
Forth Dimensions XIX/2 7

Europay, the major European credit card organization
(Eurocard, MasterCard in Europe, and other financial prod-
ucts) is developing technology to support smart cards—Inte-
grated Circuit Cards, or ICCs—as the credit cards of the future.
This will require new software in all credit card terminals, which
range from 8051-based POS terminals to high-end ATMs. To
facilitate this transition, they have designed a token-based sys-
tem—conceptually similar to Open Firmware or Java—which
is based on Forth. Using this Open Terminal Architecture (OTA),
it will be possible for credit card issuers and acquirers to write
application programs that will be completely platform inde-
pendent and which will run on all OTA-compliant kernels.

The project has been under way for two years. FORTH,
Inc. and MPE, Ltd. have been principal members of the de-
sign and development team, along with Europay. Prototype
terminals were exhibited at a major Europay banking confer-
ence in June 1996, and production systems have been oper-
ating in the field in Prague, Czech Republic, since May 1997.

Background
Modern payment applications are moving to ICC tech-

nology. ICCs can significantly improve security of payment
transactions by being able to manage encrypted account data
offline, by participating actively in the transaction-validation
process, and by being intrinsically extremely difficult to vio-
late or reproduce. They can also contain code to enhance the
transaction processing, thereby providing new opportunities
for payment products and services.

Use of this new technology, however, will necessitate al-
tering the firmware in several million terminals that will use
the ICCs. To facilitate this transition, Europay is designing a
standardized software system that will be compact, efficient,
and easy to maintain and enhance for future payment sys-
tem needs. This is the Open Terminal Architecture system.

OTA defines a software virtual machine standardized across
all terminal types, described in detail in Europay Open Termi-
nal Architecture Specification Volume 1: Virtual Machine Specifi-
cation.1 This virtual machine provides drivers for the terminal’s
I/O and all low-level CPU-specific logical and arithmetic func-
tions. An extensive repertoire of commands specific to the
needs of ICC terminals is also provided, with functions such
as commands for managing databases, different languages,
security algorithms, and the special data formats used by the
cards. High-level libraries, terminal programs, and payment
applications using standard kernel functions may be devel-
oped and compiled into token modules. These must be certi-
fied once; thereafter, they will run on any conforming termi-
nal of the appropriate type (for example, ATM or POS) with-
out change, regardless of the terminal’s CPU type or other

architectural issues. Therefore, a significant consequence of
OTA is a simplified and uniform set of test and certification
procedures for all terminal functions.

To provide a common means of distributing programs in a
compact, standard, machine-readable form, OTA uses a token
system that is, in some respects, similar to Java byte-codes. An
OTA token compiler converts source code to a string of tokens
that is extremely compact (and therefore easy to transmit over
phone lines or to read from an ICC), and is also easy for even
simple processors to interpret with minimal overhead.

To summarize, OTA provides the following major benefits:
• A virtual machine with generalized ICC support functions,

to be installed in each terminal only once. The kernel life-
time is expected to match that of the terminal (7–10 years).

• Terminal kernel certification independent of applications,
so certification only needs to be done once for each termi-
nal type. A terminal type is defined as a specific configura-
tion of terminal CPU and I/O functions.

• Application certification procedures that are independent
of the terminal on which the application will run, since all
terminals provide the same virtual machine interface. Only
one certification and validation is needed for tokenized
software libraries, terminal programs, and payment appli-
cations, providing they run on certified OTA terminals.

• Standard downloading procedure for all terminal types, us-
ing compact token modules for minimum transmission time.

• Support for tokenized code on an ICC, to make maximum
use of its storage capabilities and to minimize communica-
tions time between card and terminal.

OTA is based on Forth, extended with commands to facili-
tate development of payment applications. Forth was chosen
by Europay because, of all standard interpretive-type languages,
it provides the most compact and efficient means of represent-
ing both terminal programs and the code that may reside on
the ICC itself. Compactness in terminal programs translates di-
rectly into reduced transmission time and cost for terminal up-
dates, and compactness in ICC code results in increased capa-
bility and reduced transfer time between card and terminal.

For security reasons, OTA allows only run-time behavior
in a terminal, so the virtual machine includes only a run-
time subset of ANS Forth.

Both Forth and C compilers have been developed to sup-
port OTA tokens. VM implementations, applications, and li-
braries have been developed in both Forth and C.

Open Terminal Architecture Features
The specific characteristics of the architecture were de-

signed and optimized for both compact and reasonably fast
execution of typical payment functions on a wide variety of

A Platform-Independent Token System
for Payment Terminals

1. Version 2.2, January 29, 1997. Available from Europay Documentation
Centre, 198A Chaussée de Tervuren, 1410 Waterloo, Belgium.

Peter Johannes
pjo@europay.com
Waterloo, Belgium

Stephen Pelc
sfp@mpeltd.demon.co.uk
Southampton, England

Elizabeth D. Rather
erather@forth.com
Manhattan Beach, CA

Reprinted with the permission of:
Forth Interest Group • 100 Dolores Street, Suite 183 • Carmel, California 93923 USA
408.373.6784 • Fax 408.373.2845 • office@forth.org • www.forth.org

mailto:office@forth.org
http://www.forth.org
mailto:erather@forth.com
mailto:sfp@mpeltd.demon.co.uk
mailto:pjo@europay.com
http://www.forth.org


8 Forth Dimensions XIX/2

CPUs. Many design decisions were heavily influenced by the
extreme need for program security in payment terminals.

Virtual Machine CPU
The OTA virtual machine is based on a multi-stack archi-

tecture, as seen in Figure One. This architecture, derived from
Forth, has been further modified for portability, code den-
sity, ease of compilation, and for use with other program-
ming languages. For example, it contains frame memory for
local variables used in C. Thus, OTA token compilers can be
written not only for Forth, but also for C and other languages.

The VM is a byte-addressed, 32-bit machine, with 32-bit
registers and stack elements. Despite some initial trepidation
about implementing a 32-bit VM on processors such as the
8051, we have found ways to do so with remarkably good
run-time performance.

Memory
OTA defines a single address space for programs. This ad-

dress space is accessible for data storage only. Programs may not
assume that executable code is in this address space. Depending
on the actual processor, and on the mechanism used to convert
the token image into executable tokens, the executable code
may be in a different address space (shown as code space in
Figure One), or may be under the control of a memory manage-
ment unit. In any case, programs are not permitted to access
their own program memory directly, and any attempt to do so
will be flagged during the program certification procedure.

Addressable memory is further divided into sections:
• Initialized data space may be preset at compile time to val-

ues that will be instantiated in the target at run time.
• Uninitialized data space will be preset to binary zeroes in

the target at run time.
• Extensible memory is temporarily allocated using a rub-

ber-band memory allocation algorithm.
• Frame memory is used by C stack frames and Forth local

variables.

In addition to directly addressable memory, the VM also
manages extended memory, which is not directly available
to token programs. This is used for two purposes: databases
and module storage. Databases are managed by the VM as a
server to client token programs. Clients may select a named
database and records within that database. At any time, the
client has access to a current record in a current database via
named fields of various types. The module storage is not ac-
cessible by token programs directly, although modules may
call functions in external modules in ways managed inter-
nally by the token interpreter in the VM. Certain tokens also
support high-level management of the module storage by al-
lowing terminal programs to add and delete modules, with
appropriate security.

Programs and Tokens
The OTA token set provides program portability across mul-

tiple CPU types by passing source code programs of various
types through a compiler whose output is a string of OTA to-
kens, which may be thought of as machine instructions for
the OTA virtual machine. The tokens are organized into a
module, which consists of a header, a section representing the
module’s data items, lists of imported and exported functions
(providing links to other modules), and the tokens themselves.
Target terminals then process this code by instantiating the
data space associated with the module, linking the module’s
imports to functions exported by other modules, and finally
interpreting the tokens. Figure Two illustrates this process.

The OTA token set covers three main areas. The first is the
instruction set of a theoretical processor (the virtual machine),
which provides the instructions necessary for the efficient
execution of programs. The second supports I/O and com-
munications functions. The third group consists of OTA-spe-
cific functions such as databases, a message database (poten-
tially in several European languages), and support for Tag-
Length-Value data formats (ISO 8825) used for communicat-
ing with the ICCs and for other data communications.

Data Space (RAM)CPU

Code Space
(May be ROM)

Non-volatile
Extended
Memory

ALU

Registers

Data
Stack

Return
Stack

Except.
Stack

Uninitialized Data

Extensible Memory

Frame Memory

Initialized Data

Internal RAM

Figure One. The OTA Virtual Machine

The OTA token set has been optimized
for use on small terminals, with ease of com-
pilation, ease of interpretation, and good
code density. The most common functions,
including most Forth primitives, are ex-
pressed in one-byte, or primary, tokens. Less
frequently used functions are two-byte, or
secondary, tokens. Some tokens also have
associated values, for such things as literal
values and branch offsets.

System Components
The purpose of OTA is to provide soft-

ware to run in terminals used in payment
applications. Conceptually, there are two
hardware environments, and several classes
of software. The hardware environments
include the development system, which is
based on a simple PC; and a target, which is
some form of payment terminal. The entire

http://www.forth.org


Forth Dimensions XIX/2 9

suite of software includes:
• development software, which runs on the PC and is avail-

able in two packages, for VM and application development,
respectively;

• virtual machine implementations, which include all plat-
form-specific software in a terminal and other mandatory
standard functions;

• libraries, which provide general functions to support ter-
minal programs and payment applications;

• applications, which are the functions specific to a particu-
lar payment product;

• terminal programs, which perform general non-payment
terminal functions and include high-level mechanisms for
selecting and executing transactions and associated appli-
cations; and

• test suites and platforms, for both VM implementations
and token programs.

Terminal Target Environments
The target system is any one of a large variety of payment

terminals. Actual products range from small, hand-held de-
vices with simple, eight-bit microprocessors (such as the 8031/
51 family), to 32-bit computers running operating systems
such as Windows NT. In order to simplify the production,
certification, and maintenance of software on such a wide
variety of targets, OTA terminal code is based on a single vir-
tual machine. The VM consists of a standardized set of func-
tions whose CPU-specific implementation is optimized for
that specific platform. Implementations currently operating
in the field on eight different devices show that this approach
provides good run-time performance, even on 8051 CPUs.

Virtual Machine
The OTA VM has standard characteristics that define ad-

dressing modes, stack usage, register usage, address space, etc.
The virtual machine concept makes a high degree of standard-
ization possible across widely varying CPU types, and simpli-
fies program portability, testing, and certification issues.

The VM instruction set includes a selected subset of ANS
Forth commands, plus a number of specialized OTA func-
tions, such as terminal I/O support and token loader/inter-
preter support. Since it cannot itself be tokenized, and may
reside in PROM, the VM is intended to be installed once,
and not changed thereafter during the lifetime of the termi-
nal. Therefore, its functions are carefully designed to be very
general in nature and as complete as possible, in order to
support a wide range of present and future terminal pro-
grams and applications.

Terminal manufacturers are responsible for providing a
VM implementation on their terminals. This VM is devel-
oped and certified according to the OTA Virtual Machine
Specification. Standard kernel functions not appropriate to a
particular terminal type (e.g., the cash dispenser function on
a POS terminal) are coded as null functions for that terminal,
so every kernel has an identical set of functions and the test-
ing and certification process is simplified. These null func-
tions add very little to system overhead and complexity, and
their advantage far outweighs their cost.

The terminal’s VM supports standard libraries and termi-
nal programs and applications, which are written in high-
level code for the virtual machine and are delivered as token
modules, which will run on any standard VM.

Libraries
OTA libraries contain higher-level functions that support

common features of terminal programs, such as language se-
lection, and common features of applications, such as PIN
verification. A terminal may contain several libraries, some
accessible to all applications, and some restricted to particu-
lar applications or payment systems. Libraries are written and
tokenized for the virtual machine, using functions provided
in the kernel, and therefore can be run on any terminal.

Terminal Program
A terminal program consists of the high-level personality

characteristic of this terminal type (POS, ATM, etc.). This in-
cludes the functions common to all transactions (e.g., card
initialization and language selection), as well as the user in-
terface required to select an application and process a trans-
action. The terminal program, at the highest level, is typi-
cally triggered by a card insertion. A terminal program is writ-
ten for the virtual machine and is supplied in token form. It
can, therefore, be run on any terminal of the appropriate type,
and is easily changed by downloading over a network at any
time. However, it frequently does incorporate platform-spe-
cific features, such as customized greeting messages, knowl-
edge of particular screen-management capabilities, etc. These
features are not included in the VM, as they may change on
a time-scale shorter than the design lifetime of the VM. For
example, a particular make of terminal may be used by a num-
ber of different merchants, each of which may request cus-
tomized user menus.

Terminal VM (6303, 8051, 80186, etc.)

PC Host Development System

Forth
Source

C Source
Source
(other)

Token Compilers

Token Loader/Interpreter

Executable Code

Module Token download

Figure Two. Tokens may be generated from a variety of
source formats, downloaded to a terminal, and then
converted into executable code for that terminal by any of
several different methods.

http://www.forth.org


10 Forth Dimensions XIX/2

Applications
A terminal transaction will select an application as part of

its processing flow. Applications fall into three general areas:
stored value system (such as Europay’s CLIP system, VISA
CASH, or Mondex), debit cards, and credit cards; applications
generally will vary in their method of processing a given trans-
action. Versions of these applications may be provided by
different payment systems and may be further customized
by individual issuers, acquirers, or even individual merchants
(such as large chains or department stores). Applications are
supplied in token form via the communications path and, if
security considerations permit, may be enhanced by token
programs on an ICC.

The Token Compiler and Token Loader/Interpreter
Libraries, applications, and terminal programs are written

in high-level code for the virtual machine. The OTA develop-
ment system includes a special compiler for this virtual ma-
chine, whose output consists of tokens. Tokens may be
thought of as machine language instructions for the virtual
machine. Tokens are either one or two bytes in length, and
therefore represent the program in a form that is both CPU-
independent and extremely compact (far more so, for ex-
ample, than compressed source text).

Each OTA virtual machine contains a token interpreter
(TLI), which processes a stream of tokens into an executable
form. Once the kernel is installed in a terminal, the libraries,
applications, and terminal programs can be downloaded into
the terminal in a variety of ways (direct connection to an
OTA development host, acquirer network, modem and dial-
up telephone line, ICC, etc.). Program modifications and en-
tire new applications may be downloaded in the same man-
ner whenever needed. The VM implementation is designed
to be so general purpose in nature that a wide range of present
and future terminal programs and applications can be accom-
modated without modifications to the VM.

ICC Functions
One function of ICCs is to improve transaction security

tactically valid. The terminal decides to allow or disallow the
card’s proposed actions only as controlled by the terminal
access security functions.

Development Environments
An OTA development system is used to develop terminal

software, either low-level VM implementations or high-level
library or application software. Kernel development requires
a target terminal to be connected, as the kernel is cross-com-
piled on the PC host and downloaded to the terminal across
the Interactive Development Link. OTA libraries, terminal pro-
grams, and applications are also developed on the PC host.
Because they are high-level code, they may also be executed
on the host for preliminary testing, using a PC version of the
standard kernel.

Since the requirements for developing and testing the VM
implementation and high-level token modules differ signifi-
cantly, two different tool chains have been developed: the
Kernel Development Kit (KDK) for terminal VM
implementors, and the Application Development Kit (ADK)
for token program developers.

VM Implementation Tools
The KDK consists of a Windows-based cross-compiler and

Interactive Development Environment (IDE), a test terminal
consisting of a CPU, keypad, LCD display, serial ports, and
memory sufficient to run a typical ICC application supplied
in token form as a demo, and a VM implementation for that
test terminal hardware (see Figure Three). Development soft-
ware on the PC is based on ProForth for Windows, a product
of MicroProcessor Engineering Ltd.

The VM implementation for the test terminal is supplied
in source form, with documentation intended to support a
developer porting this to a specific terminal of the same CPU
type. As many terminal vendors have previously developed
BIOS or OS functions (typically in C or assembler), a protocol
is included that facilitates the use of this software to provide
a defined set of functions (e.g., I/O functions) required by
the VM. The kit also includes a terminal test suite and demo

XTL
debugging

Application modules

TRS and Libraries

Token Interpreter

OTA Kernel Extensions

CPU-specific primitives

Cannot be
tokenized

Can be
tokenized

PC HostTerminal Target

Figure Three. A typical OTA development environment for a terminal. A small
program to support the terminal end of the Cross-Target Link (XTL) protocol is
included in the target during development.

by incorporating and managing encrypted
data and participating actively in the trans-
action-validation process. It is a natural fea-
ture of OTA to go beyond these functions
and to provide for ICCs that also contain
program code to enhance a terminal’s trans-
action processing, thereby providing new
opportunities for payment products and
services. To facilitate this, a few sockets have
been provided that can be plugged by is-
suer-specific functions such as loyalty pro-
grams, which may be invoked at appropri-
ate points in the transaction processing.
Europay does not currently propose that
ICCs contain entire applications, but only
plug behaviors that enhance existing ter-
minal applications.

As far as security is concerned, the pre-
sumption is that if an ICC passes the
decryption and data authentication tests
performed by the terminal program, what-
ever functions and plug behaviors are on
the card have been certified and are syn-

http://www.forth.org


Forth Dimensions XIX/2 11

application for testing the VM as it develops.

Token Module Development Tools
There are two major components to the Application De-

velopment Kit. These are the token compiler itself, and the
Token Interactive Debugging Environment (TIDE). The latter
is a standard VM implementation on a Windows platform,
with configuration options that enable it to simulate a wide
variety of potential target terminals. A developer may use this
platform to test token modules, regardless of the language in
which they were written. Token compilers are available for
Forth and C. The ADK also includes an optimizer, which per-
forms a variety of post-processing functions on token mod-
ules, that can reduce a module’s size by on the order of 50%.
The result is a module that runs with no performance pen-
alty; indeed, it is usually significantly faster, since there are
fewer tokens to process.

Testing and Validation Tools
VM test suite development has progressed in parallel with

VM development, and test suites are presently delivered with
all KDKs. The VM test suite consists of a set of modules that
exercise individual tokens, checking each token’s behavior
against expected results and producing a report summarizing
tests passed and failed (if any). The main test platform for
token modules is TIDE, although tools are also in develop-
ment to provide additional test facilities.

Formal validation tools are still in development.

Project Status
The Open Terminal Architecture (OTA) is a complete sys-

tem for supporting ICC-based payment terminals of the fu-
ture. Its design incorporates features that will facilitate de-
velopment and certification of a new, standardized kernel for
all payment terminals; will support development and certifi-
cation of platform-independent libraries and terminal pro-
grams; and will enable code on the ICCs themselves to pro-
vide enhanced payment products for issuers.

Extensive effort has been directed toward seeing that both
code and procedures are included to ensure program security
and integrity. A complete set of development tools is avail-
able through Europay to support not only Forth, the language
upon which OTA is based, but also C. Reference kernels, li-
braries, and applications are also available.

Elizabeth D. Rather was the world’s second Forth programmer.
She is President of FORTH, Inc., and a member of the Board of
Directors of the Forth Interest Group.

Stephen Pelc’s company, Microprocessor Engineering Ltd., has
been selling Forth-based hardware and software since the
early 1980s.

Peter Johannes has been the project manager for the Open
Terminal Architecture since its inception in 1994.

Background:

Payment Systems in Europe
Banking-based payment systems in Europe are organized

nationally for domestic banking products, and internationally
to facilitate international consumer payments. Looking at a
typical payment transaction, the parties involved are the mer-
chant, the acquiring bank, the pay-
ment system, and the issuer. Each
of these is a distinct role, although
it need not be played by a different
physical or corporate entity.
• Issuers provide consumers with

banking products, in this context
as debit, credit, or stored-value
cards. These cards can still be
embossed only (for paper-based
transactions), with magnetic
stripe (today’s state-of-the-art) or
with an IC. IC cards are currently
used widely only in France, al-
though pilot projects are under
way in several other countries.

• Acquirers hold the commercial relationship with the mer-
chant. They acquire the transactions, meaning they pay
the merchant for the goods and route the transactions to
wherever the consumer’s account is.

• Merchants accept cards, and provide goods to the
cardholder. Merchants are more and more convinced of the
necessity to migrate toward electronic payment services
(e.g., magstripe or ICC).

• Payment systems such as Europay have two primary roles:
to provide specifications (and associated certification) for
international payment products, and to arbitrate member

conflicts. In addition, payment systems also typically pro-
vide network and security services.

An IC card (or ICC) is an active device that stores data in
such a way that it can prove their authenticity. It is also ca-
pable of generating authenticity certificates for transactions.

This means that a point-of-sale
terminal now has to deal with an
active device that performs com-
plex operations. The terminal
software must behave correctly,
whichever ICC is used.

Current ICCs carry about 200
times the amount of information
that can be present on the
magstripe cards. This amount is
expected to increase as ICCs get
loaded with more services. The
drawback is that terminal programs
become more complex and bigger.
Terminals typically download their
software from a server via a 1200-

baud communication link. The cost of this management and
download is becoming prohibitive, especially in Europe.

Many existing ICC-based payment systems are “closed”
(proprietary) systems. This means it is very hard to introduce
new applications without getting the consent of all the par-
ties involved. Even then, extensive changes to the software
on every terminal are required, and the terminals must be re-
certified. With OTA, Europay is attempting to provide an open
system, capable of handling multiple ICC products, card types,
and systems on a single terminal with minimal changes.

—P. Johannes, Europay International

Issuing bank

Payment
System

Acquiring
bank

Cardholder Merchant

International clearing for

billing and payment


Sends bill to PS,

pays merchant


Bills cardholder,

collects payment


http://www.forth.org

	Introduction
	OTA Features
	Virtual Machine CPU
	Memory
	Programs and Tokens

	System Components
	Terminal Target Environments
	Virtual Machine
	Libraries
	Terminal Program
	Applications
	The Token Compiler and Token Loader/Interpreter
	ICC Functions

	Development Environments
	VM Implementation Tools
	Token Module Development Tools
	Testing and Validation Tools

	Project Status
	Payment Systems in Europe
	Forth Interest Group

