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Introduction

Fizz Buzz is the following (simple) problem:

Print the numbers from 1 to 100, except that if the number is divisible by
3, instead print “fizz”; if the number is divisible by 5, instead print “buzz”;
and if the number is divisible by 15, instead print “fizzbuzz”.

It originated as a children’s game, but has since taken on a new life as a lowest-
common-denominator litmus test for assessing computer programmers.

If you are an experienced programmer, it is an extremely easy problem to solve.
Because of this, it has taken on a third life as the prototypical bad interview problem.
Everyone knows that it’s the question you ask people to make sure that they’re not
completely incompetent as programmers. Accordingly, if your interviewer asks you
to solve it, he’s suggesting he thinks it possible that you’re completely incompetent
as a programmer. You would not be wrong to feel insulted!

My association with this problem began in 2016, when I wrote a blog post called Fizz
Buzz in Tensorflow, the (possibly fictional) story of one such insulted programmer
who decided to show up his interviewer by approaching Fizz Buzz as a deep learning
problem. This post went modestly viral, and ever since then I have been seen as a
thought leader in the Fizz Buzz space.

Accordingly, over the years I have come up with and/or collected various other stupid
and/or clever ways of solving Fizz Buzz. I have not blogged about them, as I am not
the sort of person who beats a joke to death, but occasionally I will tweet about
them, and recently in response someone suggested that I write a book on “100 Ways
of Writing Fizz Buzz in Python.”

Now, I could probably come up with 100 ways of solving Fizz Buzz, but most of them
would not be very interesting. Luckily for you, I was able to come up with 10 that
are interesting in various ways, each of which turned out to be a good launching-off
point for (sometimes meandering) discussions of various aspects of coding, Python,


https://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/
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Fizz Buzz, mathematics, software design, technical interviewing, and various other

topics. Hence “Ten Essays on Fizz Buzz”. *

In many ways this is a strange book. Its goal is not to teach you a specific field or a
specific technology. I hope you will learn a lot from reading it, but it’s not really a
book that you’d read in order to learn anything in particular. Most technical books
are about specific technical topics; this one sort of isn’t.

Nonetheless, it is a technical book. Each essay contains code that implements a
different solution of Fizz Buzz. Each essay uses code to illustrate its ideas. Each
essay represents my current best thinking about how to solve problems using code.
If you have a coding job, you should feel no reluctance to expense this book to your
employer.

As I primarily code in Python, all of these solutions will be in Python. Some of them
will use features that were only introduced in Python 3.6, and some of them will
demonstrate concepts and techniques that are mostly specific to Python. On some
level this is deeply a Python book. However, my goal was to write a book that would
be interesting and enlightening even if you are not a Python programmer. I'll leave
it to you to judge how successful I was.

If Thave explored more ways of solving Fizz Buzz than others, it is because I stood on
the shoulders of giants. The “if / elif / elif / else” solution is the canonical one; the “100
print statements” solution is obvious; the “random guessing” solution I learned about
from a Stack Overflow question; the remaining solutions I'm pretty sure I came up
with myself, although for many of them it is a near certainty that other people have
independently come up with similar (if not basically identical) solutions. That’s how
programming works.

The solutions from this book are all available at github.com/joelgrus/fizzbuzz, in case
you don’t feel like typing them into the computer yourself.

'After I started writing this book I discovered there is a blog post “Twenty Ways to Fizz Buzz”, very few of which
overlap with these.


https://github.com/joelgrus/fizzbuzz
https://ditam.github.io/posts/fizzbuzz/

1. 100 Print Statements

Fizz Buzz originated as a game for children. The idea was that the children would sit
in a circle and go around in sequence calling out the next number; substituting “fizz”
or “buzz” or “fizzbuzz” as appropriate; punishing mistakes according to house rules
with varying levels of cruelty.

Well, if children can come up with the correct outputs without using a computer,
then so can we. This suggests what is possibly the least imaginative solution — figure
out the correct outputs by hand and explicitly print each one:

print('1l")
print('2'")
print('fizz'")
print('4')
print('buzz')
print('fizz")
print('7'")
print('8'")
print('fizz'")
print('buzz')
print('11"')
print('fizz"')
print('13")
print('14")
print('fizzbuzz')
print('16"')
print('17")
print('fizz'")
print('19')
print('buzz'")
print('fizz')
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print('22")
print('23")
print('fizz'")
print('buzz'")
print('26"')
print('fizz"')
print('28")
print('29"')
print('fizzbuzz')
print('31")
print('32")
print('fizz'")
print('34")
print('buzz'")
print('fizz'")
print('37"'")
print('38")
print('fizz'")
print('buzz'")
print('41")
print('fizz")
print('43")
print('44")
print('fizzbuzz')
print('46"')
print('47")
print('fizz"')
print('49"')
print('buzz'")
print('fizz"')
print('52")
print('53"')
print('fizz'")
print('buzz'")
print('56"')
print('fizz'")
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print('58")
print('59"')
print('fizzbuzz')
print('61"')
print('62"')
print('fizz"')
print('64')
print('buzz'")
print('fizz"')
print('67')
print('68"')
print('fizz'")
print('buzz'")
print('71'")
print('fizz'")
print('73")
print('74")
print('fizzbuzz')
print('76"')
print('77")
print('fizz")
print('79")
print('buzz'")
print('fizz")
print('82")
print('83"')
print('fizz"')
print('buzz'")
print('86"')
print('fizz"')
print('88')
print('89"')
print('fizzbuzz')
print('91")
print('92")
print('fizz'")
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print('94")
print('buzz')
print('fizz'")
print('97")
print('98"')
print('fizz"')
print('buzz')

Technically this is a solution. It solves the stated problem of printing the numbers 1
to 100 except in specific circumstances substituting “fizz” or “buzz” or “fizzbuzz”.

Yet this is a solution that’s not particularly satisfying. For example, we would not
expect an interviewer to be impressed by it.!

In this first chapter we’ll discuss why that’s the case.

Algorithm and Abstraction

One thing the interviewer is (presumably) looking for is your ability to think
algorithmically; that is, to come up with an efficient process for solving the problem
by turning it into code.

But this isn’t really a process for solving the problem. It’s only a process for printing
out a precomputed solution. It relies on already having a solution to the problem.

Nor is it particularly efficient. There is a sense in which this is about as inefficient
as possible, since each of the 100 outputs is generated by its own code — nothing is
shared. (There are many other senses in which there are far more inefficient solutions,
and we will see some such solutions throughout the book.)

Here is a slight improvement:

*Although I would be pretty impressed if you used this solution in an interview.
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FIZZ_BUZZ = [
'i', '2', 'fizz', '4', 'buzz', 'fizz', '7', '8', 'fizz',
'buzz', 'i1', 'fizz', 'i13', '14', 'fizzbuzz', 'le6', '17',
'fizz', '19', 'buzz', 'fizz', '22', '23', 'fizz', 'buzz',
'26', 'fizz', '28', '29', 'fizzbuzz', '31', '32', 'fizz',
'34', 'buzz', 'fizz', '37', '38', 'fizz', 'buzz', '41',
"fizz', '43', '44', 'fizzbuzz', '46', '47', 'fizz', '49',
'buzz', 'fizz', '52', '53', 'fizz', 'buzz', '56', 'fizz',
'58', '59', 'fizzbuzz', 'e61', '62', 'fizz', '64', 'buzz',
'fizz', 'e7', '68', 'fizz', 'buzz', '71', 'fizz', '73',
'74', 'fizzbuzz', 're', '77', 'fizz', '79', 'buzz',
'fizz', '82', '83', 'fizz', 'buzz', '86', 'fizz', '88',
'89', 'fizzbuzz', '91', '92', 'fizz', '94', 'buzz',
'fizz', '97', '98', 'fizz', 'buzz'

for fizz_buzz in FIZZ_BUZZ:
print(fizz_buzz)

The values are still manually specified, but at least we’re using a for loop and a single
call to print instead of 100 calls to print. And while we still didn’t use algorithmic
thinking to produce the output values, we do have the values in a list to use and
re-use however we see fit.

However, this is still not a good solution, for a couple of reasons. For one thing, all of
the Fizz Buzz logic here was performed by a human (me). We’d like the computer to
handle that logic. What’s the point of writing software if we don’t let the computer
do the parts it’s good at?

The second reason this is not a good solution is that it’s not at all extensible. If we
suddenly needed the corresponding outputs for the numbers 101 to 200 we couldn’t
re-use any part of this (other than the print statement), and we’d have to do that
work starting from nothing.

Nonetheless, this is an important improvement, for a couple of reasons.
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Reusability and Changeability

One nice thing about solving problems with software is that (compared with
many other kinds of solutions) it’s relatively easy to change your solution when
requirements change. For example, imagine that your interviewer decides she’d
rather have the words printed in ALL CAPS.

With the “100 Print Statements” solution, you would have to go through and make
that change line-by-line. Whereas with this second solution you could just make a
small change:

for fizz_buzz in FIZZ_BUZZ:
print(fizz_buzz.upper())

Or if you wanted the results to start at 100 and count down to 1:

for fizz_buzz in reversed(FIZZ_BUZZ):
print(fizz_buzz)

Or if you needed to print the words without vowels (“Fzz Bzz”):

import re

for fizz_buzz in FIZZ_BUZZ:
print(re.sub("[aeiouAEIOU]", "", fizz_buzz))

Or if you wanted the output in Spanish:
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for fizz_buzz in FIZZ_BUZZ:
print(fizz_buzz
.replace("fizz", "efervescencia')
.replace("buzz", "zumbido"))

Or if you wanted to write the results out to a file:

with open('fizzbuzz.txt', 'w') as f:
for fizz_buzz in FIZZ_BUZZ:
f.write(f"{fizz_buzz}\n")

However, there’s a limit to the sorts of modifications that this solution admits.
Imagine that the interviewer decided that “buzz” should now replace multiples of
7, and “fizzbuzz” multiples of 21. There’s no obvious way to modify our solution to
accomplish this; probably we’d have to create an entirely new list of values:

FIzz_BUZZ_7 = [1, 2, 'fizz', 4, 5, '"fizz', 'buzz', 8, ...]

And, as mentioned previously, if we wanted the outputs for the numbers 101 to 200,
there’s no way for us to reuse this work (other than the print statement).

Throughout the book we’ll see various other solutions that make some of these
changes much simpler. (Some of our solutions won’t make these changes any simpler
but will be interesting for other reasons.)

Testability and Fizz Buzz

Another important reason why the “100 print statements” solution is not great is that
it’s very hard to test. Is it correct? Did I make a mistake and accidentally write “fizz”
when I meant to write “buzz”? The only way to know is to go through line by line
and check each answer.

As we explore various ways of solving this problem, we’ll want to check that our
solutions are correct. After you finish this book and go on to solving other problems,
you’ll also want to check that your solutions are correct.
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When developing software we prefer to use automated tests; that is, we write test
cases that we expect to “pass” if our code is correct and that we hope will “fail” if
our code is not correct.

One simple way of doing this in Python is using assert statements, which will raise
an exception (AssertionError) if the condition they’re asserting is false:

# these assertions all pass
assert True

assert 2 > 1

assert "iz" 1in "FizzBuzz"

# these assertions all fail
assert False

assert 1 > 2

assert "I" in "TEAM"

Typically it’s difficult to create test cases that are 100% comprehensive, but here we
only have 100 input-output pairs to check, so we can write a test that covers every
possible input / output.

We'll use the F1zz_BUzZ list from this chapter as the source of truth. This means you
should convince yourself that it’s entirely correct.

The solutions in this book will take two general forms. Some solutions will generate
a list of the 100 Fizz Buzz outputs. We'll write a function to check that such a list
is correct. It first checks that the list actually has 100 elements. After that it checks
that each element of the provided list is the same as the corresponding element of
FIZZ_BUZZ.

We do that by generating a list containing all the incorrect outputs and then assert-
ing that the list is empty. The reason we do it this way is so that when the test fails,
it fails with an explicit list of all the outputs that were wrong:



100 Print Statements 9

# We need this to type-annotate lists.
from typing import List

def check_output(output: List[str]) -> None:
assert len(output) == 100, "output should have length 100"

# Collect all the errors in a list

# The i+l reflects that output[0] is the output for 1,

# output[1l] is the output for 2, and so on

errors = [
f"({i+1}) predicted: {output[i]}, actual: {FIZZ_BUZZ[i]}"
for i 1in range(100)
if output[i] != FIZZ_BUZZ[1]

# And assert that the list of errors 1is empty
assert not errors, f'"{errors}"

Other solutions will result in functions that take in a number n and return the correct
Fizz Buzz output for that n. We’ll test such a function by generating the list of 100
outputs and then using our previous test. (This is another example of us re-using
previous work.)

# We need this to type-annotate functions.
from typing import Callable

def check_function(fizz_buzz: Callable[[int], str]) -> None:
nnn
The type annotation says that "fizz_buzz  needs to be
a function that takes a single argument (which is an “int’)
and returns a ‘str°
nnn
output = [fizz_buzz(i) for i in range(l, 101)]
check_output(output)
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As we explore more interesting solutions, we’ll use these functions to check that
they’re correct, so make sure you understand them.

Testability Beyond Fizz Buzz

Throughout this book we’ll apply this idea of testability to more than our various
Fizz Buzz solutions. We’ll also apply it to our intermediate steps and even to our
digressions.

For example, imagine that one of our solutions involves checking that two words are
anagrams. (None of our solutions involves this, but bear with me.)

We dutifully craft a solution of this subproblem:

def anagrams(sl: str, s2: str) -> bool:
return sorted(sl) == sorted(s2)

How do we know it works? By writing test cases for it:

assert anagrams('dale", "lead")
assert anagrams("time", "mite")
assert not anagrams(''made", "deem")
assert not anagrams("time", "miter")

This is not a particularly comprehensive set of tests, but it involves a couple of
positive examples and a couple of negative examples. At the very least, these tests
would not all pass if we’d made a stupid mistake. If they all pass, our mistake would
have to be somewhat subtle.

Generating the print Statements

Imagine that you’re writing a technical book, and that one of the chapters involves
solving Fizz Buzz with 100 print statements, and that you don’t feel like writing
them out by hand.

Why not use Python to generate the print statements?
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def make_print_statement(fizz_buzz: str) -> str:
return f"print('{fizz_buzz}')"

assert make_print_statement("10") == "print('10"')"

assert make_print_statement("fizz") == "print('fizz')"

assert make_print_statement("buzz") == "print('buzz')"

assert make_print_statement("fizzbuzz") == "print('fizzbuzz')"

After which it’s easy to print them out and then copy and paste them into your
manuscript:

for fizz_buzz in FIZZ_BUZZ:
print(make_print_statement(fizz_buzz))



2. Euclid’s Solution

Euclid was an ancient Greek mathematician sometimes called the father of geometry.
He predated Fizz Buzz by thousands of years, but this is how I like to think he would
have solved it:

def fizz_buzz(n: int) -> str:
hi, lo = max(n, 15), min(n, 15)

while hi % lo > 0:
hi, lo = lo, hi % lo

return {1: str(n), 3: "fizz", 5: "buzz", 15: "fizzbuzz"}[lo]

In this chapter we’ll explore why this works and why Euclid might have solved it
this way.

Prime Numbers

A positive number is prime if it cannot be written as the product of two smaller
numbers.

3 and 5 are both prime numbers, since there’s no way to write them as such a product.
15 is not a prime number, as we can write it as 3 * 5. By convention, 1 is also not a
prime number, since we can only write 1 * 1.

One way to check whether a number is prime by trying to divide it by every number
smaller than itself, starting at 2:
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def 1dis_prime(n: 1int) -> bool:
n is prime if it's at least 2 and if it's not
divisible by any smaller number (other than 1)
nnn
return (
n >= 2 and
all(n % d >0 for d in range(2, n))

assert all(is_prime(n) for n 1in [2, 3, 7, 11, 83, 89, 97])
assert not any(is_prime(n) for n 1in [4, 50, 91])

In order to check whether some number n is prime, this function has to take (in the
worst case) approximately n actions: first a check that n is at least two, and then a
divisibility check for each of 2, 3, ... n - 1. (In the best case it will take a lot fewer
actions; for example, is_prime (1000) will stop as soon as it computes 1000 % 2

== 0.

This means that if we wanted a list of the all the primes up to n, a worst case estimate
is that it would take approximately n * n actions.

We can do a little better, though. We really only need to check for divisors up
to math.sqrt(n), since if a and b are both larger than math.sqrt(n) then their
product is larger than n, and in particular is not n:

import math

def 1int_sqrt(n: 1int) -> dint:
return int(math.sqrt(n))

def is_prime2(n: int) -> bool:
return (
n >= 2 and
all(n % d > 0 for d in range(2, int_sqrt(n) + 1))
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Let’s see how slow this is:
from typing import List

def primes_up_to(n: 1int) -> List[int]:
return [i for i in range(2, n + 1) if dis_prime2(i)]

As always, we write a couple of test cases:

assert primes_up_to(20) == [2, 3, 5, 7, 11, 13, 17, 19]
[83, 89, 97]

assert primes_up_to(100)[-3:] =
Then, if you’re using IPython you can use the %timeit magic to see how this scales:
%timeit primes = primes_up_to(100)

On my laptop this results in

100 .077 ms

1000 1.051 ms (14x the previous)
10000 13.4  ms (13x)

100000 209 ms (16x)

1000000 4860 ms (23x)

That is, it takes about 5 seconds to find all the primes up to 1 million. Given the way
it’s scaling I don’t particularly want to check 10 million and beyond.

A more efficient way is to use a trick called the “sieve”, which is based on the
observation that if a number is not prime than it’s necessarily divisible by a smaller
prime number.

Start with the numbers 2, ..., n as “candidate” primes. The smallest element (that is, 2)
must be prime. Remove it (and remember it) and then eliminate all further multiples
of 2 as not prime. The new smallest element 3 is now our next prime. Remove it and
then eliminate all the multiples of 3 as not prime. Keep repeating this process. At
each step the new smallest element was not divisible by any smaller prime, hence
must be prime itself.



Euclid’s Solution 15

def primes_up_to(n: 1int) -> List[int]:
candidates = range(2, n + 1)
primes = []

while candidates:
# The smallest remaining number must be prime,
# because it wasn't divisible by any smaller prime.
p = candidates[0]
primes.append(p)

# Remove further multiples of p as not-prime
candidates = [n for n 1in candidates if n % p > 0]

return primes
And we’ll repeat the test cases:

assert primes_up_to(20) == [2, 3, 5, 7, 11, 13, 17, 19]
assert primes_up_to(100)[-3:] == [83, 89, 97]

But it turns out that this version doesn’t scale well either! Using %timeit again I get
the following:

100 0.0337 ms

1000 0.764 ms (22x the previous)
10000 45.9 ms (60x)

100000 2590 ms (56x)

That is, it takes over 2.5 seconds to find all the primes up to 100,000. This is even
worse than the “slow” version! The sieve was supposed to be fast. What did we do
wrong?

Performance Optimization

We can use a tool called cProfiile to investigate where our code is spending its time:
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import cProfile
cProfile.run('primes_up_to(100_000)")

The output (severely edited to fit in the book) looks sort of like

ncalls tottime function

1 0.078 <ipython-input-18-7da95fe8b6cd>:1(primes_up_to)
9592 2.138 <ipython-input-18-7da95fe8b6cd>:12(<1listcomp>)

1 0.000 <string>:1(<module>)

1 0.000 {built-in method builtins.exec}

9592 0.000 {method 'append' of 'list' objects}

1 0.000 {method 'disable' of '_lsprof.Profiler' objects}

Almost all of the time is spent in <11istcomp>; that is, doing 9600 list comprehensions.

This makes sense. Recreating the list of candidates each time by inspecting every
element is overkill. When we are doing the sieve for p = 5, there’s no need to check
7, since it’s not a multiple of 5. But in order to recreate the list of candidates we have
to iterate over every element.

How can we eliminate this? An alternative approach makes the following changes:

1. We maintain a list candidates of booleans of length n + 1. candidates[1] is
True if we haven’t yet ruled out i as a prime number. We will systematically
go through the list and set every composite (not prime) number to False.

2. We check every candidate from 2 to math.sqrt(n). This is sufficient because
if some m <= nis composite and can be written as a * b then at least one of a
and b must be smaller than sqrt(n), and we’ll set mto False when considering
that number (or one of its prime factors).

3. If a candidate p has already been eliminated as a candidate prime, we skip it

4. Otherwise it’s a prime number. Then we eliminate p *x* 2,p *x 2 + p,p *x*
2 + 2 x pand so on. (Smaller multiples of p will have already been eliminated
by the time we get to p.)
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def primes_up_to(n: 1int) -> List[int]:
# 0 1 2, ..., N
candidates = [False, False] + [True] * (n - 1)

for p in range(2, int(math.sqrt(n))):
# if we haven't already eliminated p as a prime
if candidates[p]:
# eliminate all multiples of p, starting at p **x 2
for m in range(p * p, n + 1, p):
candidates[m] = False

# return the indices that weren't eliminated
return [n for n, prime in enumerate(candidates) if prime]

Once again we can check the timings:

100 0.0067 ms

1000 0.0884 ms (13x the previous)
10000 0.911 ms (10x)

100000 9.16 ms (10x)

1000000 139 ms (15x)

10000000 2240 ms (16x)

This version is faster for small input sizes, but more importantly it grows much more
slowly as the input size increases. You can see that it finds all prime numbers up to
10,000,000 faster than the previous sieve implementation found all the prime numbers
up to 100,000.

Mathematically both versions are the same algorithm, but the implementation
differences turn out to be pretty crucial to performance.

Factorization

It turns out that every positive integer can be written in a unique way as a product
of prime numbers. (Here “unique” means “order doesn’t matter”, as plainly 3 * 5 ==
5 * 3 and so on.) We call this product the “prime factorization”.
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Using the sieve it’s easy enough to find the prime factorization of a number:

from typing 1import List

def factorize(n: 1int) -> List[int]:
primes = primes_up_to(n)

factors = []

for p in primes:
# p might divide n more than once
while n % p ==
factors.append(p)

n=n//p
# once we reach 1 there are no more prime factors
if n == 1:

break

return factors

And as always we write a few test cases:

assert factorize(l15) == [3, 5]
assert factorize(150) == [2, 3, 5, 5]
assert factorize(7) == [7]

What Prime Factorization Has to Do with Fizz
Buzz

If some number n is divisible by 3, then 3 is necessarily a prime factor of n, and vice
versa. Same thing goes for 5.

So here’s another “simple” solution:



Euclid’s Solution 19

def fizz_buzz_factorization(n: int) -> str:
prime_factors = factorize(n)

if 3 in prime_factors and 5 1in prime_factors:
return "fizzbuzz"
elif 3 1in prime_factors:
return "fizz"
elif 5 in prime_factors:
return "buzz"
else:
return str(n)

Why the scare quotes? Because this “simple” solution required us to first implement
a prime number sieve and factorization algorithm. The solution at the beginning of
the chapter certainly didn’t do all that!

Greatest Common Divisors and Least
Common Multiples

Frequently in mathematics we would like to know the greatest common divisor of
two numbers; that is, the largest number that divides both of them. For example, we
do this when we reduce fractions.

Imagine we’re given the fraction 24 / 44. We calculate (don’t worry about how right
now) that the greatest common divisor of 24 and 44 is 4, and then we cancel out a
factor of 4 from the numerator and denominator:

24 | 44 = (6 * 4) / (11 x 4) =6 / 11

One way to find the greatest common divisor is to factorize the two numbers and
take the product of all the common factors. In this case, 24 factorizes as [2, 2, 2,
3] and 44 as [2, 2, 11], sothe common factors are [2, 2], and their product is 4.
More generally:
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def gcd_factorize(n: int, m: int) -> int:
n_factors = factorize(n)
m_factors = factorize(m)
ged = 1

# Stop when either list is empty
while n_factors and m_factors:
# Greatest remaining factors of both are equal
# so multiply the gcd by that factor
if n_factors[-1] == m_factors[-1]:
gcd *= n_factors.pop()
m_factors.pop()
# Largest factor of m is not a factor of n
elif n_factors[-1] < m_factors[-1]:
m_factors.pop()
# Largest factor of n is not a factor of m
else:
n_factors.pop()

return gcd

Let’s check a few cases:

assert gcd(24, 44) == 4
assert gcd(44, 24) == 4
assert gcd(3, 5) == 1
assert gcd (100, 10) == 10

It would probably feel more natural to go through the factors in the order they’re
given (that is, front to back). We start from the end because pop()-ing the last
element off a list is a very cheap operation; removing the first element requires (in
essence) making a copy of the list.

With the sizes of lists we’re dealing with it doesn’t really matter, but it’s good practice
to get in the habit of using efficient idioms and avoiding inefficient ones. (This will
be a common theme throughout this book.)
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Sometimes we also care about the least common multiple of two numbers; that is,
the smallest number that is itself divisible by both. For example, we use this to find
a common denominator when adding fractions:

3 /10 + 3/ 4

6 / 20 + 15 / 20
21 / 20

Here we used the fact that the least common multiple of 10 and 4 is 20.

We were able to compute the ged of two numbers by taking the intersection of their
prime factors. We can similarly find the lem by taking the union of their prime
factors:

def lcm_factorize(n: int, m: int) -> int:
n_factors = factorize(n)
m_factors = factorize(m)
lem = 1

# Stop when both lists are empty
while n_factors or m_factors:
# no more prime factors of n
if not n_factors:
lcm *= m_factors.pop()
# no more prime factors of m
elif not m_factors:
lcm = n_factors.pop()
# same largest prime factor, only use it once
elif n_factors[-1] == m_factors[-1]:
lcm *= n_factors.pop()
m_factors.pop()
# largest factor of m is not a factor of n
elif n_factors[-1] < m_factors[-1]:
lcm *= m_factors.pop()
# largest factor of n is not a factor of m
else:
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lcm *= n_factors.pop()

return lcm

And as usual we write some tests:

assert lcm_factorize(10, 4) == 20
assert lcm_factorize(4, 10) == 20
assert lcm_factorize(3, 5) == 15
assert lcm_factorize(10, 100) == 100

One final observation: ged(n, m) is the product of only the common factors. lem(n,
m) is the product of all the factors of both, but with common factors only counted
once (even though they appear twice). And n * m is the product of all the factors of
both as many times as they appear.

This means that lecm(n, m) * gcd(n, m) == n x m. So if you know how to
compute one, you know how to compute the other. (Indeed, currently Python has a
math.gcd function but no math. lcm function, although this is tentatively scheduled
to change in Python 3.9.)

gcd and Fizz Buzz

What does any of this have to do with Fizz Buzz?

Well, gcd(n, m) gives us the product of the common factors of n and m. And the
factors of 15 are [3, 5].

That means that gcd(n, 15) is either 1 (if n has no factors of 3 or 5), 3 (if n has a
factor of 3 but not a factor of 5), 5 (if n has a factor of 5 but not a factor of 3), or 15
(if n has a factor of 3 and a factor of 5).

Of course, saying “n has a factor of 3” is the same as saying “n is divisible by 3”. Now
this is starting to look like Fizz Buzz.

Using Python’s math. gcd function, you could just do:
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import math

def fizz_buzz(n: 1int) -> str:
choices = {1: str(n), 3: 'fizz', 5: 'buzz', 15: 'fizzbuzz'}
return choices[math.gcd(n, 15)]

So that’s the idea behind our solution. But that wasn’t our solution.

Euclid’s Algorithm

How would we go about computing the greatest common divisor of two numbers
without computing their prime factorizations first? (Obviously we can use math. ged,
but what if we didn’t have that?)

The brute force way is to take all numbers between 1 and the smaller number, keep
only the ones that divide both of the numbers, and take the largest:

def gcd_slow(n: int, m: int) -> int:
return max (i
for i in range(l, min(n, m) + 1)
ifn%di==m%1i==0)

If n and m are both large, that’s a lot of numbers to check. For example, to compute
gcd_slow (97039801, 97313179)

on my laptop takes about 8 seconds. (Those are both prime numbers, so their ged is
1.) You could also check from highest to lowest and stop when you find one, but that
would still take a long time when the ged is small.

A more efficient way to compute the ged is using Euclid’s algorithm. You remember
Euclid from the start of the chapter.
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Say we have two numbers m <= n with greatest common divisor d. Then we can do

“long division” and writen = ¢ * m + r where @ <= r < m. Thatis,c == n //
m is the result of integer division, and r == n % m is the remainder.
I claim thatd == gcd(m, n) == gcd(r, m).That is, the greatest common divisor

of mand n is the same as the greatest common denominator of mand n % m. Why is
this?
Well, if x is any number that divides both m and n, then ¢ * m is also divisible by x

(since m is), which means that r = n - ¢ * m must be divisible by x.

On the other hand, if y is any number that divides both m and r, then ¢ * mis also
divisible by y (since m is), which means that n = ¢ * m + r must be divisible by y.

That is, {common divisors of m and n} and {common divisors of m and 1} are the
exact same sets of numbers. Any number in the set on the left is also in the set on
the right, and any number in the set on the right is also in the set on the left.

In particular, they have the same greatest element. The greatest element of the set on
the left is (by definition) gcd(m, n), and the greatest element of the set on the right
is (by definition) ged(m, r), so these gcds must be the same.

So now imagine we are trying to compute ged(n, m) with n >= m. We just showed

that this is is the same as gcd(m, n % m). If n % m == 0, then this equals m, and we’re
done. In particular, if m == n, this is the case. Otherwise, necessarily m < n and we
repeat.

At each step, either the larger of the pair gets smaller, or we’re done.

This leads to a much faster implementation:

def gcd(n: int, m: int) -> int:
# Want n >=m
n, m = max(m, n), min(m, n)

# gcd(n, m) = gcd(m, n % m)
while n % m > 0:
n, m=m, n%m

# When n % m == 0, n is a multiple of m, so m is the gcd
return m
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For the same two large prime numbers this takes about 1/1000 of a second.

“Euclid’s solution” was just an explicit invocation of this algorithm with m = 15. That
is, it was an extremely opaque (but fast) computation of gcd(n, 15), which allows
us to choose the correct Fizz Buzz result.



3. Infinite Iterables

One day I was thinking about itertools, as I am prone to do, and this elegant
solution struck me out of the blue:

import 1dtertools
fizzes = ditertools.cycle(['', '', '"fizz'])
buzzes = itertools.cycle(['', '', "', ''", 'buzz'])

numbers = +dtertools.count(1l)

fizz_buzzes = ((fizz + buzz) or str(n)
for fizz, buzz, n in zip(fizzes, buzzes, numbers))

output = [next(fizz_buzzes) for _ in range(100)]

In this chapter we’ll explore how this solution works.

Iterables, Iterators, and Lazy Infinite
Sequences

Typically, one of the first things you learn in Python is lists:

There are a couple of common ways to access the elements of a list. The first is to
retrieve an element at a specific position:
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# lists are indexed starting at 0
assert xs[2] == 'c'

The second is to iterate over the list, for example using a for loop:

for x in xs:
assert 'a' <= x <= 'e'

But lists are not the only things you can iterate over. For example, we’ve used
enumerate to get the elements of a list along with their indices. But it’s certainly
not a list:

es = enumerate(xs)

try:
es[0]
except TypeError:
print("'enumerate' object is not subscriptable")

In fact, there is a much broader class of objects (“iterables”) that can be iterated
over. It turns out that anything can be iterated over if it knows how to generate an
“iterator”.

The distinction in Python between iterators and iterables is subtle and confusing (in
particular, because every iterator is an iterable but not vice versa) and so we’ll go
through it in somewhat excruciating detail.

Iterators

Something is an iterator if you can call next() on it. Calling next () will either
return some “next” element, or it will raise a StopIteration exception. You can
think of an iterator as a stream of elements that can be traversed only once, in order,
and that may end at some point.
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Why only once in order? Because the only way to access the elements of an iterator
is by calling next () to get the next element. There is no way to “go back” nor to
access any element that’s not the “next” one.

One iterator that you may have dealt with in Python is a generator expression:

# generator containing 1, 2, 3
it = (x for x 1in [1, 2, 3])

assert next(it) == 1 # next element is 1
assert next(it) == 2 # next element s 2
assert next(it) == # next element 1is 3
try:

next(it)

assert False
except StopIteration:
print("no more elements")

Another is a function that y+ields values:

from typing import Iterator

def upto(n: int) -> Iterator[int]:
for i 1in range(n):
yield i

it = upto(3)

assert next(it) ==
assert next(it) == 1
assert next(it) ==

try:
next(it)
assert False
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except StopIteration:
pass

In practice you rarely call next () yourself (although we will sometimes be doing so
in this chapter), and so in practice you rarely work with iterators as iterators.

Iterables

Something is an iterable if it knows how to give you an iterator. In particular, every
iterator is an iterable, since it can just give you itself.

You call the iter () function on an iterable to get its iterator. When you call it on an
iterator it just returns itself:

# it is an diterator and therefore also an iterable
it = (x for x in [1, 2, 3])

# dterator s its own dterator
assert iter(it) == 1t

Of course you can also get iterators for other iterables:

# xs is not an iterator, calling next(xs) would give an error
xs = [1, 2, 3]

# but it is an 1iterable
it = iter(xs)

assert next(it

1
1
w N

)
assert next(it)
assert next(it)

Notice that while the iterator is consumed, the list is not. At any time you can get a
fresh iterator, or even multiple iterators at once:
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xs = [1, 2, 3]
itl = dter(xs)
it2 = dter(xs)
assert next(itl) == next(it2) == 1
assert next(itl) == next(it2) == 2

Typically we’ll work using tools like for loops. Behind the scenes you could imagine
them doing something like:

from typing import Iterable, Callable

def for_each(xs: Iterable[int], do: Callable) -> None:
it = dter(xs)

try:
while True:
do(next(it))
except StopIteration:
pass

for_each([1, 2, 3], print) # works with lists
for_each(upto(3), print) # works with +iterators

Working with the iterable abstraction allows us not to care whether we have lists or
generators or whatever.

Infinite Iterables

So far all of the iterables we've used eventually stop. But it’s easy to make an iterator
that goes on forever:
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def every_number() -> Iterator[int]:
n =20
while True:
yield n
n += 1

You shouldn’t use a for loop with this iterator, since for x in every_number ()
would never stop (unless your loop had a break in it, or something similar).

Instead you have to use other techniques. For example, you could define a function
to take the first n results from an iterable and return them in a list:

from typing import List
def head(xs: Iterable[int], n: 1int) -> List[int]:
results = []
it = dter(xs)
for _ 1in range(n):
try:
results.append(next(it))
except StopIteration:

break

return results

This works on infinite iterables:

assert head(every_number(), 5) == [0, 1, 2, 3, 4]

and finite ones:
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assert head([2, 3, 4, 5], 2) == [2, 3]

Working with iterables in this way is somewhat clumsy. Luckily, there’s a better way.

itertools

Python comes with the itertools library, a collection of functions for working
with iterators and iterables. Generally speaking, these functions will take iterables
(or nothing) as inputs and return iterators as outputs.

For example, itertools contains an islice function which is roughly the equivalent
of the head function we wrote in the previous section (except that it returns an
iterator not a list):

import 1ditertools

def head2(xs: Iterable[int], n: int) -> List[int]:
return list(itertools.islice(xs, n))

assert head(every_number(), 5) == head2(every_number(), 5)
assert head([2, 3, 4], 2) == head2([2, 3, 4], 2)

The functions in itertools do many interesting things, and you are encouraged to
read the documentation and/or check out my 2015 presentation on Stupid Itertools
Tricks for Data Science.

Here we only need two of its functions.

The first is itertools.count which returns an infinite iterator that “counts” based
on the supplied start (default: 0) and step (default: 1). That is, i tertools.count ()
is the iterator that generates the values 0, 1, 2, ... and keeps going.


https://docs.python.org/3/library/itertools.html
https://docs.google.com/presentation/d/1eI60SL3UxtWfr9ktrv48-pcIkk4S7JiDmeXGCyyGhCs/edit?usp=sharing
https://docs.google.com/presentation/d/1eI60SL3UxtWfr9ktrv48-pcIkk4S7JiDmeXGCyyGhCs/edit?usp=sharing
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assert head(itertools.count(), 5) == [0, 1, 2, 3, 4]
assert head(itertools.count(start=10, step=2), 3) == [10, 12, 14]

The other one we’ll need is itertools.cycle, which takes an iterable and returns
its elements repeatedly in a cycle forever:

guesses = itertools.cycle(['yes', 'no', 'maybe'])
assert head(guesses, 5) == ['yes', 'no', 'maybe', 'yes', 'no']

zip VS map

zip isa commonly used function in Python. It lazily “zips” together multiple iterables
into an iterator of tuples, stopping whenever the first is exhausted. (There is an
itertools.zip_longest in case you want it to keep going as long as one of the
iterables is not exhausted.)

So, for example,

pairs = zip([1, 2], ['a', 'b', 'c'])
assert list(pairs) == [(1, 'a'), (2, 'b")]

triplets = zip([1, 2], ['a', 'b', 'c'], [True, False])
assert list(triplets) == [(1, 'a', True), (2, 'b', False)]

One way to combine multiple iterables is using zip and a list comprehension. For
example,
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names = ['Alice', 'Bob', 'Carol']
titles = ['Professor', 'Doctor', 'President']

greetings = [f"{title} {name}"
for title, name 1in zip(names, titles)]

assert greetings = [
"Professor Alice",
"Doctor Bob",
"President Carol"

Another way is to use map, which takes a mapping function and some iterables to
use as its arguments one value at a time:

greetings2 = map(lambda title, name: f"{title} {name}",
names,
titles)

assert list(greetings2) == greetings

I generally avoid map, for a couple of reasons. One is that it returns a lazy iterable,
so that you have to remember to wrap it in list() if you actually want a list. (zip
has the same issue, but you typically use it inside a for loop, so it doesn’t end up
mattering.)

The second reason is that I find Python code that uses map to be “unpythonic”; that
is, non-idiomatic. This is a judgment call on my part, but I'm the one writing the

book.

Putting It All Together

How do we use all these concepts to solve the problem? First, we define
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# An 1infinite iterator whose every third element is 'fizz'
# and the rest of whose elements are the empty string
fizzes = ditertools.cycle(['', '', '"fizz'])

and

# An infinite iterator whose every fifth element is 'buzz'
# and the rest of whose elements are the empty string
buzzes = ditertools.cycle(['', '', "', '", 'buzz'])

and finally

# The infinite iterator 1, 2, 3, 4,
numbers = +dtertools.count(1l)

Now consider the iterator zip(fizzes, buzzes, numbers). Its first several
elements are

(l|’ ll,l)
(||’ ",2)
("fizz', "', 3)
(', )

("', 'buzz', 5)
('fizz', '', 6)

and its 15th element is (' fizz', 'buzz', 15).

That is, whenever the number is divisible by 3, the first element will be ‘fizz’, and
whenever the number is divisible by 5 the second element will be ‘buzz’, which means
that whenever the number is divisible by 15 the first two elements will be ‘fizz’ and
‘buzz’.

If the first two elements are not both empty, the correct answer is their concatenation
(since 'fizz' + '' == 'fizz').If they are both empty, the right answer is str ()
of the number. We can get this with
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fizz_buzzes = ((fizz + buzz) or str(n)
for fizz, buzz, n in zip(fizzes, buzzes, numbers))

This works because or returns its left-hand value if that value is truthy, and its right-
hand value otherwise. Here, if either fizz or buzz is non-empty, fizz + buzz is
a non-empty string (which is truthy) and so that’s what gets returned. If both fizz
and buzz are empty strings, fizz + buzz is an empty string (which is not truthy),
and so str(n) gets returned.

Notice that since the inputs are infinite iterables we have to use a generator
comprehension. If we used a list comprehension it would try to materialize this
infinite sequence as a list and would run forever.

This actually solves more than the original problem, since it generates an infinite
stream of Fizz Buzz outputs. We only need the first 100:

output = [next(fizz_buzzes) for _ in range(100)]

Bonus: PowerFizz

Here’s a variant I call “PowerFizz”:

Print the numbers 1to N, except that if the number is a perfect square, print
“fizz”; if the number is a perfect cube, print “buzz”; and if the number is a
sixth power, print “fizzbuzz”.

The obvious solution doesn’t work because of the usual floating point reasons:
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def 1is_sixth_power(n: 1int) -> bool:
sixth_root = n xx (1 / 6)
return sixth_root == int(sixth_root)

assert is_sixth_power (1l ** 6)
assert is_sixth_power (2 **x 6)
assert is_sixth_power (3 ** 6)
assert not is_sixth_power(4 *x 6) # !!

Of course, you could use the try-every-number method:

def is_kth_power(n: int, k: int) -> bool:
for i in 1dtertools.count(1l):
if i *x k == n:
return True
# Once we pass n, it's not a k-th power.
elif i »x k > n:
return False

assert is_kth_power (10 ** 6, 6)
assert is_kth_power(3 ** 5, 5)
assert not is_kth_power (3 *x 4, 5)

But we can also easily solve this variant using iterators. We create a squares iterator
consisting of all squares and a cubes iterator consisting of all cubes. Any time n
equals the first element of squares we know n must be a square, and then we
advance that iterator and are ready to find the next square. Any time n equals the
first element of cubes we know n must be a cube, and then we advance that iterator
and are ready to find the next cube.

There’s no easy way to “peek” at the first element of an iterator, so we just use next ()
to get the first element and store it in a “buffer” variable:
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def power_fizz() -> Iterator[str]:
squares = (n ** 2 for n 1in itertools.count(l))
cubes = (n ** 3 for n in +ditertools.count(l))

# Buffer for next element of each -iterator
next_square, next_cube = next(squares), next(cubes)

for n in itertools.count(l):
fizz = buzz = "'
if n == next_square:
fizz = "fizz'
next_square = next(squares)
if n == next_cube:
buzz = 'buzz'
next_cube = next(cubes)
yield (fizz + buzz) or str(n)

38

When n is a square, fizzis "fizz"; otherwise it’s an empty string. When n is a cube,
buzz is "buzz"; otherwise it’s an empty string. And when n is a sixth power (that
is, both a square and a cube) then fizz is "fizz" and buzz is "buzz", as desired:

# Put a None at the beginning so output[l] is the output for 1
output = [None] + head(power_fizz(), 1000)

assert output[7 *x 2] == "fizz"
assert output[6 *x 3] == "buzz"
assert output[2 ** 6] == "fizzbuzz"
assert output[2 ** 7] == str(2 **x 7)
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