts. Averaging across multiple BART models improves stability of
the estimates.

num_trees_bottleneck
Number of trees to be used in the sum-of-trees model for computing pairwise in-
teractions counts. A small number of trees should be used to force the variables
to compete for entry into the model.

num_var_plot  Number of variables to be shown on the plot. If “Inf,” all variables are plotted
(not recommended if the number of predictors is large). Default is 50.

cut_bottom A display parameter between O and 1 that controls where the y-axis is plotted.
A value of 0 would begin the y-axis at 0; a value of 1 begins the y-axis at the
minimum of the average pairwise interaction inclusion count (the smallest bar
in the bar plot). Values between 0 and 1 begin the y-axis as a percentage of that
minimum.

bottom_margin A display parameter that adjusts the bottom margin of the graph if labels are
clipped. The scale of this parameter is the same as set with par(mar =c(....))
in R. Higher values allow for more space if the crossed covariate names are
long. Note that making this parameter too large will prevent plotting and the
plot function in R will throw an error.

verbose If TRUE, prints progress messages and plots to the active device.

Details

An interaction between two variables is considered to occur whenever a path from any node of a
tree to any of its terminal node contains splits using those two variables. See Kapelner and Bleich,
2013, Section 4.11.

Value

interaction_counts

For each of the px p interactions, what is the count across all num_replicates_for_avg

BART model replicates’ post burn-in Gibbs samples in all trees.
interaction_counts_avg

For each of the p X p interactions, what is the average count across all num_replicates_for_avg

BART model replicates’ post burn-in Gibbs samples in all trees.
interaction_counts_sd

For each of the p X p interactions, what is the sd of the interaction counts across

the num_replicates_for_avg BART models replicates.
interaction_counts_avg_and_sd_long

For each of the p x p interactions, what is the average and sd of the interaction

counts across the num_replicates_for_avg BART models replicates. The out-

put is organized as a convenient long table of class data. frame.

Note

In the plot, the red bars correspond to the standard error of the variable inclusion proportion esti-
mates (since multiple replicates were used).
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Author(s)

Adam Kapelner and Justin Bleich

References

Adam Kapelner, Justin Bleich (2016). bartMachine: Machine Learning with Bayesian Additive
Regression Trees. Journal of Statistical Software, 70(4), 1-40. doi:10.18637/jss.v070.104

See Also

investigate_var_importance

Examples

## Not run:

#generate Friedman data

set.seed(11)

n = 200

p =10

X = data.frame(matrix(runif(n * p), ncol = p))

y = 10 x sin(pi* X[ ,1] %= X[,2]) +20 * (X[,3] -.5)"2 + 1@ * X[ ,4] + 5 x X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y, num_trees = 20)

#investigate interactions
interaction_investigator(bart_machine)

## End(Not run)

investigate_var_importance
Explore Variable Inclusion Proportions in BART Model

Description

Explore the variable inclusion proportions for a BART model to learn about the relative influence of
the different covariates. This function includes an option to generate a plot of the variable inclusion
proportions.

Usage

investigate_var_importance(
bart_machine,
type = "splits”,
plot = TRUE,
num_replicates_for_avg = 5,
num_trees_bottleneck = 20,
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num_var_plot = Inf,
bottom_margin = 10,
verbose = TRUE

Arguments
bart_machine

type

plot

An object of class “bartMachine”.

If “splits”, then the proportion of times each variable is chosen for a splitting
rule is computed. If “trees”, then the proportion of times each variable appears
in a tree is computed.

If TRUE, a plot of the variable inclusion proportions is generated.

num_replicates_for_avg

The number of replicates of BART to be used to generate variable inclusion
proportions. Averaging across multiple BART models improves stability of the
estimates. See Bleich et al. (2013) for more details.

num_trees_bottleneck

num_var_plot

bottom_margin

verbose

Details

Number of trees to be used in the sum-of-trees for computing the variable inclu-
sion proportions. A small number of trees should be used to force the variables
to compete for entry into the model. Chipman et al. (2010) recommend 20. See
this reference for more details.

Number of variables to be shown on the plot. If “Inf”, all variables are plotted.

A display parameter that adjusts the bottom margin of the graph if labels are
clipped. The scale of this parameter is the same as set with par(mar =c(....))
in R. Higher values allow for more space if the covariate names are long. Note
that making this parameter too large will prevent plotting and the plot function
in R will throw an error.

If TRUE, prints progress messages and plots to the active device.

In the plot, the red bars correspond to the standard error of the variable inclusion proportion esti-

mates.

Value

Invisibly, returns a list with the following components:

avg_var_props

sd_var_props

Note

The average variable inclusion proportions for each variable
(across num_replicates_for_avg)

The standard deviation of the variable inclusion proportions for each variable
(across num_replicates_for_avg)

This function is parallelized by the number of cores set in set_bart_machine_num_cores.
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Author(s)

Adam Kapelner and Justin Bleich

References

Adam Kapelner, Justin Bleich (2016). bartMachine: Machine Learning with Bayesian Additive
Regression Trees. Journal of Statistical Software, 70(4), 1-40. doi:10.18637/jss.v070.104

J Bleich, A Kapelner, ST Jensen, and EI George. Variable Selection Inference for Bayesian Additive
Regression Trees. ArXiv e-prints, 2013.

HA Chipman, EI George, and RE McCulloch. BART: Bayesian Additive Regressive Trees. The
Annals of Applied Statistics, 4(1): 266298, 2010.

See Also

interaction_investigator

Examples

## Not run:

#generate Friedman data

set.seed(11)

n = 200

p =10

X = data.frame(matrix(runif(n * p), ncol = p))

y =10 x sin(pi* X[ ,1]1 %= X[,2]) +20 * (X[,3] -.5)"2 + 1@ * X[ ,4] + 5 x X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y, num_trees = 20)

#investigate variable inclusion proportions
investigate_var_importance(bart_machine)

## End(Not run)

k_fold_cv Estimate Out-of-sample Error with K-fold Cross validation

Description

Builds a BART model using a specified set of arguments to build_bart_machine and estimates
the out-of-sample performance by using k-fold cross validation.

Usage
k_fold_cv(X, y, k_folds = 5, folds_vec = NULL, verbose = FALSE, ...)
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Arguments

X Data frame of predictors. Factors are automatically converted to dummies inter-
nally.

y Vector of response variable. If y is numeric or integer, a BART model for re-
gression is built. If y is a factor with two levels, a BART model for classification
is built.

k_folds Number of folds to cross-validate over. This argument is ignored if folds_vec
is non-null.

folds_vec An integer vector of indices specifying which fold each observation belongs to.

verbose Prints information about progress of the algorithm to the screen.
Additional arguments to be passed to build_bart_machine.

Details

For each fold, a new BART model is trained (using the same set of arguments) and its performance
is evaluated on the holdout piece of that fold.

Value

For regression models, a list with the following components is returned:

y_hat Predictions for the observations computed on the fold for which the observation
was omitted from the training set.

L1_err Aggregate L1 error across the folds.

L2_err Aggregate L1 error across the folds.

rmse Aggregate RMSE across the folds.

folds Vector of indices specifying which fold each observation belonged to.

For classification models, a list with the following components is returned:

y_hat Class predictions for the observations computed on the fold for which the obser-
vation was omitted from the training set.

p_hat Probability estimates for the observations computed on the fold for which the
observation was omitted from the training set.

confusion_matrix
Aggregate confusion matrix across the folds.

misclassification_error
Total misclassification error across the folds.

folds Vector of indices specifying which fold each observation belonged to.

Note

This function is parallelized by the number of cores set in set_bart_machine_num_cores.

Author(s)

Adam Kapelner and Justin Bleich
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See Also

bartMachine

Examples

## Not run:
#tgenerate Friedman data
set.seed(11)

n
p

>

<

= 200

=5

data.frame(matrix(runif(n * p), ncol = p))

10 * sin(pix X[ ,1] * X[,2]) +20 * (X[,3] -.5)*2 + 10 * X[ ,4] + 5 = X[,5] + rnorm(n)

#evaluate default BART on 5 folds

k_

fold_val = k_fold_cv(X, y)

print(k_fold_val$rmse)

## End(Not run)

linearity_test Test of Linearity

Description

Test to investigate Hy : the functional relationship between the response and the regressors is linear.
We fit a linear model and then test if the residuals are a function of the regressors using the

Usage

linearity_test(

lin_mod = NULL,

X = NULL,

y = NULL,
num_permutation_samples = 100,
plot = TRUE,

verbose = TRUE,

)
Arguments
lin_mod A linear model you can pass in if you do not want to use the default which is
Im(y ~ X). Default is NULL which should be used if you pass in X and y.
X Data frame of predictors. Factors are automatically converted to dummies inter-
nally. Default is NULL which should be used if you pass in 1in_mode.
y Vector of response variable. If y is numeric or integer, a BART model for re-

gression is built. If y is a factor with two levels, a BART model for classification
is built. Default is NULL which should be used if you pass in 1in_mode.
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num_permutation_samples
This function relies on cov_importance_test (see documentation there for de-

tails).

plot This function relies on cov_importance_test (see documentation there for de-
tails).

verbose If TRUE, prints progress and summary messages.

Additional parameters to be passed to bartMachine, the model constructed on
the residuals of the linear model.

Value
permutation_samples_of_error
This function relies on cov_importance_test (see documentation there for de-
tails).
observed_error_estimate
This function relies on cov_importance_test (see documentation there for de-

tails).
pval The approximate p-value for this test. See the documentation at cov_importance_test.
Author(s)
Adam Kapelner
See Also

cov_importance_test

Examples

## Not run:
##regression example

##generate Friedman data i.e. a nonlinear response model
set.seed(11)

n = 200

p=5

X = data.frame(matrix(runif(n * p), ncol = p))

y =10 x sin(pi* X[ ,1]1 %= X[,2]) +20 * (X[,3] -.5)"2 + 1@ * X[ ,4] + 5 x X[,5] + rnorm(n)

##now test if there is a nonlinear relationship between X1, ..., X5 and y.
linearity_test(X = X, y =y)
## note the plot and the printed p-value.. should be approx @

#generate a linear response model

y=1=X[ ,1] + 3 % X[,2] +5 % X[,3] +7 = X[ ,4]1 + 9 x X[,5] + rnorm(n)
linearity_test(X = X, y = vy)

## note the plot and the printed p-value.. should be > 0.05

## End(Not run)
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node_prediction_training_data_indices
Gets node predictions indices of the training data for new data.

Description

This returns a binary tensor for all gibbs samples after burn-in for all trees and for all training
observations.

Usage

node_prediction_training_data_indices(bart_machine, new_data = NULL)

Arguments

bart_machine An object of class “bartMachine”.

new_data Data that you wish to investigate the training sample weights. If NULL, the orig-
inal training data is used.

Value

Returns a binary tensor indicating whether the prediction node contained a training datum or not.
For each observation in new data, the size of this tensor is number of gibbs sample after burn-in
times the number of trees times the number of training data observations. This the size of the
full tensor is the number of observations in the new data times the three dimensional object just
explained.

Examples

## Not run:

set.seed(11)

n = 50

X = data.frame(x1 = rnorm(n), x2 = runif(n))

y = X$x1 + rnorm(n)

bart_machine = bartMachine(X, y, flush_indices_to_save_RAM = FALSE)
idx = node_prediction_training_data_indices(bart_machine)

## End(Not run)
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pd_plot Partial Dependence Plot

Description

Creates a partial dependence plot for a BART model for regression or classification.

Usage

pd_plot(
bart_machine,
i,
levs = c(0.05, seq(from = 0.1, to = 0.9, by = 0.1), 0.95),
lower_ci = 0.025,
upper_ci = 0.975,

prop_data = 1,
verbose = TRUE
)
Arguments

bart_machine  An object of class “bartMachine”.

A The number or name of the column in the design matrix for which the partial
dependence plot is to be created.

levs Quantiles at which the partial dependence function should be evaluated. Linear
extrapolation is performed between these points.

lower_ci Lower limit for credible interval

upper_ci Upper limit for credible interval

prop_data The proportion of the training data to use. Default is 1. Use a lower proportion

for speedier pd_plots. The closer to 1, the more resolution the PD plot will have;
the closer to 0, the lower but faster.

verbose If TRUE, prints progress messages and plots to the active device.

Details
For regression models, the units on the y-axis are the same as the units of the response. For classi-
fication models, the units on the y-axis are probits.
Value
Invisibly, returns a list with the following components:
X_j_quants Quantiles at which the partial dependence function is evaluated

bart_avg_predictions_by_quantile_by_gibbs
All samples of f(x)
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bart_avg_predictions_by_quantile

Posterior means for f () at x_j_quants
bart_avg_predictions_lower

Lower bound of the desired confidence of the credible interval of f (2)
bart_avg_predictions_upper

Upper bound of the desired confidence of the credible interval of f (x)

prop_data The proportion of the training data to use as specified when this function was
executed
Note

This function is parallelized by the number of cores set in set_bart_machine_num_cores.

Author(s)

Adam Kapelner and Justin Bleich

References

Adam Kapelner, Justin Bleich (2016). bartMachine: Machine Learning with Bayesian Additive
Regression Trees. Journal of Statistical Software, 70(4), 1-40. doi:10.18637/jss.v070.104

HA Chipman, EI George, and RE McCulloch. BART: Bayesian Additive Regressive Trees. The
Annals of Applied Statistics, 4(1): 266-298, 2010.

Examples

## Not run:
#Regression example

#generate Friedman data
set.seed(11)

n = 200

p=5

X = data.frame(matrix(runif(n * p), ncol = p))

y =10 x sin(pi* X[ ,1]1 %= X[,2]) +20 * (X[,3] -.5)"2 + 1@ * X[ ,4] + 5 x X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y)

#partial dependence plot for quadratic term
pd_plot(bart_machine, "X3")

#Classification example

#get data and only use 2 factors

data(iris)

iris2 = iris[51:150,]

iris2$Species = factor(iris2$Species)

#build BART classification model
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bart_machine = bartMachine(iris2[ ,1:4], iris2$Species)

#partial dependence plot
pd_plot(bart_machine, "Petal.Width")

## End(Not run)

plot_convergence_diagnostics
Plot Convergence Diagnostics

Description

A suite of plots to assess convergence diagnostics and features of the BART model.

Usage

plot_convergence_diagnostics(
bart_machine,

plots = c("sigsqgs"”, "mh_acceptance”, "num_nodes"”, "tree_depths"),
verbose = TRUE
)
Arguments

bart_machine  An object of class “bartMachine”.

plots The list of plots to be displayed. The four options are: "sigsqs", "mh_acceptance",
"num_nodes", "tree_depths".
verbose If TRUE, prints plots to the active device.
Details

The “sigsqs” option plots the posterior error variance estimates by the Gibbs sample number. This
is a standard tool to assess convergence of MCMC algorithms. This option is not applicable to
classification BART models.

The “mh_acceptance” option plots the proportion of Metropolis-Hastings steps accepted for each
Gibbs sample (number accepted divided by number of trees).

The “num_nodes” option plots the average number of nodes across each tree in the sum-of-trees
model by the Gibbs sample number (for post burn-in only). The blue line is the average number of
nodes over all trees.

The “tree_depths” option plots the average tree depth across each tree in the sum-of-trees model by
the Gibbs sample number (for post burn-in only). The blue line is the average number of nodes over
all trees.

Value

None.
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Note

The “sigsqs” plot separates the burn-in o2’s for the first core by post burn-in o%’s estimates for all
cores by grey vertical lines. The “mh_acceptance” plot separates burn-in from post-burn in by a grey
vertical line. Post burn-in, the different core proportions plot in different colors. The “num_nodes”
plot separates different core estimates by vertical lines (post burn-in only). The ‘tree_depths” plot
separates different core estimates by vertical lines (post burn-in only).

Author(s)

Adam Kapelner and Justin Bleich

Examples

## Not run:
#tgenerate Friedman data
set.seed(11)

n = 200

p=5

X = data.frame(matrix(runif(n * p), ncol = p))

y =10 x sin(pi* X[ ,1] %= X[,2]) +20 * (X[,3] -.5)"2 + 1@ * X[ ,4] + 5 x X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y)

#plot convergence diagnostics
plot_convergence_diagnostics(bart_machine)

## End(Not run)

plot_y_vs_yhat Plot the fitted Versus Actual Response

Description

Generates a plot actual versus fitted values and corresponding credible intervals or prediction inter-
vals for the fitted values.

Usage

plot_y_vs_yhat(
bart_machine,
Xtest = NULL,
ytest = NULL,
credible_intervals = FALSE,
prediction_intervals = FALSE,
interval_confidence_level = 0.95,
verbose = TRUE
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Arguments

bart_machine An object of class “bartMachine”.

Xtest Optional argument for test data. If included, BART computes fitted values at the
rows of Xtest. Else, the fitted values from the training data are used.
ytest Optional argument for test data. Vector of observed values corresponding to the
rows of Xtest to be plotted against the predictions for the rows of Xtest.
credible_intervals
If TRUE, Bayesian credible intervals are computed using the quantiles of the
posterior distribution of f(x) See calc_credible_intervals for details.
prediction_intervals
If TRUE, Bayesian predictive intervals are computed using the a draw of from
f(x). See calc_prediction_intervals for details.
interval_confidence_level
Desired level of confidence for credible or prediction intervals.

verbose If TRUE, prints plots to the active device.

Value

None.

Note

This function is parallelized by the number of cores set in set_bart_machine_num_cores.

Author(s)

Adam Kapelner and Justin Bleich

See Also

bart_machine_get_posterior, calc_credible_intervals, calc_prediction_intervals

Examples

## Not run:
#generate linear data
set.seed(11)

n = 500

p=3

X = data.frame(matrix(runif(n * p), ncol = p))
y = 3xX[ ,1] + 2xX[ ,2] +X[ ,3] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y)

##generate plot
plot_y_vs_yhat(bart_machine)

#tgenerate plot with prediction bands
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plot_y_vs_yhat(bart_machine, prediction_intervals = TRUE)

## End(Not run)

predict.bartMachine Make a prediction on data using a BART object

Description

Makes a prediction on new data given a fitted BART model for regression or classification.

Usage

## S3 method for class 'bartMachine'
predict(

object,

new_data,

type = "prob",

prob_rule_class = NULL,

verbose = TRUE,

)
Arguments
object An object of class “bartMachine”.
new_data A data frame where each row is an observation to predict. The column names
should be the same as the column names of the training data.
type Only relevant if the bartMachine model is classification. The type can be “prob”

which will return the estimate of P(Y = 1)(the “positive” class) or “class”
which will return the best guess as to the class of the object, in the original label,
based on if the probability estimate is greater than prob_rule_class. Default
is “prob.”
prob_rule_class

The rule to determine when the class estimate is Y = 1 (the “positive” class)
based on the probability estimate. This defaults to what was originally specified
in the bart_machine object.

verbose Prints out prediction-related messages. Currently in use only for probability
predictions to let the user know which class is being predicted. Default is TRUE.

Parameters that are ignored.

Value

If regression, a numeric vector of y_hat, the best guess as to the response. If classification and
type = ""prob'’', a numeric vector of p_hat, the best guess as to the probability of the response
class being the “positive” class. If classification and type = ' 'class'’', a character vector of the
best guess of the response’s class labels.
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Author(s)

Adam Kapelner and Justin Bleich

See Also

bart_predict_for_test_data

Examples

#Regression example

## Not run:

#generate Friedman data

set.seed(11)

n = 200

p=5

X = data.frame(matrix(runif(n * p), ncol = p))

y = 10 x sin(pi* X[ ,1]1 %= X[,2]) +20 * (X[,3] -.5)"2 + 1@ * X[ ,4] + 5 x X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y)

#i#make predictions on the training data
y_hat = predict(bart_machine, X)

#Classification example

data(iris)

iris2 = iris[51 : 150, ] #do not include the third type of flower for this example
iris2$Species = factor(iris2$Species)

bart_machine = bartMachine(iris2[ ,1:4], iris2$Species)

#i#make probability predictions on the training data
p_hat = predict(bart_machine, X)

#i#make class predictions on test data
y_hat_class = predict(bart_machine, X, type = "class")

##make class predictions on test data conservatively for ''versicolor''
y_hat_class_conservative = predict(bart_machine, X, type = "class”, prob_rule_class = 0.9)

## End(Not run)

predict_bartMachineArr
Make a prediction on data using a BART array object

Description

Makes a prediction on new data given an array of fitted BART model for regression or classification.
If BART creates models that are variable, running many and averaging is a good strategy. It is well
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known that the Gibbs sampler gets locked into local modes at times. This is a way to average over
many chains.

Usage
predict_bartMachineArr(object, new_data, ...)
Arguments
object An object of class “bartMachineArr”.
new_data A data frame where each row is an observation to predict. The column names
should be the same as the column names of the training data.
Not supported. Note that parameters type and prob_rule_class for predict.bartMachine
are not supported.
Value

If regression, a numeric vector of y_hat, the best guess as to the response. If classification and
type = ““prob'’, a numeric vector of p_hat, the best guess as to the probability of the response
class being the positive” class. If classification and type = ' 'class'’', a character vector of the
best guess of the response’s class labels.

Author(s)

Adam Kapelner

See Also

predict.bartMachine

Examples

## Not run:

#Regression example
#generate Friedman data
set.seed(11)

n = 200

p=2>5

X = data.frame(matrix(runif(n * p), ncol = p))

y =10 x sin(pi* X[ ,1]1 %= X[,2]) +20 * (X[,3] -.5)"2 + 1@ * X[ ,4] + 5 x X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y)
bart_machine_arr = bartMachineArr(bart_machine)

#i#make predictions on the training data
y_hat = predict(bart_machine_arr, X)

#Classification example
data(iris)
iris2 = iris[51 : 150, ] #do not include the third type of flower for this example
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iris2$Species = factor(iris2$Species)
bart_machine = bartMachine(iris2[ ,1:4], iris2$Species)
bart_machine_arr = bartMachineArr(bart_machine)

##make probability predictions on the training data
p_hat = predict_bartMachineArr(bart_machine_arr, iris2[ ,1:41)

## End(Not run)

print.bartMachine Summarizes information about a bartMachine object.

Description

This is an alias for the summary.bartMachine function. See description in that section.

Usage
## S3 method for class 'bartMachine'
print(x, verbose = TRUE, ...)

Arguments
X An object of class “bartMachine”.
verbose If TRUE, prints summary output.

Parameters that are ignored.

Value

None.

Author(s)

Adam Kapelner and Justin Bleich

Examples

## Not run:
#Regression example

#generate Friedman data
set.seed(11)

n = 200

p=>5

X = data.frame(matrix(runif(n * p), ncol = p))

y = 10 *x sin(pix X[ ,1] * X[,2]) +20 * (X[,3] -.5)*2 + 10 x X[ ,4] + 5 x X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y)
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##print out details
print(bart_machine)

##Also, the default print works too
bart_machine

## End(Not run)

rmse_by_num_trees Assess the Out-of-sample RMSE by Number of Trees

Description

Assess out-of-sample RMSE of a BART model for varying numbers of trees in the sum-of-trees
model.

Usage

rmse_by_num_trees(
bart_machine,
tree_list = c(5, seq(10, 50, 10), 100, 150, 200),
in_sample = FALSE,
plot = TRUE,
holdout_pctg = 0.
num_replicates =
verbose = TRUE,

3,
4,

Arguments

bart_machine  An object of class “bartMachine”.

tree_list List of sizes for the sum-of-trees models.

in_sample If TRUE, the RMSE is computed on in-sample data rather than an out-of-sample
holdout.

plot If TRUE, a plot of the RMSE by the number of trees in the ensemble is created.

holdout_pctg  Percentage of the data to be treated as an out-of-sample holdout.

num_replicates Number of replicates to average the results over. Each replicate uses a randomly
sampled holdout of the data, (which could have overlap).

verbose If TRUE, prints progress messages and plots to the active device.

Other arguments to be passed to the plot function.

Value

Invisibly, returns the out-of-sample average RMSEs for each tree size.
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Note

Since using a large number of trees can substantially increase computation time, this plot can help
assess whether a smaller ensemble size is sufficient to obtain desirable predictive performance. This
function is parallelized by the number of cores set in set_bart_machine_num_cores.

Author(s)

Adam Kapelner and Justin Bleich

Examples

## Not run:
#tgenerate Friedman data
set.seed(11)

n = 200

p =10

X = data.frame(matrix(runif(n * p), ncol = p))

y =10 x sin(pi* X[ ,1]1 %= X[,2]) +20 * (X[,3] -.5)"2 + 1@ * X[ ,4] + 5 x X[,5] + rnorm(n)

##build BART regression model
bart_machine = bartMachine(X, y, num_trees = 20)

#texplore RMSE by number of trees
rmse_by_num_trees(bart_machine)

## End(Not run)

set_bart_machine_num_cores
Set the Number of Cores for BART

Description

Sets the number of cores to be used for all parallelized BART functions.

Usage

set_bart_machine_num_cores(num_cores, verbose = TRUE)

Arguments
num_cores Number of cores to use. If the number of cores is more than 1, setting the seed
during model construction cannot be deterministic.
verbose If TRUE, prints the updated core count.
Value

None.
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Author(s)

Adam Kapelner and Justin Bleich

See Also

bart_machine_num_cores

Examples

## Not run:
#set all parallelized functions to use 4 cores
set_bart_machine_num_cores(4)

## End(Not run)
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summary .bartMachine Summarizes information about a bartMachine object.

Description

Provides a quick summary of the BART model.

Usage
## S3 method for class 'bartMachine'
summary(object, verbose = TRUE, ...)
Arguments
object An object of class “bartMachine”.
verbose If TRUE, prints summary output.

Parameters that are ignored.

Details

Gives the version number of the bartMachine package used to build this additiveBartMachine
object and if the object models either “regression” or “classification.” Gives the amount of training
data and the dimension of feature space. Prints the amount of time it took to build the model, how
many processor cores were used to during its construction, as well as the number of burn-in and

posterior Gibbs samples were used.

If the model is for regression, it prints the estimate of o2 before the model was constructed as well

as after so the user can inspect how much variance was explained.

If the model was built using the run_in_sample = TRUE parameter in build_bart_machine and is
for regression, the summary L1, L2, rmse, Pseudo-R? are printed as well as the p-value for the tests
of normality and zero-mean noise. If the model is for classification, a confusion matrix is printed.
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Value

None.

Author(s)

Adam Kapelner

Examples

## Not run:
#Regression example

#generate Friedman data
set.seed(11)

n = 200

p=5

X = data.frame(matrix(runif(n * p), ncol = p))

y = 10 *x sin(pix X[ ,1] * X[,2]) +20 * (X[,3] -.5)*2 + 10 x X[ ,4] + 5 x X[,5] + rnorm(n)

#i#build BART regression model
bart_machine = bartMachine(X, y)

##print out details
summary (bart_machine)

##Also, the default print works too
bart_machine

## End(Not run)

var_selection_by_permute
Perform Variable Selection using Three Threshold-based Procedures

Description

Performs variable selection using the three thresholding methods introduced in Bleich et al. (2013).

Usage

var_selection_by_permute(
bart_machine,
num_reps_for_avg = 10,
num_permute_samples = 100,
num_trees_for_permute = 20,
alpha = 0.05,
plot = TRUE,
num_var_plot = Inf,
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bottom_margin
verbose = TRU

Arguments

bart_machine
num_reps_for_av

num_permute_sam

num_trees_for_p

alpha
plot

num_var_plot

bottom_margin

verbose

Details

= 10,
E

An object of class “bartMachine”.

g

Number of replicates to over over to for the BART model’s variable inclusion
proportions.

ples

Number of permutations of the response to be made to generate the “null” per-
mutation distribution.

ermute

Number of trees to use in the variable selection procedure. As with
investigate_var_importance, a small number of trees should be used to
force variables to compete for entry into the model. Note that this number is
used to estimate both the “true” and “null” variable inclusion proportions.

Cut-off level for the thresholds.

If TRUE, a plot showing which variables are selected by each of the procedures
is generated.

Number of variables (in order of decreasing variable inclusion proportion) to be
plotted.

A display parameter that adjusts the bottom margin of the graph if labels are
clipped. The scale of this parameter is the same as set with par(mar =c(....))
in R. Higher values allow for more space if the crossed covariate names are
long. Note that making this parameter too large will prevent plotting and the
plot function in R will throw an error.

If TRUE, prints progress messages.

See Bleich et al. (2013) for a complete description of the procedures outlined above as well as the
corresponding vignette for a brief summary with examples.

Value
Invisibly, returns a

important_vars_
important_vars_
important_vars_

important_vars_

list with the following components:

local_names

Names of the variables chosen by the Local procedure.
global_max_names

Names of the variables chosen by the Global Max procedure.
global_se_names

Names of the variables chosen by the Global SE procedure.
local_col_nums

Column numbers of the variables chosen by the Local procedure.
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important_vars_global_max_col_nums

Column numbers of the variables chosen by the Global Max procedure.
important_vars_global_se_col_nums

Column numbers of the variables chosen by the Global SE procedure.
var_true_props_avg

The variable inclusion proportions for the actual data.

permute_mat The permutation distribution generated by permuting the response vector.

Note

Although the reference only explores regression settings, this procedure is applicable to both re-
gression and classification problems. This function is parallelized by the number of cores set in
set_bart_machine_num_cores.

Author(s)

Adam Kapelner and Justin Bleich

References

J Bleich, A Kapelner, ST Jensen, and EI George. Variable Selection Inference for Bayesian Additive
Regression Trees. ArXiv e-prints, 2013.

Adam Kapelner, Justin Bleich (2016). bartMachine: Machine Learning with Bayesian Additive
Regression Trees. Journal of Statistical Software, 70(4), 1-40. doi:10.18637/jss.v070.104

See Also

var_selection_by_permute, investigate_var_importance

Examples

## Not run:

#generate Friedman data

set.seed(11)

n = 300

20 ##15 useless predictors

data.frame(matrix(runif(n * p), ncol = p))

10 * sin(pix X[ ,1] * X[,2]1) +20 * (X[,3] -.5)*2 + 10 * X[ ,4] + 5 = X[,5] + rnorm(n)

p
X
y

##build BART regression model (not actually used in variable selection)
bart_machine = bartMachine(X, y)

#variable selection

var_sel = var_selection_by_permute(bart_machine)
print(var_sel$important_vars_local_names)
print(var_sel$important_vars_global_max_names)

## End(Not run)


https://doi.org/10.18637/jss.v070.i04

var_selection_by_permute_cv

53

var_selection_by_permute_cv
Perform Variable Selection Using Cross-validation Procedure

Description

Performs variable selection by cross-validating over the three threshold-based procedures outlined
in Bleich et al. (2013) and selecting the single procedure that returns the lowest cross-validation

RMSE.

Usage

var_selection_by_permute_cv(

bart_machine,

k_folds = 5,
folds_vec = NULL,
num_reps_for_avg = 5,
num_permute_samples =
num_trees_for_permute
alpha = 0.05,

num_trees_pred_cv = 50,

verbose = TRUE

Arguments

bart_machine  An object of class “bartMachine”.

k_folds Number of folds to be used in cross-validation.

folds_vec An integer vector of indices specifying which fold each observation belongs to.

num_reps_for_avg

Number of replicates to over over to for the BART model’s variable inclusion

proportions.

num_permute_samples

Number of permutations of the response to be made to generate the “null” per-

mutation distribution.

num_trees_for_permute

Number of trees to use in the variable selection procedure. As with

investigate_var_importance, a small number of trees should be used to
force variables to compete for entry into the model. Note that this number is

used to estimate both the “true” and “null” variable inclusion proportions.
alpha Cut-off level for the thresholds.

num_trees_pred_cv

Number of trees to use for prediction on the hold-out portion of each fold. Once
variables have been selected using the training portion of each fold, a new model
is built using only those variables with num_trees_pred_cv trees in the sum-
of-trees model. Forecasts for the holdout sample are made using this model. A
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larger number of trees is recommended to exploit the full forecasting power of
BART.

verbose If TRUE, prints progress messages.

Details

See Bleich et al. (2013) for a complete description of the procedures outlined above as well as the
corresponding vignette for a brief summary with examples.

Value

Returns a list with the following components:

best_method The name of the best variable selection procedure, as chosen via cross-validation.
important_vars_cv
The variables chosen by the best_method above.

Note

This function can have substantial run-time. This function is parallelized by the number of cores
set in set_bart_machine_num_cores.

Author(s)

Adam Kapelner and Justin Bleich

References

J Bleich, A Kapelner, ST Jensen, and EI George. Variable Selection Inference for Bayesian Additive
Regression Trees. ArXiv e-prints, 2013.

Adam Kapelner, Justin Bleich (2016). bartMachine: Machine Learning with Bayesian Additive
Regression Trees. Journal of Statistical Software, 70(4), 1-40. doi:10.18637/jss.v070.104

See Also

var_selection_by_permute, investigate_var_importance

Examples

## Not run:

#generate Friedman data

set.seed(11)

n = 150

p = 100 ##95 useless predictors

X = data.frame(matrix(runif(n * p), ncol = p))

y = 10 x sin(pi* X[ ,1]1 %= X[,2]) +20 * (X[,3] -.5)"2 + 1@ * X[ ,4] + 5 x X[,5] + rnorm(n)

##build BART regression model (not actually used in variable selection)
bart_machine = bartMachine(X, y)
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var_selection_by_permute_cv

#tvariable selection via cross-validation

var_sel_cv = var_selection_by_permute_cv(bart_machine, k_folds = 3)
print(var_sel_cv$best_method)
print(var_sel_cv$important_vars_cv)

## End(Not run)
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