
Preface

Like many American kids in 1979, I woke up to find that Santa had
left a brand new Atari VCS1 under the tree (thanks, Mom and Dad,
for paying Santa’s invoice!). This was a pretty big deal for a six-
year-old who could tell you the location and manufacturer of every
standup arcade cabinet within a five mile radius. Having an “arcade
in your home” wasn’t just a thing you saw on Silver Spoons, it was
now a real thing.

The sights and sounds that jumped o↵ of our little Panasonic color
TV probably deserve a gigantic run-on sentence worthy of Dylan
Thomas, as my brother and I bounced tiny pixellated missiles o↵
of walls in Combat, combed through the perplexing game modes
of Space Invaders, battled angry duck-like dragons in Adventure,
and became Superman as we put flickering bad guys in a flickering
jail. These cartridges were opaque obelisks packaged in boxes with
fantastically unattainable illustrations, available at K-Mart for $30
or so.

You could tell these species of video games weren’t related to arcade
games, though they had a unique look-and-feel of their own. We
also had an Apple][by this time, so I tried to fit all of these creatures
into a digital taxonomy. Atari games had colors and fast motion,
but not as much as arcade games, and they never were as complex
as Apple][games. What made them tick? Why were Activision
games so much more detailed? Would the missile still blow up your
spaceship if you turned the TV o↵? (Turns out the answer is yes.)

1 It wasn’t sold as “Atari 2600” until 1982. We’ll use “VCS” in this book, which
stands for Video Computer System.

xii

An Atari 2600 four-switch "wood veneer" version, dating from
1980-1982 (photo by Evan Amos)

Soon afterwards, I would start dissecting the Apple][, and never
really got my mitts on the viscera inside those VCS cartridges. It
wasn’t until the Internet came around that I’d discover the TIA chip,
scanlines, and emulators like Stella. I’d also read about the people
who wrote the games, often uncredited, who pushed the envelopes
of both game design and technology while working solo against
impossible deadlines.

It’s now been 37 years since that Christmas morning, and thanks to
the Web, very fast modern CPUs, and lots of open-source sharing,
you can program Atari VCS games in your browser. It’s probably
the most e↵ort you can expend for the fewest number of pixels, but
it’s also really rewarding.

If the modern software ecosystem is a crowded and bureaucratic
megalopolis, programming the VCS is like tinkering in a tiny cabin
in the woods with 10-foot snow drifts outside. At least the stove is
working, and there’s plenty of wood. Enjoy.

xiii

1

Introduction to 6502

In 1974, Chuck Peddle was a Motorola employee trying to sell
their 6800 microprocessor to customers for $300 each. He and
a few co-workers left the company with the vision of a much
cheaper alternative, and landed at MOS Technology in Valley Forge,
Pennsylvania.

They began drawing the layout for the chip on a huge sheet of paper
in one of the o�ces. Later, they’d cut the table-sized Rubylith
photomask for the 3,510 transistors by hand, wearing clean socks
so they wouldn’t damage the mask when they had to step over
something. The design (mostly) worked on the first run, and the
6502 was sold out of large jars for $25 at the 1975 Wescon trade
show.[1] It would sell tens of millions of units over the next decade.

The 6502 CPU was not that much di↵erent from other micropro-
cessors in function; it was just cheap and widely available. Yet it
powered the Apple I and Apple][computers, the Commodore 64,
the Nintendo Entertainment System, and the Atari 2600/VCS, as
well as a myriad of other computers and game devices.

While there are plenty of books and online resources devoted to
6502 programming, we’re going to cover the basics in this chapter
before we jump straight into programming the Atari 2600. Feel free
to skip to the next chapter if you already know most of this stu↵;
we won’t cover VCS-specific topics until Chapter Two.

1

1.1 Bits, Bytes, and Binary

All digital computers operate on bits and bytes and, on the VCS,
you’ll be manipulating them directly. Let’s review a few things
about them.

A bit is a binary value – it can be either zero (0) or one (1). A byte is
a sequence of eight bits.

We can create a written representation of a byte in binary notation,
which just lists the bits from left to right, for example: %00011011.
We can then shorten the byte notation by removing the leading
zeros, giving us %11011. The % denotes a binary number, and we’ll
use this notation throughout the book.

The eight bits in a byte are not just independent ones and zeros; they
can also express numbers. We assign values to each bit and then
add them up. The least-significant bit, the rightmost (our index
starts at zero, i.e. bit 0), has a value of 1. For each position to the
left, the value increases by a power of two until we reach the most-
significant bit, the leftmost (bit 7) with a value of 128. Here are the
values for an entire byte:

Bit # 7 6 5 4 3 2 1 0
Value 128 64 32 16 8 4 2 1

Let’s line up our example byte, %11011, with these values:

Bit # 7 6 5 4 3 2 1 0
Value 128 64 32 16 8 4 2 1
Our Byte 0 0 0 1 1 0 1 1
Bit*Value 16 8 2 1

When we add up all the bit values, we get 16+8+2+1 = 27.

1.2 Hexadecimal Notation

Binary notation can be unwieldy, so it’s common to represent bytes
using hexadecimal notation, or base 16. We split the byte into two 4-

2

bit halves, or nibbles. We treat each nibble as a separate value from
0 to 15, like this:

Bit # 7 6 5 4 3 2 1 0
Value 8 4 2 1 8 4 2 1

Table 1.1: Bit Values in Hexadecimal Notation

We then convert each nibble’s value to a symbol – 0-9 remains 0

through 9, but 10-15 becomes A through F.

Let’s convert the binary number %11011 and see how it would be
represented in hexadecimal:

Bit # 7 6 5 4 3 2 1 0
Value 8 4 2 1 8 4 2 1
Our Byte 0 0 0 1 1 0 1 1
Bit*Value 1 8 2 1
Decimal Value 1 11
Hex Value 1 B

Table 1.2: Example Hex Conversion

We see in Table 1.2 that the decimal number 27, represented as
%11011 in binary, becomes $1B in hexadecimal format. (The $ prefix
indicates a hexadecimal number.)

1.3 Signed vs. Unsigned Bytes

One more thing about bytes: We’ve described how they can be
interpreted as any value from 0 through 255, or an unsigned value.
We can also interpret them as negative or signed quantities.

3

This requires a trick known as two’s complement arithmetic. If the
high bit is 1 (in other words, if the unsigned value is 128 or greater),
we treat the value as negative, as if we had subtracted 256 from it:

0-127 ($00-$7F): positive
128-255 ($80-$FF): negative (value - 256)

Note that there’s nothing in the byte identifying it as signed – it’s all
in how you interpret it, as we’ll see later.

Now that we know what bits and bytes are, let’s see how the CPU
manipulates them.

1.4 The CPU and the Bus

Think of the CPU as an intricate timepiece. An electronic spring
unwinds and an internal clock ticks 1.19 million times per second.
On every tick, electrons turn tiny gears, and the CPU comes to rest
in a di↵erent state. Each tick is called a clock cycle, or CPU clock,
and you’ll learn to become aware of their passing as you learn how
to program the VCS.

All the CPU does is execute instructions, one after another, in a
fetch-decode-execute cycle. It fetches an instruction (reads it from
memory), decodes it (figures out what to do) and then executes it
(does some things in a prescribed order). Each instruction may
take several clock cycles to execute, each clock cycle performing
a specific step. The CPU then figures out which instruction to grab
next, and repeats the process. The CPU keeps the address of the
next instruction in a 16-bit register called the Program Counter (PC).

4

Fetch

Decode

Execute

Read Memory[PC++]
Result: $88

"no operand"
"decrement register"
"Y register"

Y = Y - 1

Figure 1.1: CPU Cycle

During each clock cycle, the CPU can read from or write to the bus.
The bus is a set of “lanes” where each lane can hold a single bit at
a time. The 6502 is an 8-bit processor, so the data bus is eight bits
(one byte) wide.

Devices like memory and graphics chips are attached to the bus,
and receive read and write signals. The CPU doesn’t know which
devices are connected to the bus – all it knows is that it either
receives eight bits back from a read, or sends eight bits out into
the world during a write.

6502 CPU

Memory and peripherals

Data Address
Bus Bus

Figure 1.2: Bus

Besides the 8-bit data bus, the 6502 has a 16-bit address bus. The
address bus describes “where” and the data bus describes “what.”

Let’s look at what happens when the CPU executes this example
instruction, LDA (LoaD A):

lda $1234

5

The CPU will set the pins on the address bus to the binary encoding
for $1234, set the read/write pin to “read,” and wait for a response
on the data bus. Devices on the bus look at the address $1234 and
determine whether the message is for them – by design, only one
device should respond. The CPU then reads the value from the data
bus and puts it in the A register.

Let’s say we are executing the STA instruction (STore A):

sta $1234

The CPU will set the address bus to $1234 and the data bus to
whatever is in the A register, then set the read/write pin to “write.”
Again, the bus devices look at the address bus and the write signal
and decide if they should listen or ignore it. Let’s say a memory
chip responds – the memory chip would read the 8-bit value o↵ the
data bus and store it in the memory cell corresponding to address
$1234. The CPU does not get a response from a write; it just assumes
everything worked out fine.

You’ll note that both of these instructions operate on the A register.
The 6502 has three general-purpose registers: A, X, and Y. These
are all 8-bit variables that you can manipulate at will. You’ll often
have to use the registers as temporary storage, for instance: Load a
constant value into A, then store A to a given address.

You’ll notice that the CPU instructions have a three-letter format.
This is called a mnemonic, and it’s part of the human-readable
language used by the CPU, called assembly language. The CPU
doesn’t understand this, but it understands a compact code called
machine code. A program called an assembler takes the human-
readable assembly code and produces machine code.

Let’s take another example instruction:

lda $1234 -> ad 34 12

The machine code for this instruction is three bytes, $ad, $34, and
$12. $ad is the opcodewhich identifies the instruction and addressing
mode. $34 and $12 are part of the operand, which in this case is

6

a 16-bit number spanning two bytes. You’ll note that the $34 is
first and the $12 is second – this is because the 6502 is a little-
endian processor, expecting the least-significant parts of multibyte
quantities first.

$F000
$AD

LDA $####

$F1
LDA $1234

Cycle CPU Address Data
Bus Bus

0

1

2

3

Figure 1.3: LDA Cycle

1.5 Writing Loops

Now we’re ready to write a program. Typically, we’d start with
the classic example that prints “Hello, World” on the display, but
we don’t have a display yet! The equivalent program on the Atari
2600 would require us to define the bitmaps for all of the letters in
“Hello, World” and we’d also need to learn how CRTs work. So we’ll
start with something simpler: a loop that counts from 100 (decimal)
down to zero.

ldy #100 ; Y = 100
Loop dey ; subtract 1 from Y

bne Loop ; repeat until Y == 0

Here we have three instructions and one label named Loop. In
our dialect of 6502 assembler (DASM), instructions are always

7

indented, and labels are always flush against the left margin. Labels
can be on their own line or coexist with an instruction. Comments
are denoted with a “;” and go until the end of the line.

The first instruction LDY (LoaD Y) loads the Y register with a
constant value, 100. Constants start with a “#” and tell the
assembler to use the value directly, not as a memory-load or
memory-store instruction.

The next instruction DEY (DEcrement Y) subtracts 1 from the Y
register. It also sets the Zero (Z) flag in the CPU, which is an internal
bit that is set to 1 if the result of an instruction is zero. We use these
flags to test for conditions in the code.

The final instruction BNE (Branch Not Equal) is a branch instruction,
which means the next instruction may be one of two choices. BNE

transfers control to its target label if the Z flag is unset, and will fall
through to the next instruction if it is set. In our case, since DEY just
set the Z flag, the branch will be taken until the Y register decreases
to zero, and so the loop will repeat 100 times.

Let’s make a loop that uses the di↵erent addressing modes of the
6502. These allow you to target areas of memory beyond a single
constant location, by adding another register to an address. For
example, this demonstrates the absolute indexed addressing mode
with the STA instruction:

lda #0 ; A <- 0
ldy #$7F ; Y <- 127

Loop sta $100,y ; store A in [$100+y]
dey ; decrement Y, set flags
bne Loop ; repeat until Y == 0

This loop makes use of two registers, A and Y. A is initialized to
zero and Y counts down from $7F (127) to zero. The STA (STore
Accumulator) instruction stores A to an address at every loop
iteration. We use the addressing mode “absolute,indexed" here,
which means we compute the destination address by adding a
register (Y in this case) to a constant ($100 in this case). Since Y
counts from $7F down to zero, we’ll store A (which we set to 0) to
addresses $17F to $101 in decreasing order.

8

In 6502 parlance, the absolute indexed mode means add an 8-
bit value (Y register in this case) to a 16-bit constant. There is
another mode, zero page mode, which operates only on 8-bit values.
Zero page refers to the memory locations $00-$FF which get special
treatment. Instructions using zero-page addressing modes generate
smaller code, and most of the VCS registers live in zero-page space.

There are restrictions to these modes, and all combinations do not
have a corresponding encoding. For example, only X and Y can
be used as indices, the A register cannot be used as an index.
Also, Y can only be used as a zero-page index with the LDX and STX

instructions – otherwise it is expanded to an absolute index. Your
assembler will throw an error if you try to use an invalid addressing
mode.

Our last loop has a problem, though. We used the BNE instruction to
repeat the loop until Y is zero. But since the store happens beforewe
decrement Y, we don’t store anything when Y is zero (i.e. at address
$100). To fix this, we just change the loop so that the DEY happens
before the STA, and add 1 to the starting Y value:

lda #0
ldy #$80 ; Y <- 128

Loop dey ; set flags
sta $100,y ; does not modify flags
bne Loop ; repeat while Y != 0

Since STA does not modify any flags, we can DEY first (which does
modify flags) and then exit the loop when Y==0 rather than Y<0.
There will be lots of opportunities to tweak loops like this for
optimal performance, and VCS programming often demands it.

9

We could also count upwards from zero using the CPY (ComPare Y)
instruction:

lda #0
tay ; Y <- 0

Loop sta $100,y
iny
cpy #$80 ; set flags as if (Y - 128)
bne Loop ; branch until Y == 128

The CPY instruction performs a comparison: It subtracts the operand
from the Y register and sets flags, but discards the result. So in this
example if Y is $80, (Y-$80) will be zero and the Zero flag will be set.

We can also compare the A register with CMP (CoMPare accumulator)
and the X register with CPX (ComPare X register).

1.6 Condition Flags and Branching

We’ve covered the Z (Zero) flag already, but there are others. Here’s
the list of condition flags you’ll be using most often:

Flag Name Description
Z Zero Set when the result is zero.
N Negative/Sign Set when the result is negative

(high bit set).
C Carry Set when an arithmetic operation

wraps and carries the high bit.
V Overflow Set when an arithmetic operation

overflows; i.e. if the sign of the
result changes due to overflow.

Table 1.3: Condition Flags

A lot of instructions just set the Zero and Negative flags, which
makes it easy to test for zero values or to test the high bit. The
Carry flag is set by compare, add, subtract, and shift operations.

The Overflow bit is less commonly used than the Carry bit, but
it’s worth explaining the di↵erence between wrapping and overflow.

10

When we say a value wraps, we mean that an operation exceeds the
boundaries of its byte and the result is truncated. So if you add $01

to $FF, you’ll wrap around to $00.

Overflow is set when the result of a addition or subtraction changes
its sign – for example, $40 + $40 = $80 which overflows because $80

is a negative number in two’s complement representation. If you
are using unsigned numbers, you can generally ignore this flag.

Mnem. Description Flag Test Condition
BNE Not Equal Zero clear A != B
BEQ Equal Zero set A == B
BCC Carry Clear Carry clear A < B (unsigned)
BCS Carry Set Carry set A � B (unsigned)
BMI Minus Negative set A < B (signed)
BPL Plus Negative clear A � B (signed)
BVC Overflow clear no signed overflow
BVS Overflow set signed overflow
JMP Jump — always taken

Table 1.4: Branch Instructions

The JMP instruction doesn’t test any flags but just moves the PC
directly to the target. The branch instructions can only modify the
PC by -128 to +127 bytes, so for longer distances you’ll need JMP.

It’s good to memorize the BCC (less than) and BCS (greater than or
equal) instructions, since these are used often. Also note that the
BPL and BMI instructions are the same for signed quantities, so we
could use them to stop when a value goes negative, like this:

lda #0 ; A <- 0
ldy #$7F ; Y <- 127

Loop sta $100,y ; store A in [$100+y]
dey ; decrement Y, set flags
bpl Loop ; repeat until signed(Y) < 0

Note that this technique would not work if we started with Y = $81

or higher, because the first DEY would result in a negative number,
exiting the loop on the first iteration!

11

1.7 Addition and Subtraction

We’ve covered DEY, but there is a whole group of instructions that
increment (add one) or decrement (subtract one):

DEC -1 from memory location
DEX -1 from X register
DEY -1 from Y register
INC +1 to memory location
INX +1 to X register
INY +1 to Y register

There’s no INC or DEC for the A register, but you can add or subtract
the A register to/from another memory location or constant. ADC

adds, and SBC subtracts. An example of addition:

lda $81 ; load memory location $81 -> A
clc ; clear carry flag
adc #10 ; add 10 to A
sta $82 ; store A -> memory location $82

Note the CLC (Clear Carry Flag) instruction. The ADC instruction adds
the Carry flag to the result (0 or 1) so usually it must be cleared
before addition. For subtraction, it must be set first using SEC (Set
Carry Flag):

lda $81 ; load memory location $81 -> A
sec ; set carry flag
sbc #10 ; subtract 10 from A
sta $82 ; store A -> memory location $82

The increment/decrement instructions modify the Negative and
Zero flags, while the addition/subtraction additionally modify the
Carry flag.

1.8 The Stack

In computing terminology, a stack is a list of values that can grow
and shrink. You grow the stack by pushing a value on top, and
shrink by pulling a value o↵ the top.

12

On the 6502, the stack is stored in RAM, and the top of the stack is
a memory location stored in the S (Stack pointer) register. It usually
starts at $FF.

The PHA instruction pushes the A register to the stack, storing it to
the memory location pointed to by S. It then decrements S by 1. We
say the stack "grows upward" because the stack pointer decreases as
new values are added.

You can retrieve the top value on the stack with the PLA instruction.
It first increments S by 1, then reads the location pointed to by S
into A.

Another important instruction that uses the stack is JSR. It pushes
the Program Counter to the stack, then transfers control to another
location, just like a JMP. When the RTS instruction is encountered,
the CPU pulls the top address o↵ of the stack and transfers control
there. We’ll demonstrate this in Chapter 11.

1.9 Logical Operations

The “logical" instructions combine the bits of the A register and the
operand, performing a bit (logic) operation on each bit.

AND A&B Set bit if A and B are set.
ORA A|B Set bit if A or B (or both) are set.
EOR AˆB Set bit if either A or B are set, but not both

(exclusive-or).
BIT A&B Same as AND, but just set flags and throw

away the result.

Table 1.5: Logical Instructions

13

For example, let’s combine $55 and $f0 with the AND operation:

lda #$55
and #$f0

For AND, if a bit was set in both the A register and the operand, it’ll
be set in A after the instruction executes:

$55 01010101
AND $f0 11110000

$50 01010000

The AND operation is useful for limiting the range of a value. For
example, AND #$1F is the same as (A mod 32), and the result will have
a range of 0..31.

What if we did an ORA instead?

$55 01010101
ORA $f0 11110000

$f5 11110101

ORA sets bits if they are set in either A or the operand, i.e. unless they
are clear in both.

What about an EOR?

$55 01010101
EOR $f0 11110000

$a5 10100101

EOR (exclusive-or) is like an OR, except that bits that are set in both A
and the operand are cleared. Note that if we do the same EOR twice,
we get the original value back.

14

1.10 Shift Operations

ASL Shift Left Shift left 1 bit (multiply by 2), bit 7! Carry
LSR Shift Right Shift right 1 bit (divide by 2), bit 0! Carry
ROL Rotate Left Same as ASL except Carry! bit 0
ROR Rotate Right Same as LSR except Carry! bit 7

Table 1.6: Shift and rotate instructions

There is also the family of “shift" operations that move bits left and
right by one position within a byte. The bit that is shifted o↵ the
edge of the byte (i.e. the high bit for shift left, and the low bit for
shift right) gets put into the Carry flag.

The “rotate” operations are similar, but they also shift the previous
Carry flag into the other end of the byte. So for rotate left, the
Carry flag is copied into the rightmost (low) bit. For rotate right,
it’s copied into the leftmost (high) bit.

Example of ASL (shift left):

lda #$83
asl ; shift left

Result (C means carry flag is set):

$83 10000011
ASL -> $06 00000110 C

Remember that just like decimal notation, we consider the “left-
most” bit to be the most significant. So if we shift left one bit, we are
essentially multiplying by 2. If we shift right one bit, we essentially
divide by 2, discarding the remainder.

[Carry] [7] [6] [5] [4] [3] [2] [1] [0] 0 ASL (Shift Left)

0 [7] [6] [5] [4] [3] [2] [1] [0] [Carry] LSR (Shift Right)

[Carry]
ROL (Rotate Left)

[7] [6] [5] [4] [3] [2] [1] [0]

[Carry]
ROR (Rotate Right)

[7] [6] [5] [4] [3] [2] [1] [0]

Figure 1.4: Shift and rotate bit flow

15

Another example, this time of ROR (rotate right):

lda #$03
sec ; set carry flag
ror ; rotate right
ror ; rotate right
ror ; rotate right

Note that we SEC to set the carry first. Here’s the result:

$03 00000011 C
ROR -> $81 10000001 C
ROR -> $81 11000000 C
ROR -> $81 11100000

Note that if you ROL or ROR nine times in succession, you’d have the
original byte.

Now that you have a working knowledge of the 6502, we’ll use an
online tool to program it in the next chapter.

16

	Preface
	Introduction to 6502
	Bits, Bytes, and Binary
	Hexadecimal Notation
	Signed vs. Unsigned Bytes
	The CPU and the Bus
	Writing Loops
	Condition Flags and Branching
	Addition and Subtraction
	The Stack
	Logical Operations
	Shift Operations

	The 8bitworkshop IDE
	Debug Window
	Keyboard Shortcuts

	VCS Memory Map
	Equates
	Segments

	Writing Your First Assembly Code
	Painting on the CRT
	Timing is Everything
	Making Rainbows

	Playfield Graphics
	Players and Sprites
	Horizontal Positioning

	Color Sprites
	Sprite Fine Positioning
	Player/Missile Graphics
	The SetHorizPos Subroutine
	The PIA Timer
	Joysticks and Switches
	Console Switches
	Joysticks

	Indirect Addressing
	Pointers
	Indirect Indexed Addressing
	Indexed Indirect Addressing

	A Complex Scene, Part I
	A Complex Scene, Part II
	NUSIZ and Other Delights
	Player Reflection
	NUSIZ and Multiple Player Copies
	VDELP: Vertical Delay
	CTRLPF and Object Priority
	Two-Player Score Mode

	Scoreboard
	Collisions
	Asynchronous Playfields: Bitmap
	Asynchronous Playfields: Bricks
	A Big (48 pixel) Sprite
	Tiny Text
	Six-Digit Scoreboard
	A Big Moveable Sprite
	Sprite Formations
	Advanced Timer Tricks
	Timer Tables

	Multisprites
	Variables
	Position
	Display
	The Main Loop
	Sort
	Improvements

	Random Number Generation
	Procedural Generation
	Drawing Lines
	The Sound and Music
	Music Player

	Pseudo-3D: Sunsets and Starry Nights
	Sky, Clouds, and Sunset
	Mountains
	Stars at Night

	Pseudo-3D: Driving Down the Road
	Bank Switching
	Trampolines
	Common Bankswitching Methods
	ORG vs. RORG
	Bankswitching Example

	Wavetable Audio
	Audio Waveforms
	Generating Samples

	Paddles
	Illegal Opcodes
	Precise Pitch via Duty Cycling
	Song File Format

	Timing Analysis
	Making Games
	Game Design
	Game Programming
	Distributing Your Game

	Troubleshooting
	Appendix A: VCS Memory Map
	Appendix B: VCS Colors
	Appendix C: 6502 Opcodes
	Appendix D: 6502 Instruction Flags
	Appendix E: Header Files
	xmacro.h

	Bibliography
	Index

