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Chapter 1

Introduction

The plan is to formalize definitions from the L-functions and modular forms database (LMFDB)
in mathlib, as well as creating some tactics to import relevant data from the LMFDB into
mathlib.

The LMFDB contains many objects of interest to mathematicians, many of which are still
beyond what can currently be formalized in mathlib. For this reason, we will focus on three
main areas: number fields, elliptic curves, and modular forms. In each of these areas, we will
formalize relevant definitions and import data from the LMFDB.

Our first main goal is to formalize relevant definitions used by the LMFDB to uniquely
identify objects in the database, i.e. the LMFDB labels.

This is still a rough blueprint, generated from the information contained in the LMFDB. For
now, we have roughly organized the definitions by area, with a background chapter containing
definitions that are needed but don’t quite fit into the three main areas above.

Warning: This blueprint is still a work in progress. In places, the LaTeX is not rendering
correctly, but everything has a link back to the LMFDB, so if in doubt, it is worth checking
the definitions there. Also, many of the definitions are already formalized, and they should soon
have links to the relevant definitions in mathlib.
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Chapter 2

Background

In this section we list definitions (in no particular order) relevant to general mathematical objects
and concepts that appear in the LMFDB. These are definitions that don’t quite fit into the three
main areas of number fields, elliptic curves and modular forms, but are still needed to understand
the definitions in those areas. Some are either already in mathlib or beyond what we can currently
formalise in mathlib.
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2.0.1 Arithmetic function
Definition 2.0.1. An arithmetic function is a complex-valued function whose domain is the
positive integers.

2.0.2 Bernoulli numbers
Definition 2.0.2. The Bernoulli numbers are the rational numbers 𝐵𝑛 that appear as coef-
ficients of the formal power series

𝑇
𝑒𝑇 − 1 = ∑

𝑛≥0
𝐵𝑛

𝑇 𝑛

𝑛! ,

which has radius of convergence 2𝜋.

2.0.3 Divisor function
Definition 2.0.3. A divisor function is a multiplicative arithmetic function of the form

𝜎𝜏(𝑛) = ∑
𝑑∣𝑛

𝑑𝜏 ,

for some fixed 𝜏 ∈ ℂ.

2.0.4 Multiplicative arithmetic function
Definition 2.0.4. An arithmetic function 𝑓 ∶ ℤ>0 → ℂ is multiplicative if 𝑓(𝑚𝑛) = 𝑓(𝑚)𝑓(𝑛)
for all coprime integers 𝑚, 𝑛 > 0, and is not the zero-function (in particular, 𝑓(1) = 1).

2.0.5 Abelian variety
Definition 2.0.5. An abelian variety defined over the field 𝐾 is a smooth connected projec-
tive variety equipped with the structure of an algebraic group. The group law is automatically
commutative.

An abelian variety of dimension 1 is the same as an elliptic curve.

2.0.6 Affine space
Definition 2.0.6. Affine space 𝔸𝑛(𝐾) of dimension 𝑛 over a field 𝐾 is the set 𝐾𝑛.

If 𝑃 = (𝑥1, … , 𝑥𝑛) is a point in 𝔸𝑛(𝐾), the 𝑥𝑖 are called the *affine coordinates* of 𝑃 . Thus

𝔸𝑛(𝐾) = {(𝑥1, … , 𝑥𝑛) ∣ 𝑥1, … , 𝑥𝑛 ∈ 𝐾}.

2.0.7 Base change
Definition 2.0.7. Let 𝑉 be an algebraic variety defined over a field 𝐾. If 𝐿/𝐾 is a field
extension, then any set of equations that define 𝑉 over 𝐾 can be used to define an algebraic
variety over 𝐿, the base change of 𝑉 from 𝐾 to 𝐿 (typically denoted 𝑉𝐿).

An algebraic variety over a field 𝐿 is said to be a base change if it is the base change of an
algebraic variety defined over a proper subfield of 𝐿, equivalently, if its base field is not a minimal
field of definition.
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2.0.8 Base field
Definition 2.0.8. The base field, of an algebraic variety is the field over which it is defined;
it necessarily contains the coefficients of a set of defining equations for the variety, but it is not
necessarily a minimal field of definition.

2.0.9 Complex multiplication
Definition 2.0.9. A simple abelian variety of dimension 𝑔 is said to have complex multi-
plication (CM) if its endomorphism algebra is a CM field of degree 2𝑔, or equivalently, if its
endomorphism ring is an order in a CM field of degree 2𝑔.

2.0.10 Algebraic curve
Definition 2.0.10. An algebraic curve is an algebraic variety of dimension 1.

2.0.11 Genus of a smooth curve
Definition 2.0.11. The genus of a smooth projective geometrically integral curve 𝐶 defined
over a field 𝑘 is the dimension of the 𝑘-vector space of regular differentials 𝐻0(𝐶, 𝜔𝐶). When
𝑘 = ℂ this coincides with the topological genus of the corresponding Riemann surface.

The quantity defined above is sometimes also called the algebraic genus or the geometric
genus of 𝐶. Because of our assumption on the smoothness of 𝐶, it coincides with the arithmetic
genus 𝐻1(𝐶, 𝒪𝐶).

2.0.12 Smoothness of an algebraic curve
Definition 2.0.12. Let 𝐶 be an algebraic curve over a perfect field 𝑘. Then 𝐶 is called smooth
if the extension of 𝐶 to the algebraic closure of 𝑘 is non-singular at all of its points.

2.0.13 Dimension of an algebraic variety
Definition 2.0.13. The dimension of an algebraic variety 𝑉 is the maximal length 𝑑 of a chain

𝑉0 ⊂ 𝑉1 ⊂ ⋯ ⊂ 𝑉𝑑

of distinct irreducible subvarieties of 𝑉 .

2.0.14 Endomorphism algebra
Definition 2.0.14. The endomorphism algebra of an abelian variety 𝐴 is the ℚ-algebra
End(𝐴) ⊗ ℚ, where End(𝐴) is the endomorphism ring of 𝐴.

2.0.15 Endomorphism ring
Definition 2.0.15. An endomorphism of an abelian variety 𝐴 over a field 𝑘 is a homomor-
phism 𝜑∶ 𝐴 → 𝐴 defined over 𝑘. The set of endomorphisms of an abelian variety 𝐴 can be given
the structure of a ring in which addition is defined pointwise (using the group operation of 𝐴)
and multiplication is composition; this ring is called the endomorphism ring of 𝐴, denoted
End(𝐴).

For endomorphisms defined over an extension of 𝑘, we instead speak about the geometric
endomorphism ring.
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2.0.16 Geometric endomorphism ring
Definition 2.0.16. For an abelian variety 𝐴 over a field 𝐹 , the geometric endomorphism
ring of 𝐴 is End(𝐴𝐹 ), the endomorphism ring of the base change of 𝐴 to an algebraic closure
𝐹 of 𝐹 .

2.0.17 Geometrically simple
Definition 2.0.17. An abelian variety over a field 𝑘 is geometrically (or absolutely) simple
if it is simple when viewed as a variety over 𝑘̄.

2.0.18 Hyperelliptic curve
Definition 2.0.18. A hyperelliptic curve 𝑋 over a field 𝑘 is a smooth projective algebraic
curve of genus 𝑔 ≥ 2 that admits a 2-to-1 map 𝑋 → ℙ1 defined over the algebraic closure 𝑘̄.

If 𝑋 is a hyperelliptic curve over 𝑘, then the canonical map 𝑋 → ℙ𝑔−1 is a 2-to-1 map onto
a smooth genus 0 curve 𝑌 . The curve 𝑌 is isomorphic to ℙ1 if and only if 𝑌 has a 𝑘-rational
point.

If 𝑋 admits a 2-to-1 map to ℙ1 that is defined over 𝑘, then 𝑋 has a Weierstrass model of
the form 𝑦2 + ℎ(𝑥)𝑦 = 𝑓(𝑥); when the characteristic of 𝑘 is not 2 one can complete the square to
put this model in the form 𝑦2 = 𝑓(𝑥).

In general, there is always a model for 𝑋 in ℙ3 of the form

ℎ(𝑥, 𝑦, 𝑧) = 0 𝑤2 = 𝑓(𝑥, 𝑦, 𝑧)

where ℎ(𝑥, 𝑦, 𝑧) is a homogeneous polynomial of degree 2 (a conic) and 𝑓(𝑥, 𝑦, 𝑧) is a homogeneous
polynomial of degree 𝑔 + 1.

2.0.19 Irreducible variety
Definition 2.0.19. A variety defined over a field 𝐹 is irreducible if it is nonempty and cannot be
decomposed as the union of two strictly smaller varieties over 𝐹 . It is geometrically irreducible
if it remains irreducible when seen as a variety over the algebraic closure of 𝐹 .

2.0.20 Jacobian of a curve
Definition 2.0.20. The Jacobian of a (smooth, projective, geometrically integral) curve 𝑋 of
genus 𝑔 over a field 𝑘 is a 𝑔-dimensional principally polarized abelian variety 𝐽 that is canonically
associated to 𝑋.

If 𝑋 has a 𝑘-rational point, then 𝐽(𝑘) is isomorphic to the group of degree zero divisors on
𝑋 modulo linear equivalence. A choice of rational point on 𝑋 determines a morphism 𝑋 → 𝐽
called an Abel-Jacobi map; it is an embedding if and only if 𝑔 ≥ 1, and an isomorphism if and
only if 𝑔 = 1.

The Torelli theorem states that if 𝑋 and 𝑌 are curves whose Jacobians are isomorphic as
*principally polarized* abelian varieties, then 𝑋 and 𝑌 are isomorphic. It is possible, however,
for non-isomorphic curves to have Jacobians that are isomorphic as unpolarized abelian varieties.

14

https://beta.lmfdb.org/knowledge/show/ag.geom_endomorphism_ring
https://beta.lmfdb.org/knowledge/show/ag.geom_simple
https://beta.lmfdb.org/knowledge/show/ag.hyperelliptic_curve
https://beta.lmfdb.org/knowledge/show/ag.irreducible
https://beta.lmfdb.org/knowledge/show/ag.jacobian


2.0.21 Minimal field of definition
Definition 2.0.21. Let 𝑉 /𝑘 be an algebraic variety defined over a field 𝑘 and let 𝑆 be the set
of subfields 𝑘0 ⊆ 𝑘 for which there exists an algebraic variety 𝑉0/𝑘0 whose base change to 𝑘 is
isomorphic to 𝑉 .

Any field 𝑘0 ∈ 𝑆 that contains no other elements of 𝑆 is a minimal field of definition for
𝑉 .

In general, an algebraic variety may have more than one minimal field of definition; this does
not occur for elliptic curves but it does occur for curves of genus 2.

2.0.22 Mordell-Weil group of an abelian variety
Definition 2.0.22. The Mordell-Weil group of an abelian variety 𝐴 over a number field 𝐾
is its group of 𝐾-rational points 𝐴(𝐾).

Weil, building on Mordell’s theorem for elliptic curves over ℚ, proved that the abelian group
𝐴(𝐾) is finitely generated. Thus

𝐴(𝐾) ≃ ℤ𝑟 ⊕ 𝑇 ,
where 𝑟 is a nonnegative integer called the Mordell-Weil rank of 𝐴, and 𝑇 is a finite abelian
group called the torsion subgroup.

The torsion subgroup 𝑇 is the product of at most 2𝑔 cyclic groups, where 𝑔 is the dimension
of 𝐴.

2.0.23 Projective space
Definition 2.0.23. Projective space ℙ𝑛(𝐾) of dimension 𝑛 over a field 𝐾 is the set (𝐾𝑛+1 ∖
{0})/ ∼ , where

(𝑥0, 𝑥1, … , 𝑥𝑛) ∼ (𝑦0, 𝑦1, … , 𝑦𝑛) ⟺ 𝑥0 = 𝜆𝑦0, … , 𝑥𝑛 = 𝜆𝑦𝑛 for some 𝜆 ∈ 𝐾∗.

The equivalence class of (𝑥0, 𝑥1, … , 𝑥𝑛) in ℙ𝑛(𝐾) is denoted by (𝑥0 ∶ 𝑥1 ∶ ⋯ ∶ 𝑥𝑛), and the 𝑥𝑖 are
called homogeneous coordinates. Thus

ℙ𝑛(𝐾) = {(𝑥0 ∶ ⋯ ∶ 𝑥𝑛) ∣ 𝑥0, … , 𝑥𝑛 ∈ 𝐾, not all zero}.

2.0.24 Quotient curve
Definition 2.0.24. Let 𝑋 be an algebraic curve and let 𝐻 be a finite subgroup of its automorphism
group.

The quotient curve 𝑋/𝐻 is the algebraic curve obtained by identifying points of 𝑋 that lie
in the same 𝐻-orbit (equations defining 𝑋/𝐻 as an algebraic variety of dimension one can be
constructed from the equations defining 𝑋 and the automorphisms in 𝐻).

The natural projection 𝑋 → 𝑋/𝐻 that sends each point on 𝑋 to its 𝐻-orbit is a surjective
morphism

2.0.25 Riemann surface
Definition 2.0.25. A Riemann surface is a connected complex manifold of dimension one.
Compact Riemann surfaces can be identified with smooth projective curves over ℂ.
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2.0.26 Simple
Definition 2.0.26. An abelian variety is simple if it is nonzero and not isogenous to a product
of abelian varieties of lower dimension.

2.0.27 Non-singular point (definition)
Definition 2.0.27. Let 𝑉 be a variety over a perfect field 𝐹 . A point 𝑃 of 𝑉 is non-singular
if the module of differentials of 𝑉 is locally free at 𝑃 . According to the Jacobian criterion,
if 𝑉 is defined in a neighborhood of 𝑃 by affine polynomial equations 𝑓1(𝑋1, … , 𝑋𝑛) = … =
𝑓𝑟(𝑋1, … , 𝑋𝑛) = 0, then 𝑉 is non-singular at 𝑃 if the Jacobian matrix ( 𝜕𝑓𝑖

𝜕𝑋𝑗
)

𝑖𝑗
has the same

rank as the codimension of 𝑉 in 𝔸𝑛.

2.0.28 Algebraic variety
Definition 2.0.28. There are two main kinds of algebraic varieties, *affine varieties* and
*projective varieties*. Both are defined as the set of common zeros of a collection of polynomials.
Let 𝐾 be a field with algebraic closure 𝐾.

An affine algebraic set is a subset of affine space 𝔸𝑛(𝐾) of the form

𝑉 (𝐼) = {𝑃 ∈ 𝔸𝑛(𝐾) ∶ 𝑓(𝑃 ) = 0 for all 𝑓 ∈ 𝐼}

where 𝐼 ⊆ 𝐾[𝑥1, … , 𝑥𝑛] is an ideal. Given an affine algebraic set 𝑉 , its defining ideal is

𝐼(𝑉 ) = {𝑓 ∈ 𝐾[𝑥1, … , 𝑥𝑛] ∶ 𝑓(𝑃 ) = 0 for all 𝑃 ∈ 𝑉 }.

An affine variety over 𝐾 is an affine algebraic set whose defining ideal 𝐼 ⊆ 𝐾[𝑥1, … , 𝑥𝑛] is
a prime ideal. An affine variety over 𝐾 is an affine variety over 𝐾 whose defining ideal can
be generated by polynomials in 𝐾[𝑥1, … , 𝑥𝑛].

We define projective notions similarly. A projective algebraic set is a subset of projective
space ℙ𝑛(𝐾) defined by a *homogeneous* ideal 𝐼 ⊆ 𝐾[𝑥1, … , 𝑥𝑛]. A projective variety over
𝐾 is a projective algebraic set whose defining ideal is a homogeneous prime ideal. A projec-
tive variety over 𝐾 is a projective variety over 𝐾 whose defining ideal can be generated by
homogeneous polynomials in 𝐾[𝑥1, … , 𝑥𝑛].

2.0.29 Binary operation
Definition 2.0.29. A binary operation on a set 𝑆 is a function 𝑆 × 𝑆 → 𝑆.

If the operation is denoted by ∗, then the output of this function applied to (𝑠1, 𝑠2) is typically
denoted 𝑠1 ∗ 𝑠2.

2.0.30 Associative binary operation
Definition 2.0.30. If ∗ is a binary operation on a set 𝐴, then ∗ is associative on 𝐴 if for all
𝑎, 𝑏, 𝑐 ∈ 𝐴,

𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐.
/div>
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2.0.31 Commutative binary operation
Definition 2.0.31. If ∗ is a binary operation on a set 𝐴, then ∗ is commutative on 𝐴 if for
all 𝑎, 𝑏 ∈ 𝐴,

𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎.

2.0.32 Identity for a binary operation
Definition 2.0.32. If ∗ is a binary operation on a set 𝐴, then 𝐴 has an identity element with
respect to ∗ if there exists 𝑒 ∈ 𝐴 such that for all 𝑎 ∈ 𝐴,

𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎.

Such an identity element 𝑒, if it exists, is unique and is thus called the identity element of 𝐴
with respect to ∗.

2.0.33 Inverse for a binary operation
Definition 2.0.33. If ∗ is a binary operation on a set 𝐴 having identity element 𝑒 ∈ 𝐴, then an
element 𝑎 ∈ 𝐴 has an inverse in 𝐴 with respect to ∗ if there exists 𝑎′ ∈ 𝐴 such that

𝑎 ∗ 𝑎′ = 𝑎′ ∗ 𝑎 = 𝑒.

2.0.34 Symplectic isomorphism
Definition 2.0.34. Let 𝑁 ≥ 1. Let 𝜇𝑁 be the group of 𝑁 th roots of unity in some algebraically
closed field of characteristic not dividing 𝑁 . Let 𝑀 be a free rank 2 ℤ/𝑁ℤ-module together
with an isomorphism 𝛼∶ ⋀2 𝑀 ∼→ 𝜇𝑁 , or equivalently with a nondegenerate alternating pairing
𝑀 × 𝑀 → 𝜇𝑁 . For example, 𝑀 could be 𝐸[𝑁] for an elliptic curve 𝐸, together with the Weil
pairing. Or 𝑀 could be ℤ/𝑁ℤ × 𝜇𝑁 with the ”determinant” pairing (𝑎, 𝛾), (𝑏, 𝛿) ↦ 𝛿𝑎/𝛾𝑏.

A symplectic isomorphism from 𝑀 to another such structure 𝑀 ′ is a ℤ/𝑁ℤ-module
isomorphism 𝑀 → 𝑀 ′ such that the induced isomorphism ⋀2 𝑀 → ⋀2 𝑀 ′ gets identified via 𝛼
and 𝛼′ with the identity 𝜇𝑁 → 𝜇𝑁 .

The same definition makes sense in a context in which each free rank 2 ℤ/𝑁ℤ-module is
enriched with a Galois action to make a Galois module, or replaced by a finite étale group scheme
that is (ℤ/𝑁ℤ)2 étale locally.

2.0.35 Artin representation (definition)
Definition 2.0.35. An Artin representation is a continuous homomorphism 𝜌 ∶ Gal(ℚ/ℚ) →
GL(𝑉 ) from the absolute Galois group of ℚ to the automorphism group of a finite-dimensional
ℂ-vector space 𝑉 . Here continuity means that 𝜌 factors through the Galois group of some finite
extension 𝐾/ℚ. The smallest such 𝐾 is called the Artin field of 𝜌.

2.0.36 Conductor of an Artin representation
Definition 2.0.36. The conductor of an Artin representation is a positive integer that measures
its ramification. It can be expressed as a product of local conductors.

Let 𝐾/ℚ be a Galois extension and 𝜌 ∶ Gal(𝐾/ℚ) → GL(𝑉 ) an Artin representation. Then
the conductor of 𝜌 is ∏𝑝 𝑝𝑓(𝜌,𝑝) for non-negative integers 𝑓(𝜌, 𝑝), where the product is taken over
prime numbers 𝑝.
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To define the exponents 𝑓(𝜌, 𝑝), fix a prime 𝔭 of 𝐾 above 𝑝 and consider the corresponding
extension of local fields 𝐾𝔭/ℚ𝑝 with Galois group 𝐺. Then 𝐺 has a filtration of higher ramification
groups in lower numbering 𝐺𝑖, as defined in Chapter IV of Serre’s Local Fields [?, ?]. In
particular, 𝐺−1 = 𝐺, 𝐺0 is the inertia group of 𝐾𝔭/ℚ𝑝, and 𝐺1 is the wild inertia group, which
is a finite 𝑝-group.

Let 𝑔𝑖 = |𝐺𝑖|. Then
𝑓(𝜌, 𝑝) = ∑

𝑖≥0

𝑔𝑖
𝑔0

(dim(𝑉 ) − dim(𝑉 𝐺𝑖))

where 𝑉 𝐺𝑖 is the subspace of 𝑉 fixed by 𝐺𝑖.
Note that if 𝑝 is unramified in 𝐾, then 𝑓(𝜌, 𝑝) = 0 and conversely, if 𝜌 is faithful and 𝑝 is

ramified in 𝐾, then 𝑓(𝜌, 𝑝) > 0.

2.0.37 Number field associated to an Artin representation
Definition 2.0.37. The Artin field is a number field associated to an Artin representation
𝜌 ∶ Gal(ℚ/ℚ) → GL(𝑉 ) by being the smallest Galois extension 𝐾/ℚ such that 𝜌 factors through
Gal(𝐾/ℚ).

2.0.38 Parity of a representation
Definition 2.0.38. An Artin representation 𝜌 ∶ Gal(ℚ/ℚ) → GL(𝑉 ) is even or odd if det(𝜌(𝑐))
equals 1 or −1, respectively, where 𝑐 is a complex conjugation.

2.0.39 Ramified prime of an Artin representation
Definition 2.0.39. If 𝜌 ∶ Gal(ℚ/ℚ) → GL𝑛(ℂ) is an Artin representation with Artin field 𝐾,
then a prime 𝑝 is ramified if it is ramified in 𝐾/ℚ.

Equivalently, a prime is ramified if the inertia subgroup for a prime above 𝑝 is not contained
in the kernel of 𝜌.

2.0.40 Unramified prime of an Artin representation
Definition 2.0.40. If 𝜌 ∶ Gal(ℚ/ℚ) → GL𝑛(ℂ) is an Artin representation, a prime 𝑝 is unram-
ified if it is not ramified.

Equivalently, a prime is unramified if the inertia subgroup for a prime above 𝑝 in the Artin
field of 𝜌 is contained in the kernel of 𝜌.

2.0.41 Isogeny of abelian varieties
Definition 2.0.41. An isogeny of abelian varieties is a surjective algebraic group homomor-
phism with finite kernel.

Two abelian varieties are isogenous if there is an isogeny between them. This defines an
equivalence relation on the set of isomorphism classes. Equivalence classes are called isogeny
classes.

2.0.42 Simple abelian variety
Definition 2.0.42. An abelian variety is simple if it is nonzero and not isogenous to a product
of abelian varieties of lower dimension.
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2.0.43 Tate module of an abelian variety
Definition 2.0.43. Let 𝑝 ∈ ℤ≥0 be a prime and 𝐴 an abelian variety of dimension 𝑔 defined
over a field 𝐾. The 𝑝-adic Tate module of 𝐴 is the inverse limit

𝑇𝑝(𝐴) = lim←−−
𝑛∈ℕ

𝐴[𝑝𝑛].

Here for 𝑚 ∈ ℤ>0, 𝐴[𝑚] denotes the 𝑚-torsion subgroup of 𝐴, which is the kernel of the
multiplication-by-𝑚 isogeny of 𝐴.

If 𝐾 has characteristic not equal to 𝑝, then 𝑇𝑝(𝐴) is a free ℤ𝑝-module of rank 2𝑔. It carries
an action of the absolute Galois group of 𝐾, and thus has an associated Galois representation.

2.0.44 Twist of an abelian variety
Definition 2.0.44. A twist of an abelian variety 𝐴 is an abelian variety 𝐴′ over the same field
that becomes isomorphic to 𝐴 upon base change to an algebraic closure.

2.0.45 Dirichlet character
Definition 2.0.45. A Dirichlet character is a function 𝜒 ∶ ℤ → ℂ together with a positive
integer 𝑞 called the modulus such that 𝜒 is completely multiplicative, i.e. 𝜒(𝑚𝑛) = 𝜒(𝑚)𝜒(𝑛)
for all integers 𝑚 and 𝑛, and 𝜒 is periodic modulo 𝑞, i.e. 𝜒(𝑛 + 𝑞) = 𝜒(𝑛) for all 𝑛. If (𝑛, 𝑞) > 1
then 𝜒(𝑛) = 0, whereas if (𝑛, 𝑞) = 1, then 𝜒(𝑛) is a root of unity. The character 𝜒 is primitive
if its conductor is equal to its modulus.

2.0.46 Conductor of a Dirichlet character
Definition 2.0.46. The conductor of a Dirichlet character 𝜒 modulo 𝑞 is the least positive
integer 𝑞1 dividing 𝑞 for which 𝜒(𝑛 + 𝑘𝑞1) = 𝜒(𝑛) for all 𝑛 and 𝑛 + 𝑘𝑞1 coprime to 𝑞.

2.0.47 Galois orbit of a Dirichlet character
Definition 2.0.47. The Galois orbit of a Dirichlet character 𝜒 of modulus 𝑞 and order 𝑛 is
the set [𝜒] ∶= {𝜎(𝜒) ∶ 𝜎 ∈ Gal(ℚ(𝜁𝑛)/ℚ)}, where 𝜎(𝜒) denotes the Dirichlet character of modulus
𝑞 defined by 𝑘 ↦ 𝜎(𝜒(𝑘)). The map 𝜒 → 𝜎(𝜒) defines a faithful action of the Galois group
Gal(ℚ(𝜁𝑛)/ℚ) on the set of Dirichlet characters of modulus 𝑞 and order 𝑛, each of which has
ℚ(𝜁𝑛) as its field of values.

2.0.48 Orbit index of a Dirichlet character
Definition 2.0.48. The Galois orbits of Dirichlet characters of modulus 𝑞 are ordered as follows.
Let 𝜒 be any character in the Galois orbit [𝜒] and define the 𝑁-tuple of integers

𝑡([𝜒]) ∶= (𝑛, 𝑡1, 𝑡2, … , 𝑡𝑞−1) ∈ ℤ𝑞,

where 𝑛 is the order of 𝜒 and 𝑡𝑖 ∶= trℚ(𝜒)/ℚ(𝜒(𝑖)) is the trace of 𝜒(𝑖) from the field of values of 𝜒
to ℚ. The 𝑞-tuple 𝑡([𝜒]) is independent of the choice of representative 𝜒 and uniquely identifies
the Galois orbit [𝜒].

The orbit index of 𝜒 is the index of 𝑡([𝜒]) in the lexicographic ordering of all such tuples
arising for Dirichlet characters of modulus 𝑞; indexing begins at 1, which is always the index of
the Galois orbit of the principal character of modulus 1.
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2.0.49 Label of a Galois orbit of a Dirichlet character
Definition 2.0.49. The label of a Galois orbit of a Dirichlet character 𝜒 of modulus 𝑁 takes
the form 𝑁.𝑎, where 𝑎 is a letter or string of letters representing the index of the Galois orbit.
The index 1 is written as 𝑎, the index 2 is written as 𝑏, the index 27 is written as 𝑏𝑎, and so on.

2.0.50 Induced Dirichlet character
Definition 2.0.50. A Dirichlet character 𝜒1 of modulus 𝑞1 is said to be induced by a Dirichlet
character 𝜒2 of modulus 𝑞2 dividing 𝑞1 if 𝜒1(𝑚) = 𝜒2(𝑚) for all 𝑚 coprime to 𝑞1.

A Dirichlet character is primitive if it is not induced by any character other than itself; every
Dirichlet character is induced by a uniquely determined primitive Dirichlet character.

2.0.51 Minimal Dirichlet character
Definition 2.0.51. A Dirichlet character 𝜒 of prime power modulus 𝑁 is minimal if the
following conditions both hold:

1. The conductor of 𝜒 does not lie in the open interval (
√

𝑁, 𝑁), and if 𝑁 is a square divisible
by 16 then cond(𝜒) ∈ {

√
𝑁, 𝑁}.

2. Both the order and conductor of 𝜒 are minimal among the set of all Dirichlet character
𝜒𝜓2 for which cond(𝜓)cond(𝜒𝜓)|𝑁 .

This includes all primitive Dirichlet characters of prime power modulus, but not every minimal
Dirichlet character of prime power modulus is primitive.

For a composite modulus 𝑁 with prime power factorization 𝑁 = 𝑝𝑒1
1 ⋯ 𝑝𝑒𝑛𝑛 , a Dirichlet char-

acter 𝜒 of modulus 𝑁 is minimal if and only if every character in its unique factorization
into Dirichlet characters of modulus 𝑝𝑒1

1 , ⋯ , 𝑝𝑒𝑛𝑛 is minimal. The trivial Dirichlet character is
minimal.

2.0.52 Modulus of a Dirichlet character
Definition 2.0.52. A Dirichlet character is a function 𝜒 ∶ ℤ → ℂ together with a positive
integer 𝑞, called the modulus of the character, such that 𝜒 is completely multiplicative, i.e.
𝜒(𝑚𝑛) = 𝜒(𝑚)𝜒(𝑛) for all integers 𝑚 and 𝑛, and 𝜒 is periodic modulo 𝑞, i.e. 𝜒(𝑛 + 𝑞) = 𝜒(𝑛)
for all 𝑛. If (𝑛, 𝑞) > 1 then 𝜒(𝑛) = 0, whereas if (𝑛, 𝑞) = 1, then 𝜒(𝑛) is a root of unity.

2.0.53 Order of a Dirichlet character
Definition 2.0.53. The order of a Dirichlet character 𝜒 is the least positive integer 𝑛 such that
𝜒𝑛 is the trivial character of the same modulus as 𝜒. Equivalently, it is the order 𝑛 of the image
of 𝜒 in ℂ×, the group of 𝑛th roots of unity.

2.0.54 Primitive Dirichlet character
Definition 2.0.54. A Dirichlet character 𝜒 is primitive if its conductor is equal to its modulus;
equivalently, 𝜒 is not induced by a Dirichlet character of smaller modulus.

2.0.55 Principal Dirichlet character
Definition 2.0.55. A Dirichlet character is principal (or trivial) if it has order 1, equivalently,
if it is induced by the unique Dirichlet character of modulus 1.
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The value of the principal Dirichlet character of modulus 𝑞 at an integer 𝑛 is 1 if 𝑛 is coprime
to 𝑞 and 0 otherwise.

2.0.56 Field of values of a Dirichlet character
Definition 2.0.56. The field of values of a Dirichlet character 𝜒∶ ℤ → ℂ is the field ℚ(𝜒(ℤ))
generated by its values; it is equal to the cyclotomic field ℚ(𝜁𝑛), where 𝑛 is the order of 𝜒.

2.0.57 Automorphism group of an algebraic curve
Definition 2.0.57. An automorphism of an algebraic curve is an isomorphism from the curve
to itself. The set of automorphisms of a curve 𝑋 form a group Aut(𝑋) under composition; this
is the automorphism group of the curve.

The automorphism group of a genus 2 curve necessarily includes the hyperelliptic involu-
tion (𝑥, 𝑦) ↦ (𝑥, −𝑦), which is an automorphism of order 2; this means that the automorphism
group of a genus 2 curve is never trivial.

The geometric automorphism group of a curve 𝑋/𝑘 is the automorphism group of 𝑋𝑘̄.

2.0.58 Discriminant of a genus 2 curve
Definition 2.0.58. The discriminant Δ of a Weierstrass equation 𝑦2 + ℎ(𝑥)𝑦 = 𝑓(𝑥) can be
computed as

Δ ∶= {28lc(𝑓)2disc(𝑓 + ℎ2/4) if 𝑓 + ℎ2/4 has odd degree,
28disc(𝑓 + ℎ2/4) if 𝑓 + ℎ2/4 has even degree,

where lc(𝑓) denotes the leading coefficient of 𝑓 and disc(𝑓) its discriminant.
The discriminant of a genus 2 curve over ℚ is the discriminant of a minimal equation for

the curve; it is an invariant of the curve that does not depend on the choice of minimal equation.

2.0.59 Genus 2 curve
Definition 2.0.59. Every (smooth, projective, geometrically integral) curve of genus 2 can be
defined by a Weierstrass equation of the form

𝑦2 + ℎ(𝑥)𝑦 = 𝑓(𝑥)

with nonzero discriminant and deg ℎ ≤ 3 and deg 𝑓 ≤ 6; in order to have genus 2 we must have
deg ℎ = 3 or deg 𝑓 = 5, 6. Over a field whose characteristic is not 2 one can complete the square
to make ℎ(𝑥) zero, but this will yield a model with bad reduction at 2 that is typically not a
minimal equation for the curve.

This equation can be viewed as defining the function field of the curve, or as a smooth model
of the curve in the weighted projective plane. Every curve of genus 2 admits a degree 2 cover of
the projective line (consider the function 𝑥) and is therefore a hyperelliptic curve.

2.0.60 Primes of good reduction
Definition 2.0.60. A variety 𝑋 over ℚ is said to have good reduction at a prime 𝑝 if it has
an integral model whose reduction modulo 𝑝 defines a smooth variety of the same dimension;
otherwise, 𝑝 is said to be a prime of bad reduction.
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When 𝑋 is a curve, any prime of good reduction for 𝑋 is also a prime of good reduction for
its Jacobian, but the converse need not hold when 𝑋 has genus 𝑔 > 1.

For all of the genus 2 curves currently in the LMFDB, every prime of good reduction for the
curve is also a prime of good reduction for the Jacobian of the curve.

2.0.61 Minimal equation of a hyperelliptic curve
Definition 2.0.61. Every (smooth, projective, geometrically integral) hyperelliptic curve 𝑋 over
ℚ of genus 𝑔 can be defined by an integral Weierstrass equation

𝑦2 + ℎ(𝑥)𝑦 = 𝑓(𝑥),

where ℎ(𝑥) and 𝑓(𝑥) are integral polynomials of degree at most 𝑔 + 1 and 2𝑔 + 2, respectively.
Each such equation has a discriminant Δ. A minimal equation is one for which |Δ| is minimal
among all integral Weierstrass equations for the same curve. Over ℚ, every hyperelliptic curve
has a minimal equation. The prime divisors of Δ are the primes of bad reduction for 𝑋.

The equation 𝑦2 + ℎ(𝑥)𝑦 = 𝑓(𝑥) uniquely determines a homogeneous equation of weighted
degree 6 in variables 𝑥, 𝑦, 𝑧, where 𝑦 has weight 𝑔 + 1, while 𝑥 and 𝑧 both have weight 1: one
homogenizes ℎ(𝑥) to obtain a homogeneous polynomial ℎ(𝑥, 𝑧) of degree 𝑔 + 1 and homogenizes
𝑓(𝑥) to obtain a homogeneous polynomial 𝑓(𝑥, 𝑧) of degree 2𝑔+2. This yields a smooth projective
model 𝑦2 + ℎ(𝑥, 𝑧)𝑦 = 𝑓(𝑥, 𝑧) for the curve 𝑋.

One can always transform the minimal equation into a simplified equation 𝑦2 = 𝑔(𝑥) =
4𝑓(𝑥)+ℎ(𝑥)2, but this equation need not have minimal discriminant and may have bad reduction
at primes that do not divide the minimal discriminant (it will always have bad reduction at the
prime 2).

2.0.62 Galois group
Definition 2.0.62. The Galois group of an irreducible separable polynomial of degree 𝑛 can
be embedded in 𝑆𝑛 through its action on the roots of the polynomial, with the image being well-
defined up to labeling of the roots. Different labelings lead to conjugate subgroups. The subgroup
acts transitively on {1, … , 𝑛}. Conversely, for every transitive subgroup 𝐺 of 𝑆𝑛 with 𝑛 ∈ ℤ+,
there is a field 𝐾 such that 𝐺 is the Galois group of some polynomial over 𝐾.

2.0.63 Borel subgroup
Definition 2.0.63. A Borel subgroup of a general linear group is a subgroup that is conjugate
to the group of upper triangular matrices.

The Borel subgroups of GL2(𝔽𝑝) are maximal subgroups that fix a one-dimensional subspace
of 𝔽2

𝑝; every such subgroup is conjugate to the subgroup of upper triangular matrices.
Subgroup labels containing the letter B identify a subgroup of GL2(𝔽𝑝) that lies in the Borel

subgroup of upper triangular matrices but is not contained in the subgroup of diagonal matrices;
these are precisely the subgroups of a Borel subgroup that contain an element of order 𝑝.

The label B is used for the full Borel subgroup of upper triangular matrices
The label B.a.b denotes the proper subgroup of B generated by the matrices

(𝑎 0
0 1/𝑎) , (𝑏 0

0 𝑟/𝑏) , (1 1
0 1) ,

where 𝑎 and 𝑏 are minimally chosen positive integers and 𝑟 is the least positive integer generating
(ℤ/𝑝ℤ)× ≃ 𝔽×

𝑝 , as defined in [?, ?, ?].
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2.0.64 Cartan subgroup
Definition 2.0.64. Let 𝑅 be a commutative ring. Given a free rank 2 étale 𝑅-algebra 𝐴
equipped with a basis, any 𝑎 ∈ 𝐴× defines an 𝑅-linear multiplication-by-𝑎 map 𝐴 → 𝐴, so we get
an injective homomorphism 𝐴× → Aut𝑅-module(𝐴) ≃ GL2(𝑅), and the image is called a Cartan
subgroup of GL2(𝑅). The canonical involution of the 𝑅-algebra 𝐴 gives another element of
Aut𝑅-module(𝐴); we call the group generated by it and the Cartan subgroup 𝐴× the extended
Cartan subgroup. The Cartan subgroup has index 2 in the extended Cartan subgroup.

If 𝑅 = 𝔽𝑝, there are two possibilities for 𝐴: the split algebra 𝔽𝑝 × 𝔽𝑝 and the nonsplit algebra
𝔽𝑝2 ; the resulting Cartan subgroups are called split and nonsplit. The extended Cartan subgroup
equals the normalizer of the Cartan subgroup in GL2(𝔽𝑝) except when 𝑝 = 2 and 𝐴 is split. In
the split case, if we use the standard basis of 𝔽𝑝 × 𝔽𝑝, the Cartan subgroup is the subgroup of
diagonal matrices in GL2(𝔽𝑝), and the extended Cartan subgroup is this together with the coset
of antidiagonal matrices in GL2(𝔽𝑝).

If 𝑅 = ℤ/𝑝𝑒ℤ, again there are two possibilities for 𝐴: the split algebra 𝑅 × 𝑅, or the nonsplit
algebra. The nonsplit algebra can be described as 𝒪/𝑝𝑒𝒪 where 𝒪 is either the degree 2 unramified
extension of ℤ𝑝 or a quadratic order in which 𝑝 is inert. The nonsplit algebra can also be described
as the ring of length 𝑒 Witt vectors 𝑊𝑒(𝔽𝑝2).

If 𝑅 = ℤ/𝑁ℤ for some 𝑁 ≥ 1, then 𝐴 can be split or nonsplit independently at each prime
dividing 𝑁 .

2.0.65 Exceptional subgroup
Definition 2.0.65. An exceptional subgroup of GL2(𝔽𝑝) does not contain SL2(𝔽𝑝) and is not
contained in a Borel subgroup or in the normalizer of a Cartan subgroup.

Exceptional subgroups are classified according to their image in PGL2(𝔽𝑝), which must be
isomorphic to one of the alternating groups 𝐴4 or 𝐴5, or to the symmetric group 𝑆4. These
groups are labelled using identifiers containing one of the strings A4, A5, S4, as described in
[?, ?].

2.0.66 Index of an open subgroup
Definition 2.0.66. The index of an open subgroup 𝐻 of a profinite group 𝐺 is the positive
integer [𝐺 ∶ 𝐻].

When 𝐺 is a matrix group over ℤ̂ or ℤℓ and 𝐻 is a subgroup of level 𝑁 , this is the same as
the index of 𝐻 in the reduction of 𝐺 modulo 𝑁 .

2.0.67 Level of an open subgroup
Definition 2.0.67. The level of an open subgroup 𝐻 of a matrix group 𝐺 over ℤ̂ is the least
positive integer 𝑁 for which 𝐻 is equal to the inverse image of its projection to the reduction of
𝐺 modulo 𝑁 .

This also applies to open subgroups of matrix groups over ℤℓ, in which case the level is
necessarily a power of ℓ.

2.0.68 Non-split Cartan subgroup
Definition 2.0.68. A non-split Cartan subgroup of GL2(𝔽𝑝) is a Cartan subgroup that is
not diagonalizable over 𝔽𝑝. Every non-split Cartan subgroup is a cyclic group isomorphic to 𝔽×

𝑝2 .
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For 𝑝 = 2 the label Cn identifies the unique index 2 subgroup of GL2(𝔽2). For 𝑝 > 2 the label
Cn identifies the nonsplit Cartan subgroup consisting of matrices of the form

(𝑥 𝜀𝑦
𝑦 𝑥 ) ,

with 𝑥, 𝑦 ∈ 𝔽𝑝 not both zero and 𝜀 the least positive integer generating (ℤ/𝑝ℤ)× ≃ 𝔽×
𝑝 , corre-

sponding to 𝑥 + 𝑦√𝜀 ∈ 𝔽×
𝑝2 . Every non-split Cartan subgroup is conjugate to the group Cn.

Labels of the form Cn.a.b identify the proper subgroup of Cn generated by the matrix

(𝑎 𝜀𝑏
𝑏 𝑎 ) ,

where 𝑎 and 𝑏 are minimally chosen positive integers and 𝜀 is the least positive integer generating
(ℤ/𝑝ℤ)× ≃ 𝔽×

𝑝 , as defined in [?, ?, ?].

2.0.69 Normalizer of a Cartan subgroup
Definition 2.0.69. For 𝑝 > 2 the normalizer of a Cartan subgroup of GL2(𝔽𝑝) is a
maximal subgroup of GL2(𝔽𝑝) that contains a Cartan subgroup with index 2. It is the normalizer
in GL2(𝔽𝑝) of the Cartan subgroup it contains.

For 𝑝 = 2 the Cartan subgroups of GL2(𝔽2) are already normal and we instead define the
normalizer of a Cartan subgroup to be a group that contains a Cartan subgroup with index 2. This
means that the normalizer of a split Cartan subgroup of GL2(𝔽2) has order 2 (which makes it
conjugate to the Borel subgroup), while the normalizer of a non-split Cartan subgroup of GL2(𝔽2)
has order 6 (which makes it all of GL2(𝔽2)).

2.0.70 Normalizer of a non-split Cartan subgroup
Definition 2.0.70. For 𝑝 > 2 the normalizer of a non-split Cartan subgroup of GL2(𝔽𝑝)
is a maximal subgroup of GL2(𝔽𝑝) that contains a non-split Cartan subgroup with index 2, and
it is the normalizer in GL2(𝔽𝑝) of the non-split Cartan subgroup it contains. For 𝑝 = 2 the
normalizer of a non-split Cartan subgroup is defined to be all of GL2(𝔽2), which contains its
(already normal) non-split Cartan subgroup with index 2.

For 𝑝 > 2 the label Nn identifies the normalizer of the nonsplit Cartan subgroup generated
by the non-split Cartan subgroup Cn and the matrix

(1 0
0 −1) ,

and every normalizer of a non-split Cartan subgroup is conjugate to the group Nn.
The label Nn.a.b denotes the proper subgroup of the normalizer of the nonsplit Cartan

subgroup Nn generated by the matrices

(𝑎 𝜀𝑏
𝑏 𝑎 ) , (1 0

0 −1) .

where 𝑎 and 𝑏 are minimally chosen positive integers and 𝜀 is the least positive integer generating
(ℤ/𝑝ℤ)× ≃ 𝔽×

𝑝 , as defined in [?, ?, ?].
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2.0.71 Normalizer of a split Cartan subgroup
Definition 2.0.71. The normalizer of a split Cartan subgroup of GL2(𝔽𝑝) is a maximal
subgroup of GL2(𝔽𝑝) that contains a split Cartan subgroup with index 2. For 𝑝 > 2 such a group
is in fact the normalizer in GL2(𝔽𝑝) of the split Cartan subgroup it contains, but for 𝑝 = 2 this
is not the case (the split Cartan subgroup of GL2(𝔽2) is already normal).

The label Ns identifies the subgroup generated by the split Cartan subgroup Cs of diagonal
matrices and the matrix

(0 1
1 0) .

Every normalizer of a split Cartan subgroup is conjugate to the group Ns.
The label Ns.a.b identifies the proper subgroup of Ns generated by the matrices

(𝑎 0
0 1/𝑎) , ( 0 𝑏

−𝑟/𝑏 0) ,

where 𝑎 and 𝑏 are minimally chosen positive integers and 𝑟 is the least positive integer generating
(ℤ/𝑝ℤ)× ≃ 𝔽×

𝑝 .
The label Ns.a.b.c identifies the proper subgroup of the normalizer of the split Cartan subgroup

generated by the matrices

(𝑎 0
0 1/𝑎) , ( 0 𝑏

−1/𝑏 0) , ( 0 𝑐
−𝑟/𝑐 0)

where 𝑎 and 𝑏 are minimally chosen positive integers and 𝑟 is the least positive integer generating
(ℤ/𝑝ℤ)× ≃ 𝔽×

𝑝 , as defined in [?, ?, ?].

2.0.72 Open subgroup
Definition 2.0.72. An open subgroup 𝐻 of a profinite group 𝐺 is a subgroup that is open in
the topology of 𝐺, which implies that it is equal to the inverse image of its projection to a a finite
quotient of 𝐺.

Open subgroups of 𝐺 necessarily have finite index (since 𝐺 is compact), but not every finite
index subgroup of 𝐺 is necessarily open.

When the profinite group 𝐺 is a matrix group over a ring 𝑅 that is equipped with canonical
projections to finite rings of the form ℤ/𝑛ℤ (take 𝑅 = ℤℓ or 𝑅 = ℤ̂, for example), we use 𝐺(𝑛)
to denote the image of 𝐺 under the group homomorphism induced by the projection 𝑅 → ℤ/𝑛ℤ.
In this situation we may identify 𝐻 with its projection to 𝐺(𝑁), where 𝑁 is the least positive
integer for which 𝐻 is the inverse image of its projection to 𝐺(𝑁) (this 𝑁 is the level of 𝐻).

2.0.73 Profinite group
Definition 2.0.73. A profinite group is a compact totally disconnected topological group.
Equivalently, it is the inverse limit of a system of finite groups equipped with the discrete topology.

For example, if we take the finite groups GL2(ℤ/𝑛ℤ) as 𝑛 varies over positive integers,
order them by divisibility of 𝑛 and consider the inverse system equipped with reduction maps
GL2(ℤ/𝑛ℤ) → GL2(ℤ/𝑚ℤ) for all positive integers 𝑚|𝑛, then the inverse limit

lim
⟵𝑛

GL2(ℤ/𝑛ℤ) ≃ GL2(ℤ̂)

is a profinite group which is isomorphic to the group of invertible 2×2 matrices over the topological
ring ℤ̂, which is the inverse limit of the finite rings ℤ/𝑛ℤ equipped with the discrete topology.
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2.0.74 Split Cartan subgroup
Definition 2.0.74. A split Cartan subgroup of GL2(𝔽𝑝) is a Cartan subgroup that is diago-
nalizable over 𝔽𝑝. Every split Cartan subgroup is conjugate to the subgroup of diagonal matrices,
which is isomorphic to 𝔽×

𝑝 × 𝔽×
𝑝 .

The label Cs identifies the split Cartan subgroup of diagonal matrices.
The label Cs.a.b identifies the proper subgroup of Cs generated by

(𝑎 0
0 1/𝑎) , (𝑏 0

0 𝑟/𝑏) ,

where 𝑎 and 𝑏 are minimally chosen positive integers and 𝑟 is the least positive integer generating
(ℤ/𝑝ℤ)× ≃ 𝔽×

𝑝 , as defined in [?, ?, ?].

2.0.75 Definition of group
Definition 2.0.75. A group ⟨𝐺, ∗⟩ is a set 𝐺 with a binary operation ∗ such that

1. ∗ is associative 2. ∗ has an identity element 3. every element 𝑔 ∈ 𝐺 has an inverse.

2.0.76 Abelian group
Definition 2.0.76. A group is abelian if its operation is commutative.

2.0.77 Automorphisms of a group
Definition 2.0.77. If 𝐺 is a group, an automorphism of 𝐺 is a group isomorphism 𝑓 ∶ 𝐺 → 𝐺.

The set of automorphisms of 𝐺, Aut(𝐺), is a group under composition.

2.0.78 Characteristic subgroup
Definition 2.0.78. A subgroup 𝐻 of a group 𝐺 is a characteristic subgroup if 𝜙(𝐻) = 𝐻
for all automorphisms 𝜙 ∈ Aut(𝐺).

2.0.79 Coset of a subgroup
Definition 2.0.79. If 𝐺 is a group and 𝐻 is a subgroup of 𝐺, then a left coset of 𝐻 is a set

𝑔𝐻 = {𝑔ℎ ∣ ℎ ∈ 𝐻}

and similarly, a right coset of 𝐻 is a set

𝐻𝑔 = {ℎ𝑔 ∣ ℎ ∈ 𝐻}.

The left cosets partition 𝐺, as do the right cosets.

2.0.80 Frattini subgroup of a group
Definition 2.0.80. If 𝐺 is a group, then the Frattini subgroup of 𝐺, denoted Φ(𝐺), is the
intersection of all maximal subgroups of 𝐺. If there are no maximal subgroups of 𝐺, then
Φ(𝐺) = 𝐺.

The Frattini subgroup is always a characteristic subgroup, hence a normal subgroup, of 𝐺.
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2.0.81 Cusps of a subgroup of the modular group
Definition 2.0.81. The cusps of a subgroup Γ of the modular group are equivalence classes of
points in ℚ ∪ ∞ under the action of Γ by linear fractional transformation, where for

𝛾 = ( 𝑎 𝑏
𝑐 𝑑 ) ∈ Γ,

we define 𝛾∞ = 𝑎
𝑐 when 𝑐 ≠ 0, and 𝛾∞ = ∞ when 𝑐 = 0.

2.0.82 Width of a cusp
Definition 2.0.82. The width of the cusp ∞ for the group Γ is the smallest number 𝑤 such
that 𝑇 𝑤 = (1 𝑤

0 1) ∈ Γ. Furthermore, for a general 𝑥 ∈ ℙ1(ℚ) and 𝛾 ∈ Γ such that 𝛾∞ = 𝑥, we
define the width of 𝑥 for Γ to be the width of ∞ for 𝛾−1Γ𝛾.

Note that 𝑇 = (1 1
0 1) is one of the generators of the modular group SL2(ℤ).

2.0.83 Fundamental domain
Definition 2.0.83. If 𝐺 ⊆ Γ is a subgroup of the modular group, then a closed set 𝐹 ∈
ℋ ∪ ℚ ∪ {∞} is said to be a fundamental domain for 𝐺 if: <ol> <li> For any point 𝑧 ∈ ℋ
there is a 𝑔 ∈ 𝐺 such that 𝑔𝑧 ∈ 𝐹 .</li> <li> If 𝑧 ≠ 𝑧′ ∈ 𝐹 are equivalent with respect to the
action of 𝐺, that is, if 𝑧′ = 𝑔𝑧 for some 𝑔 ∈ 𝐺, then 𝑧 and 𝑧′ belong to 𝜕𝐹 , the boundary of
F.</li> </ol>

2.0.84 Absolute Galois group
Definition 2.0.84. The absolute Galois group of a field 𝐾 is the group of all automorphisms
of the algebraic closure of 𝐾 that fix the field 𝐾.

2.0.85 Generators of a group
Definition 2.0.85. If 𝐺 is a group and 𝑆 is a subset of 𝐺, then 𝑆 is a set of generators if the
smallest subgroup of 𝐺 containing 𝑆 equals 𝐺.

Equivalently, 𝑆 generates 𝐺 if
𝐺 = ⋂

𝑆⊆𝐻≤𝐺
𝐻 .

The automorphism group of 𝐺 acts on such 𝑆, and we say 𝑆 and 𝑆′ are equivalent if they
are related by this action.

2.0.86 Haar measure of a topological group
Definition 2.0.86. For 𝐺 a locally compact topological group, a Haar measure on 𝐺 is a
nonnegative, countably additive, real-valued measure on 𝐺 which is invariant under left translation
on 𝐺. Any such measure is also invariant under right translation on 𝐺.

A Haar measure always exists and is unique up to multiplication by a positive scalar. If 𝐺 is
compact, then the normalized Haar measure on 𝐺 is the unique Haar measure on 𝐺 under
which 𝐺 has total measure 1.

As a special case, if 𝐺 is finite of order 𝑛, then the normalized Haar measure is the uniform
measure that assigns to each element the measure 1/𝑛.
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2.0.87 Group homomorphism
Definition 2.0.87. If 𝐺 and 𝐻 are groups, then a group homomorphism from 𝐺 to 𝐻 is a
function

𝑓 ∶ 𝐺 → 𝐻
such that for all 𝑎, 𝑏 ∈ 𝐺, 𝑓(𝑎 ∗ 𝑏) = 𝑓(𝑎) ∗ 𝑓(𝑏).

2.0.88 Group isomorphism
Definition 2.0.88. A group isomorphism is a group homomorphism 𝑓 ∶ 𝐺 → 𝐻 which is
bijective.

2.0.89 Maximal subgroup of a group
Definition 2.0.89. If 𝐺 is a group, a subgroup 𝑀 is a maximal subgroup if for every subgroup
𝐻 such that 𝑀 ⊆ 𝐻 ⊆ 𝐺, either 𝐻 = 𝑀 or 𝐻 = 𝐺.

2.0.90 Normal series of a group
Definition 2.0.90. If 𝐺 is a group, a subnormal series for 𝐺 is a chain of subgroups

⟨𝑒⟩ = 𝐻0 ◁ 𝐻1 ◁ ⋯ ◁ 𝐻𝑘 = 𝐺

where each subgroup 𝐻𝑖 is normal in 𝐻𝑖+1 for all 𝑖.
A subnormal series where 𝐻𝑖 is normal in 𝐺 for all 𝑖 is a normal series.

2.0.91 Order of a group
Definition 2.0.91. The order of a group is its cardinality as a set.

2.0.92 Presentation of a finite group
Definition 2.0.92. A presentation of a group 𝐺 is a description of 𝐺 as the quotient 𝐹/𝑅 of a
free group 𝐹 generated by a specified set of generators, modulo the normal subgroup 𝑅 generated
by a set of words in those generators. When 𝐺 is abelian we instead express 𝐺 as a quotient of
a free abelian group 𝐹 so that we can omit commutator relations.

In what follows, we denote by 𝑔ℎ the conjugate ℎ−1𝑔ℎ and by [𝑔, ℎ] the commutator 𝑔ℎ𝑔−1ℎ−1.
We only give presentations for finite solvable groups, where they can take a special form.

A polycyclic series is a subnormal series 𝐺 = 𝐺1 ⊵ 𝐺2 ⊵ ⋯ ⊵ 𝐺𝑛 ⊵ 𝐺𝑛+1 = {1} so that
𝐺𝑖/𝐺𝑖+1 is cyclic for each 𝑖. A polycyclic sequence is a sequence of elements (𝑔1, … , 𝑔𝑛) of 𝐺
so that 𝐺𝑖/𝐺𝑖+1 = ⟨𝑔𝑖𝐺𝑖+1⟩. The relative orders of a polycyclic series are the orders 𝑟𝑖 of the
cyclic quotients 𝐺𝑖/𝐺𝑖+1. The polycyclic presentation associated to a polycyclic sequence has
generators 𝑔1, … , 𝑔𝑛 and relations of the following shape.

• 𝑔𝑟𝑖
𝑖 = ∏𝑛

𝑘=𝑖+1 𝑔𝑎𝑖,𝑘
𝑘 for all 𝑖;

• 𝑔𝑔𝑗
𝑖 = ∏𝑛

𝑘=𝑗+1 𝑔𝑏𝑖,𝑗,𝑘
𝑘 for 𝑗 < 𝑖.

Any finite solvable group has a polycyclic presentation. When the size of 𝐺 is not too large,
we choose a presentation with the following properties:
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• it has a minimal number of generators;

• among such, it has a maximal number of 𝑖 so that all 𝑎𝑖,𝑘 = 0;
• among such, it has a maximal number of commuting 𝑔𝑖;

• among such, aim for an increasing sequence of relative orders;

• among such, minimize the sum of the 𝑏𝑖,𝑗,𝑘 for noncommuting generators 𝑔𝑖 and 𝑔𝑗.

2.0.93 Rank
Definition 2.0.93. The rank of a finite group 𝐺 is the minimal number of elements required
to generate it, which is often smaller than the number of generators in a polycyclic presentation.
For 𝑝-groups, the rank can be computed by taking the 𝔽𝑝-dimension of the quotient by the Frattini
subgroup.

2.0.94 Modular group SL(2, ℤ)
Definition 2.0.94. The modular group is the group of 2 × 2 matrices with integer coefficients
and determinant 1; it is denoted by SL(2, ℤ) or SL2(ℤ).

A standard set of generators for the modular group are the matrices:

𝑆 ∶= (0 −1
1 0 ) and 𝑇 ∶= (1 1

0 1) .

2.0.95 Subgroup of a group
Definition 2.0.95. If 𝐺 is a group, a subset 𝐻 ⊆ 𝐺 is a subgroup of 𝐺 if the binary operation
of 𝐺 restricts to a binary operation on 𝐻, and 𝐻 is a group for this induced operation.

Equivalently, the subset 𝐻 must satisfy the following conditions:
1. for all 𝑎, 𝑏 ∈ 𝐻, 𝑎 ∗ 𝑏 ∈ 𝐻 2. the identity of 𝐺 is an element of 𝐻 3. for every 𝑎 ∈ 𝐻, the

inverse of 𝑎 in 𝐺 is also in 𝐻.

2.0.96 Index of a subgroup
Definition 2.0.96. The index of a subgroup 𝐺′ of a group 𝐺, denoted [𝐺 ∶ 𝐺′], is the order of
the set of left cosets of 𝐺′ in 𝐺.

2.0.97 Normal subgroup of a group
Definition 2.0.97. If 𝐻 is a subgroup of a group 𝐺, then 𝐻 is normal if any of the following
equivalent conditions hold:

1. 𝑔𝐻𝑔−1 = 𝐻 for all 𝑔 ∈ 𝐺 2. 𝑔𝐻𝑔−1 ⊆ 𝐻 for all 𝑔 ∈ 𝐺 3. 𝑔𝐻 = 𝐻𝑔 for all 𝑔 ∈ 𝐺 4.
(𝑎𝐻) ∗ (𝑏𝐻) = (𝑎𝑏)𝐻 is a well-defined binary operation on the set of left cosets of 𝐻

If 𝐻 is a normal subgroup, we write 𝐻 ◁ 𝐺, and the set of left cosets 𝐺/𝐻 form a group
under the operation given in (4) above.

2.0.98 Sylow subgroup
Definition 2.0.98. If 𝑝 is a prime and 𝐺 is a finite group of order 𝑝𝑛𝑚 where 𝑝 ∤ 𝑚, then a
𝑝-Sylow subgroup of 𝐺 is any subgroup of order 𝑝𝑛.

Sylow subgroups exist for every finite group and prime 𝑝.
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2.0.99 Torsion group
Definition 2.0.99. A torsion group is a group in which every element has finite order.

The elements of finite order in an abelian group 𝐴 form a torsion group called the torsion
subgroup of 𝐴.

2.0.100 Automorphism group of a field extension
Definition 2.0.100. If 𝐾/𝐹 is an extension of fields, its automorphism group is

Aut(𝐾/𝐹) = {𝜎 ∶ 𝐾 → 𝐾 ∣ ∀𝑎 ∈ 𝐹, 𝜎(𝑎) = 𝑎, and 𝜎 is an isomorphism}.

Note, a finite extension is Galois if and only if |Aut(𝐾/𝐹)| = [𝐾 ∶ 𝐹 ].

2.0.101 Inertia group
Definition 2.0.101. Let

• 𝐾 be a 𝑝-adic field.

• 𝐿 a finite Galois extension of 𝐾.

• 𝒪𝐾, 𝒪𝐿 the rings of integers for 𝐾, 𝐿,
• 𝑃𝐾, 𝑃𝐿 the unique maximal ideals of 𝒪𝐾, 𝒪𝐿, and

• 𝜅 = 𝒪𝐾/𝑃𝐾, 𝜆 = 𝒪𝐿/𝑃𝐿 the

residue fields of 𝐾, 𝐿.
Then each 𝜎 ∈ Gal(𝐿/𝐾) induces a element of Gal(𝜆/𝜅). The kernel of the resulting homo-

morphism
Gal(𝐿/𝐾) → Gal(𝜆/𝜅)

is the inertia group of 𝐿/𝐾.

2.0.102 Local field
Definition 2.0.102. A local field is a field 𝐾 with a non-trivial absolute value | | that is locally
compact in the topology induced by the distance metric 𝑑(𝑥, 𝑦) ∶= |𝑥 − 𝑦|.

An archimedean local field is a local field whose absolute value is archimedean; such a field
is isomorphic to ℝ or ℂ.

A nonarchimedean local field is a local field whose absolute value is nonarchimedean. Such
a field is either isomorphic to a finite extension of ℚ𝑝 when 𝐾 has characteristic zero (in which
case it is a 𝑝-adic field), or to a finite extension of 𝔽𝑝((𝑡)) when 𝐾 has characteristic 𝑝. In both
cases 𝑝 is the characteristic of the residue field of 𝐾..

2.0.103 Maximal ideal of a local field
Definition 2.0.103. The maximal ideal of a nonarchimedean local field 𝐾 is the unique
maximal ideal of its ring of integers 𝒪𝐾.

It consists of all elements of 𝒪𝐾 that are not units, equivalently, all elements of 𝐾 whose
absolute value is strictly less than 1.
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2.0.104 𝑝-adic field
Definition 2.0.104. A 𝑝-adic field (or local number field) is a finite extension of ℚ𝑝,
equivalently, a nonarchimedean local field of characteristic zero.

2.0.105 Residue field
Definition 2.0.105. The residue field of a nonarchimedean local field is the quotient of its
ring of integers by its unique maximal ideal.

The residue field is finite and its characteristic 𝑝 is the residue field characteristic. Finite
extensions of ℚ𝑝 have residue field characteristic 𝑝.

2.0.106 Ring of integers of a local field
Definition 2.0.106. The ring of integers of a local field 𝐾 with absolute value | | is the
subring 𝒪𝐾 ∶= {𝑥 ∈ 𝐾 ∶ |𝑥| ≤ 1}; it is a discrete valuation ring.

2.0.107 Wild inertia group
Definition 2.0.107. The wild inertia group of a Galois extension 𝐾/ℚ𝑝 is the unique 𝑝-Sylow
subgroup of its inertia group.

2.0.108 L-function
Definition 2.0.108. An (analytic) L-function is a Dirichlet series that has an Euler product
and satisfies a certain type of functional equation.

It is expected that all L-functions satisfy the Riemann Hypothesis, that all of the zeros in
the critical strip are on the critical line. Selberg has defined a class 𝒮 of Dirichlet series that
satisfy the Selberg axioms. It is conjectured (but far from proven) that 𝒮 is precisely the set of
all L-functions. Selberg’s axioms have not been verified for all of the L-functions in this database
but are known to hold for many of them.

It is also conjectured that a precise form of the functional equation holds for every element
of 𝒮. Under this assumption the functional equation is determined by a quadruple known as the
Selberg data, consisting of the degree, conductor, spectral parameters, and sign.

2.0.109 Analytic rank
Definition 2.0.109. The analytic rank of an L-function 𝐿(𝑠) is its order of vanishing at its
central point.

When the analytic rank 𝑟 is positive, the value listed in the LMFDB is typically an upper
bound that is believed to be tight (in the sense that there are known to be 𝑟 zeroes located very
near to the central point).

2.0.110 Arithmetic L-function
Definition 2.0.110. An L-function 𝐿(𝑠) = ∑∞

𝑛=1 𝑎𝑛𝑛−𝑠 is called arithmetic if its Dirichlet
coefficients 𝑎𝑛 are algebraic numbers.
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2.0.111 Central point of an L-function
Definition 2.0.111. The central point of an L-function is the point on the real axis of the
critical line. Equivalently, it is the fixed point of the functional equation.

In the analytic normalization, the central point is 𝑠 = 1/2, in the arithmetic normalization,
it is 𝑠 = 𝑤+1

2 , where 𝑤 is the weight of the L-function.

2.0.112 Critical line of an L-function
Definition 2.0.112. The critical line of an L-function is the line of symmetry of its functional
equation.

In the analytic normalization, the functional equation relates 𝑠 to 1 − 𝑠 and the critical line
is the line ℜ(𝑠) = 1

2 .
In the arithmetic normalization, the functional equation relates 𝑠 to 1 + 𝑤 − 𝑠, where 𝑤 is the

motivic weight. In that normalization the critical line is ℜ(𝑠) = 1+𝑤
2 .

2.0.113 Dirichlet series

Definition 2.0.113. A Dirichlet series is a formal series of the form 𝐹(𝑠) =
∞

∑
𝑛=1

𝑎𝑛
𝑛𝑠 , where

𝑎𝑛 ∈ ℂ.

2.0.114 Dual of an L-function
Definition 2.0.114. The dual of an L-function 𝐿(𝑠) = ∑∞

𝑛=1
𝑎𝑛
𝑛𝑠 is the complex conjugate

𝐿̄(𝑠) = ∑∞
𝑛=1

̄𝑎𝑛
𝑛𝑠 .

2.0.115 Euler product of an L-function
Definition 2.0.115. It is expected that the Euler product of an L-function of degree 𝑑 and
conductor 𝑁 can be written as

𝐿(𝑠) = ∏
𝑝

𝐿𝑝(𝑠)

where for 𝑝 ∤ 𝑁

𝐿𝑝(𝑠) =
𝑑

∏
𝑛=1

(1 − 𝛼𝑛(𝑝)
𝑝𝑠 )

−1
with |𝛼𝑛(𝑝)| = 1

and for 𝑝 ∣ 𝑁 ,

𝐿𝑝(𝑠) =
𝑑𝑝

∏
𝑛=1

(1 − 𝛽𝑛(𝑝)
𝑝𝑠 )

−1
where 𝑑𝑝 < 𝑑 and |𝛽𝑛(𝑝)| ≤ 1.

The functions 𝐿𝑝(𝑠) are called Euler factors (or local factors).

2.0.116 Functional equation of an L-function
Definition 2.0.116. All known analytic L-functions have a functional equation that can be
written in the form

Λ(𝑠) ∶= 𝑁𝑠/2
𝐽

∏
𝑗=1

Γℝ(𝑠 + 𝜇𝑗)
𝐾

∏
𝑘=1

Γℂ(𝑠 + 𝜈𝑘) ⋅ 𝐿(𝑠) = 𝜀Λ(1 − 𝑠),
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where 𝑁 is an integer, Γℝ and Γℂ are defined in terms of the Γ-function, Re(𝜇𝑗) = 0 or 1
(assuming Selberg’s eigenvalue conjecture), and Re(𝜈𝑘) is a positive integer or half-integer,

∑ 𝜇𝑗 + 2 ∑ 𝜈𝑘 is real,
and 𝜀 is the sign of the functional equation. With those restrictions on the spectral parameters,
the data in the functional equation is specified uniquely. The integer 𝑑 = 𝐽 + 2𝐾 is the degree of
the L-function. The integer 𝑁 is the conductor (or level) of the L-function. The pair [𝐽 , 𝐾] is
the signature of the L-function. The parameters in the functional equation can be used to make
up the 4-tuple called the Selberg data.

The axioms of the Selberg class are less restrictive than given above.
Note that the functional equation above has the central point at 𝑠 = 1/2, and relates 𝑠 ↔ 1−𝑠.
For many L-functions there is another normalization which is natural. The corresponding

functional equation relates 𝑠 ↔ 𝑤 +1−𝑠 for some positive integer 𝑤, called the motivic weight of
the L-function. The central point is at 𝑠 = (𝑤+1)/2, and the arithmetically normalized Dirichlet
coefficients 𝑎𝑛𝑛𝑤/2 are algebraic integers.

2.0.117 Gamma factors
Definition 2.0.117. The complex functions

Γℝ(𝑠) ∶= 𝜋−𝑠/2Γ(𝑠/2) and Γℂ(𝑠) ∶= 2(2𝜋)−𝑠Γ(𝑠)
that appear in the functional equation of an L-function are known as gamma factors. Here
Γ(𝑠) ∶= ∫∞

0 𝑒−𝑡𝑡𝑠−1𝑑𝑡 is Euler’s gamma function.
The gamma factors satisfy Γℂ(𝑠) = Γℝ(𝑠)Γℝ(𝑠+1) and can also be viewed as “missing” factors

of the Euler product of an L-function corresponding to (real or complex) archimedean places.

2.0.118 Leading coefficient
Definition 2.0.118. The leading coefficient of an arithmetic L-function is the first nonzero
coefficient of its Laurent series expansion at the central point.

2.0.119 Normalization of an L-function
Definition 2.0.119. In its arithmetic normalization, an L-function 𝐿(𝑠) of weight 𝑤 has
its central value at 𝑠 = 𝑤+1

2 and the functional equation relates 𝑠 to 1 + 𝑤 − 𝑠. For L-functions
defined by an Euler product ∏𝑝 𝐿𝑝(𝑠)−1 where the coefficients of 𝐿𝑝 are algebraic integers, this
is the usual normalization implied by the definition.

The analytic normalization of an L-function is defined by 𝐿𝑎𝑛(𝑠) ∶= 𝐿(𝑠 + 𝑤/2), where
𝐿(𝑠) is the L-function in its arithmetic normalization. This moves the central value to 𝑠 = 1/2,
and the functional equation of 𝐿𝑎𝑛(𝑠) relates 𝑠 to 1 − 𝑠.

2.0.120 Generalized Riemann hypothesis
Definition 2.0.120. The Riemann hypothesis is the assertion that if 𝜌 is a zero of an analytic
L-function then Re(𝜌) > 0 implies that Re(𝜌) = 1/2.

2.0.121 Self-dual L-function
Definition 2.0.121. An L-function 𝐿(𝑠) = ∑∞

𝑛=1
𝑎𝑛
𝑛𝑠 is called self-dual if its Dirichlet coeffi-

cients 𝑎𝑛 are real.

33

https://beta.lmfdb.org/knowledge/show/lfunction.gamma_factor
https://beta.lmfdb.org/knowledge/show/lfunction.leading_coeff
https://beta.lmfdb.org/knowledge/show/lfunction.normalization
https://beta.lmfdb.org/knowledge/show/lfunction.rh
https://beta.lmfdb.org/knowledge/show/lfunction.self-dual


2.0.122 Sign of the functional equation
Definition 2.0.122. The sign of the functional equation of an analytic L-function, also called the
root number, is the complex number 𝜀 that appears in the functional equation of Λ(𝑠) = 𝜀Λ(1−𝑠).
The sign appears as the 4th entry in the quadruple known as the Selberg data.

2.0.123 Dedekind eta function
Definition 2.0.123. We define the Dedekind eta function 𝜂(𝑧) by the formula

𝜂(𝑧) = 𝑞1/24 ∏
𝑛≥1

(1 − 𝑞𝑛),

where 𝑞 = 𝑒2𝜋𝑖𝑧.
It is related to the Discriminant modular form via the formula

Δ(𝑧) = 𝜂24(𝑧).

2.0.124 Upper half-plane
Definition 2.0.124. The upper half-plane ℋ is the set of complex numbers whose imaginary
part is positive, endowed with the topology induced from ℂ.

The completed upper half-plane ℋ∗ is

ℋ ∪ ℚ ∪ {∞},
endowed with the topology such that the disks tangent to the real line at 𝑟 ∈ ℚ form a fundamental
system of neighbourhoods of 𝑟, and strips {𝑧 ∈ ℋ ∣ Im 𝑧 > 𝑦} ∪ {∞}, 𝑦 > 0, form a fundamental
system of neighbourhoods of ∞, which should therefore be thought of as 𝑖∞.

The modular group SL2(ℤ) acts properly discontinuously on ℋ and ℋ∗ by the formula

(𝑎 𝑏
𝑐 𝑑) ⋅ 𝑧 = 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑 ,

with the obvious conventions regarding ∞.

2.0.125 Modular curve
Definition 2.0.125. For each open subgroup 𝐻 ≤ GL2(ℤ̂), there is a modular curve 𝑋𝐻,
defined as a quotient of the full modular curve 𝑋full(𝑁), where 𝑁 is the level of 𝐻. More
precisely, 𝐻 is the inverse image of a subgroup 𝐻𝑁 ≤ GL2(ℤ/𝑁ℤ), which acts on 𝑋full(𝑁) over
ℚ, and 𝑋𝐻 is the quotient curve 𝐻𝑁\𝑋full(𝑁), also defined over ℚ.

Like 𝑋full(𝑁), the curve 𝑋𝐻 is smooth, projective, and integral, and when det(𝐻) = ℤ̂ it is
also geometrically integral, but in general it may have several geometric components, as is the
case for 𝑋full(𝑁) when 𝑁 > 2.

Rational points: When −1 ∈ 𝐻 the rational points of 𝑋𝐻 consist of cusps and Galℚ-stable
isomorphism classes of pairs (𝐸, [𝜄]𝐻), where 𝐸 is an elliptic curve over ℚ, and [𝜄]𝐻 is an 𝐻-level
structure on 𝐸. Such points exist precisely when the image of the adelic Galois representation
𝜌𝐸 ∶ Galℚ → GL2(ℤ̂) is conjugate to a subgroup of 𝐻.

Complex points: The congruence subgroup Γ𝐻 ∶= 𝐻 ∩ SL2(ℤ) acts on the completed upper
half-plane 𝔥; one connected component of 𝑋𝐻(ℂ) is biholomorphic to the quotient Γ𝐻\𝔥.

The curve 𝑋𝐻 can alternatively be constructed as the coarse moduli space of the stack 𝒳𝐻
over ℚ defined in Deligne-Rapoport [?, ?]. Both constructions of 𝑋𝐻 can be carried out over any
field of characteristic not dividing 𝑁 , or even over ℤ[1/𝑁].

34

https://beta.lmfdb.org/knowledge/show/lfunction.sign
https://beta.lmfdb.org/knowledge/show/mf.half_integral_weight.dedekind_eta
https://beta.lmfdb.org/knowledge/show/mf.upper_half_plane
https://beta.lmfdb.org/knowledge/show/modcurve


2.0.126 Cusps of a modular curve
Definition 2.0.126. The cusps on 𝑋𝐻 are the points whose image under the canonical mor-
phism 𝑗 ∶ 𝑋𝐻 → 𝑋(1) ≃ ℙ1 is ∞. It is only the noncuspidal points that parametrize elliptic
curves (with level structure).

The cusps of a modular curve 𝑋𝐻 correspond to the complement of 𝑌𝐻 in 𝑋𝐻, where 𝑌𝐻 is
the coarse moduli stack ℳ0

𝐻 defined in [?, ?].
The rational cusps (also called ℚ-cusps) are the cusps fixed by Galℚ.

2.0.127 Level structure of a modular curve
Definition 2.0.127. Let 𝐻 be an open subgroup of GL2(ℤ̂) of level 𝑁 , let 𝜋𝑁 ∶ GL2(ℤ̂) →
GL2(ℤ/𝑁ℤ) be the natural projection, and let 𝐸 be an elliptic curve over a number field 𝐾.

An 𝐻-level structure on 𝐸 is the 𝐻-orbit [𝜄]𝐻 ∶= {ℎ ∘ 𝜄 ∶ ℎ ∈ 𝜋𝑁(𝐻)} of an isomorphism
𝜄 ∶ 𝐸[𝑁] ∼→ (ℤ/𝑁ℤ)2.

An 𝐻-level structure on 𝐸 is rational if it lies in a Gal𝐾-stable isomorphism class of
pairs (𝐸, [𝜄]𝐻), where 𝜎 ∈ Gal𝐾 acts via (𝐸, [𝜄]𝐻) ↦ (𝐸𝜎, [𝜄 ∘ 𝜎−1]𝐻). Two pairs (𝐸, [𝜄]𝐻) and
(𝐸′, [𝜄′]𝐻) are isomorphic if there is an isomorphism 𝜙∶ 𝐸 → 𝐸′ that induces an isomorphism
𝜙𝑁 ∶ 𝐸[𝑁] → 𝐸′[𝑁] for which 𝜙∗

𝑁([𝜄′]𝐻) = [𝜄]𝐻.
If 𝐸 admits a rational 𝐻-level structure [𝜄]𝐻 then image of its adelic Galois representation

𝜌𝐸 ∶ Gal𝐾 → GL2(ℤ̂) is conjugate to a subgroup of 𝐻 and the isomorphism class of (𝐸, [𝜄]𝐻) is
a non-cuspidal 𝐾-rational point on the modular curve 𝑋𝐻.

When −1 ∈ 𝐻 every non-cuspidal 𝐾-rational point on 𝑋𝐻 arises in this way. When −1 ∉ 𝐻
this is almost true, but there may be exceptions at points with 𝑗(𝐸) = 0, 1728.

Invariants of a rational 𝐻-level structure include:

• Cyclic 𝑁-isogeny field degree: the minimal degree of an extension 𝐿/𝐾 over which the
base change 𝐸𝐿 admits a rational cyclic isogeny of degree 𝑁 ; equivalently, the index of the
largest subgroup of 𝐻 fixing a subgroup of (ℤ/𝑁ℤ)2 isomorphic to ℤ/𝑁ℤ.

• Cyclic 𝑁-torsion field degree: the minimal degree of an extension 𝐿/𝐾 for which 𝐸𝐿
has a rational point of order 𝑁 ; equivalently, the index of the largest subgroup of 𝐻 that
fixes a point of order 𝑁 in (ℤ/𝑁ℤ)2.

• N-torsion field degree the minimal degree of an extension 𝐿/𝐾 for which 𝐸[𝑁] ⊆ 𝐸(𝐿);
this is simply the cardinality of the reduction of 𝐻 to GL2(ℤ/𝑁ℤ).

2.0.128 Modular curve 𝑋(𝑁)
Definition 2.0.128. There are three variants of the modular curve 𝑌 (𝑁):

1. There is a functor sending each ℤ[1/𝑁]-algebra 𝑅 to the set of (isomorphism classes of)
pairs (𝐸, 𝛼) such that 𝐸 is an elliptic curve over 𝑅 and 𝛼∶ 𝐸[𝑁] → (ℤ/𝑁ℤ)2 is an isomorphism
of group schemes. Suppose that 𝑁 ≥ 3; then this functor is represented by a smooth affine ℤ[1/𝑁]-
scheme 𝑌full(𝑁), called the full modular curve of level 𝑁 . (If 𝑁 < 3, it is representable
only by an algebraic stack, and one must take the coarse moduli space to get a scheme.) For any
field 𝑘 with char 𝑘 ∤ 𝑁 , the set 𝑌full(𝑁)(𝑘) is the set of isomorphism classes of triples (𝐸, 𝑃 , 𝑄)
, where 𝐸 is an elliptic curve over 𝑘 and 𝑃 , 𝑄 ∈ 𝐸(𝑘) form a (ℤ/𝑁ℤ)-basis of 𝐸[𝑁]. The curve
𝑌full(𝑁)ℚ is integral but typically has several geometric components.

2. Let 𝜁𝑁 ∈ ℚ be a primitive 𝑁 th root of unity. There is a functor sending each ℤ[1/𝑁, 𝜁𝑁 ]-
algebra 𝑅 to the set of pairs (𝐸, 𝛼) such that 𝐸 is an elliptic curve over 𝑅 and 𝛼∶ 𝐸[𝑁] →
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(ℤ/𝑁ℤ)2 is an isomorphism of group schemes such that the resulting elements 𝑃 , 𝑄 ∈ 𝐸[𝑁](𝑅)
satisfy 𝑒𝑁(𝑃 , 𝑄) = 𝜁𝑁 . For 𝑁 ≥ 3, this functor is represented by a smooth affine ℤ[1/𝑁, 𝜁𝑁 ]-
scheme 𝑌 (𝑁), called the classical modular curve of level 𝑁 . Over any ℤ[1/𝑁, 𝜁𝑁 ]-field 𝑘,
the curve 𝑌 (𝑁)𝑘 is geometrically integral.

3. There is a functor sending each ℤ[1/𝑁]-algebra 𝑅 to the set of pairs (𝐸, 𝛼) consisting of
an elliptic curve 𝐸 over 𝑅 and a symplectic isomorphism 𝛼∶ 𝐸[𝑁] → ℤ/𝑁ℤ × 𝜇𝑁 . For 𝑁 ≥ 3,
this functor is represented by a smooth affine ℤ[1/𝑁]-scheme 𝑌arith(𝑁). Over any field 𝑘 with
char 𝑘 ∤ 𝑁 , the curve 𝑌arith(𝑁)𝑘 is geometrically integral.

• Relationships*: Over any ℤ[1/𝑁, 𝜁]-field 𝑘, the curve 𝑌arith(𝑁)𝑘 is isomorphic to 𝑌 (𝑁)𝑘
and to a connected component of 𝑌full(𝑁)𝑘.

• Complex points*: The group Γ(𝑁) acts on the upper half-plane 𝔥, and the quotient Γ(𝑁)\𝔥
is biholomorphic to 𝑌 (𝑁)(ℂ) ≃ 𝑌arith(ℂ) (choosing 𝜁𝑁 ∈ ℂ).

• Compactifications*: For each variant, there is a corresponding smooth projective model,
denoted 𝑋full(𝑁), 𝑋(𝑁), or 𝑋arith(𝑁).

• Quotients*: For each open subgroup 𝐻 ≤ GL2(ℤ̂), there is a quotient 𝑋𝐻 of 𝑋full(𝑁).

2.0.129 Definition of ring
Definition 2.0.129. A ring is a set 𝑅 with two binary operations + and ⋅ such that

1. 𝑅 is an abelian group with respect to + 2. ⋅ is associative on 𝑅 3. the distributive laws
hold, i.e., for all 𝑎, 𝑏, 𝑐 ∈ 𝑅,

𝑎 ⋅ (𝑏 + 𝑐) = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐 and (𝑏 + 𝑐) ⋅ 𝑎 = 𝑏 ⋅ 𝑎 + 𝑐 ⋅ 𝑎

4. there is an identity element with respect to the operation ⋅, typically denoted by 1𝑅 or, more
simply, by 1.

The identity element of 𝑅 as a group with respect to + is typically denoted by 0𝑅 or, more
simply, by 0.

The ring 𝑅 is a commutative ring if 𝑅 is a ring such that the operation ⋅ is commutative
on 𝑅.

We say that 𝑅 is a rng (also called ring without identity) if conditions 1-3 (but not
necessarily 4) are satisfied.

2.0.130 𝐴-field
Definition 2.0.130. Let 𝐴 be a commutative ring. An 𝐴-field is an 𝐴-algebra that is a field.

2.0.131 Characteristic of a ring
Definition 2.0.131. The characteristic of a ring is the least positive integer 𝑛 for which

1 + ⋯ + 1⏟⏟⏟⏟⏟
𝑛

= 0,

if such an 𝑛 exists, and 0 otherwise. Equivalently, it is the exponent of the additive group of the
ring.

The characteristic of a field 𝑘 is either 0 or a prime number 𝑝, depending on whether the
prime field of 𝑘 is isomorphic to ℚ or 𝔽𝑝.
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2.0.132 Dedekind domain
Definition 2.0.132. A Dedekind domain 𝐷 is a integral domain which is not a field such
that

1. 𝐷 is Noetherian; 2. every non-zero prime ideal is maximal; 3. 𝐷 is integrally closed.
The ring of integers of a number field is always a Dedekind domain, as is every discrete

valuation ring.
In a Dedekind domain, every non-zero ideal 𝐼 can be written as a product of non-zero prime

ideals,
𝐼 = 𝑃1𝑃2 ⋯ 𝑃𝑘,

and the product is unique up to the order of the factors. Repeated factors are often grouped, so
we write 𝐼 = 𝑄𝑒1

1 ⋯ 𝑄𝑒𝑔
𝑔 where the 𝑄𝑖 are non-zero prime ideals of 𝐷.

In addition, every fractional ideal 𝐼 is invertible in the sense that there exists a fractional
ideal 𝐽 such that 𝐼𝐽 = 𝐷.

2.0.133 Field
Definition 2.0.133. A field is a commutative ring 𝑅 such that 0𝑅 ≠ 1𝑅 and every nonzero
element of 𝑅 has an inverse in 𝑅 with respect to multiplication.

2.0.134 Field of fractions of an integral domain
Definition 2.0.134. If 𝑅 is an integral domain, then its field of fractions 𝐹 is the smallest
field containing 𝑅.

It can be constructed by mimicking the set of fractions 𝑎/𝑏 where 𝑎, 𝑏 ∈ 𝑅 with 𝑏 ≠ 0 following
the usual rules for fraction arithmetic. It is unique, up to unique isomorphism.

2.0.135 Fractional ideal
Definition 2.0.135. If 𝑅 is an integral domain with field of fractions 𝐾, then a fractional
ideal 𝐼 of 𝑅 is an 𝑅-submodule of 𝐾 such that there exists 𝑑 ∈ 𝑅 − {0} with

𝑑𝐼 = {𝑑𝑎 ∣ 𝑎 ∈ 𝐼} ⊆ 𝑅 .

2.0.136 Ideal of a ring
Definition 2.0.136. If 𝑅 is a ring, a subset 𝐼 ⊆ 𝑅 is an ideal of 𝑅 if 𝐼 is a subgroup of 𝑅 for
+ and for all 𝑎 ∈ 𝐼 and all 𝑟 ∈ 𝑅,

𝑟 ⋅ 𝑎 ∈ 𝐼 and 𝑎 ⋅ 𝑟 ∈ 𝐼.
In a polynomial ring 𝑅[𝑋1, … , 𝑋𝑛], an ideal is homogeneous if it can be generated by

homogeneous polynomials.

2.0.137 Integral element of a ring
Definition 2.0.137. If 𝑅 ⊆ 𝑆 are commutative rings, an element 𝑠 ∈ 𝑆 is integral over 𝑅 if
there exists 𝑛 ∈ ℤ+ and 𝑎𝑖 ∈ 𝑅 such that

𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + ⋯ + 𝑎0 = 0 .
The integral closure of 𝑅 in 𝑆 is {𝑠 ∈ 𝑆 ∣ 𝑠 is integral over 𝑅}.
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2.0.138 Integral domain
Definition 2.0.138. An integral domain is a commutative ring 𝑅 such that 1𝑅 ≠ 0𝑅 and 𝑅
contains no zero divisors.

2.0.139 Integrally closed
Definition 2.0.139. Let 𝑅 be an integral domain and 𝐹 its field of fractions. Then 𝑅 is
integrally closed if 𝑅 equals the integral closure of 𝑅 in 𝐹 .

2.0.140 Irreducible element
Definition 2.0.140. An element 𝑥 ≠ 0 of a commutative ring 𝑅 is irreducible if it is not a
unit and has the property that whenever 𝑥 = 𝑦𝑧 for some 𝑦, 𝑧 ∈ 𝑅, either 𝑦 or 𝑧 is a unit.

2.0.141 Maximal ideal
Definition 2.0.141. In a ring 𝑅, an ideal 𝑀 is maximal if 𝑀 ≠ 𝑅 and for all ideals 𝐼 of 𝑅,

𝑀 ⊆ 𝐼 ⊆ 𝑅 ⟹ 𝑀 = 𝐼 or 𝐼 = 𝑅.

2.0.142 Noetherian ring
Definition 2.0.142. A commutative ring 𝑅 is Noetherian if for every ascending chain of ideals

𝐼1 ⊆ 𝐼2 ⊆ 𝐼3 ⊆ ⋯
there exists 𝑁 such that for all 𝑛 ≥ 𝑁 , 𝐼𝑛 = 𝐼𝑁 .

2.0.143 Prime ideal
Definition 2.0.143. If 𝑅 is a commutative ring 𝑅, an ideal 𝐼 is prime if for all 𝑎, 𝑏 ∈ 𝑅,

𝑎𝑏 ∈ 𝐼 ⟹ 𝑎 ∈ 𝐼 or 𝑏 ∈ 𝐼.

2.0.144 Principal fractional ideal
Definition 2.0.144. Let 𝑅 be an integral domain with field of fractions 𝐾. If 𝑎 ∈ 𝐾×, then the
principal fractional ideal generated by 𝑎 is the set

{𝑎𝑟 ∣ 𝑟 ∈ 𝑅} .

2.0.145 Unit in a ring
Definition 2.0.145. A unit in a commutative ring 𝑅 is an element 𝑥 ∈ 𝑅 so that there exists
𝑦 ∈ 𝑅 with 𝑥𝑦 = 1. The set of units in 𝑅 is denoted 𝑅∗ or 𝑅× and forms a group under
multiplication.

2.0.146 Zero divisor
Definition 2.0.146. An element 𝑎 in a ring 𝑅 is a zero divisor if 𝑎 ≠ 0𝑅 and there exists an
element 𝑏 ∈ 𝑅 − {0𝑅} such that

𝑎 ⋅ 𝑏 = 0𝑅 or 𝑏 ⋅ 𝑎 = 0𝑅.
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2.0.147 Euler gamma function
Definition 2.0.147. The (Euler) gamma function Γ(𝑧) is defined by the integral

Γ(𝑧) = ∫
∞

0
𝑒−𝑡𝑡𝑧 𝑑𝑡

𝑡
for Re(𝑧) > 0. It satisfies the functional equation

Γ(𝑧 + 1) = 𝑧Γ(𝑧),
and can thus be continued into a meromorphic function on the complex plane, whose poles are at
the non-positive integers {0, −1, −2, …}.

2.0.148 Sato-Tate group
Definition 2.0.148. The Sato-Tate group of a motive 𝑋 is a compact Lie group 𝐺 containing
(as a dense subset) the image of a representation that maps Frobenius elements to conjugacy
classes. When 𝑋 is an Artin motive, 𝐺 corresponds to the image of the Artin representation;
when 𝑋 is an abelian variety over a number field, one can define 𝐺 in terms of an ℓ-adic Galois
representation attached to 𝑋.

For motives of even weight 𝑤 and degree 𝑑, the Sato-Tate group is a compact subgroup of the
orthogonal group O(𝑑). For motives of odd weight 𝑤 and even degree 𝑑, the Sato-Tate group is
a compact subgroup of the unitary symplectic group USp(𝑑). For motives 𝑋 arising as abelian
varieties, the weight is always 𝑤 = 1 and the the degree is 𝑑 = 2𝑔, where 𝑔 is the dimension of
the variety.

The simplest case is when 𝑋 is an elliptic curve 𝐸/ℚ, in which case 𝐺 is either SU(2) =
USp(2) (the generic case), or 𝐺 is 𝑁(U(1)), the normalizer of the subgroup U(1) of diagonal
matrices in SU(2), which contains U(1) with index 2.

The generalized Sato-Tate conjecture states that when ordered by norm, the sequence of images
of Frobenius elements under this representation is equidistributed with respect to the pushforward
of the Haar measure of 𝐺 onto its set of conjugacy classes. This is known for all elliptic curves
over totally real number fields (including ℚ) or CM fields.

2.0.149 Symplectic form
Definition 2.0.149. A symplectic form on a vector space 𝑉 over a field 𝑘 is a non-degenerate
alternating bilinear form 𝜔∶ 𝑉 × 𝑉 → 𝑘. This means that

• if 𝜔(𝑢, 𝑣) = 0 for all 𝑣 ∈ 𝑉 then 𝑢 = 0 (non-degenerate);

• 𝜔(𝑣, 𝑣) = 0 for all 𝑣 ∈ 𝑉 (alternating);

• 𝜔(𝜆𝑢 + 𝑣, 𝑤) = 𝜆𝜔(𝑢, 𝑣) + 𝜔(𝑣, 𝑤) and 𝜔(𝑢, 𝜆𝑣 + 𝑤) = 𝜔(𝑢) + 𝜆𝜔(𝑣, 𝑤) for all 𝜆 ∈ 𝑘,
𝑢, 𝑣, 𝑤 ∈ 𝑉 (bilinear).

A finite dimensional vector space admitting a symplectic form 𝜔 necessarily has even dimen-
sion 2𝑛, and in this case 𝜔 can be represented by a matrix Ω ∈ 𝑘2𝑛×2𝑛 that satisfies 𝑢⊺Ω𝑣 = 𝜔(𝑢, 𝑤)
for all 𝑢, 𝑣 ∈ 𝑉 . One can always choose a basis for 𝑉 so that

Ω = [ 0 𝐼𝑛
−𝐼𝑛 0 ] ,

where 𝐼𝑛 denotes the 𝑛 × 𝑛 identity matrix.
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2.0.150 Unitary symplectic group
Definition 2.0.150. For a positive even integer 𝑑 the unitary symplectic group USp(𝑑) is the
group of unitary transformations of a 𝑑-dimensional ℂ-vector space equipped with a symplectic
form Ω. In other words, the subgroup of GL𝑑(ℂ) whose elements 𝐴 satisfy:

• 𝐴−1 = ̄𝐴⊺ (unitary);

• 𝐴⊺Ω𝐴 = Ω (symplectic).

It is a compact real Lie group that can also be viewed as the intersection of U(𝑑) and Sp(𝑑, ℂ)
in GL𝑑(ℂ).
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Chapter 3

Number fields

In this section we list definitions relevant to number fields and their invariants. This chapter
contains all of the definitions relating to number fields within the LMFDB. Since this list is quite
long we will first give an overview of some key invariants that should be easy to formalise.

• Label of a number field: This requires the degree 3.1.12, (real) signature 3.1.58, abs
value of discriminant 3.1.3 (and an index which we will ignore for now).

• root discriminant 3.1.53

• Galois root discriminant 3.1.21

• ramified primes 3.1.45

• discriminant root field 3.1.15

• automorphism group 3.1.20

• monogeneric 3.1.34

• inessential primes 3.1.25

• torsion generator 3.1.60

• fundamental units 3.1.18

• regulator 3.1.50

• itermediate fields 3.1.28

• sibling fields 3.1.57

• frobenius cycle type 3.1.17

Next is the full list of invariants contained in the LMFDB.

3.1 Definitions relating to number fields
3.1.1 Number field
Definition 3.1.1. A number field is a finite degree field extension of the field ℚ of rational
numbers. In LMFDB, number fields are identified by a label.
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3.1.2 Abelian number field
Definition 3.1.2. A number field 𝐾 is abelian if it is Galois over ℚ and its Galois group
Gal(𝐾/ℚ) is abelian.

3.1.3 Absolute discriminant of a number field
Definition 3.1.3. The absolute discriminant of a number field is the absolute value of its
discriminant.

3.1.4 Absolute value of a field
Definition 3.1.4. An absolute value of a field 𝑘 is a function | | ∶ 𝑘 → ℝ≥0 that satisfies:

• |𝑥| = 0 if and only if 𝑥 = 0;
• |𝑥𝑦| = |𝑥||𝑦|;
• |𝑥 + 𝑦| ≤ |𝑥| + |𝑦|.
Absolute values that satisfy the stronger condition |𝑥+𝑦| ≤ max(|𝑥|, |𝑦|) are nonarchimedean,

while those that do not are archimedean; the latter arise only in fields of characteristic zero.
The trivial absolute value assigns 1 to every nonzero element of 𝑘; it is a nonarchimedean
absolute value.

Absolute values | |1 and | |2 are equivalent if there exists a positive real number 𝑐 such that
|𝑥|1 = |𝑥|𝑐2 for all 𝑥 ∈ 𝑘; this defines an equivalence relation on the set of absolute values of 𝑘.

3.1.5 Arithmetically equivalent fields
Definition 3.1.5. Two number fields are arithmetically equivalent if they have the same
Dedekind 𝜁-functions. Arithmetically equivalent fields share many invariants, such as their
degrees, signatures, discriminants, and Galois groups. For a given field, the existence of an
arithmetically equivalent sibling depends only on the Galois group.

3.1.6 Class number of a number field
Definition 3.1.6. The class number of a number field 𝐾 is the order of the ideal class group
of 𝐾.

3.1.7 Analytic class number formula
Definition 3.1.7. If 𝐾 is a number field with signature (𝑟1, 𝑟2), discriminant 𝐷, regulator
𝑅, class number ℎ, containing 𝑤 roots of unity, and Dedekind 𝜁-function 𝜁𝐾, then 𝜁𝐾 has a
meromorphic continuation to the whole complex plane with a single pole at 𝑠 = 1, which is of
order 1. The analytic class number formula gives the residue at this pole:

lim
𝑠→1

(𝑠 − 1)𝜁𝐾(𝑠) = 2𝑟1 ⋅ (2𝜋)𝑟2 ⋅ 𝑅 ⋅ ℎ
𝑤 ⋅ √|𝐷|

.

3.1.8 CM number field
Definition 3.1.8. A CM field is a totally complex quadratic extension of a totally real number
field.
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3.1.9 Complex embedding
Definition 3.1.9. A complex embedding of a number field 𝐾 is a nonzero field homomorphism
𝐾 → ℂ whose image is not contained in ℝ.

A single number field may have several distinct complex embeddings.
For 𝐾 = ℚ(𝑎) where 𝑎 is an algebraic number with minimal polynomial 𝑓(𝑋), the embeddings

𝜄 ∶ 𝐾 → ℂ are determined by the value 𝑧 = 𝜄(𝑎) which is one of the complex roots of 𝑓(𝑋), and
the embedding is complex when 𝑧 ∉ ℝ. The complex embeddings come in conjugate pairs.

3.1.10 Conductor of an abelian number field
Definition 3.1.10. If a number field 𝐾 is abelian, then 𝐾 ⊆ ℚ(𝜁𝑛) for some positive integer 𝑛.
The minimum such 𝑛 is the conductor of 𝐾.

3.1.11 Defining Polynomial of a Number Field
Definition 3.1.11. A defining polynomial of a number field 𝐾 is an irreducible polynomial
𝑓 ∈ ℚ[𝑥] such that 𝐾 ≅ ℚ(𝑎), where 𝑎 is a root of 𝑓(𝑥). Equivalently, it is a polynomial 𝑓 ∈ ℚ[𝑥]
such that 𝐾 ≅ ℚ[𝑥]/(𝑓).

A root 𝑎 ∈ 𝐾 of the defining polynomial is a generator of 𝐾.

3.1.12 Degree of a number field
Definition 3.1.12. The degree of a number field 𝐾 is its degree as an extension of the rational
field ℚ, i.e., the dimension of 𝐾 as a ℚ-vector space. The degree of 𝐾/ℚ is written [𝐾 ∶ ℚ].

3.1.13 Dirichlet group of an Abelian number field
Definition 3.1.13. If 𝐾 is an abelian number field, then 𝐾 ⊆ ℚ(𝜁𝑛) for some positive integer
𝑛. Take the minimal such 𝑛, i.e., the conductor of 𝐾.

The Galois group Gal(ℚ(𝜁𝑛)/ℚ) is canonically isomorphic to ℤ×
𝑛 . The Dirichlet characters

modulo 𝑛 form the dual group of homomorphisms 𝜒 ∶ ℤ×
𝑛 → ℂ×. Since Gal(𝐾/ℚ) is a quotient

group of Gal(ℚ(𝜁𝑛)/ℚ), its dual group is a subgroup of the group of Dirichlet characters modulo
𝑛, called the Dirichlet character group of 𝐾.

3.1.14 Discriminant of a number field
Definition 3.1.14. The discriminant of a number field 𝐾 is the square of the determinant of
the matrix

⎛⎜
⎝

𝜎1(𝛽1) ⋯ 𝜎1(𝛽𝑛)
⋮ ⋮

𝜎𝑛(𝛽1) ⋯ 𝜎𝑛(𝛽𝑛)
⎞⎟
⎠

where 𝜎1, ..., 𝜎𝑛 are the embeddings of 𝐾 into the complex numbers ℂ, and {𝛽1, … , 𝛽𝑛} is an
integral basis for the ring of integers of 𝐾.

The discriminant of 𝐾 is a non-zero integer divisible exactly by the primes which ramify in
𝐾.
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3.1.15 Discriminant root field
Definition 3.1.15. If 𝐾/𝐹 is a finite algebraic extension, it can be defined by a polynomial
𝑓(𝑥) ∈ 𝐹 [𝑥]. The polynomial discriminant, disc(𝑓), is well-defined up a factor of a non-zero
square. The discriminant root field of the extension is 𝐹(√disc(𝑓)), which is well-defined.

If 𝑛 = [𝐾 ∶ 𝐹 ], then the Galois group 𝐺 for 𝐾/𝐹 is a subgroup of 𝑆𝑛, well-defined up to
conjugation. The discriminant root field can alternatively be described as the fixed field of 𝐺∩𝐴𝑛.

3.1.16 Embedding of a number field
Definition 3.1.16. An embedding of a number field 𝐾 is a field homomorphism 𝐾 → ℂ. A
number field of degree 𝑛 has 𝑛 distinct embeddings, which may be distinguished as real or complex
depending on whether the image of the embedding is contained in ℝ or not.

Complex embeddings necessarily come in conjugate pairs. The signature of a number field
is determined by the number of real embeddings and the number of pairs of conjugate complex
embeddings.

For 𝐾 = ℚ(𝑎), where 𝑎 is an algebraic number with minimal polynomial 𝑓(𝑋), each embedding
𝜄 is uniquely determined by the value 𝑧 = 𝜄(𝑎), which is one of the complex roots of 𝑓(𝑋). The
embedding is real if 𝑧 ∈ ℝ and complex if 𝑧 ∉ ℝ.

3.1.17 Frobenius cycle types
Definition 3.1.17. If 𝐾 is a degree 𝑛 extension of ℚ, 𝐾̂ its normal closure and 𝐺 = Gal(𝐾̂/ℚ),
then 𝐺 acts on the set of 𝑛 embeddings of 𝐾 → 𝐾̂ giving an embedding 𝐺 → 𝑆𝑛. Let 𝒪𝐾 be the
ring of integers of 𝐾 and 𝑝 a prime number. Then

𝑝𝒪𝐾 = 𝑃 𝑒1
1 ⋯ 𝑃 𝑒𝑔

𝑔

where the 𝑃𝑖 are distinct prime ideals of 𝒪𝐾. The prime 𝑝 is unramified if 𝑒𝑖 = 1 for all 𝑖.
Suppose hereafter that 𝑝 is unramified. For each 𝑃𝑖, there is a unique element of 𝐺 that fixes

𝑃𝑖 and acts on the quotient 𝒪𝐾/𝑃𝑖 via the Frobenius automorphism 𝑥 ↦ 𝑥𝑝; this element is the
Frobenius element associated to 𝑃𝑖. The Frobenius elements associated to the different 𝑃𝑖 are
conjugate to each other, so their images in 𝑆𝑛 all have the same lengths of cycles in their disjoint
cycle decompositions. This is the Frobenius cycle type of 𝑝.

Alternatively, for each prime 𝑃𝑖, its residue degree 𝑓𝑖 is defined by |𝒪𝐾/𝑃𝑖| = 𝑝𝑓𝑖 . The list
of 𝑓𝑖 is the same partition of 𝑛 as the cycle decomposition described above.

3.1.18 Fundamental units of a number field
Definition 3.1.18. A minimal set of generators of a maximal torsion-free subgroup of the unit
group of a number field 𝐾 is called a set of fundamental units for 𝐾.

3.1.19 Galois closure of an extension
Definition 3.1.19. If 𝐾 is a separable algebraic extension of a field 𝐹 , then its Galois closure
is the smallest extension field, in terms of inclusion, which contains 𝐾 and is Galois over 𝐹 .
If 𝐾 = 𝐹(𝛼) where 𝛼 has irreducible polynomial 𝑓 over 𝐹 , then the Galois closure of 𝐾 is the
splitting field of 𝑓 over 𝐹 .
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3.1.20 Galois group
Definition 3.1.20. Let 𝐾 be a finite degree 𝑛 separable extension of a field 𝐹 , and 𝐾𝑔𝑎𝑙

be its Galois (or normal) closure. The Galois group for 𝐾/𝐹 is the automorphism group
Aut(𝐾𝑔𝑎𝑙/𝐹).

This automorphism group acts on the 𝑛 embeddings 𝐾 ↪ 𝐾𝑔𝑎𝑙 via composition. As a
result, we get an injection Aut(𝐾𝑔𝑎𝑙/𝐹) ↪ 𝑆𝑛, which is well-defined up to the labelling of the 𝑛
embeddings, which corresponds to being well-defined up to conjugation in 𝑆𝑛.

We use the notation Gal(𝐾/𝐹) for Aut(𝐾/𝐹) when 𝐾 = 𝐾𝑔𝑎𝑙.
There is a naming convention for Galois groups up to degree 47.

3.1.21 Galois root discriminant
Definition 3.1.21. The Galois root discriminant of a number field is the root discriminant
of its Galois closure.

3.1.22 Generator of a number field
Definition 3.1.22. A generator of a number field 𝐾 is an element 𝑎 ∈ 𝐾 such that 𝐾 = ℚ(𝑎).
The minimal polynomial of a generator is a defining polynomial for 𝐾.

3.1.23 Ideal class group of a number field
Definition 3.1.23. The ideal class group of a number field 𝐾 with ring of integers 𝑂𝐾 is
the group of equivalence classes of ideals, given by the quotient of the multiplicative group of all
fractional ideals of 𝑂𝐾 by the subgroup of principal fractional ideals.

Since 𝐾 is a number field, the ideal class group of 𝐾 is a finite abelian group, and so has
the structure of a product of cyclic groups encoded by a finite list [𝑎1, … , 𝑎𝑛], where the 𝑎𝑖 are
positive integers with 𝑎𝑖 ∣ 𝑎𝑖+1 for 1 ≤ 𝑖 < 𝑛.

3.1.24 Ideal labels
Definition 3.1.24. In the LMFDB ideals in rings of integers of number fields are identified
using the labeling system developed by John Cremona, Aurel Page and Andrew Sutherland [?].

In a number field 𝐾, each nonzero ideal 𝐼 of its ring of integers 𝒪𝐾 is assigned an ideal
label of the form N.i, where 𝑁 and 𝑖 are positive integers, in which 𝑁 ∶= [𝒪𝐾 ∶ 𝐼] is the norm of
the ideal and 𝑖 is the index of the ideal in a sorted list of all ideals of norm 𝑁 . Once an integral
primitive element 𝛼 for the field 𝐾 is fixed, the ordering of ideals of the same norm is defined in
a deterministic fashion (involving no arbitrary choices).

In the LMFDB we always represent number fields as 𝐾 = ℚ[𝑋]/(𝑔(𝑋)) where 𝑔 is the unique
monic integral polynomial which satisfies the polredabs condition. In this representation the image
of 𝑋 under the quotient map ℚ[𝑋] → ℚ[𝑋]/(𝑔(𝑋)) is a canonical integral primitive element 𝛼
for 𝐾. Fixing this element determines a unique ordering of all 𝒪𝐾-ideals of the same norm.

3.1.25 Inessential prime
Definition 3.1.25. An inessential prime of a number field is a prime divisor of its index.

3.1.26 Integral elements
Definition 3.1.26. An element of a number field 𝐾 is integral if it is integral over ℤ.
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3.1.27 Integral basis of a number field
Definition 3.1.27. An integral basis of a number field 𝐾 is a ℤ-basis for the ring of integers
of 𝐾. This is also a ℚ-basis for 𝐾.

3.1.28 Intermediate fields
Definition 3.1.28. For a number field 𝐾, intermediate fields 𝐹 are fields with ℚ � 𝐹 � 𝐾.

3.1.29 Is a Galois extension
Definition 3.1.29. Let 𝐹 be a subfield of 𝐾,

Aut(𝐾/𝐹) = {𝜎 ∶ 𝐾 → 𝐾 ∣ 𝜎(𝑎) = 𝑎 for all 𝑎 ∈ 𝐹 and 𝜎 is a ring homomorphism},

and
𝐾Aut(𝐾/𝐹) = {𝑎 ∈ 𝐾 ∣ 𝜎(𝑎) = 𝑎}.

Then 𝐾 is Galois over 𝐹 if 𝐾Aut(𝐾/𝐹) = 𝐹 .

3.1.30 Local algebra
Definition 3.1.30. Given a global number field 𝐾 and a prime 𝑝, the local algebra for 𝐾 is
𝐾 ⊗ ℚ𝑝. This is a finite separable algebra over ℚ𝑝 which is isomorphic to a finite direct product
of finite extension fields of ℚ𝑝.

3.1.31 Maximal CM subfield
Definition 3.1.31. The maximal CM subfield of a number field is the largest subfield by
degree which is a CM field.

3.1.32 Minimal polynomial
Definition 3.1.32. The minimal polynomial of an element 𝑎 in a number field 𝐾 is the
unique monic polynomial 𝑓(𝑋) ∈ ℚ[𝑋] of minimal degree such that 𝑓(𝑎) = 0. It is necessarily
irreducible over ℚ.

3.1.33 Minimal sibling
Definition 3.1.33. The minimal sibling of a number field is a sibling that is minimal with
respect to the following quantities considered in order:

• its degree

• the T-number of its Galois group

• the absolute value of its discriminant

• the vector (𝑎0, 𝑎1, … , 𝑎𝑛−1) of coefficients of its normalized defining polynomial

𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎0
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3.1.34 Monogenic field
Definition 3.1.34. A number field 𝐾 is monogenic if its ring of integers 𝒪𝐾 equals ℤ[𝛼] for
some 𝛼 ∈ 𝒪𝐾.

3.1.35 Monomial order
Definition 3.1.35. A monomial order in a number field 𝐾 is an order of the form ℤ[𝛼], where
𝛼 is an element of 𝐾. The element 𝛼 is necessarily both an algebraic integer and a primitive
element for 𝐾.

3.1.36 Narrow class group
Definition 3.1.36. The narrow class group (also called the strict class group) of a number
field 𝐾 is the group of equivalence classes of ideals, given by the quotient of the multiplicative
group of all fractional ideals of 𝐾 by the subgroup of principal fractional ideals which have a
totally positive generator. It is a finite abelian group whose order is the narrow class number.

3.1.37 Narrow class number
Definition 3.1.37. The narrow class number (also called the strict class number) of an
algebraic number field is the order of its narrow class group. Since the ordinary ideal class group
is a quotient of the narrow class group, the narrow class number is a multiple of the class number.
Moreover, the ratio is a power of 2. The two class numbers are the same in many cases, for
example when the number field is totally complex.

3.1.38 Number field nicknames
Definition 3.1.38. The LMFDB supports nicknames, short human-readable names for various
fields. Examples include:

• Q, for the rationals ℚ
• Qi, for ℚ(𝑖)
• QsqrtN, for ℚ(

√
𝑁), as in Qsqrt-5 for ℚ(

√
−5)

• QzetaN, for ℚ(𝜁𝑁), where 𝜁𝑁 is a primitive 𝑁 th root of unity.

3.1.39 Order
Definition 3.1.39. An order in a number field 𝐾 is a subring of 𝐾 which is also a lattice in
𝐾. Every order in 𝐾 is contained in the ring of integers of 𝐾, which is itself an order in 𝐾; for
this reason, the ring of integers is sometimes called the maximal order.

Example: ℤ[
√

5] is an order in 𝐾 = ℚ(
√

5). However, it is not maximal, since the maximal
order (i.e. ring of integers) of 𝐾 is ℤ [ 1+

√
5

2 ].
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3.1.40 𝑝-adic completion of a number field
Definition 3.1.40. Let 𝐾 be a number field, 𝒪𝐾 its ring of integers, 𝔓 a non-zero prime ideal
of 𝒪𝐾, and 𝑝 ∈ ℤ ∩ 𝔓. There are a couple of ways to construct 𝐾𝔓, the 𝑝-adic completion of
𝐾 at 𝔓.

First, we can take the inverse limit

lim
←

𝒪𝐾/𝔓𝑛

which is an integral domain. Its field of fractions is 𝐾𝔓.
Second, since 𝒪𝐾 is a Dedekind domain, if 𝛼 ∈ 𝐾∗ the fractional ideal

⟨𝛼⟩ = ∏
𝔔

𝔔𝑒𝔔

where the product is over all non-zero prime ideals 𝔔, all 𝑒𝔔 ∈ ℤ, and all but finitely many
𝑒𝔔 = 0. Then we define 𝑣𝔓(𝛼) = 𝑒𝔓, and then the metric 𝑑 on 𝐾 by 𝑑(𝛼, 𝛽) = 𝑝−𝑣𝔓(𝛼−𝛽) if
𝛼 ≠ 𝛽 and 𝑑(𝛼, 𝛼) = 0. Then the completion of 𝐾 with respect to this metric is 𝐾𝔓.

If 𝐾 = ℚ(𝑎), and 𝑓 ∈ ℚ[𝑥] is the monic irreducible polynomial for 𝑎 over ℚ, then adjoining
the roots of 𝑓 to ℚ𝑝 provide another means of constructing the completions.

Finally, the local algebra of 𝐾, ∏𝑔
𝑗=1 𝐾𝑗 is a product of the 𝑝-adic completions of 𝐾. The

𝑝-adic completions of 𝐾 correspond to the nonarchimedian places of 𝐾.

3.1.41 Place of a number field
Definition 3.1.41. A place 𝑣 of a field 𝐾 is an equivalence class of non-trivial absolute values
on 𝐾. As with absolute values, places may be classified as archimedean or nonarchimedean, since
these properties are preserved under equivalence.

Each place induces a distance metric that gives 𝐾 a metric topology. The completion 𝐾𝑣
of 𝐾 at 𝑣 is the completion of this metric space, which is also a topological field.

When 𝐾 is a number field each nonarchimedean place arises from the valuation associated to
each prime ideal in the ring of integers of 𝐾, while archimedean places arise from embeddings of
𝐾 into the complex numbers: each real embedding determines a real place, and each conjugate
pair of complex embeddings determines a complex place. The archimedean places of a number
field are also called infinite places.

3.1.42 Canonical defining polynomial for number fields
Definition 3.1.42. Every number field 𝐾 can be represented as 𝐾 = ℚ[𝑋]/𝑃(𝑥) for some monic
𝑃 ∈ ℤ[𝑋], called a defining polynomial for 𝐾. Among all such defining polynomials, we define
the reduced defining polynomial as follows.

Recall that for a monic polynomial 𝑃(𝑥) = ∏𝑖(𝑥−𝛼𝑖), the 𝑇2 norm of 𝑃 is 𝑇2(𝑃 ) = ∑𝑖 |𝛼𝑖|2.

• Let 𝐿0 be the list of (monic integral) defining polynomials for 𝐾 that are minimal with
respect to the 𝑇2 norm.

• Let 𝐿1 be the sublist of 𝐿0 of polynomials whose discriminant has minimal absolute value.

• For a polynomial 𝑃 = 𝑥𝑛 + 𝑎1𝑥𝑛−1 + ⋯ + 𝑎𝑛, let 𝑆(𝑃) = (|𝑎1|, 𝑎1, … , |𝑎𝑛|, 𝑎𝑛), and order
the polynomials in 𝐿1 by the lexicographic order of the vectors 𝑆(𝑃).
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Then the reduced defining polynomial of 𝐾 is the first polynomial in 𝐿1 with respect to this
order.

The pari/gp function <code>polredabs()</code> computes reduced defining polynomials,
which are also commonly called <code>polredabs</code> polynomials.

3.1.43 Discriminant of polynomial
Definition 3.1.43. The discriminant of a monic polynomial 𝑓(𝑥) = ∏𝑑

𝑖=1(𝑥 − 𝛼𝑖) is the
quantity

Δ = ∏
𝑖<𝑗

(𝛼𝑖 − 𝛼𝑗)2.

If 𝑓 has integral coefficients, 𝐾 is the number field defined by 𝑓 and 𝛼 is a root of 𝑓 in 𝐾, then
the discriminant 𝐷 of 𝐾 divides Δ and the ratio Δ/𝐷 is the square of the index of ℤ[𝛼] in the
ring of integers of 𝐾.

3.1.44 Prime of a number field
Definition 3.1.44. A prime 𝔭 of a number field 𝐾 is a nonzero prime ideal of its ring of
integers 𝒪𝐾.

The ideal 𝔭∩𝒪𝐾 is a nonzero prime ideal of ℤ (a prime of ℚ), which is necessarily a principal
ideal (𝑝) for some prime number 𝑝. The prime 𝔭 is then said to be a prime above 𝑝.

3.1.45 Ramified (rational) prime of a number field
Definition 3.1.45. A prime integer 𝑝 is a ramified prime of a number field 𝐾 if, when the
ideal generated by 𝑝 is factored into prime ideals in the ring of integers 𝒪𝐾 of 𝐾,

𝑝𝒪𝐾 = 𝒫𝑒1
1 ⋯ 𝒫𝑒𝑘

𝑘 ,

there is an 𝑖 such that 𝑒𝑖 ≥ 2.
The ramified primes of 𝐾 are the primes dividing the discriminant of 𝐾.

3.1.46 Rank of a number field
Definition 3.1.46. The rank of a number field 𝐾 is the size of any set of fundamental units of
𝐾. It is equal to 𝑟 = 𝑟1 + 𝑟2 − 1 where 𝑟1 is the number of real embeddings of 𝐾 into ℂ and 2𝑟2
is the number of complex embeddings of 𝐾 into ℂ.

3.1.47 Real embedding
Definition 3.1.47. A real embedding of a number field 𝐾 is a field homomorphism 𝐾 → ℝ.
A single number field may have several distinct real embeddings.

3.1.48 Reflex field
Definition 3.1.48. Let 𝐾 be a CM number field and let ℚ be the algebraic closure of ℚ in ℂ. A
subset Φ ⊂ Hom(𝐾, ℚ) is called a CM type if for every embedding 𝜄 ∈ Hom(𝐾, ℚ) either 𝜄 ∈ Φ
or 𝜄 ∈ Φ, but not both, where 𝜄 is the complex conjugate of 𝜄.

Given a CM field 𝐾 and a CM type Φ, the reflex field is the fixed field inside ℚ corresponding
to the subgroup {𝜌 ∈ Gal(ℚ/ℚ) ∶ 𝜌Φ = Φ} of Gal(ℚ/ℚ). A CM type Φ and its complement Φ,
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which is the same as the set of complex conjugate embeddings, have the same reflex field. The
number of complex conjugate pairs of CM types is 2𝑔−1, where 2𝑔 = [𝐾 ∶ ℚ], the degree of 𝐾 over
ℚ.

To specify a CM type Φ for the CM field 𝐾 = ℚ(𝑎): <ol> <li>fix an order (𝜄1, 𝜄1), … , (𝜄𝑔, 𝜄𝑔)
of the pairs of complex embeddings of 𝐾; <li> then Φ = (𝜑1, … , 𝜑𝑔) where 𝜑𝑗 ∈ {𝜄𝑗, 𝜄𝑗} for
1 ≤ 𝑗 ≤ 𝑔; <li> now Φ can be encoded by the list (sign(im(𝜑1(𝑎))), … , sign(im(𝜑𝑔(𝑎)))). </ol>

The CM types in the LMFDB are grouped in Galois orbits under the action of Gal(ℚ/ℚ)
described above.

<!— (commented out by John Cremona: this information should be in the completeness
knowl for number fields) In the LMFDB, there is a potentially incomplete list of reflex fields for
each CM field 𝐾 of degree at most 12. For each reflex field, it is indicated for how many of the
2[𝐾∶ℚ]/2−1 pairs of complementary CM types this particular field is the reflex field. The only reflex
fields listed are those of degree at most 36.

• –>

3.1.49 Reflex field of the reflex field
Definition 3.1.49. Let 𝐾 be a CM number field and let 𝑁 a normal closure of 𝐾, let Φ ⊂
Hom(𝐾, ℚ) be a CM type and 𝐿 its associated reflex field. Then Φ induces a CM type Φ𝑁 ⊂
Hom(𝑁, ℂ) by taking the maps that restrict to a map inside Φ on 𝐾. The maps in Φ𝑁 are
isomorphisms on the image 𝐹 of 𝑁 inside ℚ and by inverting them, we obtain a CM type on 𝐹
with values in 𝑁 . The reflex field of the reflex field is the reflex field of this CM type.

It can also be computed as follows. Consider the right action of Gal(𝑁/𝐾) on the set of CM
types on 𝐾. Then the reflex field of the reflex field is the subfield corresponding to the subgroup
stabilising Φ.

The reflex field of the reflex field is also the smallest field of definition of the CM type Φ, i.e.
it is the largest subfield 𝑀 of 𝐾 such that Φ is induced from a CM type on 𝑀 .

3.1.50 Regulator of a number field
Definition 3.1.50. Let 𝜎1, … , 𝜎𝑟1

be the real embeddings of a number field 𝐾 into the complex
numbers ℂ, and 𝜎𝑟1+1, … , 𝜎𝑟1+𝑟2

be complex embeddings of 𝐾 into ℂ such that no two are complex
conjugate. Let 𝑢1, … , 𝑢𝑟 be a set of fundamental units of 𝐾. Then 𝑟 = 𝑟1 + 𝑟2 − 1.

Let 𝑀 be the (𝑟1 + 𝑟2 − 1) × (𝑟1 + 𝑟2) matrix (𝑑𝑗 log 𝜎𝑗(𝑢𝑖)), where 𝑑𝑗 = 1 if 𝑗 ≤ 𝑟1, i.e, if
𝜎𝑗 is a real embedding, and 𝑑𝑗 = 2 otherwise, i.e., if 𝜎𝑗 is a complex embedding. The sum of the
columns of 𝑀 is the zero vector.

The regulator of 𝐾 is the absolute value of the determinant of the sub-matrix of 𝑀 where
one column is removed. Its value is independent of the choice of column which is removed.

3.1.51 Relative class number of a CM field
Definition 3.1.51. If 𝐾 is a number field with CM with class number ℎ, and 𝐾+ is its maximal
totally real subfield with class number ℎ+, then ℎ+ divides ℎ and the relative class number is
ℎ/ℎ+.

3.1.52 Ring of integers of a number field
Definition 3.1.52. The ring of integers of a number field 𝐾 is the integral closure of ℤ in
𝐾.
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3.1.53 Root discriminant of a number field
Definition 3.1.53. If 𝐾 is a number field of degree 𝑛 and discriminant 𝐷, then the root
discriminant of 𝐾 is

rd(𝐾) = |𝐷|1/𝑛.
It gives a measure of the discriminant of a number field which is normalized for the degree. For
example, if 𝐾 ⊆ 𝐿 are number fields and 𝐿/𝐾 is unramified, then rd(𝐾) = rd(𝐿).

3.1.54 Separable extension
Definition 3.1.54. If 𝐾/𝐹 is a finite degree field extension, 𝛼 ∈ 𝐾 is separable over 𝐹 if its
monic irreducible polynomial has distinct roots in the algebraic closure 𝐹 .

The extension 𝐾/𝐹 is separable if every 𝛼 ∈ 𝐾 is separable over 𝐹 .
All algebraic extensions of local and global number fields are separable.

3.1.55 Separable algebra
Definition 3.1.55. A (finite) separable algebra 𝐴 over a field 𝐹 , also called an étale 𝐹 -
algebra, is an 𝐹 -algebra of finite dimension that is isomorphic to a product of separable field
extensions of 𝐹 .

If 𝐿/𝐾 is a field extension and 𝐴 is a separable 𝐾-algebra then 𝐴⊗𝐾 𝐿 is a separable 𝐿-algebra
(which is typically not a field, even when 𝐴 is).

3.1.56 Serre Odlyzko bound
Definition 3.1.56. For each positive integer 𝑛, let 𝐶𝑛 for the minimum root discriminant for
all number fields of degree 𝑛. Assuming the Generalized Riemann Hypothesis, lim sup 𝐶𝑛 ≥ Ω
where

Ω = 8𝜋𝑒𝛾 ≈ 44.7632 …
and 𝛾 is the Euler–Mascheroni constant. Lower bounds for the 𝐶𝑛 were deduced by analytic
methods through the work of Odlyzko and others. In particular, Serre introduced the constant Ω
which we refer to as the Serre Odlyzko bound,

Consequently, any number field whose root discriminant lies below Ω can be considered to
have small discriminant.

3.1.57 Sibling fields and algebras
Definition 3.1.57. Two finite separable extension fields 𝐾1 and 𝐾2 of a ground field 𝐹 are
called siblings if they are not isomorphic, but have isomorphic Galois closures.

A finite dimensional separable ℚ-algebra is isomorphic to a product of number fields. By its
Galois closure, we mean the compositum of the Galois closures of the constituent fields. Then
two algebras are siblings if they have isomorphic Galois closures, but are not isomorphic as
ℚ-algebras.

3.1.58 Signature of a number field
Definition 3.1.58. The signature of a number field 𝐾 is the pair [𝑟1, 𝑟2] where 𝑟1 is the number
of real embeddings of 𝐾 and 𝑟2 is the number of conjugate pairs of complex embeddings.

The degree of 𝐾 is 𝑟1 + 2𝑟2.
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3.1.59 Stem field for a Galois extension
Definition 3.1.59. If 𝐾/𝐹 is a Galois extension of fields, a stem field for 𝐾/𝐹 is a field 𝐸
such that 𝐹 ⊆ 𝐸 ⊆ 𝐾 and 𝐾 is the Galois closure of 𝐸/𝐹 .

This is connected to the notion of the stem field of a polynomial. If 𝑓 ∈ 𝐹 [𝑥] is a separable
irreducible polynomial of degree 𝑛 with roots 𝛼1, … , 𝛼𝑛 (in some extension field), then the fields
𝐹(𝛼𝑖) are the stem fields of the polynomial 𝑓. The splitting field of 𝑓 is 𝐾 = 𝐹(𝛼1, … , 𝛼𝑛),
which is a Galois extension of 𝐹 , and the fields 𝐹(𝛼𝑖) are stem fields for 𝐾/𝐹 as defined above.

3.1.60 Unit group torsion
Definition 3.1.60. A torsion generator of a number field is a primitive root of unity that
generates the torsion subgroup of the unit group (which is necessarily cyclic).

3.1.61 Totally imaginary
Definition 3.1.61. A number field 𝐾 is totally imaginary (or totally complex) if it cannot
be embedded in the real numbers ℝ; equivalently, ℝ does not contain the image of any of the
homomorphisms from 𝐾 to ℂ.

3.1.62 Totally positive
Definition 3.1.62. An element 𝛼 in a number field 𝐾 is totally positive if 𝜎(𝛼) > 0 for all
real embeddings 𝜎 of 𝐾 into ℝ.

3.1.63 Totally real
Definition 3.1.63. A global number field 𝐾 is always of the form 𝐾 = ℚ(𝛼) where 𝛼 has monic
irreducible polynomial 𝑓(𝑥) ∈ ℚ[𝑥]. The field is totally real if all of the roots of 𝑓(𝑥) in ℂ lie in
the real numbers ℝ.

Equivalently, 𝐾 is totally real if all the embeddings of 𝐾 into ℂ have image contained in ℝ.

3.1.64 Unit group of a number field
Definition 3.1.64. The unit group of a number field 𝐾 is the group of units of the ring of
integers of 𝐾. It is a finitely generated abelian group with cyclic torsion subgroup. A set of
generators of a maximal torsion-free subgroup is called a set of fundamental units for 𝐾.

The unit group of 𝐾 has as invariants the rank and the regulator of 𝐾.

3.1.65 Unramified (rational) prime of a number field
Definition 3.1.65. A unramified (rational) prime of a number field 𝐾 is a prime integer
𝑝 such that the ideal generated by 𝑝 is factored into distinct prime ideals in the ring of integers
𝒪𝐾 of 𝐾

𝑝𝒪𝐾 = 𝒫1 ⋯ 𝒫𝑘.
The unramified primes of 𝐾 are the primes which do not divide the discriminant of 𝐾.
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3.1.66 Weil height
Definition 3.1.66. The (logarithmic) Weil height of a nonzero rational number 𝑎/𝑏 ∈ ℚ in
lowest terms is the quantity

ℎ(𝑎/𝑏) = log max{|𝑎|, |𝑏|}.
The height of 0 is taken to be 0.

The (absolute logarithmic) Weil height of an element 𝛼 in a number field 𝐾 is the
quantity

ℎ(𝛼) = 1
[𝐾 ∶ ℚ] ∑

𝑣∈𝑀𝐾

[𝐾𝑣 ∶ ℚ𝑣] log max{‖𝛼‖𝑣, 1},

where 𝑀𝐾 is an appropriately normalized set of inequivalent absolute values on 𝐾. More gener-
ally, the height of a point 𝑃 = [𝛼0, 𝛼1, … , 𝛼𝑛] in projective space ℙ𝑛(𝐾) is given by

ℎ(𝑃) = 1
[𝐾 ∶ ℚ] ∑

𝑣∈𝑀𝐾

[𝐾𝑣 ∶ ℚ𝑣] log max
0≤𝑖≤𝑛

{‖𝛼𝑖‖𝑣}.

If ℒ is a very amply line bundle on a projective variety 𝑉 inducing an embedding 𝜄 ∶ 𝑉 ↪ ℙ𝑛,
then the Weil height associated on 𝑋 associated to ℒ is given by

ℎℒ(𝑃 ) = ℎ(𝜄(𝑃 )).

This definition can be extended to all line bundles by using the following linearity:

ℎℒ1⊗ℒ2
(𝑃 ) = ℎℒ1

(𝑃 ) + ℎℒ2
(𝑃 ).

3.1.67 Weil polynomial
Definition 3.1.67. For a prime power 𝑞, a Weil 𝑞-polynomial is a monic polynomial with
integer coefficients whose complex roots are of absolute value √𝑞.

Given 𝑞 and a nonnegative integer 𝑑, there are only finitely many Weil 𝑞-polynomials of degree
𝑑.

The characteristic polynomial of an abelian variety over 𝔽𝑞 is a Weil 𝑞-polynomial, but it is not
quite true that every Weil 𝑞-polynomial arises in this way. Every irreducible Weil 𝑞-polynomial
has a unique power that is the characteristic polynomial of a simple abelian variety over 𝔽𝑞; it is
the products of these powers that arise from abelian varieties.

3.1.68 Index of a number field
Definition 3.1.68. If 𝐾 is a number field with ring of integers 𝒪𝐾, then for all 𝛼 ∈ 𝒪𝐾 such
that 𝐾 = ℚ(𝛼), the index of 𝛼, 𝑖(𝛼) is the index of the order ℤ[𝛼].

The index of the number field is the greatest common divisor of all 𝑖(𝛼) with 𝛼 as above.
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Chapter 4

Elliptic curves

Here we list definitions relevant to elliptic curves over number fields and their invariants. Again
we a interested in the invariants used to label elliptic curves in the LMFDB.

Here is an overview of some of the invariants we might want to include. Some of these
non-trivial to define.

• LMFDB label (and maybe also Cremona label): Conductor 4.1.9, isogeny class label
4.1.24 and isomorphism class index 4.1.28

• abc quality 4.1.47

• rank 4.1.81

• torsion order 4.1.93

Next is the full list of invariants contained in the LMFDB.

4.1 Definitions relating to elliptic curves over general num-
ber fields

4.1.1 Elliptic curve over a field
Definition 4.1.1. An elliptic curve 𝐸 over a field 𝑘 is a smooth projective curve of genus 1
together with a distinguished 𝑘-rational point 𝑂.

The most commonly used model for elliptic curves is a Weierstrass model: a smooth plane
cubic with the point 𝑂 as the unique point at infinity.

4.1.2 Additive reduction
Definition 4.1.2. An elliptic curve 𝐸 defined over a number field 𝐾 is said to have additive
reduction at a prime 𝔭 of 𝐾 if the reduction of 𝐸 modulo 𝔭 has a cuspidal singularity.

4.1.3 Analytic order of X

Definition 4.1.3. The Tate-Shafarevich group X of an elliptic curve 𝐸 defined over a
number field 𝐾 is a torsion abelian group, which can be defined in terms of Galois cohomology
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as

X(𝐸) ∶= ker (𝐻1(𝐺𝐾, 𝐸) → ∏
𝑣

𝐻1(𝐺𝐾𝑣
, 𝐸𝐾𝑣

)) ,

where 𝑣 runs over all places of 𝐾 (finite and infinite), 𝐾𝑣 is the completion of 𝐾 at 𝑣, 𝐸𝐾𝑣
is

the base change of 𝐸 to 𝐾𝑣, and 𝐺𝐾 and 𝐺𝐾𝑣
denote absolute Galois groups.

The group X is conjectured to be finite, and its order appears in the strong form of the Birch-
Swinnerton-Dyer Conjecture for 𝐸. The order implied by the conjecture is called the analytic
order of Sha and can be defined as the real number

Xan ∶= |𝐷𝐾|1/2 ⋅ 𝐿(𝑟)(𝐸, 1)
𝑟! ⋅ #𝐸(𝐾)2

tor
RegNT(𝐸/𝐾) ⋅ 1

Ω(𝐸/𝐾) ⋅ ∏𝔭 𝑐𝔭
.

Here 𝐷𝐾 is the discriminant of 𝐾, 𝐿(𝐸, 𝑠) is the 𝐿-function of 𝐸/𝐾, 𝑟 is the analytic rank of
𝐸/𝐾, RegNT(𝐸/𝐾) is the Néron-Tate (un-normalised) regulator of 𝐸/𝐾, 𝐸(𝐾)tor is the torsion
subgroup of the Mordell-Weil group 𝐸(𝐾), Ω(𝐸/𝐾) is the global period of 𝐸/𝐾, and 𝑐𝔭 is the
Tamagawa number of 𝐸 at the prime 𝔭 of 𝐾.

It is known that if X is finite then its order is a square, so one expects the real number Xan
to always be a square integer.

For elliptic curves defined over ℚ of rank 0 or 1, it is a theorem that X<sub>an</sub> is
a positive rational number, and this rational number can in principle be computed exactly. This
exact computation has only been carried out for the curves in the database with rank 0. For
curves of rank 2 and above, there is no such theorem, and the values computed are floating point
approximate values which are very close to integers. In the LMFDB we store and display the
rounded values in this case.

4.1.4 Bad reduction of an elliptic curve at a prime
Definition 4.1.4. An elliptic curve 𝐸 defined over a number field 𝐾 is said to have bad
reduction at a prime 𝔭 of 𝐾 if the reduction of 𝐸 modulo 𝔭 is singular. There are three types
of bad reduction:

• split multiplicative,

• non-split multiplicative,

• additive.

A curve has bad reduction at 𝔭 if and only if 𝔭 divides its discriminant.

4.1.5 Base change
Definition 4.1.5. If 𝐸 is an elliptic curve defined over a field 𝐾, and 𝐿 is an extension field
of 𝐾, then the same equation defining 𝐸 as an elliptic curve over 𝐾 also defines a curve over 𝐿
called the base change of 𝐸 from 𝐾 to 𝐿. Any curve defined over 𝐿 which is isomorphic to 𝐸
over 𝐿 is called a base-change curve from 𝐾 to 𝐿. A sufficient but not necessary condition for
a curve to be a base change is that the coefficients of its Weierstrass equation lie in 𝐾.

When 𝐾 = ℚ and 𝐿 is a number field, elliptic curves over 𝐿 which are base-changes of curves
over ℚ may simply be called base-change curves. A necessary, but not sufficient, condition for
this is that the 𝑗-invariant of 𝐸 should be in ℚ.
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4.1.6 Birch Swinnerton-Dyer conjecture
Definition 4.1.6. The Birch and Swinnerton-Dyer conjecture (BSD) is one of the Millen-
nium Prize Problems listed by the Clay Mathematics Institute. It relates the order of vanishing
(or analytic rank) and the leading coefficient of the L-function associated to an elliptic curve 𝐸
defined over a number field 𝐾 at the central point 𝑠 = 1 to certain arithmetic data, the BSD
invariants of 𝐸.

• The weak form of the BSD conjecture states just that the analytic rank 𝑟𝑎𝑛 (that is, the
order of vanishing of vanishing of 𝐿(𝐸, 𝑠) at 𝑠 = 1), is equal to the rank 𝑟 of 𝐸/𝐾.

• The strong form of the conjecture states that 𝑟 = 𝑟𝑎𝑛 and also that the leading coefficient
of the L-function is given by the formula

1
𝑟!𝐿

(𝑟)(𝐸, 1) = 1
|𝑑𝐾|1/2 ⋅

#X(𝐸/𝐾) ⋅ Ω(𝐸/𝐾) ⋅ RegNT(𝐸/𝐾) ⋅ ∏𝔭 𝑐𝔭
#𝐸(𝐾)2

tor
.

The quantities appearing in this formula are as follows:

• 𝑑𝐾 is the discriminant of 𝐾;

• 𝑟 is the rank of 𝐸(𝐾);
• X(𝐸/𝐾) is the Tate-Shafarevich group

of 𝐸/𝐾;

• Reg(𝐸/𝐾) is the regulator of 𝐸/𝐾;

• Ω(𝐸/𝐾) is the global period of 𝐸/𝐾;

• 𝑐𝔭 is the Tamagawa number of 𝐸 at each prime 𝔭 of 𝐾;

• 𝐸(𝐾)tor is the torsion subgroup of 𝐸(𝐾).
Implicit in the strong form of the conjecture is that the Tate-Shafarevich group X(𝐸/𝐾) is

finite.
There is a similar conjecture for abelian varieties over number fields.

4.1.7 Canonical height on an elliptic curve
Definition 4.1.7. Let 𝐸 be an elliptic curve defined over a number field 𝐾. The canonical
height on 𝐸 is a function

ℎ̂ ∶ 𝐸(𝐾) → ℝ≥0

defined on the Mordell-Weil group 𝐸(𝐾) which induces a positive definite quadratic form on
𝐸(𝐾) ⊗ ℝ.

One definition of ℎ̂(𝑃 ) is
ℎ̂(𝑃 ) = lim

𝑛→∞
𝑛−2ℎ(𝑥(𝑛𝑃)),

where ℎ(𝑥) is the Weil height of 𝑥 ∈ 𝐾. This definition gives the non-normalised height. A
normalised height which is invariant under base-change is given by

1
[𝐾 ∶ ℚ] ℎ̂(𝑃 ).
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Related to the canonical height is the height pairing
⟨−, −⟩ ∶ 𝐸(𝐾) × 𝐸(𝐾) → ℝ

defined by ⟨𝑃 , 𝑄⟩ = 1
2 (ℎ̂(𝑃 + 𝑄) − ℎ̂(𝑃 ) − ℎ̂(𝑄)), which is a positive definite quadratic form on

𝐸(𝐾) ⊗ ℝ, used in defining the regulator of 𝐸/𝐾.

4.1.8 Complex multiplication
Definition 4.1.8. An elliptic curve whose endomorphism ring is larger than ℤ is said to have
complex multiplication (often abbreviated to CM). In this case, for curves defined over fields of
characteristic zero, the endomorphism ring is isomorphic to an order in an imaginary quadratic
field. The discriminant of this order is the CM discriminant.

An elliptic curve whose geometric endomorphism ring is larger than ℤ is said to have potential
complex multiplication (potential CM). In the literature, these too are often called CM elliptic
curves.

The property of having potential CM depends only on the 𝑗-invariant of the curve. In charac-
teristic 0, CM 𝑗-invariants are algebraic integers, and there are only finitely many in any given
number field. There are precisely 13 CM 𝑗-invariants in ℚ (all integers), associated to the 13
imaginary quadratic orders of class number 1:

𝑗 −12288000 54000 0 287496 1728 16581375 −3375 8000 −32768 −884736 −884736000 −147197952000 −262537412640768000
CM discriminant −27 −12 −3 −16 −4 −28 −7 −8 −11 −19 −43 −67 −163
CM elliptic curves are examples of CM abelian varieties.

4.1.9 Conductor of an elliptic curve
Definition 4.1.9. The conductor of an elliptic curve 𝐸 defined over a number field 𝐾 is an
ideal of the ring of integers of 𝐾 that is divisible by the prime ideals of bad reduction and no
others. It is defined as

𝔫 = ∏
𝔭

𝔭𝑒𝔭

where the exponent 𝑒𝔭 is as follows:
• 𝑒𝔭 = 0 if 𝐸 has good reduction at 𝔭;
• 𝑒𝔭 = 1 if 𝐸 has multiplicative reduction at 𝔭;
• 𝑒𝔭 = 2 if 𝐸 has additive reduction at 𝔭 and 𝔭 does not lie above either 2 or 3; and
• 2 ≤ 𝑒𝔭 ≤ 2 + 6𝑣𝔭(2) + 3𝑣𝔭(3), where 𝑣𝔭 is the valuation at 𝔭, if 𝐸 has additive reduction

and 𝔭 lies above 2 or 3.
For 𝔭 = 2 and 3, there is an algorithm of Tate that simultaneously creates a minimal Weier-

strass equation and computes the exponent of the conductor. See:
<UL> <LI> J. Tate, Algorithm for determining the type of a singular fiber in an elliptic

pencil, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp,
Antwerp, 1972), 33-52. <EM>Lecture Notes in Math.</EM>, Vol. <B>476</B>, Springer,
Berlin, 1975.

<LI> J.H. Silverman, <EM>Advanced topics in the arithmetic of elliptic curves</EM>,
GTM <B>151</B>, Springer-Verlag, New York, 1994.

</UL>
The conductor norm is the norm [𝒪𝐾 ∶ 𝔫] of the ideal 𝔫.
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4.1.10 Discriminant of a Weierstrass equation
Definition 4.1.10. The discriminant Δ of a Weierstrass equation over a field 𝐾 is an element
of 𝐾 defined in terms of the Weierstrass coefficients. If the Weierstrass equation is

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥2 + 𝑎4𝑥 + 𝑎6,

then Δ is given by a polynomial expression in 𝑎1, … , 𝑎6, namely,

Δ = −𝑏2
2𝑏8 − 8𝑏3

4 − 27𝑏2
6 + 9𝑏2𝑏4𝑏6

where
𝑏2 = 𝑎2

1 + 4𝑎2
𝑏4 = 2𝑎4 + 𝑎1𝑎3
𝑏6 = 𝑎2

3 + 4𝑎6
𝑏8 = 𝑎2

1𝑎6 + 4𝑎2𝑎6 − 𝑎1𝑎3𝑎4 + 𝑎2𝑎2
3 − 𝑎2

4.
Then Δ ≠ 0 if and only if the equation defines a smooth curve, in which case its projective

closure gives an elliptic curve.

4.1.11 Endomorphism of an elliptic curve
Definition 4.1.11. An endomorphism of an elliptic curve defined over a field 𝐾 is a homo-
morphism 𝜑∶ 𝐸 → 𝐸 defined over 𝐾. The set of all endomorphisms of 𝐸 forms a ring called
the endomorphism ring of 𝐸, denoted End(𝐸), a special case of the endomorphism ring of an
abelian variety.

4.1.12 Endomorphism ring of an elliptic curve
Definition 4.1.12. The endomorphism ring End(𝐸) of an elliptic curve 𝐸 over a field 𝐾 is
the ring of all endomorphisms of 𝐸 defined over 𝐾. For endomorphisms defined over extensions,
we speak of the geometric endomorphism ring of 𝐸.

For elliptic curves defined over fields of characteristic zero, this ring is isomorphic to ℤ,
unless the curve has complex multiplication (CM) defined over the ground field, in which case the
endomorphism ring is an order in an imaginary quadratic field; for curves defined over ℚ, this
order is one of the 13 orders of class number one.

End(𝐸) always contains a subring isomorphic to ℤ, since for 𝑚 ∈ ℤ there is the multiplication-
by-𝑚 map [𝑚] ∶ 𝐸 → 𝐸.

This is a special case of the endomorphism ring of an abelian variety.

4.1.13 Galois representations attached to an elliptic curve
Definition 4.1.13. If 𝐸 is an elliptic curve defined over a field 𝐾 and 𝑚 is a positive integer,
then the mod-𝑚 Galois representation attached to 𝐸 is the continuous homomorphism

𝜌𝐸,𝑚 ∶ Gal(𝐾/𝐾) → Aut(𝐸[𝑚])

describing the action of the absolute Galois group of 𝐾 on the 𝑚-torsion subgroup 𝐸[𝑚].
When the characteristic of 𝐾 does not divide 𝑚 > 1, we may identify the finite abelian group

𝐸[𝑚] with (ℤ/𝑚ℤ)2 and hence view the representation as a map

𝜌𝐸,𝑚 ∶ Gal(𝐾/𝐾) → GL(2, ℤ/𝑚ℤ)
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defined up to conjugation. In particular, when 𝑚 = ℓ is a prime different from the characteristic
of 𝐾, we have the mod-ℓ Galois representation

𝜌𝐸,ℓ ∶ Gal(𝐾/𝐾) → GL(2, ℤ/ℓℤ).

Taking the inverse limit over prime powers 𝑚 = ℓ𝑛 yields the ℓ-adic Galois representation
attached to 𝐸,

𝜌𝐸,ℓ ∶ Gal(𝐾/𝐾) → Aut(𝑇ℓ(𝐸)) ≅ GL(2, ℤℓ),
which describes the action of the absolute Galois group of 𝐾 on 𝑇ℓ(𝐸), the ℓ-adic Tate module
of 𝐸.

When 𝐾 has characteristic zero one can take the inverse limit over all positive integers 𝑚
(ordered by divisibility) to obtain the adelic Galois representation

𝜌𝐸 ∶ Gal(𝐾/𝐾) → GL(2, ℤ̂).

If 𝐸 is an elliptic curve without complex multiplication that is defined over a number field, then
the image of 𝜌𝐸 is an open subgroup of GL(2, ℤ̂) that has an associated level, index, and genus.

4.1.14 Image of the adelic Galois representation
Definition 4.1.14. The image of the adelic Galois representation associate to an elliptic curve
𝐸 over a number field 𝐾 that does not have potential complex multiplication is an open subgroup
𝐻 of GL(2, ℤ̂). The subgroup 𝐻 has the following invariants:

• The level of 𝐻 is the least positive integer 𝑁 such that 𝐻 is the full inverse image of its
projection to GL(2, ℤ/𝑁ℤ).

• The index of 𝐻 is the positive integer [GL(2, ℤ/𝑁ℤ) ∶ 𝐻].
• The genus of 𝐻 is the genus of the corresponding modular curve 𝑋𝐻.

4.1.15 Image of mod-𝑙 Galois representation
Definition 4.1.15. Let ℓ be a prime and let 𝐸 be an elliptic curve defined over a number field
𝐾.

Subgroups 𝐺 of GL(2, 𝔽ℓ) that can arise as the image of the mod-ℓ Galois representation

̄𝜌𝐸,ℓ ∶ Gal(𝐾/𝐾) → GL(2, 𝔽ℓ)

attached to 𝐸 that do not contain SL(2, 𝔽ℓ) are identified using the labels introduced by Sutherland
in [?, ?]. For groups with surjective determinant map (necessarily the case when 𝐾 = ℚ), these
labels have the form

LS.a.b.c,
where L is the prime ℓ, S is one of G, B, Cs, Cn, Ns, Nn, A4, S4, A5, and a, b, c are
optional positive integers. When the determinant map is not surjective the label has ”[d]”, where
𝑑 is the index of the determinant image in 𝔽×

ℓ .
When ̄𝜌𝐸,ℓ does not contain SL(2, 𝔽ℓ) the possibilities for S are: Borel B, split Cartan Cs,

normalizer of the split Cartan Ns, nonsplit Cartan Cn, normalizer of the nonsplit Cartan Nn,
exceptional A4, S4, A5. The cases A4 and A5 cannot occur when 𝐾 = ℚ.
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4.1.16 Geometric endomorphism ring
Definition 4.1.16. The geometric endomorphism ring of an elliptic curve 𝐸 over a field
𝐾 is End(𝐸𝐾), the endomorphism ring of the base change of 𝐸 to an algebraic closure 𝐾 of 𝐾.

This is a special case of the geometric endomorphism ring of an abelian variety.

4.1.17 Global minimal model
Definition 4.1.17. A global minimal model for an elliptic curve 𝐸 defined over a number
field 𝐾 is a Weierstrass equation for 𝐸 which is integral and is a local minimal model at all
primes of 𝐾.

When 𝐾 has class number 1 all elliptic curves over 𝐾 have global minimal models. In general,
there is an obstruction to the existence of a global minimal model for each elliptic curve 𝐸 defined
over 𝐾, which is an ideal class of 𝐾. In case this class is nontrivial for 𝐸, there is a semi-global
minimal model for 𝐸, which is minimal at all primes except one, the ideal class of that one prime
being the obstruction class.

4.1.18 Good ordinary reduction
Definition 4.1.18. An elliptic curve 𝐸 defined over a number field 𝐾 is said to have ordinary
reduction at a prime 𝔭 of 𝐾 if the reduction 𝐸𝔭 of 𝐸 modulo 𝔭 is smooth, and 𝐸𝔭 is ordinary.

An elliptic curve 𝐸𝔭 defined over a finite field of characteristic 𝑝 is ordinary if 𝐸𝔭(𝔽𝑝) has
nontrivial 𝑝-torsion.

4.1.19 Good reduction
Definition 4.1.19. An elliptic curve 𝐸 defined over a number field 𝐾 is said to have good
reduction at a prime 𝔭 of 𝐾 if the reduction of 𝐸 modulo 𝔭 is smooth.

If 𝐸 has good reduction at every prime of 𝐾 then 𝐸 is said to have everywhere good
reduction.

4.1.20 Good supersingular reduction
Definition 4.1.20. An elliptic curve 𝐸 defined over a number field 𝐾 is said to have super-
singular reduction at a prime 𝔭 of 𝐾 if the reduction 𝐸𝔭 of 𝐸 modulo 𝔭 is smooth, and 𝐸𝔭 is
supersingular.

An elliptic curve 𝐸𝔭 defined over a finite field of characteristic 𝑝 is supersingular if 𝐸𝔭(𝔽𝑝)
has no 𝑝-torsion.

4.1.21 Integral model
Definition 4.1.21. An integral model for an elliptic curve 𝐸 defined over a number field 𝐾
is a Weierstrass equation for 𝐸 all of whose coefficients are in the ring of integers of 𝐾.

4.1.22 Elliptic curve invariants
Definition 4.1.22. The invariants of an elliptic curve 𝐸 over a number field 𝐾 are its

• conductor, 𝔑, which is an integral ideal of 𝐾 whose norm is the conductor norm 𝑁(𝔑)
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• minimal discriminant, 𝔇, also an integral ideal of 𝐾, whose norm is the minimal dis-
criminant norm 𝑁(𝔇)

• j-invariant, 𝑗
• endomorphism ring, End(𝐸)
• Sato-Tate group, ST(𝐸)
Each Weierstrass model for 𝐸 also has a discriminant, Δ, and discriminant norm, 𝑁(Δ),

which are not strictly invariants of 𝐸 since different models have, in general, different discrimi-
nants.

4.1.23 Isogeny between elliptic curves
Definition 4.1.23. Let 𝐸1 and 𝐸2 be two elliptic curves defined over a field 𝐾. An isogeny
(over 𝐾) between 𝐸1 and 𝐸2 is a non-constant morphism 𝑓 ∶ 𝐸1 → 𝐸2 defined over 𝐾, i.e., a
morphism of curves given by rational functions with coefficients in 𝐾, such that 𝑓(𝑂𝐸1

) = 𝑂𝐸2
.

Elliptic curves 𝐸1 and 𝐸2 are called isogenous if there exists an isogeny 𝑓 ∶ 𝐸1 → 𝐸2.
An isogeny respects the group laws on 𝐸1 and 𝐸2, and hence determines a group homomor-

phism 𝐸1(𝐿) → 𝐸2(𝐿) for any extension 𝐿 of 𝐾. The kernel is a finite group, defined over 𝐾;
in general the points in the kernel are not individually defined over 𝐾 but over a finite Galois
extension of 𝐾 and are permuted by the Galois action.

The degree of an isogeny is its degree as a morphism of algebraic curves. For a separable
isogeny this is equal to the cardinality of the kernel. Over a field of characteristic 0 such as a
number field, all isogenies are separable. In finite characteristic 𝑝, isogenies of degree coprime
to 𝑝 are all separable.

An isogeny is cyclic if its kernel is a cyclic group. Every isogeny is the composition of a
cyclic isogeny with the multiplication-by-𝑚 map for some 𝑚 ≥ 1.

Isogeny is an equivalence relation, and the equivalence classes are called isogeny classes.
Over a number field, it is a consequence of a theorem of Shafarevich that isogeny classes are
finite. Between any two curves in an isogeny class there is a unique degree of cyclic isogeny
between them, except when the curves have additional endomorphisms defined over the base field
of the curves; in that case there are cyclic isogenies of infinitely many different degrees between
any two isogenous curves.

Isogenies from an elliptic curve 𝐸 to itself are called endomorphisms. The set of all
endomrpshisms of 𝐸 forms a ring under pointwise addition and composition, the endomorphism
ring of 𝐸.

An isogeny of elliptic curves is a special case of an isogeny of abelian varieties.

4.1.24 Isogeny class of an elliptic curve
Definition 4.1.24. The isogeny class (over a field 𝐾) of an elliptic curve 𝐸 defined over
𝐾 is the set of all isomorphism classes of elliptic curves defined over 𝐾 that are isogenous to 𝐸
over 𝐾. Over a number field 𝐾 this is always a finite set; over ℚ, it has at most 8 elements by
a theorem of Kenku [?, ?].

4.1.25 Isogeny class degree
Definition 4.1.25. The isogeny class degree of an isogeny class of elliptic curves is the least
common multiple of the degrees of all rational cyclic isogenies between elliptic curves in the
isogeny class.
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4.1.26 Isogeny graph of an isogeny class of elliptic curves
Definition 4.1.26. The isogeny graph of an isogeny class of elliptic curves is the graph whose
vertices are the isomorphism classes (over the base field) of elliptic curves in the isogeny class
and whose edges are the isogenies of prime degree between the curves representing the vertices.

The vertices of the isogeny graphs in the LMFDB are labeled by the final entry of the LMFDB
label of the corresponding (isomorphism classes of) elliptic curves. Their edges, of which there
may be several between any two given vertices, are labeled by the prime that is the degree of the
corresponding isogeny.

4.1.27 Isogeny matrix of an isogeny class of elliptic curves
Definition 4.1.27. The isogeny matrix of an isogeny class of elliptic curves is a symmetric
matrix with integral entries that records the minimum among the degrees of the cyclic isogenies
between the elliptic curves in the isogeny class.

In the LMFDB, the rows and columns of the matrices are ordered by the final entry of the label
of the elliptic curves in the isogeny class in question, so that the (𝑖, 𝑗)-th entry is the smallest
possible degree of a cyclic isogeny between the 𝑖-th and 𝑗-th curve in the isogeny class.

4.1.28 Isomorphism of elliptic curves
Definition 4.1.28. An isomorphism between two elliptic curves 𝐸, 𝐸′ defined over a field 𝐾
is an isogeny 𝑓 ∶ 𝐸 → 𝐸′ such that there exist an isogeny 𝑔 ∶ 𝐸′ → 𝐸 with the compositions 𝑔 ∘ 𝑓
and 𝑓 ∘ 𝑔 being the identity maps. Equivalently, an isomorphism 𝐸 → 𝐸′ is an isogeny of degree
1.

Isomorphism is an equivalence relation, the equivalnce classes being called isomorphism
classes.

When 𝐸 and 𝐸′ are defined by Weierstrass models, such an isomorphism is uniquely repre-
sented as a Weierstrass isomorphism between these models.

4.1.29 j-invariant of an elliptic curve
Definition 4.1.29. The 𝑗-invariant of an elliptic curve 𝐸 defined over a field 𝐾 is an invariant
of the isomorphism class of 𝐸 over 𝐾. If the Weierstrass equation of 𝐸 is

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥2 + 𝑎4𝑥 + 𝑎6,

then its 𝑗-invariant is given by

𝑗 = 𝑐3
4

Δ
where

𝑏2 = 𝑎2
1 + 4𝑎2

𝑏4 = 2𝑎4 + 𝑎1𝑎3
𝑏6 = 𝑎2

3 + 4𝑎6
𝑏8 = 𝑎2

1𝑎6 + 4𝑎2𝑎6 − 𝑎1𝑎3𝑎4 + 𝑎2𝑎2
3 − 𝑎2

4
𝑐4 = 𝑏2

2 − 24𝑏4

and
Δ = −𝑏2

2𝑏8 − 8𝑏3
4 − 27𝑏2

6 + 9𝑏2𝑏4𝑏6

is the discriminant of 𝐸.
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4.1.30 Kodaira symbol
Definition 4.1.30. The Kodaira symbol of an elliptic curve 𝐸 defined over a number field
encodes the reduction type of 𝐸 at a prime 𝔭 of 𝐾. It describes the combinatorics of the special
fiber of the Né;ron model of the elliptic curve. The Né;ron model is obtained from the local
minimal model for 𝐸 at 𝔭 using Tate’s algorithm. For an exact definition and properties, consult
a text on elliptic curves.

4.1.31 Local data of an elliptic curve
Definition 4.1.31. The local data of an elliptic curve 𝐸 defined over a number field 𝐾 at a
prime 𝔭 of 𝐾 consists of

• the Tamagawa number 𝑐𝔭

• the Kodaira symbol

• the reduction type

• the local root number

• the conductor valuation ord𝔭(𝔑)
• the discriminant_valuation ord𝔭(𝔇)
• the j-invariant denominator valuation ord𝔭(𝑗)−

4.1.32 Local minimal discriminant of an elliptic curve
Definition 4.1.32. Let 𝐸 be an elliptic curve defined over a number field 𝐾, and 𝔭 a prime of
𝐾. The local minimal discriminant of 𝐸 is the ideal 𝔭𝑒 where 𝑒 is is the valuation of the
discriminant of a local minimal model for 𝐸 at 𝔭.

4.1.33 Local minimal model
Definition 4.1.33. A local minimal model for an elliptic curve 𝐸 defined over a number field
𝐾 at a prime 𝔭 of 𝐾 is a Weierstrass equation for 𝐸 all of whose coefficients are integral at 𝔭,
and whose discriminant has minimal valuation at 𝔭 among all such equations.

4.1.34 Maximal 𝑙-adic Galois representation
Definition 4.1.34. Let 𝐸 be an elliptic curve over a number field 𝐾, let ℓ be prime, and let

𝜌𝐸,ℓ ∶ Gal(𝐾/𝐾) → Aut(𝐸[ℓ∞]) ≃ GL2(ℤℓ)

be the ℓ-adic Galois representation associated to 𝐸.
If 𝐸 does not have potential complex multiplication, then 𝜌𝐸,ℓ is maximal if its image contains

SL2(ℤℓ).
In general, let 𝒪 be the geometric endomorphism ring of 𝐸. Then 𝐸[ℓ∞] is an 𝒪-module,

and we view Aut𝒪(𝐸[ℓ∞]) as a subgroup of Aut(𝐸[ℓ∞]) ≃ GL2(ℤℓ) that contains the image of
𝜌𝐸,ℓ whenever 𝐾 contains 𝒪. We say that 𝜌𝐸,ℓ is maximal if its image contains SL2(ℤℓ) ∩
Aut𝒪(𝐸[ℓ∞]), in which case we call ℓ a maximal prime for 𝐸.
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4.1.35 Maximal Galois representation
Definition 4.1.35. Let 𝐸 be an elliptic curve over a number field 𝐾, let ℓ be prime, and let

̄𝜌𝐸,ℓ ∶ Gal(𝐾/𝐾) → Aut(𝐸[ℓ]) ≃ GL2(𝔽ℓ)
be the mod-ℓ Galois representation associated to 𝐸.

If E does not have potential complex multiplication, then ̄𝜌𝐸,ℓ is maximal if its image contains
SL2(𝔽ℓ).

In general, let 𝒪 be the geometric endomorphism ring. Then 𝐸[ℓ] is an 𝒪-module and we
view Aut𝒪(𝐸[ℓ]) ≤ Aut(𝐸[ℓ]) ≃ GL2(𝔽ℓ). We say that ̄𝜌𝐸,ℓ is maximal if its image contains
SL2(𝔽ℓ) ∩ Aut𝒪(𝐸[ℓ]).

For 𝐾 = ℚ, the image of a maximal ̄𝜌𝐸,ℓ is GL2(𝔽ℓ), a Borel subgroup, the normalizer of a
split Cartan subgroup, or the normalizer of a non-split Cartan subgroup, depending on whether
𝒪 = ℤ or 𝒪 ≠ ℤ and ℓ is ramified, split, or inert in 𝒪, respectively.

4.1.36 Minimal discriminant
Definition 4.1.36. The minimal discriminant (or minimal discriminant ideal) of an elliptic
curve 𝐸 over a number field 𝐾 is the ideal 𝔇𝑚𝑖𝑛 of the ring of integers of 𝐾 given by

𝔇min = ∏
𝔭

𝔭𝑒𝔭 ,

where the product is over all primes 𝔭 of 𝐾, and 𝔭𝑒𝔭 is the local minimal discriminant of 𝐸 at 𝔭.
If 𝐸 has a Weierstrass model which is a global minimal model then 𝔇min = (Δ), the principal

ideal generated by the discriminant Δ of this model. In general, 𝔇min differs from the ideal
generated by the discriminant of any Weierstrass model by the 12th power of an ideal.

4.1.37 Mordell-Weil group
Definition 4.1.37. For an elliptic curve 𝐸 defined over a field 𝐾, the Mordell-Weil group
of 𝐸/𝐾 is the group 𝐸(𝐾) of 𝐾-rational points of 𝐸. It is a finitely-generated Abelian group.

This is a special case of the Mordell-Weil group of an abelian variety.
The Mordell-Weil Theorem, first proved by Mordell for elliptic curves defined over ℚ and later

generalized by Weil to abelian varieties 𝐴 over general number fields 𝐾, states that, if 𝐾 is a
number field, then 𝐴(𝐾) is a finitely generated abelian group. Its rank is called the Mordell-Weil
rank of 𝐴 over 𝐾.

The Mordell-Weil theorem implies in particular that the torsion subgroup 𝐸(𝐾)tor of 𝐸(𝐾)
is finite, and thus that the torsion order of 𝐸, one of the BSD invariants, is finite.

4.1.38 Mordell-Weil theorem
Definition 4.1.38. For an elliptic curve 𝐸 defined over a number field 𝐹 , the Mordell-Weil
theorem states that the set 𝐸(𝐹) of 𝐹 -rational points on 𝐸 is a finitely generated Abelian group.

This group is called the Mordell-Weil group of 𝐸/𝐾.

4.1.39 Multiplicative reduction
Definition 4.1.39. An elliptic curve 𝐸 defined over a number field 𝐾 is said to have multi-
plicative reduction at a prime 𝔭 of 𝐾 if the reduction of 𝐸 modulo 𝔭 has a nodal singularity.

The case of multiplicative reduction is further subdivided into split multiplicative reduction
and nonsplit multiplicative reduction.
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4.1.40 Mordell-Weil generators
Definition 4.1.40. The Mordell-Weil group 𝐸(𝐾) of an elliptic curve 𝐸 over a number field
𝐾 is a finitely generated abelian group, explicitly described by giving a ℤ-basis for the group,
equivalently, a (minimal) set of Mordell-Weil generators, each of which is a rational point
on the curve.

The generators consist of 𝑟 non-torsion generators, where 𝑟 is the rank of 𝐸(𝐾), and up
to two torsion generators, which generate the torsion subgroup 𝐸(𝐾)tor.

4.1.41 Non-split multiplicative reduction
Definition 4.1.41. An elliptic curve 𝐸 defined over a number field 𝐾 is said to have non-
split multiplicative reduction at a prime 𝔭 of 𝐾 if the reduction of 𝐸 modulo 𝔭 has a nodal
singularity with tangent slopes not defined over the residue field at 𝔭.

4.1.42 Obstruction class of an elliptic curve
Definition 4.1.42. Let 𝐸 be an elliptic curve defined over a number field 𝐾. The obstruction
class of 𝐸 is an ideal class of 𝐾 which is trivial if and only if 𝐸 has a global minimal model.

4.1.43 Tate module of an elliptic curve
Definition 4.1.43. Let 𝑝 ∈ ℤ≥0 be a prime and 𝐸 an elliptic curve defined over a field 𝐾. The
𝑝-adic Tate module of 𝐸 is the inverse limit

𝑇𝑝(𝐸) = lim←−−
𝑛∈ℕ

𝐸[𝑝𝑛].

Here for 𝑚 ∈ ℤ≥0, 𝐸[𝑚] denotes the 𝑚-torsion subgroup of 𝐸, which is the kernel of the
multiplication-by-𝑚 endomorphism of 𝐸.

If 𝐾 has characteristic not equal to 𝑝, then 𝑇𝑝(𝐸) is a free ℤ𝑝-module of rank 2. It carries
an action of the absolute Galois group of 𝐾, and thus has an associated Galois representation.

This is a special case of the Tate module of an abelian variety.

4.1.44 Global period of an elliptic curve
Definition 4.1.44. The global period Ω(𝐸/𝐾) of an elliptic curve defined over a number field
𝐾 is a product of local factors Ω𝑣(𝐸𝑣/𝐾𝑣), one for each infinite place 𝑣 of 𝐾. Here, 𝐾𝑣 denotes
the completion of 𝐾 at 𝑣 (so 𝐾𝑣 = ℝ for a real place and 𝐾𝑣 = ℂ for a complex place), and 𝐸𝑣
denotes the base change of 𝐸 to 𝐾𝑣.

Fixing a Weierstrass model for 𝐸 with coefficients 𝑎𝑖 ∈ 𝐾, a model for 𝐸𝑣 is given by the
Weierstrass equation with coefficients 𝑎𝑖,𝑣, the images of 𝑎𝑖 under 𝑣 in 𝐾𝑣. Associated to this
model we have a discriminant Δ(𝐸𝑣) and an invariant differential 𝜔𝑣 = 𝑑𝑥/(2𝑦 + 𝑎1,𝑣𝑥 + 𝑎3,𝑣).

For a real place given by an embedding 𝑣 ∶ 𝐾 → ℝ, we define

Ω𝑣(𝐸𝑣) = ∣∫
𝐸𝑣(ℝ)

𝜔𝐸∣ .

In terms of a basis of the period lattice of 𝐸𝑣 of the form [𝑥, 𝑦𝑖] (when Δ(𝐸𝑣) > 0) or [2𝑥, 𝑥 + 𝑦𝑖]
(when Δ(𝐸𝑣) < 0), where 𝑥 and 𝑦 are positive real numbers, we have Ω𝑣(𝐸𝑣) = 2𝑥.
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For a complex place given by an embedding 𝑣 ∶ 𝐾 → ℂ, we define

Ω𝑣(𝐸𝑣) = ∣∫
𝐸𝑣(ℂ)

𝜔𝐸 ∧ 𝜔𝐸∣ .

In terms of a basis [𝑤1, 𝑤2] of the period lattice of 𝐸𝑣, where ℑ(𝑤2/𝑤1) > 0, we have Ω𝑣(𝐸𝑣) =
2ℑ(𝑤1𝑤2), which is double the covolume of the period lattice.

When 𝐸 has a global minimal model, we have

Ω(𝐸/𝐾) = ∏
𝑣

Ω𝑣(𝐸𝑣).

In general, given an arbitrary model for 𝐸 with discriminant Δ(𝐸), we have

Ω(𝐸/𝐾) = ∣𝑁(Δ(𝐸))
𝑁(𝔡(𝐸)) ∣

1/12
∏

𝑣
Ω𝑣(𝐸𝑣),

where 𝔡 is the minimal discriminant ideal of 𝐸 and 𝑁(𝔡) denotes its norm. This quantity is
independent of the model of 𝐸.

4.1.45 Potential good reduction
Definition 4.1.45. An elliptic curve 𝐸 defined over a number field 𝐾 is said to have potential
good reduction if 𝐸 has everywhere good reduction over a finite extension of 𝐾.

This is equivalent to the 𝑗-invariant of 𝐸 being integral.

4.1.46 Elliptic curve over ℚ
Definition 4.1.46. An elliptic curve 𝐸 over ℚ has a Weierstrass equation of the form

𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

with 𝑎, 𝑏 ∈ ℤ such that its discriminant

Δ ∶= −16(4𝑎3 + 27𝑏2) ≠ 0.

Note that such an equation is not unique and 𝐸 has a unique minimal Weierstrass equation.

4.1.47 𝑎𝑏𝑐 quality
Definition 4.1.47. Given a triple 𝑎, 𝑏, 𝑐 of nonzero coprime integers, the quality of the triple
is defined as

𝑄 = log max(|𝑎|, |𝑏|, |𝑐|)
log rad(𝑎𝑏𝑐) ,

where rad(𝑎𝑏𝑐) is the product of the primes dividing 𝑎𝑏𝑐. The 𝑎𝑏𝑐 conjecture stipulates that for
any 𝜖 > 0 there are only finitely many relatively prime triples 𝑎, 𝑏, 𝑐 with quality larger than 1+𝜖.

The 𝑎𝑏𝑐 quality of an elliptic curve 𝐸 is the quality of an 𝑎, 𝑏, 𝑐 triple determined by its
𝑗-invariant, namely the one defined by writing 𝑗

1728 = 𝑎
𝑐 in lowest terms and setting 𝑏 = 𝑐 − 𝑎.

Note that the 𝑎𝑏𝑐 quality is undefined for 𝑗 = 0 and 𝑗 = 1728.
The reason for defining the quality of 𝐸 in this way comes from the equivalence of the

𝑎𝑏𝑐 conjecture with the modified Szpiro conjecture. For elliptic curves with small conductor,
𝑗-invariants often have unusually large quality.
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4.1.48 Analytic rank of an elliptic curve over ℚ
Definition 4.1.48. The analytic rank of an elliptic curve 𝐸 is the analytic rank of its L-
function 𝐿(𝐸, 𝑠). The weak form of the BSD conjecture implies that the analytic rank is equal
to the rank of the Mordell-Weil group of 𝐸.

For elliptic curves 𝐸 over ℚ, it is known that 𝐿(𝐸, 𝑠) satisfies the Hasse-Weil conjecture, and
hence that the parity of the analytic rank is always compatible with the sign of the functional
equation.

In general, analytic ranks stored in the LMFDB are only upper bounds on the true analytic
rank (they could be incorrect if 𝐿(𝐸, 𝑠) had a zero very close to but not on the central point).
For elliptic curves over ℚ of analytic rank less than 2 this upper bound is necessarily tight, due
to parity; for analytic ranks 2 and 3 is also tight due to results of Kolyvagin; Murty and Murty;
Bump, Friedberg and Hoffstein; Coates and Wiles; Gross and Zagier which together say that
when the analytic rank is 0 or 1 then it equals the Mordell-Weil rank.

4.1.49 Analytic order of X

Definition 4.1.49. The Tate-Shafarevic group X of an elliptic curve 𝐸 defined over ℚ is a
torsion group defined in terms of Galois cohomology, which is conjectured to be finite. Its order
#X appears in the strong form of the Birch-Swinnerton-Dyer Conjecture for 𝐸. The value of the
order which is predicted by the conjecture is called the Analytic Order of Sha, X𝑎𝑛. <!–Note
that the value of X<sub>an</sub> predicted by the conjecture is always a square.–>

For elliptic curves of rank 0 or 1 it is a theorem that X<sub>an</sub> is a positive rational
number, and this rational number can be computed exactly; this exact computation has only been
carried out for the curves in the database with rank 0 and conductor 𝑁 ≤ 500000. These values
are always in fact integer squares in all cases computed to date. For curves of rank 2 and above,
there is no such theorem, and the values computed are simply floating point approximate values
which happen to be very close to integers. In the LMFDB we store and display the rounded values
in this case.

4.1.50 Birch and Swinnerton-Dyer conjecture
Definition 4.1.50. The Birch and Swinnerton-Dyer conjecture is one of the Millennium
Prize Problems listed by the Clay Mathematics Institute. It relates the order of vanishing and the
first non-zero Taylor series coefficient of the L-function associated to an elliptic curve 𝐸 defined
over ℚ at the central point 𝑠 = 1 to certain arithmetic data, the BSD invariants of 𝐸.

Specifically, the BSD conjecture states that the order 𝑟 of vanishing of 𝐿(𝐸, 𝑠) at 𝑠 = 1 is
equal to the rank of the Mordell-Weil group 𝐸(ℚ), and that

<!– comment: if you make the following display into a normal one using

..

or
..

then something about the html code for Sha stops it displaying properly–>

<p align=”center”> 1
𝑟!𝐿

(𝑟)(𝐸, 1) =
#X(𝐸/ℚ) ⋅ Ω𝐸 ⋅ Reg(𝐸/ℚ) ⋅ ∏𝑝 𝑐𝑝

#𝐸(ℚ)2
tor

. </p> The quanti-
ties appearing in this formula are the BSD invariants of 𝐸:

• 𝑟 is the rank of 𝐸(ℚ) (a non-negative integer);
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• #X(𝐸/ℚ) is the order of the Tate-Shafarevich group

of 𝐸 (which is conjectured to always be finite, a positive integer);

• Reg(𝐸/ℚ) is the regulator of 𝐸/ℚ;
• Ω𝐸 is the real period of 𝐸/ℚ (a positive real number);

• 𝑐𝑝 is the Tamagawa number of 𝐸 at each prime 𝑝 (a positive integer which is 1 for all but
at most finitely many primes);

• 𝐸(ℚ)tor is the torsion order of 𝐸(ℚ) (a positive integer).

There is a similar conjecture for abelian varieties, in which the real period is replaced by the
covolume of the period lattice.

4.1.51 Canonical height
Definition 4.1.51. Let 𝐸 be an elliptic curve defined over ℚ. The canonical height of a
rational point 𝑃 ∈ 𝐸(ℚ) is computed by writing the 𝑥-coordinate 𝑥(𝑛𝑃) = 𝐴𝑛(𝑃 )/𝐷𝑛(𝑃 ) as a
fraction in lowest terms and setting

ℎ̂(𝑃 ) = lim
𝑛→∞

1
𝑛2 log max{|𝐴𝑛(𝑃 )|, |𝐷𝑛(𝑃 )|}.

(<EM>Note</EM>. Some sources define ℎ̂ to be 1
2 of this quantity.)

Properties of ℎ̂: <UL> <LI> ℎ̂(𝑃 ) = log max{|𝐴1(𝑃 )|, |𝐷1(𝑃 )|} + 𝑂(1) as 𝑃 ranges over
𝐸(ℚ). <LI> ℎ̂(𝑃 ) ≥ 0; and ℎ̂(𝑃 ) = 0 if and only if 𝑃 is a torsion point. <LI> ℎ̂ ∶ 𝐸(ℚ) → ℝ
extends to a positive definite quadratic form on 𝐸(ℚ) ⊗ ℝ. </UL> The height pairing on 𝐸 is
the associated bilinear form ⟨𝑃 , 𝑄⟩ = 1

2 (ℎ̂(𝑃 + 𝑄) − ℎ̂(𝑃 ) − ℎ̂(𝑄)), which is used to compute the
elliptic regulator of 𝐸. It is a symmetric positive definite bilinear form on 𝐸(ℚ) ⊗ ℝ.

For a number field 𝐾, the canonical height of 𝑃 ∈ 𝐸(𝐾) is given by ℎ̂(𝑃 ) = lim𝑛→∞ 𝑛−2ℎ(𝑥(𝑛𝑃)),
where ℎ is the Weil height.

4.1.52 Conductor of an elliptic curve over ℚ
Definition 4.1.52. The conductor 𝑁 of an elliptic curve 𝐸 defined over ℚ is a positive integer
divisible by the primes of bad reduction and no others. It has the form 𝑁 = ∏ 𝑝𝑒𝑝 , where the
exponent 𝑒𝑝 is

• 𝑒𝑝 = 1 if 𝐸 has multiplicative reduction at 𝑝,

• 𝑒𝑝 = 2 if 𝐸 has additive reduction at 𝑝 and 𝑝 ≥ 5,

• 2 ≤ 𝑒𝑝 ≤ 5 if 𝐸 has additive reduction and 𝑝 = 3, and

• 2 ≤ 𝑒𝑝 ≤ 8 if 𝐸 has additive reduction and 𝑝 = 2.

For all primes 𝑝, there is an algorithm of Tate that simultaneously creates a local minimal
Weierstrass equation and computes the exponent of the conductor. See:

<UL> <LI> J. Tate, Algorithm for determining the type of a singular fiber in an elliptic
pencil, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp,
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Antwerp, 1972), 33-52. <EM>Lecture Notes in Math.</EM>, Vol. <B>476</B>, Springer,
Berlin, 1975. [?]

<LI> J.H. Silverman, <EM>Advanced topics in the arithmetic of elliptic curves</EM>,
GTM <B>151</B>, Springer-Verlag, New York, 1994.[?]

</UL>

4.1.53 Cremona label
Definition 4.1.53. The Cremona label of an elliptic curve over ℚ is a way of indexing the ellip-
tic curves over ℚ. It has the form 11𝑎1 or 10050𝑏𝑓2. The first number represents the conductor, the
letter or letters represent the isogeny class and the last number represents the isomorphism class
within the isogeny class as it appears in [Cremona’s tables.](http://johncremona.github.io/ecdata/)
In each isogeny class the curve with number 1 is the Γ0(𝑁)-optimal curve.<br> For more de-
tails, see ”The elliptic curve database for conductors to 130000” by John Cremona in ANTS-VII
proceedings, Lecture Notes in Computer Science, vol. 4076, 2006, 11-29.

In the Cremona labeling, it is somewhat difficult to describe the mechanisms for ordering
isogeny classes or curves within a class, since these depend on the order in which the curves
were computed (though for conductors over 230,000 the isogeny class labels coincide). Cremona
labels are only available for conductors up to 500,000. For these reasons, within this site we
also use the LMFDB label, whose definition is somewhat simpler. Note that the lack of internal
punctuation distinguishes Cremona labels from LMFDB labels.

4.1.54 Discriminant of an elliptic curve over ℚ
Definition 4.1.54. The discriminant Δ of an elliptic curve 𝐸 defined over ℚ is a nonzero
integer divisible exactly by the primes of bad reduction. It is the discriminant of the minimal
Weierstrass equation of the curve.

4.1.55 Endomorphism ring of an elliptic curve
Definition 4.1.55. The endomorphism ring End(𝐸) of an elliptic curve 𝐸 is the ring of all
endomorphisms of 𝐸 defined over 𝐾. For endomorphisms defined over extensions, we speak of
the geometric endomorphism ring of 𝐸.

For elliptic curves defined over ℚ, this ring is always isomorphic to ℤ consisting of the
multiplication-by-𝑚 maps [𝑚] ∶ 𝐸 → 𝐸 for 𝑚 ∈ ℤ.

This is a special case of the endomorphism ring of an abelian variety.

4.1.56 Faltings height of an elliptic curve
Definition 4.1.56. The Faltings height of an elliptic curve 𝐸 defined over ℚ is the quantity

ℎFaltings(𝐸) = −1
2 log(𝐴),

where 𝐴 is the covolume (that is, the area of a fundamental period parallelogram) of the
KNOWL(’ec.q.period_lattice’, ’Né;ron lattice’) of 𝐸.

The stable Faltings height of 𝐸 is

ℎstable(𝐸) = 1
12(log denom(𝑗) − log(|Δ|)) − 1

2 log(𝐴),
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where 𝑗 is the 𝑗-invariant of 𝐸, Δ the discriminant of any model of 𝐸 and 𝐴 the covolume of the
period lattice of that model. The stable height is independent of the model of 𝐸, and the unstable
and stable heights are equal for semistable curves, for which denom(𝑗) = |Δ|.

4.1.57 Faltings ratio
Definition 4.1.57. In each isogeny class of elliptic curves defined over ℚ, there is a unique
curve 𝐸min whose KNOWL(’ec.q.period_lattice’, ’Né;ron lattice’) is a sublattice of the Né;ron
lattices of all the curves in the class (G. Stevens, [?]); it is the unique curve of minimal Faltings
height among the curves in the isogeny class.

The Faltings ratio of each curve 𝐸 is the index of the Né;ron lattice of 𝐸min in that of 𝐸.

4.1.58 Frey curve
Definition 4.1.58. Given a triple of integers 𝐴, 𝐵, 𝐶 with 𝐴+𝐵 = 𝐶, the [Frey curve](https://en.wikipedia.org/wiki/Frey_curve)
(or Frey-Hellegouarch curve) associated to this triple is the elliptic curve

𝑦2 = 𝑥(𝑥 − 𝐴)(𝑥 + 𝐵).

4.1.59 Integral points
Definition 4.1.59. The integral points on a given model of an elliptic curve 𝐸 defined over
ℚ are the points 𝑃 = (𝑥, 𝑦) on the model that have integral coordinates 𝑥 and 𝑦.

The number of integral points is finite, by a theorem of Siegel.

4.1.60 j-invariant of a rational elliptic curve
Definition 4.1.60. The 𝑗-invariant of an elliptic curve 𝐸 defined over ℚ is an invariant of
the isomorphism class of 𝐸 over ℚ . If the Weierstrass equation of 𝐸 is

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥2 + 𝑎4𝑥 + 𝑎6,

then its 𝑗-invariant is given by

𝑗 = 𝑐3
4

Δ
where

𝑏2 = 𝑎2
1 + 4𝑎2

𝑏4 = 2𝑎4 + 𝑎1𝑎3
𝑏6 = 𝑎2

3 + 4𝑎6
𝑏8 = 𝑎2

1𝑎6 + 4𝑎2𝑎6 − 𝑎1𝑎3𝑎4 + 𝑎2𝑎2
3 − 𝑎2

4
𝑐4 = 𝑏2

2 − 24𝑏4
𝑐6 = −𝑏3

2 + 36𝑏2𝑏4 − 216𝑏6

and
Δ = −𝑏2

2𝑏8 − 8𝑏3
4 − 27𝑏2

6 + 9𝑏2𝑏4𝑏6

is the discriminant of 𝐸.
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4.1.61 Kodaira symbol
Definition 4.1.61. The Kodaira symbol encodes the reduction type of an elliptic curve at a
prime 𝑝. It describes the combinatorics of the special fiber of the Né;ron model of the elliptic curve.
The Né;ron model is obtained from the minimal Weierstrass equation using Tate’s algorithm. For
an exact definition and properties, consult a text on elliptic curves.

4.1.62 Label for an elliptic curve over ℚ
Definition 4.1.62. The LMFDB label of an elliptic curve 𝐸 over ℚ is a way of indexing the
elliptic curves over ℚ. It has the form ”11.a1” or ”10050.bf2”.

The label has three components: the conductor, the isogeny class label, and the isomor-
phism class index.

1. The first component is the decimal representation of the conductor (a positive integer).
2. The second component is the isogeny class label, a string which represents the isogeny

class index, a non-negative integer encoded as in base 26 using the 26 symbols a,b,.., z. The
isogeny classes of elliptic curves with the same conductor are sorted lexicographically by the 𝑞-
expansions of the associated modular forms, and the isogeny class index of each isogeny class of
fixed conductor is the index (starting at 0) of the class in this ordering.

3. The third component is the decimal representation of the isomorphism class index, a
positive integer giving the index of the coefficient vector [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6] of the reduced minimal
Weierstrass equation of 𝐸 in a lexicographically sorted list of all the elliptic curves in the isogeny
class.

The complete label is obtained by concatenating [conductor, ”.”, isogeny class label, isomor-
phism class index].

Note that this is not the same as the Cremona label, even though for certain curves they only
differ in the insertion of the dot ”.” (for example, ”37a1” and ”37.a1” are the same curve). The
presence of the punctuation ”.” distinguishes an LMFDB label from a Cremona label. Cremona
labels are only defined for curves of conductor up to 500000.

4.1.63 Manin constant for elliptic curves over ℚ
Definition 4.1.63. Let 𝐸 be an optimal elliptic curves of conductor 𝑁 , let 𝑓 be the modular
form associated to 𝐸, and let 𝜑 ∶ 𝑋0(𝑁) → 𝐸 be the associated modular parametrization. Let
𝜔𝐸 be the Né;ron differential on 𝐸. Then the pull-back 𝜑∗𝜔𝐸 of 𝜔𝐸 to 𝑋0(𝑁) satisfies

𝜑∗𝜔𝐸 = 𝑐 ⋅ 2𝜋𝑖𝑓(𝑧)𝑑𝑧

for some non-zero rational number 𝑐 called the Manin constant of 𝐸. In fact 𝑐 ∈ ℤ, by a
theorem of Edixhoven.

It is conjectured that 𝑐 = 1 for all optimal curves, and there are several results stating that
𝑐 = 1 if certain conditions hold: see Amod Agashe, Ken Ribet and William Stein: The Manin
Constant, Pure and Applied Mathematics Quarterly, Vol. 2 no.2 (2006), pp. 617–636. In an
appendix to that paper, John Cremona gives an algorithm for verifying that 𝑐 = 1 in individual
cases, and proves that 𝑐 = 1 for all optimal elliptic curves over ℚ in the database. Kęstutis
Česnavičius proves 𝑐 = 1 for semistable elliptic curves over ℚ, and more generally that 𝑣𝑝(𝑐) = 0
if 𝑝2 ∤ 𝑁 in *The Manin constant in the semistable case*, Compositio Math. 154 (2018),
1889–1920.

For non-optimal elliptic curves 𝐸′ over ℚ, the Manin constant is defined, in terms of the
Manin constant of the unique optimal curve isogenous to 𝐸′. Let 𝜑 ∶ 𝑋0(𝑁) → 𝐸 and 𝑓 be as
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above, and 𝜓 ∶ 𝐸 → 𝐸′ an isogeny of least degree from 𝐸 to 𝐸′. Then we obtain a parametrization
𝜓 ∘ 𝜑 ∶ 𝑋0(𝑁) → 𝐸′ and define the Manin constant 𝑐′ of 𝐸′ to be the non-zero rational number
such that

(𝜓 ∘ 𝜑)∗𝜔𝐸′ = 𝑐′ ⋅ 2𝜋𝑖𝑓(𝑧)𝑑𝑧.
This is an integer multiple of the Manin constant of 𝐸, since 𝜓∗𝜔𝐸′ is an integer multiple of 𝜔𝐸;
the multiplier divides the degree of 𝜓 but may be strictly less: it may equal 1.

4.1.64 Minimal twists of elliptic curves over ℚ
Definition 4.1.64. The minimal quadratic twist of an elliptic curve 𝐸 defined over ℚ is
defined as follows.

• First consider the finite set of all quadratic twists of 𝐸 which have minimal conductor. If
this set contains just one curve, it is the minimal quadratic twist.

• Otherwise, sort the curves with minimal conductor into isogeny classes, and restrict atten-
tion to the curves whose class comes first in the LMFDB labelling; equivalently, sort the
curves by the sequence of coefficients (𝑎𝑛) of their 𝐿-function and restrict to the curve or
curves with the first such sequence.

• If 𝐸 does not have Complex Multiplication (CM), then the minimal isogeny class contains
a *unique* curve with the same 𝑗-invariant as 𝐸, and this curve is the minimal quadratic
twist of 𝐸.

• If 𝐸 does have CM, then the minimal isogeny class contains exactly *two* curves with
𝑗-invariant 𝑗(𝐸). In all but one case these two curves have distinct minimal discriminants,
with the same sign, and we define the minimal quadratic twist to be the curve whose minimal
discriminant has smallest absolute value.

• The exception is for elliptic curves with 𝑗 = 663, which have CM by the imaginary quadratic
order with discriminant −16. The minimal conductor is 32, and curves [32.a1](https://www.lmfdb.org/EllipticCurve/Q/32/a/1)
and [32.a2](https://www.lmfdb.org/EllipticCurve/Q/32/a/2) (which are quadratic twists of
each other by −1) both have minimal discriminant 29. The minimal quadratic twist for
𝑗 = 663 is defined to be [32.a1](https://www.lmfdb.org/EllipticCurve/Q/32/a/1).

All elliptic curves 𝐸 over ℚ with 𝑗-invariant 1728 are quartic twists of each other. The smallest
conductor of such a curve is 32. Both the curves [32.a3](https://www.lmfdb.org/EllipticCurve/Q/32/a/3)
and [32.a4](https://www.lmfdb.org/EllipticCurve/Q/32/a/4) have 𝑗-invariant 1728, and they
have minimal discriminants −212 and 26 respectively. We define the minimal quartic twist (or
just minimal twist) of every elliptic curve with 𝑗 = 1728 to be the curve [32.a3](https://www.lmfdb.org/EllipticCurve/Q/32/a/3),
which has smaller discriminant, and equation 𝑌 2 = 𝑋3 − 𝑋.

All elliptic curves 𝐸 over ℚ with 𝑗-invariant 0 are sextic twists of each other. The smallest con-
ductor of such a curve is 27. Both the curves [27.a3](https://www.lmfdb.org/EllipticCurve/Q/27/a/3)
and [27.a4](https://www.lmfdb.org/EllipticCurve/Q/27/a/4) have 𝑗-invariant 0, and they have
minimal discriminants −39 and −33 respectively. We define the minimal sextic twist (or just
minimal twist) of every elliptic curve with 𝑗 = 0 to be the curve [27.a4](https://www.lmfdb.org/EllipticCurve/Q/27/a/4),
which has smaller discriminant, and equation 𝑌 2 + 𝑌 = 𝑋3.

The minimal twist of an elliptic curve 𝐸 is its minimal quadratic twist, unless 𝑗(𝐸) = 0
or 1728, in which cases the minimal twist is its minimal sextic or quartic twist respectively. The
minimal quadratic twist depends only on the 𝑗-invariant unless 𝑗 = 0 or 1728; in each of these
cases, there are infinitely many different minimal quadratic twists, though only one minimal
twist.
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4.1.65 Minimal Weierstrass equation over ℚ
Definition 4.1.65. Every elliptic curve over ℚ has an integral Weierstrass model (or equation)
of the form

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥2 + 𝑎4𝑥 + 𝑎6,
where 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6 are integers. Each such equation has a discriminant Δ. A minimal
Weierstrass equation is one for which |Δ| is minimal among all Weierstrass models for the
same curve. For elliptic curves over ℚ, minimal models exist, and there is a unique reduced
minimal model which satisfies the additional constraints 𝑎1, 𝑎3 ∈ {0, 1}, 𝑎2 ∈ {−1, 0, 1}.

4.1.66 Modular degree of an elliptic curve over ℚ
Definition 4.1.66. The modular degree of an elliptic curve over ℚ is the minimum degree of
a modular parametrization of the curve.

4.1.67 Modular parametrization of an elliptic curve over ℚ
Definition 4.1.67. A modular parametrization of an elliptic curve 𝐸 over ℚ is a non-
constant map 𝑋0(𝑁) → 𝐸, where 𝑁 is the conductor of 𝐸.

4.1.68 Naive height
Definition 4.1.68. The naive height of an elliptic curve in short Weierstrass form

𝑦2 = 𝑥3 + 𝑎4𝑥 + 𝑎6

is the quantity max(4|𝑎4|3, 27|𝑎6|2).

4.1.69 Optimal elliptic curve over ℚ
Definition 4.1.69. An elliptic curve over ℚ is optimal if it is an optimal quotient of the corre-
sponding modular curve. Every isogeny class contains a unique optimal curve. For more informa-
tion, see [William Stein’s page on optimal quotients.](http://wstein.org/papers/ars-manin/html/node2.html)

Optimal curves have a Cremona label whose last component is the number 1, with the exception
of class 990h where the optimal curve is 990h3 (number 3). This is a historical accident and has
no mathematical significance.

NB It has not yet been proved in all cases that the first curve in each class is optimal; however
this is true for all isogeny classes of conductor ≤ 400000, and for many others (for example
whenever the isogeny class consists of only one curve). The current optimality status of each
curve is shown on its home page.

4.1.70 Period lattice of an elliptic curve
Definition 4.1.70. For 𝐸 an elliptic curve defined over ℂ by a Weierstrass equation with
coefficients 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6, the period lattice of 𝐸 is the set Λ of periods of the invariant
differential 𝑑𝑥/(2𝑦+𝑎1𝑥+𝑎3), which is a discrete lattice of rank 2 in ℂ. There is an isomorphism
(of complex Lie groups) ℂ/Λ ≅ 𝐸(ℂ) defined in terms of the Weierstrass ℘-function.

For elliptic curves defined over ℝ (and in particular, for those defined over ℚ), the period
lattice has one of two possible types dependng on the sign of the discriminant Δ of 𝐸:
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• If Δ > 0, then Λ is *rectangular*, with a ℤ-basis of the form ⟨𝑥, 𝑦𝑖⟩, where 𝑥 and 𝑦 are
positive real numbers; in this case, 𝐸(ℝ) has two connected components.

• If Δ < 0, then Λ has a ℤ-basis of the form ⟨2𝑥, 𝑥 + 𝑦𝑖⟩, where 𝑥 and 𝑦 are positive real
numbers; in this case, 𝐸(ℝ) has one connected component.

The real period of 𝐸 is defined to be 2𝑥 in each case, so is equal to the smallest positive real
period multiplied by the number of real components.

Note that the period lattice depends on the choice of Weierstrass model of 𝐸; different models
have homothetic lattices. For elliptic curves defined over ℚ, the period lattice associated to a
global minimal model of 𝐸 is called the Né;ron lattice of 𝐸. The real period of the Né;ron
lattice is denoted Ω𝐸, and appears in the Birch Swinnerton-Dyer conjecture for 𝐸.

4.1.71 Real period
Definition 4.1.71. For an elliptic curve 𝐸 defined over ℝ with period lattice Λ, the real period
Ω is the least positive element of Λ ∩ ℝ multiplied by the number of components of 𝐸(ℝ).

When an elliptic curve is defined by means of a Weierstrass equation, the period lattice Λ is
the lattice of periods of the invariant differential 𝑑𝑥/(2𝑦+𝑎1𝑥+𝑎3). Different Weierstrass models
defining isomorphic curves have period lattices which are homothetic, meaning that they differ
by a nonzero multiplicative constant. When we speak of the period lattice or the real period for
an elliptic curve defined over ℚ, we always mean the lattice and period associated with a minimal
equation.

4.1.72 Reduction type of an elliptic curve over ℚ
Definition 4.1.72. The reduction type of an elliptic curve 𝐸 defined over ℚ at a prime 𝑝
depends on the reduction ̃𝐸 of 𝐸 modulo 𝑝. This reduction is constructed by taking a minimal
Weierstrass equation for 𝐸 and reducing its coefficients modulo 𝑝 to obtain a curves over 𝔽𝑝.
The reduced curve is either smooth (non-singular) or has a unique singular point.

𝐸 has good reduction at 𝑝 if ̃𝐸 is non-singular over 𝔽𝑝. The reduction type is ordinary
(ord) if ̃𝐸 is ordinary (equivalently, if ̃𝐸(𝔽𝑝) has non-trivial 𝑝-torsion) and supersingular (ss)
otherwise. The coefficient 𝑎(𝑝) of the L-function 𝐿(𝐸, 𝑠) is divisible by 𝑝 if the reduction is
supersingular and not if it is ordinary.

𝐸 has bad reduction at 𝑝 if ̃𝐸 is singular over 𝔽𝑝. In this case the reduction type is further
classified according to the nature of the singularity. In all cases the singularity is a double point.

𝐸 has multiplicative reduction at 𝑝 if ̃𝐸 has a nodal singularity: the singular point is
a node, with distinct tangents. It is called split if the two tangents are defined over 𝔽𝑝 and
non-split otherwise. The coefficient 𝑎(𝑝) of 𝐿(𝐸, 𝑠) is 1 if the reduction is split and −1 if it is
non-split.

𝐸 has additive reduction at 𝑝 if ̃𝐸 has a cuspidal singularity: the singular point is a cusp,
with only one tangent. In this case 𝑎(𝑝) = 0.

4.1.73 Regulator of elliptic curve
Definition 4.1.73. The regulator of an elliptic curve 𝐸 defined over a number field 𝐾, denoted
Reg(𝐸/𝐾), is the volume of 𝐸(𝐾)/𝐸(𝐾)𝑡𝑜𝑟 with respect to the height pairing ⟨−, −⟩ associated
to the canonical height ℎ̂, i.e. ⟨𝑃 , 𝑄⟩ = 1

2 (ℎ̂(𝑃 + 𝑄) − ℎ̂(𝑃 ) − ℎ̂(𝑄)).
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If the Mordell-Weil group 𝐸(𝐾) has rank 𝑟 and 𝑃1, … , 𝑃𝑟 ∈ 𝐸(𝐾) generate 𝐸(𝐾)/𝐸(𝐾)𝑡𝑜𝑟,
then

Reg(𝐸/𝐾) = ∣det(⟨𝑃𝑖, 𝑃𝑗⟩)1≤𝑖,𝑗≤𝑟∣ ,
which is independent of the choice of generators.

Special cases are when 𝐸(𝐾) has rank 0, in which case 𝐸(𝐾)/𝐸(𝐾)𝑡𝑜𝑟 = 0 and Reg(𝐸/𝐾) =
1, and when 𝐸(𝐾) has rank 1, in which case Reg(𝐸/𝐾) is equal to the canonical height ℎ̂(𝑃 ) of
a generator 𝑃 .

4.1.74 Semistable elliptic curve
Definition 4.1.74. An elliptic curve is semistable if it has multiplicative reduction at every
bad prime.

4.1.75 Serre invariants
Definition 4.1.75. Let ̄𝜌𝐸,ℓ be the mod-ℓ Galois representation of an elliptic curve 𝐸/ℚ.

The Serre invariants (𝑘, 𝑀) of ̄𝜌𝐸,ℓ consist of the Serre weight 𝑘 and the Serre con-
ductor 𝑀 giving the weight and minimal level of a newform 𝑓 ∈ 𝑆n𝑒𝑤

𝑘 (Γ1(𝑀)) whose associated
mod-ℓ Galois representation is isomorphic to ̄𝜌𝐸,ℓ.

This means that 𝑎𝑝(𝐸) and 𝑎𝑝(𝑓) reduce to the same element of the residue field of a prime
above ℓ in the coefficient field of 𝑓 (this residue field need not have degree one, but every 𝑎𝑝(𝑓)
must reduce to an element of 𝔽ℓ in order for this condition to hold).

The modular form 𝑓 is not uniquely determined, but the minimal level 𝑀 arising among all
such 𝑓 is uniquely determined, and among those with level 𝑀 , the weight is uniquely determined.

For all but finitely many primes ℓ, including all ℓ > 7 of good reduction for 𝐸, the Serre
invariants are (2, 𝑁), where 𝑁 is the conductor of the elliptic curve. The primes ℓ for which this
does not hold are exceptional.

In general, the Serre weight 𝑘 is divisible by 2 and the Serre conductor 𝑀 divides 𝑁 .

4.1.76 Special value of an elliptic curve L-function
Definition 4.1.76. The special value of an elliptic curve 𝐸/ℚ is the first nonzero value of
𝐿(𝑟)(𝐸, 1)/𝑟! for 𝑟 ∈ ℤ≥0, where 𝐿(𝐸, 𝑠) is the 𝐿-function of 𝐸 in its arithmetic normalization.

The special value appears on the LHS of the formula in the Birch and Swinnerton-Dyer
conjecture.

4.1.77 Szpiro ratio
Definition 4.1.77. The (modified) Szpiro ratio of an elliptic curve 𝐸 is defined as

𝜎𝑚(𝐸) = log max(|𝑐4|3, |𝑐6|2)
log 𝑁 ,

where 𝑁 is the conductor of 𝐸 and 𝑐4 and 𝑐6 are defined as for the 𝑗-invariant. The (modified)
Szpiro conjecture is that, for any 𝜖 > 0, there are only finitely many elliptic curves with Szpiro
ratio larger than 6 + 𝜖. In [?], Oesterlé proves that this conjecture is equivalent to the 𝑎𝑏𝑐
conjecture.

In Oesterlé’s paper cited above, there is another conjecture, that the ratio

log Δ
log 𝑁 ,
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also has the property of only taking values larger than 6 + 𝜖 finitely many times (here Δ is the
minimal discriminant of 𝐸). This conjecture is implied by the modified Szpiro conjecture (and
thus the 𝑎𝑏𝑐 conjecture), but it is not currently known to be equivalent. All of the Szpiro ratios
in the LMFDB are computed in terms of 𝑐4 and 𝑐6 rather than Δ for this reason.

4.1.78 Torsion growth in number fields
Definition 4.1.78. Let 𝐸 be an elliptic curve defined over ℚ and let 𝐾 be a number field. We
say that there is torsion growth from ℚ to 𝐾 if the torsion subgroup 𝐸(𝐾)tor of 𝐸(𝐾) is strictly
larger than 𝐸(ℚ)tor.

If there is torsion growth in a field 𝐾 then obviously the torsion also grows in every extension
of 𝐾. We say that the torsion growth in 𝐾 is primitive if 𝐸(𝐾)tor is strictly larger than
𝐸(𝐾′)tor for all proper subfields 𝐾′ ⊊ 𝐾.

For every elliptic curve 𝐸 there is torsion growth in at least one field of degree 2, 3, or 4,
and torsion can only grow in fields whose degree is divisible by 2, 3, 5 or 7: see Theorem 7.2 of
[?]. Additionally, there is no primitive torsion growth in fields of degrees 22 or 26: see Lemma
2.11 of [?]. Hence the only degrees less than 24 in which primitive torsion growth occurs are
2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21.

4.1.79 Torsion subgroup of an elliptic curve over ℚ
Definition 4.1.79. If 𝐸 is an elliptic curve defined over ℚ, its torsion subgroup is the subgroup
of the Mordell-Weil group 𝐸(ℚ) consisting of all the rational points of finite order. It is a finite
abelian group of order at most 16 (by a theorem of Mazur), which is a product of at most 2 cyclic
factors. The ”torsion structure” is the list of invariants of the group:

• [] for the trivial group;

• [𝑛] for a cyclic group of order 𝑛 (only 𝑛 = 2, 3, 4, 5, 6, 7, 8, 9, 10 or 12 occur for elliptic
curves over ℚ);

• [𝑛1, 𝑛2] with 𝑛1 ∣ 𝑛2 for a product of cyclic groups of orders 𝑛1 and 𝑛2 (only [2, 2𝑚] for
𝑚 = 2, 4, 6 or 8 occur over ℚ).

4.1.80 ℚ-curves
Definition 4.1.80. An elliptic curve 𝐸 defined over a number field 𝐾 is a ℚ-curve if it is
isogenous over 𝐾 to each of its Galois conjugates. Note that the isogenies need not be defined
over 𝐾 itself.

An elliptic curve which is the base change of a curve defined over ℚ is a ℚ-curve, but not all
ℚ-curves are base-change curves.

Elliptic curves with CM are all ℚ-curves, as are all those whose 𝑗-invariant is in ℚ.

4.1.81 Rank of an elliptic curve over a number field
Definition 4.1.81. The rank of an elliptic curve 𝐸 defined over a number field 𝐾 is the rank
of its Mordell-Weil group 𝐸(𝐾).

The Mordell-Weil Theorem says that 𝐸(𝐾) is a finitely-generated abelian group, hence
𝐸(𝐾) ≅ 𝐸(𝐾)tor × ℤ𝑟

where 𝐸(𝐾)tor is the finite torsion subgroup of 𝐸(𝐾), and 𝑟 ≥ 0 is the rank.
Rank is an isogeny invariant: all curves in an isogeny class have the same rank.
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4.1.82 Reduction of an elliptic curve
Definition 4.1.82. An elliptic curve 𝐸 over a number field 𝐾 is semistable if it has multi-
plicative reduction at every bad prime, and has potential good reduction if its 𝑗-invariant is
integral.

If 𝐸 has potential good reduction then it cannot be semistable unless it has everywhere good
reduction.

4.1.83 Reduction type
Definition 4.1.83. The reduction type of an elliptic curve 𝐸 defined over a number field 𝐾
at a prime 𝔭 of 𝐾 depends on the reduction ̃𝐸 of 𝐸 modulo 𝔭. Let 𝔽𝑞 be the ring of integers of
𝐾 modulo 𝔭, a finite field of characteristic 𝑝.

𝐸 has good reduction at 𝔭 if ̃𝐸 is non-singular over 𝔽𝑞. The reduction type is ordinary if ̃𝐸
is ordinary (equivalently, ̃𝐸(𝔽𝑞) has 𝑝-torsion) and supersingular otherwise.

On the other hand, if the reduction of 𝐸 modulo 𝔭 is singular, then 𝐸 has bad reduction.
There are two types of bad reduction are as follows.

𝐸 has multiplicative reduction at 𝔭 if ̃𝐸 has a nodal singularity. It is called split multi-
plicative reduction if the two tangents at the node are defined over 𝔽𝑞 and non-split multi-
plicative reduction otherwise.

𝐸 has additive reduction at 𝔭 if ̃𝐸 has a cuspidal singularity.

4.1.84 Regulator of an elliptic curve
Definition 4.1.84. The regulator of an elliptic curve 𝐸 defined over a number field 𝐾, denoted
Reg(𝐸/𝐾), is the volume of 𝐸(𝐾)/𝐸(𝐾)𝑡𝑜𝑟 with respect to the height pairing ⟨−, −⟩ associated
to the canonical height ℎ̂, i.e. ⟨𝑃 , 𝑄⟩ = 1

2 (ℎ̂(𝑃 + 𝑄) − ℎ̂(𝑃 ) − ℎ̂(𝑄)).
If the Mordell-Weil group 𝐸(𝐾) has rank 𝑟 and 𝑃1, … , 𝑃𝑟 ∈ 𝐸(𝐾) generate 𝐸(𝐾)/𝐸(𝐾)tor,

then
Reg(𝐸/𝐾) = ∣det(⟨𝑃𝑖, 𝑃𝑗⟩)1≤𝑖,𝑗≤𝑟∣ ,

which is independent of the choice of generators.
Special cases are when 𝐸(𝐾) has rank 0, in which case 𝐸(𝐾)/𝐸(𝐾)tor = 0 and Reg(𝐸/𝐾) =

1, and when 𝐸(𝐾) has rank 1, in which case Reg(𝐸/𝐾) is equal to the canonical height ℎ̂(𝑃 ) of
a generator 𝑃 .

The canonical height used to define the regulator is usually *normalised* so that it is invariant
under base change. Note that the regulator which appears in the Birch Swinnerton-Dyer conjecture
is with respect to the non-normalised height; this is sometimes called the Néron-Tate regulator,
and denoted RegNT(𝐸/𝐾). These are related by

RegNT(𝐸/𝐾) = 𝑑𝑟 Reg(𝐸/𝐾),

where 𝑑 is the degree [𝐾 ∶ ℚ].

4.1.85 Elliptic curve over a ring
Definition 4.1.85. An elliptic curve over a commutative ring 𝑅 is an elliptic scheme 𝐸 →
Spec 𝑅.

For example, an elliptic curve over ℤ[1/𝑁] is the same as an elliptic curve over ℚ with good
reduction at all primes not dividing 𝑁 . (More precisely, the latter is the generic fiber of the
former.)
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4.1.86 Elliptic scheme
Definition 4.1.86. An elliptic scheme over a scheme 𝑆 is a smooth proper morphism 𝐸 → 𝑆
whose fibers are elliptic curves.

4.1.87 Semi-global minimal model
Definition 4.1.87. An elliptic curve 𝐸 defined over a number field 𝐾 of class number ℎ(𝐾)
greater than 1 may not have a global minimal model. In this case there still exist semi-global
minimal models for 𝐸 which are local minimal models at all except one prime. At this prime,
the discriminant valuation exceeds that of the minimal discriminant ideal by 12.

4.1.88 Semistable elliptic curve
Definition 4.1.88. An elliptic curve is semistable if it has multiplicative reduction at every
bad prime.

4.1.89 Simplified equation
Definition 4.1.89. Every elliptic curve over a field 𝑘 whose characteristic is not 2 or 3 has a
simplified equation (or short Weierstrass model) of the form 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵. When
𝑘 = ℚ is the field of rational numbers, one can choose 𝐴 and 𝐵 to be integers.

For elliptic curves over ℚ this model will necessarily have bad reduction at 2, even when 𝐸
has good reduction at 2; it may also bad reduction at 3 even when the minimal model of 𝐸 does
not.

4.1.90 Special value of an elliptic curve L-function
Definition 4.1.90. The special value of an elliptic curve 𝐸 defined over a number field 𝐾 is
the first nonzero value of 𝐿(𝑟)(𝐸, 1)/𝑟! for 𝑟 ∈ ℤ≥0, where 𝐿(𝐸/𝐾, 𝑠) is the L-function of 𝐸 in
its arithmetic normalization. It is also known as the leading coefficient of the L-function.

The special value appears in the Birch and Swinnerton-Dyer conjecture.

4.1.91 Split multiplicative reduction
Definition 4.1.91. An elliptic curve 𝐸 defined over a number field 𝐾 is said to have split
multiplicative reduction at a prime 𝔭 of 𝐾 if the reduction of 𝐸 modulo 𝔭 has a nodal
singularity with both tangent slopes defined over the residue field at 𝔭.

4.1.92 Tamagawa number
Definition 4.1.92. The Tamagawa number of an elliptic curve 𝐸 defined over a number field
at a prime 𝔭 of 𝐾 is the index [𝐸(𝐾𝔭) ∶ 𝐸0(𝐾𝔭)], where 𝐾𝔭 is the completion of 𝐾 at 𝔭 and
𝐸0(𝐾𝔭) is the subgroup of 𝐸(𝐾𝔭) consisting of all points whose reduction modulo 𝔭 is smooth.

The Tamagawa number of 𝐸 at 𝔭 is usually denoted 𝑐𝔭(𝐸). It is a positive integer, and equal
to 1 if 𝐸 has good reduction at 𝔭 and may be computed in general using Tate’s algorithm.

The product of the Tamagawa numbers over all primes is a positive integer known as the
Tamagawa product.
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4.1.93 Torsion order of an elliptic curve
Definition 4.1.93. The torsion order of an elliptic curve 𝐸 over a field 𝐾 is the order of the
torsion subgroup 𝐸(𝐾)tor of its Mordell-Weil group E(K).

The torsion subgroup 𝐸(𝐾)tor is the set of all points on 𝐸 with coordinates in 𝐾 having finite
order in the group 𝐸(𝐾). When 𝐾 is a number field (for example, when 𝐾 = ℚ) it is a finite
set, since by the Mordell-Weil Theorem, 𝐸(𝐾) is finitely generated.

When 𝐾 = ℚ the torsion order 𝑛 satisfies 𝑛 ≤ 16, by a theorem of Mazur.

4.1.94 Torsion subgroup of an elliptic curve
Definition 4.1.94. For an elliptic curve 𝐸 over a field 𝐾, the torsion subgroup of 𝐸 over
𝐾 is the subgroup 𝐸(𝐾)tor of the Mordell-Weil group 𝐸(𝐾) consisting of points of finite order.
For a number field 𝐾 this is always a finite group, since by the Mordell-Weil Theorem 𝐸(𝐾) is
finitely generated.

The torsion subgroup is always either cyclic or a product of two cyclic groups. The torsion
structure is the list of invariants of the group:

• [] for the trivial group;

• [𝑛] for a cyclic group of order 𝑛 > 1;
• [𝑛1, 𝑛2] with 𝑛1 ∣ 𝑛2 for a product of non-trivial cyclic groups of orders 𝑛1 and 𝑛2.

For 𝐾 = ℚ the possible torsion structures are [𝑛] for 𝑛 ≤ 10 and 𝑛 = 12, and [2, 2𝑛] for
𝑛 = 1, 2, 3, 4.

4.1.95 Twists of elliptic curves
Definition 4.1.95. A twist of an elliptic curve 𝐸 defined over a field 𝐾 is another elliptic
curve 𝐸′, also defined over 𝐾, which is isomorphic to 𝐸 over the algebraic closure of 𝐾.

Two elliptic curves are twists if an only if they have the same 𝑗-invariant.
For elliptic curves 𝐸 with 𝑗(𝐸) ≠ 0, 1728, the only twists of 𝐸 are its quadratic twists

𝐸(𝑑). Provided that the characteristic of 𝐾 is not 2, the nontrivial quadratic twists of 𝐸 are
in bijection with the nontrivial elements 𝑑 of 𝐾∗/(𝐾∗)2, and 𝐸(𝑑) is isomorphic to 𝐸 over the
quadratic extension 𝐾(

√
𝑑).

Over fields of characteristic not 2 or 3, elliptic curves with 𝑗-invariant 1728 also admit
quartic twists, parametrised by 𝐾∗/(𝐾∗)4, and elliptic curves with 𝑗-invariant 0 also admit
sextic twists, parametrised by 𝐾∗/(𝐾∗)6. Elliptic curves 𝐸 over fields 𝐾 of characteristic 2
and 3 with 𝑗(𝐸) = 0 = 1728 have nonabelian automorphism groups, and their twists are more
complicated to describe, being in all cases parametrised by 𝐻1(Gal(𝐾/𝐾), Aut(𝐸)).

Elliptic curve twists are a special case of twists of abelian varieties.

4.1.96 Weierstrass equation or model
Definition 4.1.96. A Weierstrass equation or Weierstrass model over a field 𝑘 is a plane
curve 𝐸 of the form

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥2 + 𝑎4𝑥 + 𝑎6,
with 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6 ∈ 𝑘.

The Weierstrass coefficients of this model 𝐸 are the five coefficients 𝑎𝑖. These are often
displayed as a list [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6].
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It is common not to distinguish between the affine curve defined by a Weierstrass equation
and its projective closure, which contains exactly one additional point at infinity, [0 ∶ 1 ∶ 0].

A Weierstrass model is smooth if and only if its discriminant Δ is nonzero. In this case, the
plane curve 𝐸 together with the point at infinity as base point, define an elliptic curve defined
over 𝑘.

Two smooth Weierstrass models define isomorphic elliptic curves if and only if they are
isomorphic as Weierstrass models.

4.1.97 Isomorphism between Weierstrass models
Definition 4.1.97. Two Weierstrass models 𝐸, 𝐸′ over a field 𝐾 with Weierstrass coefficients
[𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6] and [𝑎′

1, 𝑎′
2, 𝑎′

3, 𝑎′
4, 𝑎′

6] are isomorphic over 𝐾 if there exist 𝑢 ∈ 𝐾∗ and
𝑟, 𝑠, 𝑡 ∈ 𝐾 such that

𝑢𝑎′
1 = 𝑎1 + 2𝑠,

𝑢2𝑎′
2 = 𝑎2 − 𝑠𝑎1 + 3𝑟 − 𝑠2,

𝑢3𝑎′
3 = 𝑎3 + 𝑟𝑎1 + 2𝑡,

𝑢4𝑎′
4 = 𝑎4 − 𝑠𝑎3 + 2𝑟𝑎2 − (𝑡 + 𝑟𝑠)𝑎1 + 3𝑟2 − 2𝑠𝑡,

𝑢6𝑎′
6 = 𝑎6 + 𝑟𝑎4 + 𝑟2𝑎2 + 𝑟3 − 𝑡𝑎3 − 𝑡2 − 𝑟𝑡𝑎1.

The set of transformations with parameters [𝑢, 𝑟, 𝑠, 𝑡] ∈ 𝐾∗ × 𝐾3 form the group of Weierstrass
isomorphisms, which acts on both the set of all Weierstrass models over 𝐾 and also on the
subset of smooth models, preserving the point at infinity. The discriminants Δ, Δ′ of the two
models are related by

𝑢12Δ′ = Δ.
In the smooth case such a Weierstrass isomorphism [𝑢, 𝑟, 𝑠, 𝑡] induces an isomorphism between

the two elliptic curves 𝐸, 𝐸′ they define. In terms of affine coordinates this is given by

(𝑥, 𝑦) ↦ (𝑥′, 𝑦′)

where
𝑥 = 𝑢2𝑥′ + 𝑟
𝑦 = 𝑢3𝑦′ + 𝑠𝑢2𝑥′ + 𝑡
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Chapter 5

Modular forms

Here we list definitions relevant to classical modular forms and their invariants. We first want
to focus on invariants that are used to label modular forms in the LMFDB. Anlongside this we
want to define Hecke operators and subspaces of newforms and oldforms.

• Labels of modular forms (5.1.40): level 5.1.42, weight 5.1.76, galois orbit of dirichlet
character 2.0.49 , label of galois orbit of newform , Conrey label ??, relative dimension
5.1.57

• coefficient field 5.1.10

• Character 5.1.8

• Hecke operators 5.1.33

• newform/old forms 5.1.47, 5.1.51

• Petersson inner product 5.1.52

• L-function self dual 5.1.63

• analytic conductor 5.1.2

• dimension 5.1.16

• Fricke sign/ Atkin-Lehner signs 5.1.29, 5.1.6

• inner twists 5.1.37, 5.1.38, 5.1.39

Next is the full list of invariants contained in the LMFDB.

5.1 Definitions relating to classical modular forms
5.1.1 Classical modular form
Definition 5.1.1. Let 𝑘 be a positive integer and let Γ be a finite index subgroup of the modular
group SL(2, ℤ).
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A (classical) modular form 𝑓 of weight 𝑘 on Γ, is a holomorphic function defined on the
upper half plane ℋ, which satisfies the transformation property

𝑓(𝛾𝑧) = (𝑐𝑧 + 𝑑)𝑘𝑓(𝑧)

for all 𝑧 ∈ ℋ and 𝛾 = (𝑎 𝑏
𝑐 𝑑) ∈ Γ and is holomorphic at all the cusps of Γ.

If Γ contains the principal congruence subgroup Γ(𝑁) then 𝑓 is said to be a modular form of
level 𝑁 .

For each fixed choice of 𝑘 and Γ the set of modular forms of weight 𝑘 on 𝐺 form a finite-
dimensional ℂ-vector space denoted 𝑀𝑘(Γ).

For the congruence subgroup Γ1(𝑁) the space 𝑀𝑘(Γ1(𝑁)) decomposes as a direct sum of
subspaces 𝑀𝑘(𝑁, 𝜒) over the group of Dirichlet characters 𝜒 of modulus 𝑁 , where 𝑀𝑘(𝑁, 𝜒) is
the subspace of forms 𝑓 ∈ 𝑀𝑘(𝑁) that satisfy

𝑓(𝛾𝑧) = 𝜒(𝑑)(𝑐𝑧 + 𝑑)𝑘𝑓(𝑧)

for all 𝛾 = (𝑎 𝑏
𝑐 𝑑) in Γ0(𝑁).

Elements of 𝑀𝑘(𝑁, 𝜒) are said to be modular forms of weight 𝑘, level 𝑁 , and character 𝜒.
For trivial character 𝜒 of modulus 𝑁 we have 𝑀𝑘(𝑁, 𝜒) = 𝑀𝑘(Γ0(𝑁)).

5.1.2 Analytic conductor of a classical newform
Definition 5.1.2. The analytic conductor of a newform 𝑓 ∈ 𝑆new

𝑘 (𝑁, 𝜒) is the positive real
number

𝑁 (exp(𝜓(𝑘/2))
2𝜋 )

2
,

where 𝜓(𝑥) ∶= Γ′(𝑥)/Γ(𝑥) is the logarithmic derivative of the Gamma function.

5.1.3 Analytic rank
Definition 5.1.3. The analytic rank of a cuspidal modular form 𝑓 is the analytic rank of the
L-function

𝐿(𝑓, 𝑠) = ∑
𝑛≥1

𝑎𝑛𝑛−𝑠

where the 𝑎𝑛 are the complex coefficients that appear in the 𝑞-expansion of the modular form:
𝑓(𝑧) = ∑𝑛≥1 𝑎𝑛𝑞𝑛, where 𝑞 = 𝑒2𝜋𝑖𝑧.

The complex coefficients 𝑎𝑛 depend on a choice of embedding of the coefficient field of 𝑓 into
the complex numbers. It is conjectured that the analytic rank does not depend on this choice, and
this conjecture has been verified for all classical modular forms stored in the LMFDB.

In general, analytic ranks of L-functions listed in the LMFDB are upper bounds that are
believed (but not proven) to be tight.

For modular forms, the analytic ranks listed in the LMFDB are provably correct whenever the
listed analytic rank is 0, or the listed analytic rank is 1 and the modular form is self dual (in the
self dual case the sign of the functional equation determines the parity of the analytic rank).
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5.1.4 Artin field
Definition 5.1.4. The Artin field of a weight one newform is the number field fixed by the
kernel of its associated Galois representation 𝜌 ∶ Gal(ℚ/ℚ) → GL2(ℂ).

This number field is typically identified as the Galois closure of a sibling subfield with minimal
degree and absolute discriminant.

5.1.5 Artin image
Definition 5.1.5. The Artin image of a weight one newform is the image of its associated
Galois representation 𝜌 ∶ Gal(ℚ/ℚ) → GL2(ℂ).

The Artin image is a finite subgroup of GL2(ℂ) whose cardinality is equal to the degree of the
Artin field.

5.1.6 Atkin-Lehner involution 𝑤𝑄
Definition 5.1.6. Let 𝑁 be a positive integer, and let 𝑄 be a positive divisor of 𝑁 satisfying
gcd(𝑄, 𝑁/𝑄) = 1. Then there exist 𝑥, 𝑦, 𝑧, 𝑡 ∈ ℤ for which the matrix

𝑊𝑄 = (𝑄𝑥 𝑦
𝑁𝑧 𝑄𝑡)

has determinant 𝑄. The matrix 𝑊𝑄 normalizes the group Γ0(𝑁), and for any weight 𝑘 it
induces a linear operator 𝑤𝑄 on the space of cusp forms 𝑆𝑘(Γ0(𝑁)) that commutes with the
Hecke operators 𝑇𝑝 for all 𝑝 ∤ 𝑄 and acts as its own inverse.

The linear operator 𝑤𝑄 does not depend on the choice of 𝑥, 𝑦, 𝑧, 𝑡 and is called the Atkin-
Lehner involution of 𝑆𝑘(Γ0(𝑁)). Any cusp form 𝑓 in 𝑆𝑘(Γ0(𝑁)) which is an eigenform for
all 𝑇𝑝 with 𝑝 ∤ 𝑁 is also an eigenform for 𝑤𝑄, with eigenvalue ±1.

The matrix 𝑊𝑄 induces an automorphism of the modular curve 𝑋0(𝑁) that is also denoted
𝑤𝑄.

In the case 𝑄 = 𝑁 , the Atkin-Lehner involution 𝑤𝑁 is also called the Fricke involution.

5.1.7 Bad prime
Definition 5.1.7. A bad prime for a modular form 𝑓 is a prime dividing the level of 𝑓.

A good prime is a prime that is not a bad prime. In other words, a prime that does not
divide the level.

5.1.8 Character of a modular form
Definition 5.1.8. The character of an elliptic modular form 𝑓 of weight 𝑘 for the group Γ
is the Dirichlet character 𝜒 that appears in its transformation under the action of the defining
group Γ. Namely,

𝑓(𝛾𝑧) = 𝜒(𝑑)(𝑐𝑧 + 𝑑)𝑘𝑓(𝑧)

for any 𝑧 ∈ ℋ and 𝛾 = (∗ ∗
𝑐 𝑑) ∈ Γ. Here Γ is a subgroup of SL2(ℤ) containing the principal

congruence subgroup Γ(𝑁), and 𝜒 is a character mod 𝑁 .
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5.1.9 CM form
Definition 5.1.9. A classical modular form is said to have complex multiplication if it admits
a self twist by the Kronecker character of an imaginary quadratic field.

5.1.10 Coefficient field for newforms
Definition 5.1.10. The coefficient field of a modular form is the subfield of ℂ generated by
the coefficients 𝑎𝑛 of its 𝑞-expansion ∑ 𝑎𝑛𝑞𝑛. The space of cusp forms 𝑆new

𝑘 (𝑁, 𝜒) has a basis
of modular forms that are simultaneous eigenforms for all Hecke operators and with algebraic
Fourier coefficients. For such eigenforms the coefficient field will be a number field, and Galois
conjugate eigenforms will share the same coefficient field. Moreover, if 𝑚 is the smallest positive
integer such that the values of the character 𝜒 are contained in the cyclotomic field ℚ(𝜁𝑚), the
coefficient field will contain ℚ(𝜁𝑚) For eigenforms, the coefficient field is also known as the
Hecke field.

5.1.11 Coefficient ring
Definition 5.1.11. The coefficient ring of a modular form is the subring ℤ[𝑎1, 𝑎2, 𝑎3, …]
of ℂ generated by the coefficients 𝑎𝑛 of its 𝑞-expansion ∑ 𝑎𝑛𝑞𝑛. In the case of a newform the
coefficients 𝑎𝑛 are algebraic integers and the coefficient ring is a finite index subring of the ring
of integers of the coefficient field of the newform. It is also known as the Hecke ring, since the
𝑎𝑛 are eigenvalues of Hecke operators.

5.1.12 Congruence subgroup
Definition 5.1.12. A congruence subgroup Γ of SL2(ℤ) is a subgroup that contains a prin-
cipal congruence subgroup Γ(𝑁) ∶= ker (SL2(ℤ) → SL2(ℤ/𝑁ℤ)) for some 𝑁 ≥ 1. The least
such 𝑁 is the level of Γ.

5.1.13 Cuspidal modular form
Definition 5.1.13. Let 𝑘 be a positive integer and let Γ be a finite index subgroup of the modular
group SL(2, ℤ).

A cusp form of weight 𝑘 on Γ is a modular form 𝑓 ∈ 𝑀𝑘(Γ) that vanishes at all cusps of Γ.
In particular, the constant term in the Fourier expansion of 𝑓 about any cusp is zero.

The cusp forms in 𝑀𝑘(Γ) form a subspace 𝑆𝑘(Γ). For each Dirichlet character 𝜒 of modulus
𝑁 the cusp forms in 𝑀𝑘(𝑁, 𝜒) form a subspace 𝑆𝑘(𝑁, 𝜒); these are the cusp forms of weight 𝑘,
level 𝑁 , and character 𝜒.

5.1.14 Decomposition into newforms
Definition 5.1.14. The Hecke algebra acts on 𝑆new

𝑘 (𝑁, 𝜒), breaking it up into irreducible pieces.
Each piece is spanned by a set of conjugate eigenforms with Fourier coefficients in a number field
of degree equal to the dimension of the subspace. We refer to an irreducible orbit as a newform.

5.1.15 Defining polynomial
Definition 5.1.15. The coefficient field of a modular form is a number field. A defining
polynomial for this number field is explicitly recorded, because some of the data associated to
the modular form will be expressed in terms of roots of this polynomial.
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5.1.16 Dimension
Definition 5.1.16. The dimension of a space of modular forms is its dimension as a complex
vector space; for spaces of newforms 𝑆new

𝑘 (𝑁, 𝜒) this is the same as the dimension of the ℚ-vector
space spanned by its eigenforms.

The dimension of a newform refers to the dimension of its newform subspace, equivalently,
the cardinality of its newform orbit. This is equal to the degree of its coefficient field (as an
extension of ℚ).

The relative dimension of 𝑆new
𝑘 (𝑁, 𝜒) is its dimension as a ℚ(𝜒)-vector space, where ℚ(𝜒)

is the field generated by the values of 𝜒, and similarly for newform subspaces.

5.1.17 Distinguishing Hecke operators
Definition 5.1.17. For a newspace 𝑆new

𝑘 (𝑁, 𝜒) we say that a set of Hecke operators 𝒯 ∶=
{𝑇𝑝1

, … , 𝑇𝑝𝑟
} distinguishes the newforms in the space if the sets 𝑋𝑓(𝒯) of characteristic poly-

nomials of the 𝑇𝑝 ∈ 𝒯 acting on the subspace 𝑉𝑓 spanned by the Galois orbit of 𝑓 in 𝑆new
𝑘 (𝑁, 𝜒)

are distinct as 𝑓 ranges over (non-conjugate) newforms in 𝑆new
𝑘 (𝑁, 𝜒).

The set 𝒯 can be identified by a list of primes 𝑝. For convenience we restrict to primes 𝑝 that
do not divide the level 𝑁 and list the unique ordered sequence of primes 𝑝1, … , 𝑝𝑛 for which the
sequence of integers 𝑐1, … , 𝑐𝑛 defined by

𝑐𝑚 ∶= #{𝑋𝑓({𝑇𝑝𝑖
∶ 𝑖 < 𝑚}) ∶ newforms 𝑓 ∈ 𝑆new

𝑘 (𝑁, 𝜒)}

is strictly increasing. The length of the sequence 𝑝1, … 𝑝𝑛 is always less then the number of
newforms in 𝑆new

𝑘 (𝑁, 𝜒) and we obtain the empty sequence when 𝑆new
𝑘 (𝑁, 𝜒) contains just one

newform.

5.1.18 Dual cuspform
Definition 5.1.18. The dual of a cuspidal modular form 𝑓 is the form whose coefficients 𝑎𝑛 in
its 𝑞-expansion are the complex conjugates of those of 𝑓. The L-function of the dual form is the
dual of the L-function of 𝑓.

The coefficient field of a non-self-dual newform is a CM field.

5.1.19 Holomorphic Eisenstein series of level 1
Definition 5.1.19. For an even integer 𝑘 ≥ 4, we define the (normalized) holomorphic Eisen-
stein series of level 1

𝐸𝑘(𝑧) = 1
2𝜁(𝑘) ∑

(𝑐,𝑑)≠(0,0)
(𝑐𝑧 + 𝑑)−𝑘 = ∑

⎛⎜
⎝

𝑎 𝑏
𝑐 𝑑

⎞⎟
⎠

∈ Γ∞∖SL(2,ℤ)

(𝑐𝑧 + 𝑑)−𝑘,

where Γ𝑧 = {𝛾 ∈ Γ ∶ 𝛾𝑧 = 𝑧} is the isotropy group of the cusp 𝑧.
The Eisenstein series 𝐸𝑘 are modular forms of weight 𝑘 and level 1 on the modular group.
They have the following 𝑞-expansion:

𝐸𝑘(𝑧) = 1 − 2𝑘
𝐵𝑘

∑
𝑛≥1

𝜎𝑘−1(𝑛)𝑞𝑛,

where the 𝐵𝑘 are the Bernoulli numbers, 𝜎𝑘−1(𝑛) is a divisor function, and 𝑞 = 𝑒2𝜋𝑖𝑧.
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5.1.20 Holomorphic Eisenstein modular form
Definition 5.1.20. Let 𝑘 be a positive integer and let Γ be a finite index subgroup of the modular
group SL(2, ℤ).

the Eisenstein subspace 𝐸𝑘(Γ) is the orthogonal complement in 𝑀𝑘(Γ) to the subspace
𝑆𝑘(Γ) under the Petersson inner product.

An Eisenstein form of weight 𝑘 on Γ is a modular form 𝑓 ∈ 𝐸𝑘(Γ). For each Dirichlet
character 𝜒 of modulus 𝑁 the Eisenstein forms in 𝑀𝑘(𝑁, 𝜒) form a subspace 𝐸𝑘(𝑁, 𝜒); these
are the Eisenstein forms of weight 𝑘, level 𝑁 , and character 𝜒.

The space 𝐸𝑘(𝑁, 𝜒) is spanned by the 𝐸𝜒1,𝜒2
𝑘 (𝑑

𝑡𝑎𝑢) where 𝜒1𝜒2 = 𝜒 and 𝑑𝑁1𝑁2 ∣ 𝑁 , unless 𝑘 = 2 and 𝜒 = 1, in which case 𝐸1,1
2 (𝑑𝜏) is not

holomorphic, and is replaced by 𝐸1,1
2 (𝜏) − 𝑑𝐸1,1

2 (𝑑𝜏).

5.1.21 Label of a classical Eisenstein modular form
Definition 5.1.21. The label of an Eisenstein newform 𝑓 ∈ 𝐸new

𝑘 (𝑁, 𝜒) has the format
𝑁.𝑘.𝐸.𝑎.𝑥, where

• 𝑁 is the level;
• 𝑘 is the weight;
• 𝑁.𝑎 is the label of the Galois orbit of the Dirichlet character 𝜒;
• 𝑥 is the label of the Galois orbit of the newform 𝑓.
For each embedding of the coefficient field of 𝑓 into the complex numbers, the corresponding

modular form over ℂ has a label of the form 𝑁.𝑘.𝐸.𝑎.𝑥.𝑛.𝑖, where
• 𝑛 determines the Conrey label 𝑁.𝑛 of the Dirichlet character 𝜒;
• 𝑖 is an integer ranging from 1 to the relative dimension of the newform that distinguishes

embeddings with the same character 𝜒.

5.1.22 Eisenstein newform
Definition 5.1.22. An Eisenstein newform is an Eisenstein form 𝑓 ∈ 𝐸new

𝑘 (𝑁, 𝜒) in the
Eisenstein new subspace that is also an eigenform of all Hecke operators, normalized so that the
𝑞-expansion 𝑓(𝑧) = ∑ 𝑎𝑛𝑞𝑛, where 𝑞 = 𝑒2𝜋𝑖𝑧, has coefficient 𝑎1 = 1. The Eisenstein newforms
are a basis for the Eisenstein new subspace.

5.1.23 New Eisenstein subspace
Definition 5.1.23. The space 𝐸𝑘(𝑁, 𝜒) of Eisenstein modular forms of level 𝑁 , weight 𝑘, and
character 𝜒 can be decomposed

𝐸𝑘(𝑁, 𝜒) = 𝐸old
𝑘 (𝑁, 𝜒) ⊕ 𝐸new

𝑘 (𝑁, 𝜒)
into old and new subspaces, defined as follows.

If 𝑀 is a proper divisor of 𝑁 and 𝜒𝑀 is a Dirichlet character of modulus 𝑀 that induces
𝜒, then for all 𝑑 ∣ (𝑁/𝑀), there is a map from 𝐸𝑘(𝑀, 𝜒𝑀) → 𝐸𝑘(𝑁, 𝜒) via 𝑓(𝑧) ↦ 𝑓(𝑑𝑧). The
span of the images of all of these maps is the old subspace 𝐸old

𝑘 (𝑁, 𝜒) ⊆ 𝐸𝑘(𝑁, 𝜒).
The new subspace 𝐸new

𝑘 (𝑁, 𝜒) is the subspace spanned by the newforms 𝐸𝜒1,𝜒2
𝑘 (

𝑡𝑎𝑢) such that 𝜒1𝜒2 = 𝜒 and 𝑁1𝑁2 = 𝑁 , unless 𝑘 = 2 and 𝜒 = 1, in which case 𝐸new
2 (𝑁) = 0

when 𝑁 is not a prime, and when 𝑁 = 𝑝 is prime it is spanned by 𝐸1,1
2 (𝜏) − 𝑝𝐸1,1

2 (𝑝𝜏).
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5.1.24 Holomorphic Eisenstein series
Definition 5.1.24. Let 𝑘, 𝑁1, 𝑁2 be positive integers, and let 𝜒1, 𝜒2 be primitive Dirichlet char-
acters modulo 𝑁1 and 𝑁2 respectively.

The Eisenstein series of weight 𝑘 associated to 𝜒1 and 𝜒2 is

𝐸𝜒1,𝜒2
𝑘 (𝜏) = 1

2 (𝛿𝜒1=1𝐿(1 − 𝑘, 𝜒2) + 𝛿𝑘=1𝛿𝜒2=1𝐿(0, 𝜒1)) +
∞

∑
𝑛=1

𝜎𝜒1,𝜒2
𝑘−1 (𝑛)𝑞𝑛,

where 𝑞 = 𝑒2𝜋𝑖𝜏 , 𝐿(𝑠, 𝜒𝑖) is the Dirichlet 𝐿-function associated to 𝜒𝑖, and

𝜎𝜒1,𝜒2
𝑘−1 (𝑛) = ∑

𝑚∣𝑛
𝜒1(𝑛/𝑚)𝜒2(𝑚)𝑚𝑘−1.

5.1.25 Embedding of a modular form
Definition 5.1.25. The coefficients in the 𝑞-expansion ∑ 𝑎𝑛𝑞𝑛 of a newform 𝑓 are algebraic
integers that generate the coefficient field ℚ(𝑓) of 𝑓.

Each embedding 𝜄 ∶ ℚ(𝑓) → ℂ gives rise to a modular form 𝜄(𝑓) with 𝑞-expansion ∑ 𝜄(𝑎𝑛)𝑞𝑛;
the modular form 𝜄(𝑓) is an embedding of the newform 𝑓.

Distinct embeddings give rise to modular forms that lie in the same galois orbit but have
distinct 𝐿-functions 𝐿(𝑠) ∶= ∑ 𝜄(𝑎𝑛)𝑛−𝑠.

If 𝑓 is a newform of character 𝜒, each embedding ℚ(𝑓) → ℂ induces an embedding ℚ(𝜒) → ℂ
of the value field of 𝜒. The embeddings of 𝑓 may be grouped into blocks with the same Dirich-
let character; distinct blocks correspond to modular forms with distinct (but Galois conjugate)
Dirichlet characters.

5.1.26 Complex embedding label
Definition 5.1.26. The label complex embedded holomorphic cusp form 𝑓 is 𝑁.𝑘.𝑎.𝑥.𝑐.𝑗 (some-
times shortened as 𝑎.𝑗 ), where

• 𝑁 is the level,

• 𝑘 is the weight,

• 𝑁.𝑎 is the label of the Galois orbit of the Dirichlet character,

• 𝑥 is the Hecke Galois orbit label,

• 𝑁.𝑐 is the Conrey label for the character corresponding to the embedding, and

• 𝑗 is the index for the embedding within those with the same Dirichlet character, these are
ordered by the vector 𝜄(𝑎𝑛), where we order the complex numbers first by their real part and
then by their imaginary part.

5.1.27 Eta quotient
Definition 5.1.27. An eta quotient is any function 𝑓 of the form

𝑓(𝑧) = ∏
1≤𝑖≤𝑠

𝜂𝑟𝑖(𝑚𝑖𝑧),

where 𝑚𝑖 ∈ ℕ and 𝑟𝑖 ∈ ℤ and 𝜂(𝑧) is the Dedekind eta function.
An eta product is an eta quotient in which all the 𝑟𝑖 are non-negative.
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5.1.28 Fourier coefficients of a modular form
Definition 5.1.28. Let 𝑓 be a modular form on a finite index subgroup Γ of SL2(ℤ), and

suppose Γ contains the matrix 𝑇 ∶= (1 1
0 1). Then 𝑓 is periodic with period 1, so it has a

Fourier expansion of the form
𝑓(𝑧) = ∑

𝑛≥0
𝑎𝑛𝑞𝑛,

where 𝑞 = 𝑒2𝜋𝑖𝑧. That is the Fourier expansion of 𝑓 around the cusp ∞, with Fourier
coefficients 𝑎𝑛. If one says ”the Fourier expansion of 𝑓”, is it understood to refer to the
expansion at ∞.

For other cusps of Γ, suppose 𝑤 is the width of the cusp 𝛾∞, for some cusp representative 𝛾.
Then we can write 𝑓 as 𝑓(𝑧) = 𝑔𝛾(𝑒2𝜋𝑖𝑧/𝑤) for some holomorphic function 𝑔𝛾 on the punctured
unit disk. We can expand 𝑔 as a Laurent series:

𝑔𝛾(𝑞1/𝑤) = ∑
𝑛≥0

𝑎𝛾(𝑛)𝑞𝑛/𝑤 for 0 < |𝑞| < 1.

We then define the Fourier expansion of 𝑓 around the cusp 𝛾∞ to be

𝑓(𝑧) = ∑
𝑛≥0

𝑎𝛾(𝑛)𝑞𝑛/𝑤,

where 𝑞 = 𝑒2𝜋𝑖𝑧.
The 𝑎𝛾(𝑛) are called the Fourier coefficients of 𝑓 with respect to the cusp 𝛾∞.

5.1.29 Fricke involution
Definition 5.1.29. The Fricke involution is the Atkin-Lehner involution 𝑤𝑁 on the space
𝑆𝑘(Γ0(𝑁)) (induced by the corresponding involution on the modular curve 𝑋0(𝑁)).

For a newform 𝑓 ∈ 𝑆new
𝑘 (Γ0(𝑁)), the sign of the functional equation satisfied by the L-function

attached to 𝑓 is 𝑖−𝑘 times the eigenvalue of 𝜔𝑁 on 𝑓. So, for example when 𝑘 = 2, the signs
swap, and the analytic rank of 𝑓 is even when 𝑤𝑁𝑓 = −𝑓 and odd when 𝑤𝑁𝑓 = +𝑓.

5.1.30 Galois conjugate newforms
Definition 5.1.30. Two newforms 𝑓 = ∑ 𝑎𝑛𝑞𝑛 and 𝑔 = ∑ 𝑏𝑛𝑞𝑛 are Galois conjugate if there
is an automorphism 𝜎 ∈ Gal(ℚ/ℚ) such that 𝑏𝑛 = 𝜎(𝑎𝑛) for all 𝑛 ≥ 1, in which case we write
𝑔 = 𝜎(𝑓).

The set {𝜎(𝑓) ∶ 𝜎 ∈ Gal(ℚ/ℚ)} of all Galois conjugates of 𝑓 is the Galois orbit of 𝑓; it has
cardinality equal to the dimension of 𝑓, equivalently, the degree of its coefficient field

5.1.31 Galois orbit of a newform
Definition 5.1.31. The Galois orbit of a newform 𝑓 ∈ 𝑆new

𝑘 (𝑁, 𝜒) is the finite set

[𝑓] ∶= {𝜎(𝑓) ∶ 𝜎 ∈ Gal(ℚ/ℚ)}

of its Galois conjugates, which forms a canonical ℚ-basis for the corresponding newform subspace.
Galois orbits of newforms are also called newform orbits.
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5.1.32 Galois representation
Definition 5.1.32. As shown by Deligne and Serre [?], every newform of weight one has an
associated Galois representation 𝜌 ∶ Gal(ℚ/ℚ) → GL2(ℂ).

This representation corresponds to an Artin representation of dimension two whose conductor
is the level 𝑁 of the modular form.

Conversely, every odd irreducible two-dimensional Artin representation of conductor 𝑁 gives
rise to a modular form of weight one and level 𝑁 .

Composing the representation 𝜌 with the natural map GL2(ℂ) → PGL2(ℂ) yields the projec-
tive Galois representation ̄𝜌 ∶ Gal(ℚ/ℚ) → PGL2(ℂ).

5.1.33 Hecke operator
Definition 5.1.33. Let 𝑓 be a modular form of weight 𝑘, level 𝑁 , and character 𝜒.

For each positive integer 𝑛 the Hecke operator 𝑇𝑛 is a linear operator on the vector space
𝑀𝑘(𝑁, 𝜒) whose action on 𝑓 ∈ 𝑀𝑘(𝑁, 𝜒) can be defined as follows. If 𝑓(𝑧) = ∑ 𝑎𝑛(𝑓)𝑞𝑛 is the
𝑞-expansion of 𝑓 ∈ 𝑀𝑘(𝑁, 𝜒), where 𝑞 = 𝑒2𝜋𝑖𝑧, then the 𝑞-expansion of 𝑇𝑛𝑓 ∈ 𝑀𝑘(𝑁, 𝜒) has
coefficients

𝑎𝑚(𝑇𝑛𝑓) ∶= ∑
𝑑| gcd(𝑚,𝑛)

𝜒(𝑑)𝑑𝑘−1𝑎𝑚𝑛/𝑑2(𝑓).

The Hecke operators pairwise commute, and when restricted to the subspace 𝑆𝑘(𝑁, 𝜒) of cusp
forms, they commute with their adjoints with respect to the Petersson scalar product. This implies
that 𝑆𝑘(𝑁, 𝜒) has a canonical basis whose elements are eigenforms for all the Hecke operators.
If we normalize such an eigenform 𝑓(𝑧) = ∑ 𝑎𝑛𝑞𝑛 so that 𝑎1 = 1, then for all 𝑛 ≥ 1 we have

𝑇𝑛𝑓 = 𝑎𝑛𝑓.

The newspace 𝑆new
𝑘 (𝑁, 𝜒) ⊆ 𝑆𝑘(𝑁, 𝜒) is invariant under the action of the Hecke operators,

so the canonical basis of normalized eigenforms for 𝑆𝑘(𝑁, 𝜒) includes a basis of newforms for
𝑆new

𝑘 (𝑁, 𝜒).

5.1.34 Hecke orbit
Definition 5.1.34. The Hecke orbit of a cusp form 𝑓 in 𝑆𝑘(𝑁, 𝜒) is defined as the space
generated by 𝑇𝑝(𝑓) for all Hecke operators 𝑇𝑝 for 𝑝 coprime to the level.

5.1.35 Coefficient ring generator bound
Definition 5.1.35. The coefficient ring generator bound of a newform with 𝑞-expansion
∑ 𝑎𝑛𝑞𝑛 is the least positive integer 𝑛 such that ℤ[𝑎1, … , 𝑎𝑛] is the entire coefficient ring ℤ[𝑎1, 𝑎2, 𝑎3, …].

5.1.36 Hecke characteristic polynomial
Definition 5.1.36. The Hecke characteristic polynomial of a newform 𝑓 at a prime 𝑝 is
the characteristic polynomial of the Hecke operator 𝑇𝑝 acting on the newform subspace 𝑉𝑓 .
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5.1.37 Inner twist
Definition 5.1.37. Galois conjugate newforms 𝑓 and 𝑔 are inner twists if there is a Dirichlet
character 𝜒 such that

𝑎𝑝(𝑔) = 𝜒(𝑝)𝑎𝑝(𝑓)
for all but finitely many primes 𝑝. Without loss of generality, we may assume that 𝜒 is a
primitive Dirichlet character, and by a theorem of Ribet [?, ?], the newform 𝑔 is conjugate to 𝑓
via a ℚ-automorphism 𝜎 of the coefficient field of 𝑓. The set of pairs (𝜒, 𝜎) form the group of
inner twists of 𝑓.

Each pair (𝜒, 𝜎) corresponding to an inner twist of 𝑓 is uniquely determined by the the
primitive character 𝜒, and we say that 𝑓 admits an inner twist by 𝜒. When 𝜎 = 1 is is the trivial
automorphism, we have 𝑔 = 𝑓 and say that 𝑓 admits a self twist by 𝜒; in this case 𝜒 is either
the trivial character or the Kronecker character of a quadratic field.

The number of inner twists of 𝑓 is an invariant of its Galois orbit, as is the number of inner
twists by characters in any particular Galois orbit of Dirichlet characters.

The home page of each newform in the LMFDB includes a list of inner twists, in which
non-trivial self twists are distinguished by listing the associated quadratic field (the CM or RM
field), while inner twists that are not self twists are simply marked as ”inner”.

5.1.38 Inner twist count
Definition 5.1.38. The inner twist count of a newform 𝑓 is the number of distinct inner
twists of 𝑓.

Associated to each inner twist is a pair (𝜒, 𝜎), where 𝜒 is a primitive Dirichlet character and
𝜎 is a ℚ-automorphism of the coefficient field of 𝑓.

Pairs with 𝜎 = 1 are self twists (𝜒, 1), including the pair (1, 1) corresponding to the twist of
𝑓 by the trivial character; self twists are included in the count of inner twists.

The set of pairs (𝜒, 𝜎) forms the group of inner twists; the inner twist count is the cardinality
of this group.

Not all of the inner twists included in the inner twist count have necessarily been proved; those
that have are explicitly identified in the table of inner twists on the newforms home page. In
cases where not every inner twist has been proved the inner twist should be viewed as a rigorous
upper bound that is believed to be tight.

Inner twist data is available only for newforms for which exact eigenvalue data has been
computed; this includes all newforms of dimension up to 20 and all newforms of weight 1; when
the inner twist count is specified in a search the results include only newforms for which inner
twists have been computed.

5.1.39 Inner twist multiplicity
Definition 5.1.39. It is possible for a newform 𝑓 to admit an inner twist by more than one
Dirichlet character 𝜑 in the same Galois orbit. Different embeddings of 𝑓 into ℂ will yield
different 𝜑, but the number of such 𝜑 is the same for every embedding; this number is the
multiplicity.

5.1.40 Label of a classical modular form
Definition 5.1.40. The label of a newform 𝑓 ∈ 𝑆new

𝑘 (𝑁, 𝜒) has the format 𝑁.𝑘.𝑎.𝑥, where

• 𝑁 is the level;
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• 𝑘 is the weight;

• 𝑁.𝑎 is the label of the Galois orbit of the Dirichlet character 𝜒;

• 𝑥 is the label of the Galois orbit of the newform 𝑓.

For each embedding of the coefficient field of 𝑓 into the complex numbers, the corresponding
modular form over ℂ has a label of the form 𝑁.𝑘.𝑎.𝑥.𝑛.𝑖, where

• 𝑛 determines the Conrey label 𝑁.𝑛 of the Dirichlet character 𝜒;

• 𝑖 is an integer ranging from 1 to the relative dimension of the newform that distinguishes
embeddings with the same character 𝜒.

5.1.41 Label of a classical modular form
Definition 5.1.41. The label of a 𝑓 ∈ 𝑀𝑟𝑚𝑛𝑒𝑤

𝑘 (𝑁, 𝜒) has the format 𝑁.𝑘.𝐴.𝑎.𝑥, where

• 𝑁 is the level;

• 𝑘 is the weight;

• 𝑁.𝑎 is the label of the Galois orbit of the Dirichlet character 𝜒;

• 𝐴 is a character signifying the automorphic type of the modular form - 𝐸 for Eisenstein
or 𝐶 for cuspidal.

• 𝑥 is the label of the Galois orbit of the newform 𝑓.

For each embedding of the coefficient field of 𝑓 into the complex numbers, the corresponding
modular form over ℂ has a label of the form 𝑁.𝑘.𝐴.𝑎.𝑥.𝑛.𝑖, where

• 𝑛 determines the Conrey label 𝑁.𝑛 of the Dirichlet character 𝜒;

• 𝑖 is an integer ranging from 1 to the relative dimension of the newform that distinguishes
embeddings with the same character 𝜒.

If 𝑓 ∈ 𝑆new
𝑘 (𝑁, 𝜒) is cuspidal, the automorphic type may be omitted from both labels.

5.1.42 Level of a modular form
Definition 5.1.42. A level of a modular form 𝑓 is a positive integer 𝑁 such that 𝑓 is a modular
form on a subgroup Γ of SL2(ℤ) that contains the principal congruence subgroup Γ(𝑁).

The level of a newform is the least such integer 𝑁 .

5.1.43 Maximal newform
Definition 5.1.43. A newform is maximal if its Galois orbit spans the ambient subspace
that contains it (its Atkin-Lehner subspace when the character is trivial, the entire newspace
otherwise).

A newform is the largest newform in its ambient subspace if its dimension is strictly larger
than that of any other newform in the same subspace (this includes newforms that are maximal).
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5.1.44 Minimal modular form
Definition 5.1.44. A modular form is minimal if it is not a twist of a form of lower level.

5.1.45 Minimal twist
Definition 5.1.45. The minimal twist of a newform 𝑓 is the twist 𝑔 of 𝑓 whose label is
lexicographically minimal among all twists of 𝑓 that are both twist minimal and have minimal
character 𝜒.

A key feature of the minimal twist 𝑔 (and more generally, of any twist minimal 𝑔 of level
𝑁 and minimal character 𝜒) is that for any character 𝜓, the level 𝑀 of the twist 𝑔 ⊗ 𝜓 can be
computed as 𝑀 = lcm(𝑁, cond(𝜓)cond(𝜒𝜓)).

5.1.46 Minus space
Definition 5.1.46. The minus subspace of 𝑆𝑘(Γ0(𝑁)) is the eigenspace of the Fricke involution
𝑤𝑁 with eigenvalue −1.

5.1.47 Newform
Definition 5.1.47. A newform is a cusp form 𝑓 ∈ 𝑆new

𝑘 (𝑁, 𝜒) in the new subspace that is also
an eigenform of all Hecke operators, normalized so that the 𝑞-expansion 𝑓(𝑧) = ∑ 𝑎𝑛𝑞𝑛, where
𝑞 = 𝑒2𝜋𝑖𝑧, begins with the coefficient 𝑎1 = 1. The newforms are a basis for the new subspace.

5.1.48 Newform subspace
Definition 5.1.48. The newform subspace of a newform 𝑓 in 𝑆new

𝑘 (𝑁, 𝜒) is the subspace
generated by 𝑇𝑝(𝑓) for all Hecke operators 𝑇𝑝 for 𝑝 coprime to the level, equivalently, the subspace
generated by the Galois conjugates of 𝑓.

Every newspace has a canonical decomposition into newform subspaces.

5.1.49 New subspace
Definition 5.1.49. The space 𝑆𝑘(𝑁, 𝜒) of cuspidal modular forms of level 𝑁 , weight 𝑘, and
character 𝜒 can be decomposed

𝑆𝑘(𝑁, 𝜒) = 𝑆old
𝑘 (𝑁, 𝜒) ⊕ 𝑆new

𝑘 (𝑁, 𝜒)

into old and new subspaces, defined as follows.
If 𝑀 is a proper divisor of 𝑁 and 𝜒𝑀 is a Dirichlet character of modulus 𝑀 that induces

𝜒, then for all 𝑑 ∣ (𝑁/𝑀), there is a map from 𝑆𝑘(𝑀, 𝜒𝑀) → 𝑆𝑘(𝑁, 𝜒) via 𝑓(𝑧) ↦ 𝑓(𝑑𝑧). The
span of the images of all of these maps is the old subspace 𝑆old

𝑘 (𝑁, 𝜒) ⊆ 𝑆𝑘(𝑁, 𝜒).
The new subspace 𝑆new

𝑘 (𝑁, 𝜒) is the orthogonal complement of 𝑆old
𝑘 (𝑁, 𝜒) with respect to

the Petersson inner product.
A basis for the new subspace is given by newforms.

5.1.50 Nontrivial inner twist
Definition 5.1.50. An inner twist is nontrivial if it is not the self twist by the trivial character.
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5.1.51 Old subspace of modular forms
Definition 5.1.51. Each space of 𝑆𝑘(𝑁, 𝜒) of cuspidal modular forms of weight 𝑘, level 𝑁 , and
character 𝜒 contains an old subspace 𝑆old

𝑘 (𝑁, 𝜒) that can be expressed as a direct sum of spaces
of newforms 𝑆new

𝑘 (𝑁𝑖, 𝜒𝑖), where each 𝑁𝑖 is a proper divisor of 𝑁 divisible by the conductor of
𝜒, and each 𝜒𝑖 is the unique character of modulus 𝑁𝑖 induced by the primitive character that
induces 𝜒.

This decomposition arises from the injective maps

𝜄𝑑 ∶ 𝑆𝑘(𝑁𝑖, 𝜒𝑖) → 𝑆𝑘(𝑁, 𝜒)
𝑓 ↦ 𝑓(𝑑𝜏)

that exist for each divisor 𝑑 of 𝑁/𝑁𝑖. The image of each 𝜄𝑑 is isomorphic to 𝑆𝑘(𝑁𝑖, 𝜒𝑖), and we
have the decomposition

𝑆𝑘(𝑁, 𝜒) ≃ ⨁
cond(𝜒)|𝑁𝑖|𝑁

𝑆new
𝑘 (𝑁𝑖, 𝜒𝑖)⊕𝑚𝑖 ,

where 𝑚𝑖 is the number of divisors of 𝑁/𝑁𝑖. Restricting the direct sum to proper divisors 𝑁𝑖 of
𝑁 yields a decomposition for 𝑆old

𝑘 (𝑁, 𝜒).

5.1.52 Petersson scalar product
Definition 5.1.52. Let 𝑓 and 𝑔 be two modular forms with respect to a finite index subgroup 𝐺
of Γ. When it exists, we define the Petersson scalar product of 𝑓 and 𝑔 with respect to the
group 𝐺 by

⟨𝑓, 𝑔⟩𝐺 = 1
[Γ ∶ 𝐺] ∫

𝔉
𝑓(𝑧)𝑔(𝑧)𝑦𝑘𝑑𝜇,

where 𝔉 is a fundamental domain for 𝐺 and 𝑑𝜇 = 𝑑𝑥𝑑𝑦/𝑦2 is the measure associated to the
hyperbolic metric.

Note that the Petersson scalar product exists if at least one of 𝑓, 𝑔 is a cusp form.

5.1.53 Plus space
Definition 5.1.53. The plus subspace of 𝑆𝑘(Γ0(𝑁) is the eigenspace of the Fricke involution
𝜔𝑁 with eigenvalue 1.

5.1.54 Projective field
Definition 5.1.54. The projective field of a weight one newform is the number field fixed by
the kernel of its associated projective Galois representation ̄𝜌 ∶ Gal(ℚ/ℚ) → PGL2(ℂ).

This number field is typically identified as the Galois closure of a sibling subfield with minimal
degree and absolute discriminant.

5.1.55 Projective image
Definition 5.1.55. The projective image of a weight one newform is the image of its associated
projective Galois representation 𝜌 ∶ Gal(ℚ/ℚ) → PGL2(ℂ). It is a finite subgroup of PGL2(ℂ)
that can be classified as one of four types: It is either isomorphic to a dihedral group 𝐷𝑛 for
some integer 𝑛 ≥ 2 (where 𝐷2 ∶= 𝐶2 × 𝐶2 is the Klein group), or to one of 𝐴4, 𝑆4, 𝐴5, where 𝐴𝑛
and 𝑆𝑛 respectively denote the alternating and symmetric groups on 𝑛 letters.
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5.1.56 q-expansion of a modular form
Definition 5.1.56. The 𝑞-expansion of a modular form 𝑓(𝑧) is its Fourier expansion at the
cusp 𝑧 = 𝑖∞, expressed as a power series ∑∞

𝑛=0 𝑎𝑛𝑞𝑛 in the variable 𝑞 = 𝑒2𝜋𝑖𝑧.
For cusp forms, the constant coefficient 𝑎0 of the 𝑞-expansion is zero.
For newforms, we have 𝑎1 = 1 and the coefficients 𝑎𝑛 are algebraic integers in a number field

𝐾 ⊆ ℂ.
Accordingly, we define the 𝑞-expansion of a newform orbit [𝑓] to be the 𝑞-expansion of any

newform 𝑓 in the orbit, but with coefficients 𝑎𝑛 ∈ 𝐾 (without an embedding into ℂ). Each
embedding 𝐾 ↪ ℂ then gives rise to an embedded newform whose 𝑞-expansion has 𝑎𝑛 ∈ ℂ, as
above.

5.1.57 Relative dimension
Definition 5.1.57. The relative dimension of a newform in a space of modular forms
𝑆new

𝑘 (Γ0(𝑁), 𝜒) is the dimension of its coefficient field as an extension of the character field
ℚ(𝜒) (the number field generated by the values of 𝜒).

5.1.58 Real multiplication
Definition 5.1.58. A modular form is said to have real multiplication if it admits a self twist
by the Kronecker character of a real quadratic field.

Only modular forms of weight one can have real multiplication.

5.1.59 Satake Angles
Definition 5.1.59. The Satake angles 𝜃𝑝 = arg 𝛼𝑝 ∈ [−𝜋, 𝜋] are the arguments of a complex
embedding of the Satake parameters 𝛼𝑝.

5.1.60 Satake parameters
Definition 5.1.60. Let 𝑓 be newform of level 𝑁 , weight 𝑘 and character 𝜒. Let 𝑝 be a good
prime, i.e., 𝑝 ∤ 𝑁 .

The Satake parameters 𝛼𝑝 are the reciprocal roots of 𝐿𝑝 (𝑝−(𝑘−1)/2𝑡), where

𝐿𝑝 (𝑡) = 1 − 𝑎𝑝𝑡 + 𝜒(𝑝)𝑝𝑘−1𝑡2 = det(1 − 𝑡 𝑇𝑝) = (1 − 𝛼𝑝𝑝 𝑘−1
2 𝑡)(1 − 𝛼−1

𝑝 𝜒(𝑝)𝑝 𝑘−1
2 𝑡),

𝑇𝑝 is Hecke operator, and 𝑎𝑝 its trace.

5.1.61 Sato-Tate group of a modular form
Definition 5.1.61. The Sato-Tate group of a newform is a compact Lie group that one can
attach to the Galois representation associated to the newform.

For newforms of weight 𝑘 = 1, the Sato-Tate group is simply the image of the corresponding
2-dimensional Artin representation, a finite subgroup of SL2(ℂ).

For newforms of weight 𝑘 > 1 the Sato-Tate group is a subgroup of U(2) whose identity
component is either SU(2) (for newforms without CM) or U(1) (for CM newforms) diagonally
embedded in U(2).

The Sato-Tate conjecture implies that as 𝑝 → ∞ the limiting distribution of normalized Hecke
eigenvalues 𝑎𝑝/𝑝(𝑘−1)/2 converges to the trace distribution induced by the Haar measure of the
Sato-Tate group.
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The Sato-Tate conjecture for classical modular forms has been proved [?, ?].

5.1.62 Self-twist
Definition 5.1.62. A newform 𝑓 admits a self-twist by a primitive Dirichlet character 𝜒 if the
equality

𝑎𝑝(𝑓) = 𝜒(𝑝)𝑎𝑝(𝑓)
holds for all but finitely many primes 𝑝.

For non-trivial 𝜒 this can hold only when 𝜒 has order 2 and 𝑎𝑝 = 0 for all primes 𝑝 not
dividing the level of 𝑓 for which 𝜒(𝑝) = −1. The character 𝜒 is then the Kronecker character of
a quadratic field 𝐾 and may be identified by the discriminant 𝐷 of 𝐾.

If 𝐷 is negative, the modular form 𝑓 is said to have complex multiplication (CM) by 𝐾, and
if 𝐷 is positive, 𝑓 is said to have real multiplication (RM) by 𝐾. The latter can occur only when
𝑓 is a modular form of weight 1 whose projective image is dihedral.

It is possible for a modular form to have multiple non-trivial self twists; this occurs precisely
when 𝑓 is a modular form of weight one whose projective image is isomorphic to 𝐷2 ∶= 𝐶2 × 𝐶2;
in this case 𝑓 admits three non-trivial self twists, two of which are CM and one of which is RM.

5.1.63 Self dual modular form
Definition 5.1.63. A cuspidal modular form 𝑓 is said to be self dual if the coefficients 𝑎𝑛 that
appear in its 𝑞-expansion are real numbers; equivalently, the L-function of the modular form is
self dual.

The coefficient field of a newform is either a totally real number field or a CM field, depending
on whether the newform is self dual or not.

5.1.64 Shimura correspondence
Definition 5.1.64. Let 𝑘 be an odd integer, and let 𝑁 a positive integer divisible by 4. Let 𝜒
be a character modulo 𝑁 . Let 𝑡 be a square-free integer. The Shimura correspondence is the
linear map 𝑆ℎ𝑡 ∶ 𝑆𝑘/2(𝑁, 𝜒) → 𝑆𝑘−1(𝑁/2, 𝜒2) defined by the equation

𝐿(𝑠, 𝑆ℎ𝑡(𝑔)) = 𝐿(𝜒𝑡, 𝑠 + 1 − 𝜆) ⋅ ∑
𝑛≥1

𝑎𝑡𝑛2𝑛−𝑠,

where

• 𝜆 = (𝑘 − 1)/2.
• 𝜒𝑡 is the character given by 𝜒𝑡(𝑚) = 𝜒(𝑚) ( −1

𝑚 ) ( 𝑡
𝑚 ).

• 𝑔(𝑧) = ∑𝑛≥1 𝑎𝑛𝑞𝑛 is the 𝑞-expansion of 𝑔.

This map is Hecke linear. If 𝑘 ≥ 5, it takes cusp forms to cusp forms.

5.1.65 Spaces of modular forms
Definition 5.1.65. The space of modular forms of level 𝑁 , weight 𝑘, and character 𝜒 is denoted
𝑀𝑘(𝑁, 𝜒).

The space 𝑀𝑘(𝑁, 𝜒) is a finite-dimensional complex vector space which further decmoposes
into subspaces. In particular, we have a subspace of cusp forms 𝑆𝑘(𝑁, 𝜒) ⊆ 𝑀𝑘(𝑁, 𝜒).
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5.1.66 Trace form
Definition 5.1.66. The trace form of a newspace 𝑆𝑘(𝑁, 𝜒) is the modular form obtained by
summing its canonical basis of newforms.

5.1.67 Stark unit of a newform of weight one
Definition 5.1.67. Stark’s conjecture applied to the associated Galois representation of a new-
form 𝑓(𝑧) = ∑ 𝑎𝑛𝑞𝑛 of weight one [?] states the following. Let 𝐸 = ℚ((𝑎𝑛)𝑛∈ℕ), Δ = Gal(𝐸/ℚ)
and 𝑓𝛼(𝑧) = ∑ 𝛼(𝑎𝑛)𝑞𝑛 for 𝛼 ∈ Δ. Let 𝐿(𝑠, 𝑓) be the L-function of 𝑓. Then, for all 𝑏 ∈ 𝐸∗

there exists an integer 𝑚 ≥ 1 and a unit 𝜀 in the Artin field of 𝑓, called the Stark unit, such
that

𝑒𝑚 ∑𝛼∈Δ 𝛼(𝑏)𝐿′(0,𝑓𝛼) = 𝜀
In the case where the coefficients of Tr(𝑏𝑓) are in ℤ, Chinburg further conjectured that there

exists a Stark unit for 𝑚 = 1 [?]. Notice that if we choose 𝑏 = 1, the preceding condition always
holds. Here, we compute the Stark unit of the newform for 𝑏 = 1 and 𝑚 = 1.

5.1.68 Sturm bound
Definition 5.1.68. The Sturm bound is an upper bound on the least index where the coefficients
of the Fourier expansions of distinct modular forms in the same space 𝑀𝑘(𝑁, 𝜒) must differ.

More precisely, for any space 𝑀𝑘(𝑁, 𝜒) of modular forms of weight 𝑘, level 𝑁 , and character
𝜒, the Sturm bound is the integer

𝐵(𝑀𝑘(𝑁, 𝜒)) ∶= ⌊𝑘𝑚
12 ⌋ ,

where
𝑚 ∶= [SL2(ℤ) ∶ Γ0(𝑁)] = 𝑁 ∏

𝑝|𝑁
(1 + 1

𝑝) .

If 𝑓 = ∑𝑛≥0 𝑎𝑛𝑞𝑛 and 𝑔 = ∑𝑛≥0 𝑏𝑛𝑞𝑛 are elements of 𝑀𝑘(𝑁, 𝜒) with 𝑎𝑛 = 𝑏𝑛 for all 𝑛 ≤
𝐵(𝑀𝑘(𝑁, 𝜒)) then 𝑓 = 𝑔; see Corollary 9.20 in [?, ?] for 𝑘 > 1 and Lemma 5 in [?] for 𝑘 = 1.

The Sturm bound applies, in particular, to newforms of the same level, weight, and character.
Better bounds for newforms are known in certain cases (see Corollary 9.19 and Theorem 9.21
in [?, ?], for example), but for consistency we always take the Sturm bound to be the integer
𝐵(𝑀𝑘(𝑁, 𝜒)) defined above.

Note that the Sturm bound for 𝑆new
𝑘 (𝑁, 𝜒) does not apply (in general) to the space

𝑆new
𝑘 (𝑁, [𝜒]) ∶= ⨁

𝜒′∈[𝜒]
𝑆new

𝑘 (𝑁, 𝜒′)

associated to the Galois orbit [𝜒]; rather, it applies to each direct summand 𝑆new
𝑘 (𝑁, 𝜒′).

5.1.69 Sturm bound for Gamma1(N)
Definition 5.1.69. The Sturm bound is an upper bound on the least index where the coefficients
of the Fourier expansions of distinct modular forms in the same space must differ.
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More precisely, for any space 𝑀𝑘(Γ1(𝑁)) of modular forms of weight 𝑘 and level 𝑁 , the Sturm
bound is the integer

𝐵(𝑀𝑘(Γ1(𝑁))) ∶= ⌊𝑘𝑚
12 ⌋ ,

where
𝑚 ∶= [SL2(ℤ) ∶ Γ1(𝑁)] = 𝑁2 ∏

𝑝|𝑁
(1 − 1

𝑝2 ) .

If 𝑓 = ∑𝑛≥0 𝑎𝑛𝑞𝑛 and 𝑔 = ∑𝑛≥0 𝑏𝑛𝑞𝑛 are elements of 𝑀𝑘(Γ1(𝑁)) with 𝑎𝑛 = 𝑏𝑛 for all 𝑛 ≤
𝐵(𝑀𝑘(Γ1(𝑁))) then 𝑓 = 𝑔; see Corollary 9.19 in [?, ?] for 𝑘 > 1.

The Sturm bound applies, in particular, to newforms of the same level and weight. Better
bounds for newforms are known in certain cases (see Corollary 9.19 and Theorem 9.21 in [?, ?],
for example), but for consistency we always take the Sturm bound to be the integer 𝐵(𝑀𝑘(Γ1(𝑁)))
defined above.

5.1.70 Subspaces of modular forms
Definition 5.1.70. The space 𝑀𝑘(𝑁, 𝜒) of modular forms of level 𝑁 , weight 𝑘, and character
𝜒 can be decomposed as

𝑀𝑘(𝑁, 𝜒) = 𝐸𝑘(𝑁, 𝜒) ⊕ 𝑆𝑘(𝑁, 𝜒)
where 𝐸𝑘(𝑁, 𝜒) is the Eisenstein subspace (the span of Eisenstein series) and 𝑆𝑘(𝑁, 𝜒) the
subspace of cusp forms.

These spaces further decompose into old and new subspaces as follows. If 𝑀 is a proper
divisor of 𝑁 and 𝜒𝑀 is a Dirichlet character of modulus 𝑀 that induces 𝜒, then for every divisor
𝑑 ∣ (𝑁/𝑀), there is a map from 𝑀𝑘(𝑀, 𝜒𝑀) → 𝑀𝑘(𝑁, 𝜒) via 𝑓(𝑧) ↦ 𝑓(𝑑𝑧). The span of the
images of all of these maps is the old subspace 𝑀old

𝑘 (𝑁, 𝜒) ⊆ 𝑀𝑘(𝑁, 𝜒).
The cuspidal subspace decomposes as

𝑆𝑘(𝑁, 𝜒) = 𝑆new
𝑘 (𝑁, 𝜒) ⊕ 𝑆old

𝑘 (𝑁, 𝜒)

where the new subspace 𝑆new
𝑘 (𝑁, 𝜒) is the orthogonal complement of 𝑆old

𝑘 (𝑁, 𝜒) with respect to
the Petersson inner product.

The Eisenstein subspace similarly decomposes as

𝐸𝑘(𝑁, 𝜒) = 𝐸new
𝑘 (𝑁, 𝜒) ⊕ 𝐸old

𝑘 (𝑁, 𝜒)

where 𝐸new
𝑘 (𝑁, 𝜒) is the span of those Eisenstein series attached to a pair (𝜒1, 𝜒2) of (primitive)

characters of conductor 𝑁 .

5.1.71 Trace bound
Definition 5.1.71. The trace bound for a space of newforms 𝑆𝑛𝑒𝑤

𝑘 (𝑁, 𝜒) is the least positive
integer 𝑚 such that taking traces down to ℚ of the coefficients 𝑎𝑛 for 𝑛 ≤ 𝑚 suffices to distinguish
all the Galois orbits of newforms in the space; here 𝑎𝑛 denotes the 𝑛th coefficient of the 𝑞-expansion
∑ 𝑎𝑛𝑞𝑛 of a newform.

If the newforms in the space all have distinct dimensions then the trace bound is 1, because
the trace of 𝑎1 = 1 from the coefficient field of the newform down to ℚ is equal to the dimension
of its Galois orbit.
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5.1.72 Trace form
Definition 5.1.72. For a newform 𝑓 ∈ 𝑆new

𝑘 (Γ1(𝑁)), its trace form Tr(𝑓) is the sum of its
distinct conjugates under Aut(ℂ) (equivalently, the sum under all embeddings of the coefficient
field into ℂ). The trace form is a modular form Tr(𝑓) ∈ 𝑆new

𝑘 (Γ1(𝑁)) whose 𝑞-expansion has
integral coefficients 𝑎𝑛(Tr(𝑓)) ∈ ℤ.

The coefficient 𝑎1 is equal to the dimension of the newform.
For 𝑝 prime, the coefficient 𝑎𝑝 is the trace of Frobenius in the direct sum of the ℓ-adic Galois

representations attached to the conjugates of 𝑓 (for any prime ℓ). When 𝑓 has weight 𝑘 = 2, the
coefficient 𝑎𝑝(𝑓) is the trace of Frobenius acting on the modular abelian variety associated to 𝑓.

For a newspace 𝑆new
𝑘 (𝑁, 𝜒), its trace form is the sum of the trace forms Tr(𝑓) over all

newforms 𝑓 ∈ 𝑆new
𝑘 (𝑁, 𝑘); it is also a modular form in 𝑆new

𝑘 (Γ1(𝑁)).
The graphical plot displayed in the properties box on the home page of each newform or

newspace is computed using the trace form.

5.1.73 Twist
Definition 5.1.73. Associated to each newform 𝑓 and primitive Dirichlet character 𝜓, there is
a unique newform 𝑔 ∶= 𝑓 ⊗ 𝜓, the twist of 𝑓 by 𝜓, that satisfies

𝑎𝑛(𝑔) = 𝜓(𝑛)𝑎𝑛(𝑓)

for all integers 𝑛 ≥ 1 coprime to 𝑁 and the conductor of 𝜓. The newforms 𝑓 and 𝑔 are then
twist equivalent. When 𝑔 is a Galois conjugate of 𝑓, it is said to be an inner twist.

The newform orbit [𝑔] is a twist of the newform orbit [𝑓] by the character orbit [𝜓] if some
𝑔 ∈ [𝑔] is a twist of 𝑓 by some 𝜓 in [𝜓]. This may occur with multiplicity.

Twist equivalence is an equivalence relation. The twist class of a newform or newform orbit
is its equivalence class under this relation.

In the LMFDB each twist class is identified by the label of its minimal twist.

5.1.74 Twist minimal
Definition 5.1.74. A newform 𝑓 is twist minimal if its level achieves the minimum within
its twist class.

A twist minimal newform 𝑓 need not have minimal character, but if this is not the case there
will be a twist of 𝑓 that is both twist minimal and has minimal character.

In the LMFDB, the designated representative of each twist class is the twist minimal newform
𝑔 of minimal character whose label is lexicographically minimal among all such newforms. This
newform 𝑔 is called the minimal twist of the newforms in its twist equivalence class and is
identified by a checkmark (�) in tables of twists.

These conventions also apply to newform orbits.

5.1.75 Twist multiplicity
Definition 5.1.75. The multiplicity of a newform orbit [𝑔] as a twist of a newform orbit [𝑓]
by a primitive character orbit [𝜓] is the number of distinct 𝜓 ∈ [𝜓] for which 𝑓 ⊗ 𝜓 ∈ [𝑔]. This
number is the same for every 𝑓 ∈ [𝑓] and depends only on the Galois orbits [𝑔], [𝑓], and [𝜓].

When 𝑔 is an inner twist of 𝑓, this multiplicity is equal to the inner twist count of 𝑓.
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5.1.76 Weight of an elliptic modular form
Definition 5.1.76. The weight of an elliptic modular form 𝑓 is the integer or half-integer
power of (𝑐𝑧 + 𝑑) that occurs in the modular transformation property of 𝑓 under the action of

𝛾 = ( 𝑎 𝑏
𝑐 𝑑 ) on the upper half plane. That is, the weight is the number 𝑘 in the transformation

law
𝑓 (𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑 ) = 𝜒(𝑑)(𝑐𝑧 + 𝑑)𝑘𝑓(𝑧).
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