Mimer SQL

Getting Started on
Linux

Version 11.0

Mimer SQL, Getting Started on Linux, Version 11.0, September 2025
© Copyright Mimer Information Technology AB

The contents of this manual may be printed in limited quantities for use at a Mimer SQL installation site. No parts of the
manual may be reproduced for sale to a third party.

Information in this document is subject to change without notice. All registered names, product names and trademarks of
other companies mentioned in this documentation are used for identification purposes only and are acknowledged as the
property of the respective company. Companies, names and data used in examples herein are fictitious unless otherwise
noted.

Produced and published by Mimer Information Technology AB, Uppsala, Sweden.
Mimer SQL Web Sites:

https://developer.mimer.com
https://www.mimer.com

https://www.mimer.com
https://developer.mimer.com

Contents i

Contents

.. i
Getting Started...........covvinnnn s ——————— 1
Licensing Mimer SQL ... s ssssessssessssessssessssens 1
DocumMeNtation........ccvicicii s ———————— 1
Command line help and Man Pages.........ccuurrrenmsensmrmmesmssesmsssssssess e s ssssssesessssssesens 2
USEFUITINKS ... sessssss s s sss s e s s sns s sessssss s s sessssessssasanes 2
Installing Mimer SQL..........ccocomnnmnmmnnsmmsse s s sesssessssssssees 3
It is really simple to get going! ... ————— 3
Why do we need sudo access to install?cccocnninnnnnn s 4
PrereqUISites ... s 4
SYSTEM FESOUICESvrvreesreresessr e ssssesessssss s s sessssr s snssesessssss s s s sens 5
PRYSICAl MEMOTY.......coieiireie ittt 5

VIRUI MEMOTY ..ot 5
ENVIrONMeNt ... 5
Which components will be installed?..............coooereimeniiniss e, 5

Methods t0 INSTAl ..ot 6

Using the RPM distribution packagecoocrenrirnneneierisssssesse s 7

Using the DEB distribution package...........c.ccocveininencneneise e 8

Using the TAR distribution packagecccccoveerieinineineneccse s 8

Running several Mimer SQL versions in parallel..........ccoomimmnnnn. 9
Mimer SQL icense Key ... s s sessssssssssns 9
Creating an initial database ... ———— 10
Upgrading an existing database.............cocommnnnm s 11
Uninstalling the SOftWare ... 11
Removing an RPM insStallation ... 11
Removing @ DEB inStallation............cco.viieceiieeseese s 12
Removing @ TARINStallation..............ccc.voieceiieeeccee e 12
Database registration ... ———— 12

The SQINOSES fil€ ... 12

Contents

The Database SerVer ... s 17
Database server management ... s 17
MUMAAMIN ..ttt 17
MUIMADSEIVET ...ttt sttt 18
MIMCONEIOL.... ..ottt e 18
Database home dir@CtOrycomcnesnss s s ssssens 18
Logging database events ... s 19
Configuring a database SErver...........n s s 19
The multidefs parameter file ..o 19
Automatic database start and StOP ... 27
HUGEPAGES ..ottt 27
Background Thread PrIOMY ..o 28
OOM-KIlEI SBIUP ..vvevevee et 28
Remote database acCess.........cuninnn s —————_—— 29
Database TCP/IP connect dispatCher ..., 29

The MIMECP COMMEANG ... 30
SEIVICES SBIUD ..ot 30
NEWOTKING SEIUP ..ot 31
Development and Example Environments.........c.ccccoevrverniernencsesscssnennnn 35
Database APIS ... ———— 36
EMDedded SQL ..ottt 36
MOTUIE SQUL ..ot 36
UDB ..o 36
ODBCot 37
MIiMEr SQL C APLL......ooioeeeere st 37
PYNON et 38
PHP et 38
Accessing the database ... ——————— 38
Setting up and running DBVISUAIZES ..o 38
Running Mimer BSQL and other UtIlItIes ... 39
Environment Variables ... s 39
LinuX COMMANGScoecirrirres s sns s ssse e s srs s ssse s s s ssssns s s sesssnssnens 40
LinuX LinK LIDrariescocoovmrinccsc s s sessssssssssssesesssssessssssssesssesesssssssssssnssens 45

Getting Started on Linux

Chapter 1
Getting Started

Mimer SQL Version 11.0 ‘ 1

Welcome to Mimer SQL. This document describes how to install and set-up Mimer SQL
on Linux. To get the most out of this document, you should be familiar with your Linux
environment and know how to use the various Linux system tools.

Mimer SQL provides small footprint, scalable and robust relational database solutions
that conform to international ISO SQL standards. Due to its structural modularity, Mimer
SQL is very well suited for high performance mission critical systems as well as for
mobile and embedded appliances. In addition, Mimer SQL is equipped with an extensive
multilingual support using collations.

Licensing Mimer SQL

When you install Mimer SQL, a default development edition license key is installed. This
license key is limited in number of users and thus several features, including the
DbVisualizer tool, may run into problems saying ‘Number of users exceeded’. A
customized license key can be received for free, either it will come separately along with
the installation, or it can be ordered from the Mimer SQL Support desk
(info@mimer.com).

When the new license key is obtained it should be installed using the mimlicense tool
with the - f option.

If you want to use Mimer SQL for any purpose other than development, you must
purchase a commercial license. Contact your Mimer SQL distributor,
https://www.mimer.com/contactus/, to purchase the license you require. Your new license key
will be sent to you via e-mail. You apply the new license key by using the mimlicense
tool in the installation.

For further information see the section Mimer SQL license key on page 9.

Documentation

The Mimer SOQL Documentation Set, Mimer JDBC Driver Guide, Mimer SQL Release
Notes, and Mimer SQL Getting Started on Linux are available in the installation.

The Mimer SQL documentation set includes the following:
. SQOL Reference Manual

. Programmer's Manual

. System Management Handbook

. User's Manual

https://www.mimer.com/contactus/

2

Chapter 1 Getting Started
Command line help and man pages

The documentation mentioned, except for the Release Notes, are also available on the
Mimer SQL Documentation site, https:/docs.mimer.com/.

Command line help and man pages

For each command provided within the Mimer SQL installation, the options -? or
--help can be used to retrieve a basic help text.

In addition, man pages are included in your Mimer SQL distribution. There are man pages
for all commands available and for various configuration files, such as sqlhosts and
multidefs. For general information about Mimer SQL, read the mimersgl man page.
Man pages are usually installed automatically at /usr/share/man when installing
Mimer SQL.

Refer to the information provided by your operating system manufacturer concerning the
Linux man and catman commands, and the use of the MANPATH environment variable.

Useful links

The Mimer SQL Developer Site contains lots of useful information, like FAQ's, Howto's
and articles: https:/developer.mimer.com.

All manuals for Mimer SQL are gathered at https://docs.mimer.com.

For general information on Mimer SQL, please see https://www.mimer.com.

https://developer.mimer.com
https://docs.mimer.com/
https://docs.mimer.com
https://www.mimer.com

Mimer SQL Version 11.0
Getting Started on Linux

Chapter 2

Installing Mimer
SQL

The Mimer SQL software installation on Linux is expected to be completed in less than
a minute, and creating the initial data dictionary and starting the database server will only
take just a little longer.

Download a suitable distribution package from https://developer.mimer.com/downloads and
follow the instructions given below. DIstribution packages are available as a complete
distribution and as a headless server distribution package, without desktop integration etc.
Distribution packages are provided in DEB, RPM and TAR formats, respectively.

It is really simple to get going!

To get up-and-running with Mimer SQL is usually made in a minute or two. Here is a
quick step-by-step instruction using a sample Debian Linux 64-bit distribution package.
The details will be given in the following sections.

1 Download package.

Download a Debian Mimer SQL for Linux (64-bit) from
https://developer.mimer.com/products/downloads/.

2 Install the package.
Install Mimer SQL, in this case using the Debian package:

sudo dpkg -i mimersqll100 11.0.0A-24298 amdé64.deb

3 Create a database.
Create the initial Mimer SQL database named testdb, including an example environment:

dbinstall -e testdb xpass
The system administrator (SYSADM user) password will be asked for.
4 Control the database.

Verify the database server status by using the Mimer SQL administration tool, which can
be used to control the database:

mimadmin testdb

https://developer.mimer.com/downloads
https://developer.mimer.com/products/downloads/

4 Chapter 2 Installing Mimer SQL
Why do we need sudo access to install?

5 Access the database.

Access the database and the example environment as follows, using the ident
MIMER STORE with password ‘GoodiesRUs’:

bsgl testdb

Mimer SQL Command Line Utility Version 11.0.8E
Copyright (C) Mimer Information Technology AB. All rights reserved.

Username: mimer store
Password:

SQL>select * from categories;
category id category

1 Music
2 Books
3 Video

3 rows found

SQL>exit;
#

Why do we need sudo access to install?

To provide for a complete and proper easy-to-use installation, the procedure when
installing Mimer SQL is doing all needed installation actions automatically. This includes
updates to operating system locations, such as /usr/bin, /usr/1lib and /etc. For
example, the following tasks are handled:

. TCP/IP settings for Mimer SQL client/server access (/etc/inetd.d,
/etc/xinetd.d and/or /etc/systemd/system)

. autostart settings for Mimer SQL databases (/etc/init.d)
. desktop menu items (/etc/xdg, /usr/share)
. system wide Mimer SQL database catalog (/etc/sglhosts)

. system wide ODBC data source catalog (typically /etc/odbc.ini and
/etc/odbcinst.ini)

. system wide Mimer SQL man-page setup (/usr/man, or /usr/share/man)
. easy access for Mimer SQL programs and libraries (/usr/bin and /usr/1ib)

To achieve this, the installation requires sudo access, or it has to be executed as root.

Prerequisites

When using the RPM package, the RPM package manager environment must be installed.
Installation using the RPM package means that a predefined installation is made to a
default setup.

When using the DEB package, a package manager environment that can cope with DEB-
files must be installed. Installation using the DEB package means that a predefined
installation is made to a default setup.

The TAR installation procedure allows for a more flexible installation, but on the other
hand, it requires some answers to questions and knowledge of operating system setup.
The questions are given with explanations to each installation step and with default
options.

Mimer SQL Version 11.0
Getting Started on Linux

The Linux operating system version and kernel version required, along with the target
hardware for an installation package, is usually connected to a specific distribution
package and information is provided on the Download page of the Mimer SQL Developer
site, https:/developer.mimer.com/products/downloads/. The most detailed description is obtained
by drilling down to a specific package and clicking on its name.

System resources

Physical memory

The amount of physical memory used by the database server process is determined by
parameters in the local database definition (see The multidefs parameter file on page 19),
whose initial default values are determined by looking at the amount of installed memory.

Virtual memory

The amount of virtual memory that the database server process can use is limited by the
operating system. The virtual memory handling on Linux is platform specific - refer to
the documentation for the specific Linux operating system you are using. (Often a paging
file used).

Environment

Which components will be installed?

The Mimer SQL for Linux distribution is available in two different packages; as a
complete installation, and also as a so called /eadless package, especially suitable for
dedicated server machines and docker/embedded environments. The headless package is
solely command line based and does not include any desktop related parts (such as the
DbVisualizer database access tool), or any documentation but the Release Notes.

The complete Mimer SQL distribution contains the following:

. Tools, libraries, examples, man-pages, etc.
. A complete documentation set in PDF format.

. An ODBC Driver, available in the 1ibmimodbc shared library - see the chapter
Mimer SQL and the ODBC API, in Programmer’s Manual. This driver can be used
for direct access to a Mimer SQL database, or it can be used with a third party
ODBC Driver Manager, for example unixODBC, or iODBC.

. A JDBC Diriver, type-4, written in 100% Java - see the chapter Mimer SQL and the
JDBC API, in Programmer’s Manual.

. Various other database API’s, like Embedded SQL, Module SQL and a native
Mimer C APL

https://developer.mimer.com/products/downloads/

6 Chapter 2 Installing Mimer SQL

Environment

The default installation location is /opt, where a sub directory named according to the
package is created. For example, if Mimer SQL 11.0.0A is installed, an installation path
like /opt/mimersql1100-11.0.0A is used. This Mimer SQL main installation
directory then contains the following sub directories:

bin - contains Mimer SQL tools, and other executable files.

DbVisualizer - contains all resources for the DbVisualizer tool that is bundled
with Mimer SQL. Please note that an even more powerful version, DbVisualizer
Pro, can be purchased from https://www.dbvis.com/. The DbVisualizer Pro features are
enabled by installing a license key file.

doc - contains Mimer SQL documentation.
examples - contains example files.

include - contains various header files that may be needed when developing with
Mimer SQL.

1lib - contains library files.

1ib32 - contains 32-bit libraries for execution of 32-bit applications. (Only
available in installation packages for 64-bit platforms).

man - contains Mimer SQL man pages.

misc - contains various additional files, like desktop menu system resources.

Additional Python interface

The Python interface towards Mimer SQL is downloaded and installed separately using
the following command:

python -m pip install mimerpy

Additional PHP/PDO interface
Read about the details of the PHP/PDO interface to Mimer SQL in the article PDO Driver
for Mimer SQL, located as hitps:/developer.mimer.com/article/mimer-sql-driver-for-pdo/.

Methods to install

For Linux platforms the software package is currently available in three different shapes:

RPM installation

This installation type needs the RPM package manager environment to be installed.
An advantage is that possible dependencies to other software automatically are
verified and arranged for.

DEB installation

This installation type needs a Debian package manager to be installed. In the
example below the dpkg command will be used. Dependencies will be verified
during this installation.

https://www.dbvis.com/
https://developer.mimer.com/article/mimer-sql-driver-for-pdo/

Mimer SQL Version 11.0
Getting Started on Linux

. TAR installation

This installation type is platform independent and is the one that can be used for all
UNIX/Linux platforms matching the requirements. If a customized installation is
desired, for example if the software should be located in a non-default location, the
TAR installation may be handy. On the other hand, a TAR installation is not
integrated in commonly used package managers and must therefore be managed
manually. Using the TAR installation method will NOT ensure that needed parts
among other operating system packages are up to date.

Using the RPM distribution package
This is the procedure to follow when using an RPM distribution of Mimer SQL.

When using RPM, installed files are fully maintained by the RPM package manager.
RPM will keep track of all files installed by RPM, and it will also check that all
dependencies to system libraries are available and up-to-date.

To get a short description of an RPM file before installing it, you can use the following
command:

rpm -gpid mimersgll1100-11.0.0A-24298.x86 64.rpm

An example installation using RPM could be as follows:

sudo rpm -i mimersqll100-11.0.0A-24298.x86 64.rpm

From the Mimer SQL point of view, the RPM installation is a silent install. RPM can be
instructed to be very verbose, by using the -ivv switch instead of -1, which will display
the information known by, and performed by, RPM for the installed package.

You can run the installation procedure without actually installing anything by using the
--test option as in the following example:

rpm -i --test mimersqll100-11.0.0A-24298.x86 64.rpm

If an older version of an RPM package is already installed when a new RPM package is
available, the upgrade switch can be used. See the following example:

sudo rpm -U mimersqgll100-11.0.0A-24298.x86 64.rpm

Note: An upgrade can only be done if the only difference in the package name is the
package revision number, in this case 24298. Otherwise the new product is
installed using the -1 option, and then the old package is removed (see below.)

To get a listing of all installed rpm packages the —ga switch is used. Combined with grep
the following command will display all Mimer SQL packages installed with the rpm
command:

rpm -ga | grep -i mimer
To get details of the package and to get instructions on how to continue, including how to
create a database using the dbinstall, use the following command:

rpm -gid mimersqgll100-11.0.0A-24298

For further details about RPM, see the corresponding man-page, or visit the RPM
documentation page.

8 Chapter 2 Installing Mimer SQL
Environment

Using the DEB distribution package

For platforms that use the Debian installation format, we suggest the dpkg command to
be used. This is the procedure to follow when using an DEB distribution of Mimer SQL
with dpkg.

To get a description of an DEB file before installing it, you can use the following
command:

dpkg-deb -I mimersqll100 11.0.0A-24298 amdé64.deb

An example installation using a DEB file could be as follows:

sudo dpkg -i mimersqll100 11.0.0A-24298 amdé64.deb

From the Mimer SQL point of view, the DEB installation is a silent install, not displaying
any details in operations performed.

Note: Installations that in fact is an upgrade of an existing package is handled
automatically by the dpkg command.

To get a listing of all installed DEB packages the -1 switch is used. Combined with grep,
the following command will display all DEB packages installed for Mimer SQL with the
command:

dpkg -1 | grep -i mimer

On your Debian linux system you can do man dpkg for more information on that
command.

Using the TAR distribution package
This is the procedure to follow when using a TAR format distribution of Mimer SQL.

Unpack the distributed TAR archive by using a standard tar extract command, for
example:

tar xvf mimersgll1100-11.0.0A-24298 linux26_64.tar

A subdirectory named according to the distribution has now been created in the current
directory, holding the tar archive contents. There, the miminstall command is
available, which should be executed to install the Mimer SQL software. Simply execute
the command as follows:

./miminstall

During the miminstall session the license agreement should be accepted, a temporary
location for unpacking should be chosen, and then the location for the Mimer SQL
software in the file system should be specified.

The tar installation can also be executed in silent mode, mainly aimed for embedded
installations.

Note: Themiminstall command can be executed in a non-operational mode by
using the —n option, meaning it only prints information about the installation
steps without performing them.

Mimer SQL Version 11.0
Getting Started on Linux

Running several Mimer SQL versions in parallel

If it is desirable to run two or more Mimer SQL versions in parallel on a host computer,
this is fully feasible, but it requires a system knowledge and may involve manual
measures. The following must be regarded:

. If installing an RPM version while a tar installation is already made, it may be the
case that host global configuration files such as /etc/sglhosts for database
registration and /etc/mimerkey for the license keys are reinstalled. In this case
the original files are renamed to have the filename extension . rpmsave.

. If two or more packages of the same version is to be installed, only one can be
installed using RPM or DEB installation packages. For additional installations the
TAR package should be used where other installation directories than /opt must
be used.

. If installing using RPM or DEB, the installation will always put itself as the
preferred installation, located via /usr/bin and /usr/1ib, for example. This is
an installation option if installing with TAR. The commands mimlink and
mimunlink can be used to adjust this after installations are done, but please note
that it is essential that there is an installation linked to these locations since various
default settings are pointing there.

Mimer SQL license key

To start the installed database server and to establish connections to the database, a
license key is required. A key valid for development and evaluation only is included in
the Mimer SQL distribution. This key is usually installed automatically during
installation of the Mimer SQL package.

Whenever a user connects to a Mimer SQL database, the computer identification and the
license key will be checked by the database server to determine access rights. If access is
denied, the connect attempt will be aborted and an error message will be shown.

The Mimer SQL license key contains the following (encrypted) information:

. The maximum number of users that may use the database servers running on the
same computer node at any one time.

. The maximum number of network users that may use the database servers running
on the same computer node at any one time.

. The functionality modules which the key is valid for.

. The node name of the computer (in the case of a specific key) or a lifeboat key
which is valid for any computer of the platform type for which it was issued (e.g.
any Linux machine).

. Version number.
. Expiration date for the key.
The key data is case insensitive and space characters are ignored.

The mimlicense application is used to administrate the license key file. See
MIMLICENSE - Managing the license key in System Management Handbook for
information on how to use it. The following command will list the licenses installed:

mimlicense -1

10

Chapter 2 Installing Mimer SQL
Creating an initial database

As mentioned above, for a production system a commercial license is required. Also,
expired keys may have to be renewed, or, when the number of Mimer SQL users is
increased or new Mimer SQL functionality is added to the site, a new Mimer SQL license
key will be needed. The Mimer SQL license key is provided by your Mimer SQL
distributor. In order to be able to generate the key, your Mimer SQL distributor must
know the ID of the computer on which the database server will run.

The ID of a Linux machine is obtained by using the following command:

mimlicense -1i

Creating an initial database

Once the software is installed, the next step is to build a Mimer SQL database by using
the dbinstall command.

As mentioned before, the doinstall command requires sudo access, or must be
executed by root. If not started from a privileged shell sudo password will be asked for:

dbinstall [<database name>]

If a database name is given, the dbinstall session is completed with default settings used
as far as possible. Otherwise, during the dbinstall session, database name, database
location, and password for the database administrator (i.e. SYSADM) will be asked for.
There will also be options for installing example environments, etc. When the session is
completed, a fully operational database is available - enabled for client/server access over
TCP and automatic start at reboot.

Note: dbinstall creates all system databank files in the given database server
home directory. In a production system it is recommended that the SYSDB,
TRANSDB and LOGDB files are located on separate disks due to performance
and reliability reasons. You can read more about this in the Mimer SQL System
Management Handbook part of the Mimer SOL Documentation Set (found at
the Documentation page).

Once the database is up and running it may be of interest to provide for remote access. To
achieve this the database should be registered as a REMOTE on each node in the network
from which it is to be accessed - see more on database registration below.

Now the database is ready for data storage, creating a storage structure built on idents and
data objects using the data definition statements in Mimer SQL. See the article The
Example Database, located as https://developer.mimer.com/article/the-example-database/, for an
example on using various database elements.

To summarize, the dbinstall command performs all necessary installation steps to
create an initial database and getting it up and running. The options available in
dbinstall give opportunities to control and carry out the following:

. Deciding a database home directory

. Registering the database

. Deciding the SYSADM password

. Creating the system databanks, including the data dictionary
. Deciding owner of the database

. Setting up the networking environment

. Setting up autostart procedure

https://developer.mimer.com/article/the-example-database/

Mimer SQL Version 11.0
Getting Started on Linux

. Setting up a data source definition for ODBC use

. Creating an example database

. Creating a basic development setup with a user that has an OS_USER login
. Creating the default database configuration file

. Starting the database created

Many of these tasks are described in a more general and detailed manner further on in this
document.

Upgrading an existing database

If you are upgrading an existing database from an earlier version of Mimer SQL, please
see the Mimer SQL Release Notes for detailed information. The Release Notes document
is provided within each Mimer SQL distribution package. In short the steps are as
follows:

1 Install the new Mimer SQL version in parallel with your existing Mimer SQL.
2 Stop the database.

3 Make sure the new Mimer SQL version is the one accessed, and run the
sdbgen -u database command from the new Mimer SQL version.

4 Start the database with the database server program from the new Mimer SQL
version.

Uninstalling the software

What happens to the databases when uninstalling the software?

The commands described below, mimuninstall, dpkg -r and rpm -e, will remove
the given software installation, but any databases using the installation will remain intact.
Since databases may contain valuable data, the removal of databank files is not performed
unless an explicit call to dbuninstall is done, specifying removal of everything
regarding the database, including data.

If a database, and its databank files, is going to be removed, use the dbuninstall
command. When executed, a question will be raised asking if specified database should
be removed, i.e. permanently deleted.

dbuninstall <database name>

Removing an RPM installation

To remove an installation installed using RPM, use the following RPM command:

rpm -e mimersgll100-11.0.0A-24298
For more detailed information printout when uninstalling, the -ev or —evv options can
be used.

The following command can be used to list installed Mimer SQL packages:

rom -ga | grep -i mimer

12 Chapter 2 Installing Mimer SQL
Database registration

Removing a DEB installation

To remove a DEB package installation, use the following dpkg command:

sudo dpkg -r mimersqgll100

The following command can be used to list installed Mimer SQL packages:

dpkg -1 | grep -i mimer

Removing a TAR installation

To remove an installation that was installed using the miminstall command, use the
mimuninstall command as follows:

mimuninstall /opt/mimersgll100-11.0.0A

When running the mimuninstall command a question will be raised on if the
/etc/sglhosts and /etc/mimerkey files should be removed. These are global files
to Mimer SQL, used by any installation, so the recommendation is to keep them since
there may be other Mimer SQL installations using them.

Database registration

The sqlhosts file

The database registration file is used to list all the databases that are accessible to a Mimer
SQL application from the node on which it resides. All users must have read access to the
sqlhosts file on the machine they are using in order to run applications and utilities
accessing Mimer SQL databases. The standard location for this file is /etc/sglhosts.
By using the environment variable name MIMER SQLHOSTS, another file can be used.

In a network environment, the name of a database must be registered on each node from
which it is to be accessed. A database is created as a local database on the node where it
resides, and it is defined as a remote database on each other node in the network from
which access to it is required. For general information on how to make databases
accessible, refer to Registering the Database in System Management Handbook.

The program mimsglhosts can be used to manage the contents of the local sqlhosts file
instead of editing it manually. To list the complete content of the sqlhosts file, simply use
the following command:

mimsglhosts

When the dbinstall command is used to install a local database, an entry for it is
automatically added to the LOCAL section of the sqlhosts file on that node, see LOCAL
section on page 15.

If the file is not found, a default sqlhosts file is automatically generated. (See the
mimsglhosts and sglhosts man-pages).

The sqlhosts file structure
The SQLHOSTS file contains three sections; DEFAULT, LOCAL and REMOTE.

The names of the local databases on the current node are listed in the LOCAL section, see
LOCAL section on page 15, and the names of the remote databases accessible from the
node are listed in the REMOTE section, see REMOTE section on page 135.

Mimer SQL Version 11.0 13
Getting Started on Linux

One of the local or remote databases can be set to be the default database for the node by
specifying its name in the DEFAULT section, see DEFAULT section on page 15.

Database names may, in general, be up to 128 characters long and are case-insensitive.

A line of text beginning with the character sequence -- is interpreted as a comment in the
sqlhosts file.

14 Chapter 2 Installing Mimer SQL
Database registration

The default SQLHOSTS file

When the first Mimer SQL system is installed on a node, the following default sqlhosts
file is automatically generated:

—-— This file contains a list of all databases, local and remote, accessible
-- from the node where the file resides.

—-— The DEFAULT label

-- Name of default database. Can be either a REMOTE or LOCAL database name.
-- Can be overridden by setting MIMER DATABASE to the name of a database.

—-- The LOCAL label

-- A list of all local databases on the current node, containing the

-- database name and a directory specification (Path).

-- UNIX Path - database home, and directory path for databank lookup.
-- VMS Path - database home.

—-—- The REMOTE label

-- A list of all remote databases containing the database name, the database
-- node, the protocol to be used, the protocol interface and the protocol

-- service to be used.

-- Protocol, Interface and Service may be defaulted by entering ''.

-- Node - network node name for computer on which the database resides.
-- Protocol - currently tcp is supported. (tcp or '' should be specified)
-- Interface - currently not used ('' should be specified).

-- Service - corresponds to the port number used in TCP/IP. The port number

- Default is 1360, i.e. the port number reserved for MIMER.
-= On UNIX: The port number may either be a number or a name of a
- service stored in the /etc/services file.

DEFAULT:

—-- Database

example localdb

LOCAL:

—-—- Database Path

SINGLE .
example localdb /directory

REMOTE :

—-- Database Node Protocol Interface Service

example remotedb server nodename v v 1360

Mimer SQL Version 11.0
Getting Started on Linux

DEFAULT section

The DEFAULT section contains a single line that specifies the default database which
will be used by a Mimer SQL application or command that does not explicitly specify a
database to connect to, see The Default Database section in System Management
Handbook.

The default database should be one of those listed in the LOCAL or REMOTE sections.
If defining the MIMER DATABASE environment variable, that setting usually overrides the
DEFAULT setting in the sqlhosts file.

LOCAL section

The LOCAL section contains a list of all the local databases residing on the current
machine, see The Local Database section in System Management Handbook.

Each line under the LOCAL keyword should contain two fields, separated by one or more
blanks or tab characters. The first field specifies the database name, and the second
specifies the location.

The location field is usually a single directory path, referred to as the database home
directory. But, it may also be a colon (:) separated search path specification, where each
directory included in the path list can hold databank files for the Mimer SQL database
server. In that case the first directory in the search path is taken as the database home
directory and the other directories in the search path will be used to locate databank files
which have a file specification stored in the data dictionary without an explicit directory.

Using a path list is one way to arrange for having databank files on separate disks for
optimal performance and reliability - see the System Management Handbook.

REMOTE section

The REMOTE section contains a list of all accessible databases that reside on other nodes
in the network environment, see the section Accessing a Database Remotely in System
Management Handbook.

Access to these databases is provided by using TCP/IP to establish a client/server
connection to the remote machine.

Each entry in the REMOTE section contains up to five fields, separated by spaces and/or
tab characters.

The DATABASE field specifies the name of the remote database.

The NODE field should specify the network node name of the remote machine. If the
TCP/IP interface is used, the [P address may be specified here.

The PROTOCOL field should specify tcp or two single quotation marks ' '.

The INTERFACE field is currently not used. Specify ' ' (two single quotation marks)
here.

Ifusing TCP/IP, the SERVICE field specifies the TCP/IP port number the database server
uses. The default is 1360, which has been reserved by Mimer Information Technology
AB for Mimer SQL client/server communication.

When TCP/IP is used, the value in the SERVICE field may be the actual port number, the
name of a service stored in the /etc/services file or two single quotation marks '’
for the default value 1360.

15

16 Chapter 2 Installing Mimer SQL
Database registration

The remote section parameters are summarized below, depending on the protocol
selected. The character sequence ' ' is two single quotation marks, and specifies the
default value for a parameter:

Parameter Explanation

DATABASE Remote database name

NODE TCP/IP node name or IP number

PROTOCOL "' or TCP/tcp

INTERFACE "' (two single quotation marks)

SERVICE TCP/IP_port_number, TCP/IP service nameor ' '.(When '
is used to specify the default SERVICE, the TCP/IP port
number 1360 will be used.)

Mimer SQL Version 11.0
Getting Started on Linux

Chapter 3

The Database
Server

17

The Mimer SQL database server is a single, multi-threaded process with SMP scalability.
Clients using TCP/IP can access the server. For clients running on the same platform, a
shared-memory based communication method is used, usually called ‘local
communication’.

The standard Mimer SQL database server program is named mimexper (there is also an
in-memory database server available named miminm). When running the dbinstall
command, the database server is automatically created and started - ready for duty.

Database server management

The database server is usually controlled using the mimadmin command, the
mimdbserver command or the mimcontrol command.

mimadmin

This is a menu based front-end tool involving different sub-commands to do various
database server administration, like;

. Controlling a database server

. Monitoring a database server

. Managing database server registration
. List started database servers

. List installed license keys

The mimadmin command is used as follows:

mimadmin [database]

If the database name is omitted, the setting of the MIMER DATABASE environment
variable is used. IfMIMER DATABASE isn’t defined, the database in the default section of
the /etc/sglhosts file is used.

See the mimadmin man-page for details.

18

Chapter 3 The Database Server
Database home directory

mimdbserver

This is a command line based front-end tool involving different sub-commands. It
handles the following operations:

. Controlling a database server
. Monitoring a database server

As an example, to manually start the database server, use the command as follows:

mimdbserver -s [database]

If the database name is omitted, the setting of the MIMER DATABASE environment
variable is used. If MIMER DATABASE is not defined, the database in the default section
of the /etc/sglhosts file is used.

See the mimdbserver man-page for details.

mimcontrol

The two commands described just above are front-end tools involving other commands.
As can be seen in Linux Commands on page 40, there are many commands that can be
used on their own to administer the database system. For example, the bottom-line tool
for controlling a database server is the mimcontrol command.

As an example, to stop the database server program, use the following command:

mimcontrol -t [database]

If the database name is omitted, the setting of the MIMER DATABASE environment
variable is used. If the database name is omitted and the MIMER DATABASE is not defined,
the command will not work.

See the mimcontrol man-page for details.

Database home directory

The database home directory is the catalog where the SYSDB system databank file
resides. This path is registered in the sqlhosts file, usually located as /etc/sglhosts.
By using the environment variable MIMER SQLHOSTS, another file can be pointed out as
being the sqlhosts file.

The database home directory can be located using the following command:

mimpath <database name>

The Mimer SQL system databank SYSDB file will be located in the database home
directory and other databanks will typically be located relative to it, see Locating
Databank Files in System Management Handbook.

Mimer SQL Version 11.0
Getting Started on Linux

Logging database events

Database events are written to the mimer.log file, located in the database home directory.

The following command can be used to list the log-file:

mimdbfiles -L <database name>

In addition, main messages regarding the Mimer SQL database server are written to the
Linux syslog facility. To extract those messages the following command can be used:

cat /var/log/syslog | grep mimersqgl

Configuring a database server

The configuration file for an installed Mimer SQL database server is named multidefs
and is located in the database home directory.

The content of the configuration file can be seen by using the command:

mimdbfiles -C <database name>

The multidefs parameter file

The multidefs file holds the parameters adjustable for a database server. It is
automatically created when creating the database using the doinstall command. A
default setup is made, but further configurations can be made manually if needed. Refer
to the Mimer SQL System Management Handbook or open a discussion with Mimer SQL
support representative.

If the multidefs file is not found when starting a database server, a new file will be
created using the default values for all parameters. The actual default values used may
vary and may depend on factors like machine type and the amount of physical memory
available on the machine.

Themultidefs settings can be modified after the database is created, and will be taken
into account at the next server startup.

19

20 Chapter 3 The Database Server
Configuring a database server

The following is an example of a default multidefs parameter file:

—- Mimer SQL version 11.0.8E parameters generated 2024-08-29 10:07
Databanks 100 # Max # of databanks (20-1000)

Tables 4000 # Max # of tables (500-1000000)

ActTrans 20000 # Max # of active trans (500-1000000)

SQLPool 1000 # Initial SQLPool (400-8388607 kb)

RequestThreads 8 # # of request threads (1-100)

BackgroundThreads 3 # # of background threads (1-100)

TcFlushThreads 1 # # of t-cache flush threads (0-20)

Users 100 # Max # of logged in users (1-5000)

DBCheck 1 # DB check, 0O=index, 1l=all, 2=immediate,
3=im. index, 4=im. all (0-4)

Pages4K 206768 # # of 4K bufferpool pages (11-2147480000)

Pages32K 18775 # # of 32K bufferpool pages (7-2147480000)

Pagesl28K 2186 # # of 128K bufferpool pages (0-2147480000)

DelayedCommit 0 # Delayed commit, 0=0ff 1=On 2=Disabled (0-2)

DelayedCommitTimeout 100 # Delayed commit timeout in milliseconds
(0-60000)

GroupCommitTimeout 2 # Group commit timeout in milliseconds (0-20)

Oper # Receivers for messages

DumpPath . # Path for dump directory

TCPPort inetd # TCP/IP port

MaxSQLPool 216000 # SQLPool max size (2400-16777215 kb)

NetworkEncryption 1 # Client/server encryption, 0=None
1=Optional, 2=Required (0-2)

MemLock # Lock bpool in memory, 0=No 1l=Yes (0-1)

MiniDump 1 # Small bufferpool dump (no page content),
0=No 1l=Yes (0-1)

BackgroundPriority O # Thread priority, 0=Default, 1l=Highest,
40=Lowest (0-40)

AutoStart 1 # Autostart, 0=No, 1l=Yes (0-1)

DumpScript ./ .dumper.sh %p # Dump Script

HugePages 0 # HugePages, 0=No, 1=2MB, 2=1GB (0-2)

I0Queue 1024 # Max # of concurrent I/O requests (0-65535)

ServerType 3 # Server type: 3=mimexper, 7=miminm (3-9)

Comments in the file are introduced by the character sequence --, or by the character !
or #.

A new multidefs file can also be generated manually. If no multidefs file is located in the
database home directory, the following command will generate a new one, having the
default values:

mimdbserver -g <database name>

The parameters in multidefs

Parameter Definition

Databanks Specifies the maximum number of databank files that
the database server can have open at any one time.

Tables Specifies the maximum number of tables that can be
accessed simultaneously by the database server.

ActTrans Specifies the maximum number of transactions that can
be active in the database server

SQLPool Initial size of the SQLPool area in K bytes. This area
contains information about each session, i.e. opened
tables and databanks, compiled SQL programs, etc. The
SQLPool area will expand automatically if it is too
small, but it will not be larger than MaxSQLPool.

Mimer SQL Version 11.0
Getting Started on Linux

RequestThreads

The number of threads in the database server that can
serve client requests.

BackgroundThreads

The number of background threads in the database
server.

TcFlushThreads

Extra threads that run in the background to help clear
the transaction cache. This is beneficial for systems
with long-running transactions. The thread keeps the
size of the transaction cache down by deleting records
that are no longer used.

When there are no long running transactions the cache
can be cleared efficiently without scanning the cache so
in this case the thread is not needed. Default is 1 thread.

To get the same behavior as in version 10.0, specify

0 threads for this parameter. For very large databases
with long-running transactions more than 1 thread can
be used.

Users

The maximum number of users that are allowed to
connect to the database server. This parameter should
not exceed the number of users specified in the Mimer
SQL license key. This number is also used to calculate
the size of the shared memory region used for local
database server communication. About 70 Kbytes of
shared memory will be allocated for each user.

21

22

Chapter 3 The Database Server
Configuring a database server

DBCheck

A number which specifies what kind of check that
should be performed when a databank is opened which
previously was not closed properly.

0 - check index pages

Index pages only are checked in the foreground
while applications that access the databank waits
for the operation to complete.

1 - check data pages

A full databank check (involving index and data
pages) provides for more secure operations, but
may take much longer to execute than an index
page check. When a full check is done, the index
pages are checked in the foreground and the data
pages are checked in the background so there is a
smaller effect on performance.

2 - Inmediate restart, no check

This option performs no checking when the file is
opened. The system still verifies the integrity of
each page through a checksum. A few pages may
have been pre-allocated and these are not
reclaimed when this option is used. If the option is
subsequently changed these pages will be
reclaimed the next time the databank is opened.

3 - Immediate restart, check index pages

This option performs a check of all index pages in
the databank in the background. This is done
concurrently with other operations on the system.

4 - Immediate restart, check all pages

This option performs a check of all pages in the
databank in the background. This is done
concurrently with other operations on the system.

The Immediate restart options require a license
key module called ‘Imm Restart’. Databank
checks can be avoided by always shutting down
the database server properly with the
mimcontrol/mimdbserver command,
especially prior to shutting down the machine.

Pages4K

The number of 4 Kbytes pages in the bufferpool area
containing pages from the databank files. The default
value of this parameter is 12.5% of the total RAM
memory in the machine.

Mimer SQL Version 11.0
Getting Started on Linux

Pages32K

The number of 32 Kbytes pages in the bufferpool area
containing pages from the databank files. The default
value of this parameter is 8.33% of the total RAM
memory in the machine.

Pagesl28K

The number of 128 Kbytes pages in the bufferpool area
containing pages from the databank files. The default
value of this parameter is 5% of the total RAM memory
in the machine.

DelayedCommit

This option controls how quickly a transaction commit
is secured on disk. It greatly affects the performance of
the database server. For example, if a single user
commits two transactions in quick sequence the
database server may use a single I/O to secure both
transactions when delayed commit is on. Transactions
are never reordered by using the delayed commit
option. L.e. it is not possible for a later transaction to be
secured on disk before an earlier one. The database is
thus always returned to a consistent state after a
machine crash. However, if a transaction has been
committed but not yet written to disk it will be lost if the
database server or machine goes down in an
uncontrolled fashion. Transactions that use the XA
transaction protocol are automatically committed with
delay commit disabled. The delayed commit option can
be set to one of the following:

0 - Default off

In this mode delayed commit is not used unless a
transaction is set to use delayed commit by the
application. This is the default.

1 - Default on

In this mode all transactions where the delay mode
has not been explicitly set are delayed. The
transaction will be secured within the time-out
period specified. If other transactions are
committed before the time-out occurs the
transactions may be combined into a single I/O to
boost performance.

2 - Disabled

In this mode all transactions are secured to disk
immediately and the application will not regain
control after a commit until the transaction has
been secured. This option overrides any
application settings for delay commit.

23

24 Chapter 3 The Database Server
Configuring a database server

DelayedCommitTimeout

This specifies the number of milliseconds to wait before
the transaction is written to disk. If a value of zero is
specified transactions are not flushed until the server
determines that the commit set page is full. In general,
this is not recommended as transactions are likely to be
lost if there is an uncontrolled machine stop. Default is
100 milliseconds.

GroupCommitTimeout

How many milliseconds to wait for other transactions
to commit before proceeding with first transaction. If
another transaction arrives within the timeout period if
will be grouped with existing transactions before they
are committed together with a single 1/O rather. This
improves overall performance but the delay prolongs
commits time on a system with low load. Default is one
millisecond.

Oper

This parameter gives a list of host system users, i.e.
operators, or e-mail addresses that should receive e-mail
notification of serious problems with the database
server.

DumpPath

This parameter may specify an alternate path for the
dump directories. The default is to create dump
directories under the database home directory.

TCPPort

Specifies how the database server should handle
incoming TCP/IP connection requests. If this parameter
is set to - (a single dash), the TCP/IP capability will be
disabled for the database server. The TCPPort
parameter is, by default, set to inetd - which means
that the TCP/IP port server program, mimtcp, will be
used for establishing a connection to any Mimer SQL
database server (of version 8 and later). In this case
clients may connect to the port to which mimtcp listens,
usually 1360, and the handshake will be passed over to
the requested Mimer SQL database server. If a TCP/IP
port number is specified, the database server will listen
directly to that port.

MaxSQLPool

The maximum size (in kilobytes) of the SQLPool. The
SQLPool memory area grows dynamically, but the size
will never exceed this parameter. Use this parameter to
control the maximum virtual size (maximum page file
usage) for the database server process.

Mimer SQL Version 11.0
Getting Started on Linux

NetworkEncryption

Controls the use of encryption of network
communication over TCP/IP between server and
clients.

0 = Network encryption disabled

Network encryption is not supported or not used.

1 = Network encryption preferred

Network encryption is enabled for version 11
clients. Older clients use unencrypted network
communication. When this setting is used, older
clients without support for network encryption are
allowed to communicate with the database server
over TCP/IP.

Use this option when there is a mix of older and
newer clients that communicate with the database
server over TCP/IP.

This is the default value.

2 = Network encryption required

The database server requires all clients to use
encrypted communication when communicating
over TCP/IP.

Clients that do not support encryption are rejected
at login with error code -18531.

Named Pipes via OS-user login is not allowed.

This option is recommended over option 1 when
possible (i.e. when there are no older clients that
need to be supported.)

MemLock

A number which specifies whether the bufferpool and
communication buffers should be locked in memory (1)
or not locked in memory (0).

Minidump

Small bufferpool dump (no page content).
0=No
1 = Yes (default)

BackgroundPriority

Specifies if the background threads should run at a
higher priority than other server threads. During certain
circumstances like in situations where the background
threads cannot manage to shorten a transaction queue
this can be an alternative.

AutoStart

By default, this parameter is set to 1 which indicates that
the database should be started automatically when the
operating system goes into multi-user mode.

If the parameter is set to 0 the database will not be
started automatically.

25

26

Chapter 3 The Database Server
Configuring a database server

DumpScript

If the database server goes into an erroneous and
unrecoverable state, it will produce dumps of the
current internal database structures before it goes down.
If this situation occurs, it is of great importance for the
error detection process to get a Linux kernel stack trace
from the location where the error was located.

By defining this parameter to a command that can
produce a kernel trace, such as pstack, stack information
will be automatically generated to mimer.log.

The %p option used in the example setting in the
beginning of this section, is used to get the current
process ID as a parameter to the command given.

HugePages

Enable use of larger memory pages:
0=No

1=2MB

2=1GB

See HugePages on page 27 for more information.

I0Queue

Specifies the maximum number of concurrent IO
requests queued to the operating system. Default is 128,
but more advanced disk systems such as SAN’s, battery
backed caching 10 controllers, PCI Express connected
SSD’s and NVMe SSD’s can make use of larger queues.
This can give a significantly higher database
performance, but specifying a too large queue can
overload the 1O subsystems. Maximum queue length is
65535.

IOThreads

The number of threads in the database server that can
serve 1/O requests. This parameter is only present and
used for some Linux implementations (if it is not
present in a default generated multidefs file, the most
common reason is that the native Asynchronous I/O is
used.)

ServerType

This option decides which Mimer SQL database server
program that should be started to operate the database
files for the database:
3 - mimexper
The Mimer SQL Experience database server. This
is the standard database server.
7- miminm

The Mimer SQL In-memory database server.

Mimer SQL Version 11.0
Getting Started on Linux

Automatic database start and stop

When Mimer SQL is installed, autostart is automatically enabled. The mimservers
program will start or stop all local Mimer SQL v11.0 servers defined in the sqlhosts file.
The setup is done by using the mimautoset command, invoked during installation. For
details, see the man-page for mimautostart. To exclude a server from the automatic
start/stop procedure, set the AutoStart parameter in the multidefs file for that server to
0. To see the autostart installation made, the following command can be used:

mimautoset -1lv

The mimservers command is used to manage all database servers installed. The
following command will list the state for all database servers:

mimservers -Db

HugePages

HugePages is a Linux kernel feature to enable use of larger memory pages. Normal pages
are usually 4KB, and large pages can vary between 2MB to 1GB. By having the Mimer
Bufferpool using HugePages, the operating systems use of page table entries and page
state maintenance is reduced. It also increases the hit ratio in the CPU’s Translation
Lookaside Buffers (TLB).

Using HugePages
To enable HugePages in Linux, specify the kernel parameter vim. nr _hugepages in
/etc/sysctl.conf file. (/etc/sysctl.conf is read during Linux boot.)

For test purposes, you can also use specify the number of hugepages after boot with
sysctl -w vm.nr hugepages=value. (This command is not writing to
/etc/sysctl.conf, which means it will be reset at system reboot.)

Determine the default HugePage size by running the following command:

$ grep Hugepagesize /proc/meminfo
Hugepagesize: 2048 kB

Run mimcontrol -c to get the size of the bufferpool:
$ mimcontrol -c
Buffer pool size: 4096 MiB

Divide the size of the bufferpool with the HugePage size, to get the number of large pages.
In this case, 4096 / 2 = 2048. Run sysct1 with this value:

$ sudo sysctl -w vm.nr hugepages=2048

vm.nr hugepages = 2048
Run the following command to the see allocated HugePages:

$ grep Huge /proc/meminfo

AnonHugePages: 0 kB
ShmemHugePages: 0 kB
HugePages Total: 2048
HugePages Free: 2048
HugePages Rsvd: 0
HugePages Surp: 0

Hugepagesize: 2048 kB

28

Chapter 3 The Database Server
Configuring a database server

Edit /etc/sysctl.conf and add the following line to ensure HugePages are allocated
after system restarts:

vm.nr hugepages=2048
Change the HugePages parameter in the multidefs file to 1 or 2, depending on the default
HugePage size.

Start the Mimer database server:

$ mimcontrol -s
2022-04-05 16:48:45.08 <Information>

Mimer SQL 11.0.6C Beta Test Apr 4 2022 Rev a37704m
Mimer SQL Experience server for database MIMERDB STARTED at /mimerdb

Verify the number of reserved pages with the following command:

$ grep Huge /proc/meminfo

AnonHugePages: 0 kB
ShmemHugePages: 0 kB
HugePages Total: 2048
HugePages Free: 2004
HugePages Rsvd: 2004
HugePages Surp: 0
Hugepagesize: 2048 kB

Background Thread Priority

In the multidefs configuration file there is a parameter called BackgroundPriority
that can be used to raise the priority for the Mimer SQL database server background
threads. If enabled, the following warning message can be obtained in the database server
log file, mimer. 1og, as a notification on that the intention to increase the priority failed:

2022-06-22 09:18:07.48 <Warning>
Could not set priority for background thread
setpriority: [EACCES] Permission denied

To allow this setting to take place, the following command can be used:

sudo setcap CAP_SYS NICE+iep mimexper

...or, if the Mimer SQL In-memory database server is used:

sudo setcap CAP_SYS NICE+iep miminm

The database server then needs to be restarted.

OOM:-killer setup

The mimoomadjust command can be used to manage the oom score adj setting,
found for each process under the /proc environment. This setting is used by the
operating system when selecting processes to be thrown out when the memory resource
runs low in the system. Saying that, it can be understood that this command only works
for systems having a /proc environment.

The command has three options; adjust (-a), reset (-r) and list (-1). It works for running
database servers and takes a target database name as parameter. If the database name is
omitted, the MIMER DATABASE setting is used. To give a database a good chance of not
being killed, the following command can be used:

mimoomadjust -a <database name>

Mimer SQL Version 11.0
Getting Started on Linux

Please note that the mimoomadjust command needs sudo access to update the value, and
that the oom score adj value adjustment only is valid as long as the process is alive.

To easily set this value when starting or restarting the database server, the option -o is
available for the mimdbserver command. Doing the following command will restart the
database defined in the MIMER DATABASE environment variable and set the
oom_score_ adj value:

mimdbserver -Xo

Remote database access

Database TCP/IP connect dispatcher

When a Mimer SQL database is created using the dbinstall command the definitions
needed for remote access to the database is installed automatically. Depending on what
support the host machine can offer, one or several configurations may be installed on the
host system. Locations are as follows per feature provided and available:

inetd The internet services daemon. Here the /etc/inetd.conf
file is used for the Mimer SQL configuration.

xinetd The extended internet services daemon. Here the
/etc/xinetd.conf fileorthe /etc/xinetd.d directory
is used for the Mimer SQL configuration.

systemd The system and service manager. Here the
/etc/systemd/system directory is used for the Mimer
SQL configuration.

In all these cases the mimtcp command is invoked by the operating system when an
incoming Mimer SQL database connection request is identified on the target TCP/IP port.
It finds out the database name in the handshake message and redirects the connection to
the target database using the registered information in /etc/sglhosts.

To see the setup made, the following command can be used:

miminetd -1

Note: Itis possible to let a Mimer SQL database server listen directly to a TCP/IP
port, i.e. not using the mimt cp redirecting function. This is achieved by
changing the TCPPort parameter in the multidefs file from the default inetd
value to the actual port number used, usually 1360.

30 Chapter 3 The Database Server
Remote database access

The mimtcp command

The mimtcp command is used to handle the handshake between a remote client and a
database server. It should be used with, and be invoked by, an Internet Service Daemon -
see Networking Setup on page 31.

Syntax
The overall syntax for MIMTCP is:
mimtcp [-1 [-f filename]
mimtcp [--log [--file filename]
mimtcp [-v]|--version] | [-?|--help]

Command-line Arguments
You can use the following arguments with MIMLOAD.

Argument Function

-1 Enable logging.

--log

-f file Define a log file.
--filename=file

-v Display version information.
--version

-2 Show help text.

--help

If mimtcp is used without any option, no logging is performed by the program. If a string
value is given in addition to the -1 option, that value will be used as the log file. If the -1
option is used without a value, the filename mimtcp. 1og will be used that will end up in
the root home folder under a sub directory called .mimer log.

The following example will start mimtcp with logging using the default log file, located
in~/.mimer log/mimtcp.log:

mimtcp -1

Services setup

The /etc/services file holds the Internet network services list. The list is a mapping
between names for internet services, and their underlying assigned port numbers and
protocol types. The following excerpts from the file shows the header for the list and the
mimer entries:

Port Assignments:

#

Keyword Decimal Description References

mimer 1360/tcp # MIMER
mimer 1360/udp # MIMER

Having this definition done, the name MIMER can be used instead of 1360 when dealing
with services.

Mimer SQL Version 11.0
Getting Started on Linux

Networking Setup

There are different system features available to administer this depending on platform and
operating system versions. Currently inetd, xinetd and systemd are supported, where the
first two are described more in detail below.

The miminetd command is used to handle the networking setup. This is done
automatically during the installation.

inetd setup

The Linux command inetd is the Internet services daemon, the server process for the
Internet standard services. It is usually started up at system boot time. The configuration
file /etc/inetd. conf lists the services that inetd should handle. An excerpt from the
file shows the syntax used in the file:

#

Syntax for socket-based Internet services:

<service name> <socket type> <proto> <flags> <user> <server pathname>

<args>
#

When dbinstall is executed, and the inetd. conf file is found, the following line is
added to the configuration file:

mimer stream tcp nowait root /usr/bin/mimtcp mimtcp -1
This indicates that mimtcp should be started for the mimer service. The -1 option is used
standalone which implies that the default log file should be used.

When the inetd configuration is changed, for example if mimer is added like described
above, the inetd daemon must reread it. This is triggered by sending the HUP signal to the
inetd process (located using the ps —ef command):

ps -ef | grep inetd

root 8796 1 0 2006 2 00:00:12 inetd
kill -HUP 8796
#

xinetd setup
The Linux command xinetd stands for “the extended Internet services daemon”. It is the
successor to inetd and works in a slightly different way. Instead of having tasks started at
system initialization time, and be dormant until a connection request arrives, xinetd is the
only daemon process started and it listens on all service ports for the services listed in its
configuration file. When a request comes in, xinetd starts the appropriate server.

32 Chapter 3 The Database Server
Remote database access

The default xinetd definitions for Mimer SQL can be found in the file
mimersgl .xinetd in the installation directory called misc:

$ cat /opt/MimerSQL-11.0.5A/misc/mimersqgl.xinetd

default: on

description: The MIMER service allows remote users to access the
Mimer SQL database servers on this node.

service mimer

{

port = 1360

socket type = stream

wait = no

user = root

server = /usr/bin/mimtcp

server_args -1

log on failure += USERID
disable = no
protocol = tcp

}
$

Ifthe /etc/xinetd.d directory is found when dbinstall is executed, the
mimersqgl.xinetd file is copied there and is given the name mimer.

If the /etc/xinetd.d is not found, but /etc/xinetd.conf is found, the
mimersqgl.xinetd contents is added at the end of the /etc/xinetd.conf file.

When the xinetd configuration is changed, for example if mimer is added like described
above, the xinetd daemon must reread it. This is triggered by sending the HUP signal to
the xinetd process (located using the ps —ef command):

ps -ef | grep xinetd

root 8796 1 0 2006 2 00:00:12 xinetd
kill -HUP 8796

Using odbc.ini data sources
The standard ODBC odbc. ini file and the Mimer SQL sglhosts file are related to
each other in both being repositories for databases, or data sources. When using ODBC
to connect to a Mimer SQL database, data source names (DSN) defined in the odbc. ini
file can be used. In this case the odbc. ini file is accessed first, and only if needed the
ordinary database lookup is done in the /etc/sglhosts file.

When a Mimer SQL database is created using the dbinstall command, it gets defined in
the sqlhosts file in the LOCAL section. For example, if creating the database named my db
with the home directory /usr/local/MimerSQL/my db, it will end up in
/etc/sqglhosts like this:

LOCAL:
my db /usr/local/MimerSQL/my_db

If an ODBC Driver Manager is installed, there will also be an option to automatically
define it in the global odbc. ini file, usually located as /etc/odbc.ini. Such a
definition will look like the following:

[my_db]

Driver = /usr/lib/libmimodbc.so
Database = my db

Host = localhost

Port = 1360

Trace = No

TraceFile = /tmp/mimersqgl.log

Mimer SQL Version 11.0
Getting Started on Linux

We can now look at a simple example where the Perl DBI/DBC-ODBC interface is used
to connect to a Mimer SQL database:

#!/usr/bin/perl -w
use DBI;

$data source="dbi:0ODBC:my db";

Susername="sysadm";

Sauth="sysadm password";

$dbh = DBI->connect ($data source, S$username, S$auth) or die $DBI::errstr;
print "Connected! ($dbh)\n";

In this case the my_db definition in the odbc.ini file will be used, more precisely the
attributes Driver, Database, Host and Port are used:

Driver The ODBC driver to be used, specific to each database
kind. For Mimer this is the 1ibmimodbc. so shared
library.

Database The name of the database to be accessed, as defined in the

sqlhosts file on the node where the database resides.

Host The name of the computer node where the database
resides. If this attribute 1s left out, the value of the
Database attribute will be looked up in the
/etc/sqglhosts file for further information about the
connection setup.

Port The port number to used for the database communication.
If this attribute is left out, the default '1360' will be
assumed.

Assuming a Mimer SQL database on a remote computer is defined in the REMOTE section
of the sqlhosts file as follows:

REMOTE :
prod_db typhon.mimer. se tcp ' 1360
Also, assuming we have the following DSN defined in the odbc. ini file:

[remote prod]
Driver = /usr/lib/libmimodbc.so
Database = prod_db

To connect to the prod_db database on the typhon.mimer.se node using the program
example above, we can simply change the data source definition in the program above to:

Sdata source="dbi:0ODBC:remote prod";
The data source remote prod will be looked up in odbc.ini. The database name
prod_db will be encountered, but there is no host defined so an attempt will be made to
find appropriate connection information for the given database in the sqlhosts file. When

the node typhon.mimer. se and the port 1360 are identified for the database name, the
connection will be completed.

The ODBCINT environment variable can be used to point out the odbc.ini file to be used.

Note: Tabs are not allowed in the odbc. ini file.

33

34 Chapter 3 The Database Server
Remote database access

Mimer SQL Version 11.0
Getting Started on Linux

Chapter 4

Development and
Example
Environments

When installing Mimer SQL, there are options to install an initial development setup and
an example database. The example database is described in detail in the article The
Example database, found as hitps://developer.mimer.com/article/the-example-database/.

If these parts were not installed during the dbinstall session, they can be installed
separately when needed. For the initial development setup, use the following command:

mimdevenv <database name>

For the example database, use the following command:

mimexampledb <database name >

To access the example environments, you can use:

DbVisualizer The GUI database front-end included in the installation
package and located in the desktop setup for Mimer SQL.

bsql The command line tool, usually available as
/usr/bin/bsqgl.

Any ODBC or JDBC | Standard database access tools using these database API’s
based SQL tool can be adapted.

The username MIMER STORE and password ‘GoodiesRUs’ (if you have used the
default password) is used for the example database.

For further information on the API’s described below, and on programming with Mimer
SQL in general, please refer to the Programmer's Manual within the Mimer SQL
Documentation Set - https://docs.mimer.com/MimerSqlManual/latest/.

‘35

https://developer.mimer.com/article/the-example-database/
https://docs.mimer.com/MimerSqlManual/latest/

36

Chapter 4 Development and Example Environments
Database APls

Database APIs
Embedded SQL

An embedded SQL preprocessor is included. It enables SQL commands to be embedded
in programs written in C, C++ and FORTRAN. The embedded syntax complies with the
ISO standard for embedded SQL.

For a proper Unicode behavior, internationalized C/C++ programs must include the
locale.h header file and call the setlocale () operating system function to initiate a
specific language operation. This can be done by calling setlocale () as follows:

setlocale (LC_ALL, "");

In the examples directory under the installation path, e.g.
/opt/mimersgll100-11.0.0A/examples, there is a basic programming
example provided along with a readme file named readme esql.txt.

Module SQL

A Module SQL preprocessor is included. It enables separation of SQL code and a host
application written in C, FORTRAN, COBOL or Pascal, into different source files,
simplifying modularity and reuse of SQL code.

For a proper Unicode behavior, internationalized C programs must include the 1ocale.h
header file and call the setlocale () operating system function to initiate a specific
language operation. This can be done by calling setlocale () as follows:

setlocale (LC_ALL, "");

In the examples directory under the installation path, e.g.
/opt/mimersgll100-11.0.0A/examples, there is a basic programming
example provided along with a readme file named readme msql. txt.

JDBC

For database access from Java a JDBC driver is included in the distribution. The driver is
a type 4 driver, which means that it is written entirely in Java. This provides the driver
with full portability so that it can be copied or downloaded to any Java enabled platform.
The driver uses TCP/IP to access a Mimer SQL server (version 8.2 or later) on any
platform. For details on the JDBC drivers, please refer to the Mimer JDBC Driver Guide,
https://docs.mimer.com/MimerJdbcGuide/latest/.

In the JDBC directory under the installation path, e.g.
/opt/mimersgll100-11.0.0A/examples, there is a basic programming
example provided along with a readme file named readme java.txt.

https://docs.mimer.com/MimerJdbcGuide/latest/

Mimer SQL Version 11.0 37
Getting Started on Linux

ODBC

The Mimer ODBC driver is a client library that enables applications to access Mimer SQL
database servers running on any platform. The driver complies with the ODBC 3.52
specification.

There are various third party ODBC Driver Manager available on the market that enable
applications to dynamically load drivers for different database products. But, you can also
choose to link your applications directly to the Mimer ODBC driver, without using any
Driver Manager. In the latter case we suggest usage of the provided ODBC header files,
introduced by including the mimc1i . h file.

For a proper Unicode behavior, internationalized programs must include the 1ocale.h
header file and call the setlocale () operating system function to initiate a specific
language operation. This can be done by calling setlocale () as follows:

setlocale (LC_ALL, "");

In the Linux ODBC environment it can be mentioned that SQLWCHAR refers to a four
byte type (wchar t).

In the examples directory under the installation path, e.g.
/opt/mimersgll100-11.0.0A/examples, there is a basic programming
example provided along with a readme file named readme odbc. txt.

Mimer SQL C API

Mimer SQL C API is a native C library suitable for tool integration and application
development in environments where API standardization is not a requirement. The
following characteristics describe the API:

. Simplicity

. Platform independence

. Small footprint

. Tight fit with the Mimer SQL application/database communication model.

This MimerAPI is provided in the 1ibmimerapi . so shared library. The mimerapi.h
header file provides prototypes and other handy defines. See Database API article for
MimerAPI and the Mimer SQL Programming Manual (found in the Mimer SQL
Documentation Set at the Documentation page.)

For a proper Unicode behavior, internationalized programs must include the 1ocale.h
header file and call the setlocale () operating system function to initiate a specific
language operation. This can be done by calling setlocale () as follows:

setlocale (LC ALL, "");
In the examples directory under the installation path, e.g.

/opt/mimersgll1100-11.0.0A/examples, there is a basic programming
example provided along with a readme file named readme mimerapi.txt.

38

Chapter 4 Development and Example Environments
Accessing the database

Python

A Mimer SQL database can be accessed from the Python programming language using
the MimerPy adapter. This adapter allows the user to connect to Mimer SQL through
Python, gaining access to the exceptional performance and powerful features provided by
a Mimer SQL database.

For details and programming examples, please see the specific MimerPy guide found as
https://docs.mimer.com/MimerPython/latest/.

A Mimer SQL database can be accessed from HTML using the PHP/ODBC interface.
PHP is a widely-used general-purpose scripting language that can be embedded into
HTML, and is therefore especially suited for web development.

In the examples directory under the installation path, e.g.
/opt/mimersgll100-11.0.0A/examples, there is a basic programming
example provided along with a readme file named readme php. txt. This example uses
the Apache HTTP Server which is an open source HTTP web server for a wide range of
platforms.

Accessing the database

Setting up and running DbVisualizer

DbVisualizer is a graphical front-end used to view and manage your database objects. It
is started from the desktop using an icon in the Mimer SQL installation menu.

To use DbVisualizer you may need to install Java. Once Java is installed DbVisualizer is
started. The very first time DbVisualizer is started two operations are automatically
initiated:

+ First the New Connection Wizard is started
This wizard will set up a connection to the Mimer SQL database:

1 It will initially prompt for a name of the connection. A common naming scheme is
to use the database name followed by the username in parenthesis. For example:
dbsql (MIMER _STORE)

2 1Inthe second step the database driver should be selected. Select Mimer from the
drop down list.

3 Inthe third step you fill in the database name, username, and password used when
accessing the Mimer SQL server. Enter the name of the target database. If the
Mimer SQL Example database is installed, the username MIMER STORE and
password ‘GoodiesRUs’ (if you have used the default password) can be used. If
your database is on another computer remember to change the Server field to the
name of the computer. Before proceeding, make sure you test that your connection
is working properly.

4 The wizard is now completed and various objects in the target database can now be
explored by selecting them in the tree view to the left. Note that existing objects
can be modify and new ones can be created by right-clicking on the objects or
object types.

https://docs.mimer.com/MimerPython/latest/

Mimer SQL Version 11.0
Getting Started on Linux

. Secondly, when DbVisualizer is invoked for the first time

The Driver Finder will locate the Mimer SQL JDBC Driver. Unless errors have
occurred, this dialog can simply be closed.

Running Mimer BSQL and other utilities

In order to run most of the Mimer SQL utilities from a command prompt window, a target
database to access must be specified. This can be furnished in different ways:

. Enter the database name on the command line, e.g.:

bsgl database name

. As mentioned before, use the environment variable MIMER DATABASE, €.g.:

export MIMER DATABASE=database_name

. Use an ODBC data source. When installing a database using the dbinstall
command, the default option is to define the database as an ODBC DSN (if such an
ODBC environment is present).

The order of the three methods is significant as the first methods override the later ones.
For example, specifying the database on the command line overrides the setting of the
MIMER DATABASE environment variable.

Environment Variables

The following table lists and explains the environment variables Mimer SQL uses in

Linux.
Variable Explanation
HOME Used to locate the home directory from within various

Mimer SQL programs.

LD LIBRARY PATH

Used on most platforms to locate shared libraries in
runtime.

MIMER DATABASE

Used to point out which database to access. If not set, the
default database, set in /etc/sqglhosts, is used.

MIMER EXTEND

Used to change the number of pages to allocate when
dynamically extending a databank file.

If not set, the default is 128 pages (each of 4096 bytes). The
variable must be set for the process starting the database
server program.

MIMER HISTLINES

Used to change the number of command lines to be stored
in the recorded history for a Mimer BSQL session.

If not set, the default is 23.

MIMER KEYFILE

If set, the given string is treated as the name of the license
key file (overriding the /etc/mimerkey file).

39

40 Chapter 4 Development and Example Environments
Linux Commands

Variable Explanation

MIMER MODE Used to indicate the mode for which the database should be
accessed, that is, SINGLE or MULTI.

Use single mode if accessing a database for which the
database server program is not started. If not set, MULTT is

assumed.

MIMER NOEDIT If set, the command line editing package for a Mimer BSQL
session is disabled.

MIMER ODBCINI If set, the given string is treated as the name of the file for
ODBC Data Source lookup.

If not set, and if ODBCINT is not set, the home directory is
searched for the . odbc. ini file (using the HOME
environment variable).

MIMER SQLHOSTS The default sqlhosts file is /etc/sglhosts. Another file
can be used by defining the MIMER SQLHOSTS
environment variable to hold the path of the target sqlhosts
file.

ODBCINI Same as MIMER ODBCINI.
Overrides MIMER ODBCINT if set.

PATH Used to locate Mimer executables.

SHELL Used shell when temporarily entering the operating system
shell prompt from within Mimer SQL.

If not set, /bin/sh is used.

TMPDIR If set, it is used as the placeholder for temporary files
created by Mimer SQL. If it is not set, the directory
$HOME/.mimer tmp is used.

Linux Commands

Command Function Used by

bsql SQL command interpreter. See Mimer SOQL | mimdevenv,
User’s Manual, Chapter 9, Mimer BSQL for | mimexampledb
more information.

dbc Databank check utility. See the chapter
Databank Check Functionality in System
Management Handbook for more
information.

dbfiles Lists the databank files for a database mimdbfiles
server, as stored in the data dictionary.

dbinstall Command used to install a new database, or | mimexampledb
update an existing one.

Mimer SQL Version 11.0
Getting Started on Linux

Command

Function

Used by

dbopen

Opens all user defined databanks at once.
See Chapter 7, Databank Open Function in
System Management Handbook for more
information.

dbuninstall

Command used to remove a database,
including its data files, registrations and
related resources.

esql

Embedded SQL preprocessor. See
Mimer SQL Programmer’s Manual,
Chapter 4, Embedded SQOL for more
information.

exload

Program used to create or delete the
example environment. (L.e.

MUSIC STORE, see
https:/developer.mimer.com/article/the-example-
database/)

dbinstall,
mimexampledb

mimaddpath

Used to add a value to an environment
variable (with duplicate check). The new
definition is displayed — not installed.
Especially used to update the shared library
search path.

(internal use)

mimadmin

Menu-based database server administration
utility.

mimautoset

Switches on/off the automatic server start
and stop functionality or gives the current
state of this interaction with the operating
system.

dbinstall

mimcontrol

Manages database servers. See Chapter 4,
Managing a Database Server in System
Management Handbook for more
information.

dbinstall,
mimadmin,
mimlistdb

mimdbfiles

Lists the databank filenames for a database
server, as stored in the file system. Can also
be used to change the ownership of the
databank files (i.e. the new owner will be
the one that is dedicated to manage the
database server).

In addition, the command can be used for
displaying the database server log and
configuration files.

dbinstall,
dbuninstall,
mimadmin

mimdbserver

A front-end to the mimcontrol and miminfo
programs, used to control and monitor the
database server.

dbinstall,
dbuninstall,
mimadmin,
mimdbfiles

41

https://developer.mimer.com/article/the-example-database/
https://developer.mimer.com/article/the-example-database/

Chapter 4 Development and Example Environments
Linux Commands

Command Function Used by
mimdbvis Installs the DbVisualizer tool bundled with | miminstall,
Mimer SQL. For details on DbVisualizer, mimuninstall
see https://developer.mimer.com/
documentation/dbvisualizer/.
mimdesktop Installs Mimer SQL items into the desktop miminstall,
menu system. (Linux only) mimuninstall
mimdevenv Command used to create a beginner's dbinstall
development environment.
mimdumper Creates or executes the . dumper.shfile for | dbinstall
a database server.
The functionality is used to get detailed
operating system info about the process
where the database server program is
executed, especially in the case of a system
failure.
mimexampledb | Installs the example database environment.
(Invokes the ex1oad program.)
mimexec mimexec command is used to execute a (mainly for
given program and stay attached. This internal use)
command is used internally, especially
when invoking terminal based programs
using icons on the desktop
mimexper The Mimer SQL Experience database server | mimcontrol
program. You start mimexper using the
mimcontrol or mimdbserver commands.
mimhome Displays the home directory for the (mainly for
effective user. Especially used to find internal use)
location for log and tmp files.
mimhosts Program to manage and to do lookup in the | dbinstall,
/etc/sglhosts file. See The sqlhosts file | douninstall,
on page 12 for more information. mimadmin,
mimowner,
mimdbfile,
mimdbserver,
mimdevenv,
mimexampledb,
mimexec
miminetd Command used to administer Mimer SQLin | dbinstall
the operating system Internet services
daemons.
miminfo Program to monitor database servers. See mimadmin

Chapter 4, Managing a Database Server in
System Management Handbook for more
information.

https://developer.mimer.com/documentation/dbvisualizer/
https://developer.mimer.com/documentation/dbvisualizer/

Mimer SQL Version 11.0

Getting Started on Linux
Command Function Used by
miminm Mimer SQL In-memory database server.
miminstall Command delivered with the distribution

TAR file used to unpack and install Mimer
SQL.

mimjdbcver

Displays the version of the JDBC drivers
delivered with Mimer SQL.

mimlicense Used to manage the license keys in mimadmin,
/etc/mimerkey. See Mimer SQL license | miminstall
key on page 9 for more information.

mimlink Used to link Mimer SQL libraries, man miminstall
pages and executables to /usr/1ib,
/usr/man and /usr/bin, respectively.

mimlistdb Lists started database servers. mimadmin,

mimuninstall

mimload A command line front end to the Mimer
SQL Load/Unload functionality.

mimlocation Displays the location of the Mimer SQL (mainly for
installation currently accessed. internal use)

mimmem Lists current limits on memory usage.

mimodbc Program used to administer ODBC data mimodbcadmin,
sources and ODBC drivers (especially mimodbcdm
aimed at the managing iODBC data sources,
see http://www.iodbc.org.)

mimodbcadmin | Menu based ODBC data source and ODBC | dbinstall,
driver administration dbuninstall

mimodbcdm A front-end to the mimodbc program, used | mimodbcadmin
to administer ODBC data sources and
drivers.

mimoomadjust | This command will set, reset or display the | mimdbserver

value of the oom_score adjust setting in
the /proc environment for an executing
Mimer SQL database server process (if
/proc is a maintained structure for the
platform). By using this command to adjust
the setting for a running Mimer SQL
database server, the Linux system OOM
(Out Of Memory) Killer most likely will
select other processes than the database
server to be forced down. The OOM Killer
is a process that the Linux kernel employs
when the system is critically low on
memory. The default value when adjusting
is -999.

43

http://www.iodbc.org

Chapter 4 Development and Example Environments
Linux Commands

Command Function Used by
mimowner Displays the name of the operating system | mimadmin,
user that is dedicated to manage a specific mimdbfiles,
database server. mimdbserver
mimpath Gets the path to databank locations. dbinstall,
dbuninstall,
mimadmin,
mimdbfiles,
mimexampledb,
mimowner
mimperf Used to monitor a running database server.
mimproc Lists various system information for a .dumper . sh
running process.
mimrepadm Program used to administrate the Mimer
SQL replication dictionary.
mimservers Starts/stops all database servers (of current | mimautoset
version) defined in /etc/sqglhosts.
mimsglhosts A front-end to the mimhosts program, used | dbinstall,
to control the database registration file mimadmin
/etc/sglhosts.
mimstatln Used to follow and display the source for a (mainly for
symbolic link. internal use)
mimsync Program used to synchronize replicated
Mimer SQL tables.
mimsysconf Displays the values of various host system
configuration parameters, all related to the
Mimer SQL system performance.
mimtcp Manages TCP port dispatching, i.e.
distributing incoming connect-attempts to
the requested database server.
mimuninstall | Command to uninstall Mimer SQL, if
installed via the tar package.
mimunlink Command used to remove symbolic links mimuninstall
from /usr/bin, /usr/share/man and
/usr/1lib, previously created by the
mimlink command.
mimversion Command used to get the installed Mimer mimadmin,
SQL version. mimodbcadmin
psmdebug PSM debugger, see Mimer SOL

Programmer’s Manual, Chapter 10, The
Mimer SOQL PSM Debugger.

Mimer SQL Version 11.0

Getting Started on Linux

Command Function Used by
repserver The Mimer SQL replication server program. | mimrepadm

See REPSERVER - Replicating the Data in

System Management Handbook.
sdbgen Command used to create the system dbinstall

databanks for Mimer SQL. See SDBGEN -

Generating the System Databanks in System

Management Handbook.

Linux Link Libraries

Library

Description

libmimcomm. so

This is the shared library used when using Mimer JDBC
with local communication, i.e. not via TCP/IP.

libmimdbs. so

This is the shared library used when accessing the database
server in single user mode. It is automatically invoked
when a single user access is identified.

libmimer.so

This shared library contains several of the client interfaces
supported by Mimer SQL, i.e. DBI and ODBC.

libmimerapi.so

This is the shared library for the Mimer SQL C APIL.

libmimerS.so

This is the Mimer setup library used by the unixODBC
Driver Manager GUI interface.

libmimmicroapi.so

This is the shared library for the Mimer SQL C Micro API.

libmimodbc. so

This is the shared library for the Mimer ODBC database
interface when the ODBC client is presuming the
SQLWCHAR data type being 4 bytes.

libmimsgl.so

This shared library contains the Mimer DBI database
interface used for Embedded SQL client applications.

mimjdbc3.jar

This is the jar file to be used when accessing the Mimer
JDBC database interface from a JAVA client using JRE 1.4
or later.

mimsglxa.o

This object file should be linked in when using the XA
functionality.

psmdebug.jar

This is an internal jar file for the PSM Debugger
application.

45

46 Chapter 4 Development and Example Environments
Linux Link Libraries

Index

Index

A

autostart 27

B

BackgroundPriority 28
bsql 35

C

C language API 37

D

database
establishing 17

dbfiles 40

dbinstall 10, 40

dbopen 41

dbuninstall 11, 41

DbVisualizer 38

DEB 4

Debian 8

E

embedded SQL 36
environment variables 39
esql 41

example database 35
exload 41

H

headless package 5
HugePages 27

installing
Mimer SQL 3

J

JDBC 36

L

license key 9

mimaddpath 41
mimadmin 41
mimautoset 27, 41
mimautostart 27
mimcontrol 41
mimdbfiles 41
mimdbserver 41
mimdbvis 42
mimdesktop 42
mimdevenv 42
mimdumper 42
Mimer SQL 1
installing 3
MimerAPI 37
mimexampledb 42
mimexec 42
mimexper 42
mimhome 42
mimhosts 42
miminetd 31, 42
miminfo 42
miminm 43
miminstall 43
mimjdbcver 43
mimlicense 9, 43
mimlink 9, 43
mimlistdb 43
MIMLOAD
command-line arguments 30
syntax 30
mimload 43
mimlocation 43
mimmem 43
mimodbc 43

47

48 Index

mimodbcadmin 43
mimodbcdm 43
mimoomadjust 28, 43
mimowner 44
mimpath 44
mimperf 44
mimproc 44
mimrepadm 44
mimservers 27, 44
mimsqlhosts 12, 44
mimstatln 44
mimsync 44
mimsysconf 44
mimtcp 30, 44
mimuninstall 11, 44
mimunlink 9, 44
mimversion 44
Module SQL 36
multidefs 19

0]

ODBC 37
OOM 43
oom_score_adj 28

P

PDO 6

PHP 38
PHP/PDO 6
psmdebug 44
Python 6, 38

R

repserver 45
RPM 4, 7

S

sdbgen 45
services 30
sqlhosts 12
sudo 4

T

TAR 4, 8
TCP/IP 29

U

Unicode 36, 37

	Getting Started on Linux
	Contents
	Getting Started
	Licensing Mimer SQL
	Documentation
	Command line help and man pages
	Useful links

	Installing Mimer SQL
	It is really simple to get going!
	Why do we need sudo access to install?
	Prerequisites
	System resources
	Physical memory
	Virtual memory

	Environment
	Which components will be installed?
	Additional Python interface
	Additional PHP/PDO interface

	Methods to install
	Using the RPM distribution package
	Using the DEB distribution package
	Using the TAR distribution package

	Running several Mimer SQL versions in parallel
	Mimer SQL license key
	Creating an initial database
	Upgrading an existing database
	Uninstalling the software
	Removing an RPM installation
	Removing a DEB installation
	Removing a TAR installation

	Database registration
	The sqlhosts file
	The sqlhosts file structure
	The default SQLHOSTS file

	The Database Server
	Database server management
	mimadmin
	mimdbserver
	mimcontrol

	Database home directory
	Logging database events
	Configuring a database server
	The multidefs parameter file
	The parameters in multidefs

	Automatic database start and stop
	HugePages
	Using HugePages

	Background Thread Priority
	OOM-killer setup

	Remote database access
	Database TCP/IP connect dispatcher
	The mimtcp command
	Syntax
	Command-line Arguments

	Services setup
	Networking Setup
	inetd setup
	xinetd setup
	Using odbc.ini data sources

	Development and Example Environments
	Database APIs
	Embedded SQL
	Module SQL
	JDBC
	ODBC
	Mimer SQL C API
	Python
	PHP

	Accessing the database
	Setting up and running DbVisualizer
	Running Mimer BSQL and other utilities

	Environment Variables
	Linux Commands
	Linux Link Libraries

	Index

