Mimer SQL

Getting Started on
macOS

Version 11.0

Mimer SQL, Getting Started on macOS, Version 11.0, September 2025
© Copyright Mimer Information Technology AB

The contents of this manual may be printed in limited quantities for use at a Mimer SQL installation site. No parts of the
manual may be reproduced for sale to a third party.

Information in this document is subject to change without notice. All registered names, product names and trademarks of
other companies mentioned in this documentation are used for identification purposes only and are acknowledged as the
property of the respective company. Companies, names and data used in examples herein are fictitious unless otherwise
noted.

Produced and published by Mimer Information Technology AB, Uppsala, Sweden.
Mimer SQL Web Sites:

https://developer.mimer.com
https://www.mimer.com

https://www.mimer.com
https://developer.mimer.com

Contents i

Contents

.. i
Getting Started...........covvinnnn s ——————— 1
Licensing Mimer SQL ... s ssssessssessssessssessssens 1
DocumMeNtation........ccvicicii s ———————— 1
Command line help and Man Pages.........ccuurrrenmsensmrmmesmssesmsssssssess e s ssssssesessssssesens 2
USEFUITINKS ... sessssss s s sss s e s s sns s sessssss s s sessssessssasanes 2
Installing Mimer SQL..........ccocomnnmnmmnnsmmsse s s sesssessssssssees 3
It is really simple to get going! ... ————— 3
Using the Mimer SQL @PPSovvierrieiieeieeei ettt 3

From the Terminal @ppliCation...........c..ccoeueveeeeceeecee e, 4

Why do we need sudo access to install?ccccovrrrncnnscsessssessse s 5
SYSLEM FESOUICEScucucecurrsrrrsssss e sessse s sesess s s s sss e ses s s s s s s s s s srasanas s 5
PhYSICAl MEMOTY ..ottt 5

VU MEMOTY ..ot 5
ENVIronment ... 6
Which components will be installed?..............ccoovveiiceieiiceeeeeece e 6

Running several Mimer SQL versions in parallel..........ccoonmnn, 7
Mimer SQL lICENSE KEY ..o sssssssssssssssssssse s sessssssssssssssssssssssssases 7
Creating an initial database ... —— 8
Upgrading an existing database............ccounmmnm s 9
Uninstalling the SOftWare ... 9
Database registration ... ——————————— 9

THE SQINOSES fIlE ...t 9

The Database SEIVEr ... s 15
Database server management...........covnnnmnnn s ————— 15
MIMAAMIN oottt 15
MIMADSEIVET ..ottt 16

ITHIMCONTION <.ttt e et ettt e s e eeeeeeeeeeee e e eeeeeneeesen e eeeeenenennas 16

Contents

Database home direCtory ... —————— 16
Logging database events ... 16
Configuring a database SErver ... ———— 17
The multidefs parameter file ... 17
Automatic database start and Stopcocvvveieirne s 23
Remote database aCCess........cmmninnnn s 24
Database TCP/IP connect dispatCher ..., 24

The mimtcp COMMANG ..o 24
SEIVICES SEIUP w..o.oveveceeiec ettt 25
NEWOTKING SEIUP ..o 25
UsiNg 0dDC.INI AL SOUMCES..........ccururreireeiieeise it 26
Development and Example Environments.........ccccccvrieverrscrennscenesseenennns 29
Database APIS ... ———- 30
EMbedded SQL ..ot 30
MOAUIE SQUL ... e 30
UDBC.o s 30
ODBU ... oottt 31
MIMEr SQL C APLL.......oioieeereee st 31
PYHNON ...t 32
PHP s 32
Accessing the database ... ————— 32
Setting up and running DBVISUANZETcoveceveeiseeeece e 32
Running Mimer BSQL and other Uilities ... 33
Environment Variables ... ssssnns 33
MACOS COMMANGSceverrrrirrrirse s s s sr s s s 35
MACOS Link Libraries ... ssssssssss s sesssssssssssssssens 39

Mimer SQL Version 11.0 1
Getting Started on macOS

Chapter 1
Getting Started

Welcome to Mimer SQL. This document describes how to install and set-up Mimer SQL
on macOS. To get the most out of this document, you should be familiar with your macOS
environment and know how to use the various macOS system tools, especially using the
Terminal command line tool.

Mimer SQL provides small footprint, scalable and robust relational database solutions
that conform to international ISO SQL standards. Due to its structural modularity, it is
very well suited for high performance mission critical systems as well as for mobile and
embedded appliances. In addition, Mimer SQL is equipped with an extensive multilingual
support using collations.

Licensing Mimer SQL

When you install Mimer SQL, a default development edition license key is installed. This
license key is limited in number of users and thus several features, including the
DbVisualizer tool, may run into problems saying ‘Number of users exceeded’. A
customized license key can be received for free, either it will come separately along with
the installation, or it can be ordered from the Mimer SQL Support desk
(info@mimer.com).

If you want to use Mimer SQL for any purpose other than development, you must
purchase a commercial license. Contact your Mimer SQL distributor,
https://www.mimer.com/contactus/, to purchase the license you require. Your new license key
will be sent to you via e-mail. You apply the new license key by using the mimlicense
tool in the installation.

Documentation

The Mimer SOQL Documentation Set, Mimer JDBC Driver Guide, Mimer SQL Release
Notes, and Mimer SQL Getting Started on macOS are available in the installation.

The Mimer SQL documentation set includes the following:
. SQOL Reference Manual

. Programmer's Manual

. System Management Handbook

. User's Manual

The documentation mentioned, except for the Release Notes, are also available on the
Mimer SQL Documentation site, https:/docs.mimer.com/.

https://www.mimer.com/contactus/
https://docs.mimer.com/

2 Chapter 1 Getting Started
Command line help and man pages

Command line help and man pages

For each command provided within the Mimer SQL installation, the options "-?" or
--help can be used to retrieve a basic help text.

In addition, man pages are included in your Mimer SQL distribution. There are man pages
for all commands available and for various configuration files, such as sqlhosts and
multidefs. For general information about Mimer SQL, read the mimersgl man page.
Man pages are usually installed automatically at /usr/local/share/man when
installing Mimer SQL.

Refer to the information provided by your operating system manufacturer concerning the
macOS man and manpath commands.

Useful links

The Mimer SQL Developer Site contains lots of useful information, like FAQ's, Howto's
and articles: https:/developer.mimer.com.

All manuals for Mimer SQL are gathered at https://docs.mimer.com.

For general information on Mimer SQL, please see https://www.mimer.com.

https://developer.mimer.com
https://docs.mimer.com
https://www.mimer.com

Mimer SQL Version 11.0
Getting Started on macOS

Chapter 2

Installing Mimer
SQL

The Mimer SQL software installation on macOS is expected to be completed in less than
a minute, and creating the initial data dictionary and starting the database server will only
take just a little longer.

Download a distribution package from https://developer.mimer.com/downloads and follow the
instructions given below. The Mimer SQL distribution is provided as a PKG package file.
It’s a Universal Binary installation, i.e. it contains executables that run natively on both
Apple silicon and Intel-based Mac computers.

It is really simple to get going!

To get up-and-running with Mimer SQL is usually made in a minute or two. Here is a
quick step-by-step instruction using a sample macOS distribution package. The details
will be given in the following sections.

You can either use the installed apps to get going, see Using the Mimer SQL apps on
page 3, or via the macOS Terminal application, see From the Terminal application on
page 4.

Using the Mimer SQL apps

1 Download package
Download Mimer SQL for macOS from https://developer.mimer.com/products/downloads/.

2 Install the package

Install Mimer SQL by double-clicking the downloaded .pkg file, using the Apple
Installer.

3 Create a database

Openthe Mimer SQL Database Install application, obtained when installing Mimer
SQL.

4 Control the database

Use the application Mimer SQL Database Admin to control the created Mimer SQL
database.

https://developer.mimer.com/downloads
https://developer.mimer.com/products/downloads/

4

Chapter 2 Installing Mimer SQL
It is really simple to get going!

5 Access the database

Use the provided DbVisualizer app for database access. For example, if the example
environment was chosen to be installed, connect to the database using the ident
MIMER_STORE with password ‘GoodiesRUs"’.

From the Terminal application

1 Download package
Download Mimer SQL for macOS from https://developer.mimer.com/products/downloads/.

2 Install the package

From the Terminal application, usually located in the Utilities folder, the distribution
package can be installed as follows:

$ sudo installer -pkg mimersqlll07-11.0.7F-41154 macosxi 64.pkg -target /
Password:

installer: Package name is Mimer SQL

installer: Installing at base path /

installer: The install was successful.

$

3 Create a database

Run dbinstall to create the initial Mimer SQL database named ‘testdb’. Specify -e to
include an example environment:

dbinstall -e testdb

4 Control the database

Verify the database server status by using the Mimer SQL administration tool mimadmin,
which can be used to control the database:

mimadmin testdb

5 Access the database

From the Terminal application, use bsqgl to access the database and the example
environment as follows, using the ident MIMER _STORE with password ‘GoodiesRUs’:

bsgl testdb

Mimer SQL Command Line Utility Version 11.0.6C Beta Test
Copyright (C) Mimer Information Technology AB. All rights reserved.

Username: mimer store
Password:

SQL>select * from categories;
category id category

1 Music
2 Books
3 Video

3 rows found

SQL>exit;
#

https://developer.mimer.com/products/downloads/

Mimer SQL Version 11.0
Getting Started on macOS

Why do we need sudo access to install?

To provide for a complete and proper easy-to-use installation, the procedure when
installing Mimer SQL is doing all needed installation actions automatically. This includes
updates to operating system locations, such as /usr/local/bin, /usr/local/lib
and /etc. For example, the following tasks are handled:

. TCP/IP settings for Mimer SQL client/server access (using the 1aunchd daemon
with
/Library/LaunchDaemons/com.mimer .mimersqlPortListen.plist)

. autostart settings for Mimer SQL databases (using the 1aunchd daemon with
/Library/LaunchDaemons/com.mimer . .mimersqlAutoStartll.plist)

. desktop menu items
. system wide Mimer SQL database catalog (/etc/sglhosts)

. system wide ODBC data source catalog (typically /etc/odbc.ini and
/etc/odbcinst.ini)

. system wide Mimer SQL man-page setup (/usr/man, or
/usr/local/share/man)

. easy access for Mimer SQL programs and libraries (/usr/local/bin and
/usr/local/lib)

To achieve this, the installation requires sudo access (administration authority), or it has
to be executed as root.

System resources

On an x86-64 based computer, at least macOS 10.15 (Catalina) has to be used.
On an ARM based computer, at least macOS 11.0 (Big Sur) has to be used.

Physical memory

The amount of physical memory used by the database server process is determined by
parameters in the local database definition, whose initial default values are determined by
looking at the amount of installed memory.

See The multidefs parameter file on page 17 for further details.

Also see the chapter Managing a database server in the Mimer SQL System Management
Handbook, for the use of system resources.

Virtual memory

The amount of virtual memory that the database server process can use is limited by the
operating system.

6 Chapter 2 Installing Mimer SQL

Environment

Environment

Which components will be installed?

The complete Mimer SQL distribution contains the following:

Tools, libraries, examples, man-pages, etc.
A complete documentation set in PDF format.

An ODBC Driver, available in the 1ibmimodbc shared library - see the chapter
Mimer SQL and the ODBC API, in Programmer’s Manual. This driver can be used
for direct access to a Mimer SQL database, or it can be used with a third party
ODBC Driver Manager, for example unixODBC or iODBC.

A JDBC Diriver, type-4, written in 100% Java - see the chapter Mimer SQOL and the
JDBC API, in Programmer’s Manual.

Various other database API’s, like Embedded SQL, Module SQL and a native
Mimer C API.

GUI application for database installation, called Mimer SQL Database Install.
GUI application for database administration, called Mimer SQL Database Admin.
GUI application for database access and interaction, called DbVisualizer.

GUI application for the PSM debugger.

The default installation location is /opt, where a sub directory named according to the
package is created. For example, if Mimer SQL 11.0.0A is installed, an installation path
like /opt/mimersql1100-11.0.0A is used. This Mimer SQL main installation
directory then contains the following sub directories:

bin - contains Mimer SQL tools, and other executable files.
doc - contains Mimer SQL documentation.
examples - contains example files.

include - contains various header files that may be needed when developing with
Mimer SQL.

1ib - contains library files.
man - contains Mimer SQL man pages.

misc - contains various additional files, like desktop menu system resources.

Additional Python interface

The Python interface towards Mimer SQL is downloaded and installed separately using
the following command:

python -m pip install mimerpy

Additional PHP/PDO interface
Read about the details of the PHP/PDO interface to Mimer SQL in the article PDO Driver
Sfor Mimer SQL, located as hitps:/developer.mimer.com/article/mimer-sql-driver-for-pdo/.

https://developer.mimer.com/article/mimer-sql-driver-for-pdo/

Mimer SQL Version 11.0
Getting Started on macOS

Running several Mimer SQL versions in parallel

If it is desirable to run two or more Mimer SQL versions in parallel on a host computer,
this is fully feasible, but it requires a system knowledge and may involve manual
measures. Be sure to do a proper setup of related environment variables to point to the
version currently targeted, see Environment Variables on page 33.

Mimer SQL license key

To start the installed database server and to establish connections to the database, a
license key is required. A key valid for development and evaluation only is included in
the Mimer SQL distribution. This key is usually installed automatically during
installation of the Mimer SQL package.

Whenever a user connects to a Mimer SQL database, the computer identification and the
license key will be checked by the database server to determine access rights. If access is
denied, the connect attempt will be aborted and an error message will be shown.

The Mimer SQL license key contains the following (encrypted) information:

. The maximum number of users that may use the database servers running on the
same computer node at any one time.

. The maximum number of network users that may use the database servers running
on the same computer node at any one time.

. The functionality modules which the key is valid for.

. The ID of the computer (in the case of a specific key) or a lifeboat key which is
valid for any computer of the platform type for which it was issued (e.g. any
macOS machine).

. Version number.
. Expiration date for the key.
The key data is case insensitive and space characters are ignored.

The mimlicense application is used to administrate the license key file. See
MIMLICENSE - Managing the license key in System Management Handbook for
information on how to use it. The following command will list the licenses installed:

mimlicense -1
As mentioned above, for a production system a commercial license is required. A new key

will also be needed if the key expires, if the number of Mimer SQL users is increased or
if new Mimer SQL functionality is added.

The Mimer SQL license key is provided by your Mimer SQL distributor. In order to be
able to generate the key, your Mimer SQL distributor must know the ID of the computer
on which the database server will run.

The ID of a macOS machine is obtained by using the following command:

mimlicense -i

8

Chapter 2 Installing Mimer SQL
Creating an initial database

Creating an initial database

Once the software is installed, the next step is to build a Mimer SQL database by using
the dbinstall command. (On macOS there is also a GUI frontend application for the
dbinstall command, named Mimer SQL Database Install. Here follows the description
of the command line command.)

As mentioned before, the dbinstall command requires sudo access, or must be
executed by root. If not started from a privileged shell sudo password will be asked for:

dbinstall [<database name>]

If a database name is given, the dbinstall session is completed with default settings used
as far as possible. Otherwise, during the dbinstall session, database name, database
location, and password for the database administrator (i.e. SYSADM) will be asked for.
There will also be options for installing example environments, etc. When the session is
completed, a fully operational database is available - enabled for client/server access over
TCP and automatic start at reboot.

Note: dbinstall creates all system databank files in the given database server
home directory. In a production system it is recommended that the SYSDB,
TRANSDB and LOGDB files are located on separate disks due to performance
and reliability reasons. You can read more about this in the Mimer SQL System
Management Handbook part of the Mimer SOQL Documentation Set (found at
the Documentation page).

Once the database is up and running it may be of interest to provide for remote access. To
achieve this the database should be registered as a REMOTE on each node in the network
from which it is to be accessed - see more on database registration below.

Now the database is ready for data storage, creating a storage structure built on idents and
data objects using the data definition statements in Mimer SQL. See the article The
Example Database, located as https://developer.mimer.com/article/the-example-database/, for an
example on using various database elements.

To summarize, the dbinstall command performs all necessary installation steps to
create an initial database and getting it up and running. The options available in
dbinstall give opportunities to control and carry out the following:

. Deciding a database home directory

. Registering the database

. Deciding the SYSADM password

. Creating the system databanks, including the data dictionary
. Deciding owner of the database

. Setting up the networking environment

. Setting up autostart procedure

. Setting up a data source definition for ODBC use

. Creating an example database

. Creating a basic development setup with a user that has an OS_USER login (see
the Mimer SQL Reference Manual for details)

. Creating the default database configuration file

. Starting the database created

https://developer.mimer.com/article/the-example-database/

Mimer SQL Version 11.0
Getting Started on macOS

Many of these tasks are described in a more general and detailed manner further on in this
document.

Upgrading an existing database

If you are upgrading an existing database from an earlier version of Mimer SQL, please
see the Mimer SQL Release Notes for detailed information. The Release Notes document
is provided within each Mimer SQL distribution package. In short the steps are as
follows:

1 Install the new Mimer SQL version in parallel with your existing Mimer SQL.
2 Stop the database.

3 Make sure the new Mimer SQL version is the one accessed, and run the
sdbgen -u database command from the new Mimer SQL version.

4 Start the database with the database server program from the new Mimer SQL
version.

Uninstalling the software

What happens to the databases?

The commands described below will remove the given software installation, but any
databases using the installation will remain intact. Since databases may contain valuable
data, the removal of databank files is not performed unless an explicit call to
dbuninstall, specifying removal of data, is done.

If a database, and its databank files, is going to be removed, use the dbuninstall
command. When executed, a question will be raised asking if specified database should
be removed, i.e. permanently deleted.

dbuninstall <database name>

Database registration

The sqlhosts file

The database registration file is used to list all the databases that are accessible to a Mimer
SQL application from the node on which it resides. All users must have read access to the
sqlhosts file on the machine they are using in order to run applications and utilities
accessing Mimer SQL databases. The standard location for this file is /etc/sglhosts.
By using the environment variable name MIMER SQLHOSTS, another file can be used.

In a network environment, the name of a database must be registered on each node from
which it is to be accessed. A database is created as a local database on the node where it
resides, and it is defined as a remote database on each other node in the network from
which access to it is required. For general information on how to make databases
accessible, refer to Registering the Database in System Management Handbook.

The program mimsglhosts can be used to manage the contents of the local sqlhosts file
instead of editing it manually. To list the complete content of the sqlhosts file, simply use
the following command:

mimsglhosts

10

Chapter 2 Installing Mimer SQL
Database registration

When the dbinstall command is used to install a local database, an entry for it is
automatically added to the LOCAL section of the sqlhosts file on that node, see LOCAL
section on page 12.

If the file is not found, a default sqlhosts file is automatically generated. (See the
mimsglhosts and sglhosts man-pages).

The sqlhosts file structure

The SQLHOSTS file contains three sections; DEFAULT, LOCAL and REMOTE.

The names of the local databases on the current node are listed in the LOCAL section, see
LOCAL section on page 12, and the names of the remote databases accessible from the
node are listed in the REMOTE section, see REMOTE section on page 12.

One of the local or remote databases can be set to be the default database for the node by
specifying its name in the DEFAULT section, see DEFAULT section on page 12.

Database names may, in general, be up to 128 characters long and are case-insensitive.

A line of text beginning with the character sequence -- is interpreted as a comment in the
sqlhosts file.

Mimer SQL Version 11.0 1"
Getting Started on macOS

The default SQLHOSTS file

When the first Mimer SQL system is installed on a node, the following default sqlhosts
file is automatically generated:

-— This file contains a list of all databases, local and remote, accessible
-- from the node where the file resides.

-- The DEFAULT label

-- Name of default database. Can be either a REMOTE or LOCAL database name.
-- Can be overridden by setting MIMER DATABASE to the name of a database.

-- The LOCAL label

-- A list of all local databases on the current node, containing the

-- database name and a directory specification (Path).

-- UNIX Path - database home, and directory path for databank lookup.
-- VMS Path - database home.

-- The REMOTE label

-- A list of all remote databases containing the database name, the database
-- node, the protocol to be used, the protocol interface and the protocol

-- service to be used.

-- Protocol, Interface and Service may be defaulted by entering ''.

-- Node - network node name for computer on which the database resides.
-- Protocol - currently tcp is supported. (tcp or '' should be specified)
-- Interface - currently not used ('' should be specified).

-- Service - corresponds to the port number used in TCP/IP. The port number

-- Default is 1360, i.e. the port number reserved for MIMER.
-= On UNIX: The port number may either be a number or a name of a
- service stored in the /etc/services file.

DEFAULT:

-- Database

example localdb

LOCAL:

-- Database Path

SINGLE .
example localdb /directory

REMOTE :

-- Database Node Protocol Interface Service

example remotedb server nodename v v 1360

12

Chapter 2 Installing Mimer SQL
Database registration

DEFAULT section

The DEFAULT section contains a single line that specifies the default database which
will be used by a Mimer SQL application or command that does not explicitly specify a
database to connect to, see The Default Database section in System Management
Handbook.

The default database should be one of those listed in the LOCAL or REMOTE sections.
If defining the MIMER DATABASE environment variable, that setting usually overrides the
DEFAULT setting in the sqlhosts file.

LOCAL section

The LOCAL section contains a list of all the local databases residing on the current
machine, see The Local Database section in System Management Handbook.

Each line under the LOCAL keyword should contain two fields, separated by one or more
blanks or tab characters. The first field specifies the database name, and the second
specifies the location.

The location field is usually a single directory path, referred to as the database home
directory. But, it may also be a colon (:) separated search path specification, where each
directory included in the path list can hold databank files for the Mimer SQL database
server. In that case the first directory in the search path is taken as the database home
directory and the other directories in the search path will be used to locate databank files
which have a file specification stored in the data dictionary without an explicit directory.

Using a path list is one way to arrange for having databank files on separate disks for
optimal performance and reliability - see the System Management Handbook.

REMOTE section

The REMOTE section contains a list of all accessible databases that reside on other nodes
in the network environment, see the section Accessing a Database Remotely in System
Management Handbook.

Access to these databases is provided by using TCP/IP to establish a client/server
connection to the remote machine.

Each entry in the REMOTE section contains up to five fields, separated by spaces and/or
tab characters.

The DATABASE field specifies the name of the remote database.

The NODE field should specify the network node name of the remote machine. If the
TCP/IP interface is used, the [P address may be specified here.

The PROTOCOL field should specify tcp or two single quotation marks ' '.

The INTERFACE field is currently not used. Specify ' ' (two single quotation marks)
here.

Ifusing TCP/IP, the SERVICE field specifies the TCP/IP port number the database server
uses. The default is 1360, which has been reserved by Mimer Information Technology
AB for Mimer SQL client/server communication.

When TCP/IP is used, the value in the SERVICE field may be the actual port number, the
name of a service stored in the /etc/services file or two single quotation marks '’
for the default value 1360.

Mimer SQL Version 11.0
Getting Started on macOS

The remote section parameters are summarized below, depending on the protocol

selected. The character sequence ' ' is two single quotation marks, and specifies the
default value for a parameter:

Parameter Explanation

DATABASE Remote database name

NODE TCP/IP node name or IP number

PROTOCOL "', TCP or tcp

INTERFACE ' (two single quotation marks)

SERVICE TCP/IP_port_number, TCP/IP service nameor ' '.(When '
is used to specify the default SERVICE, the TCP/IP port
number 1360 will be used.)

14 Chapter 2 Installing Mimer SQL
Database registration

Mimer SQL Version 11.0
Getting Started on macOS

Chapter 3

The Database
Server

The Mimer SQL database server is a single, multi-threaded process with SMP scalability.
Clients using TCP/IP can access the server. For clients running on the same platform, a
shared-memory based communication method is used, usually called ‘local
communication’.

The standard Mimer SQL database server program is named mimexper (there is also an
in-memory database server available named miminm). When running the dbinstall
command, the database server is automatically created and started - ready for duty.

On macOS there also is a specific GUI application provided to handle the database
administration from the computer desktop. This is the Mimer SQL Database Admin app.

Database server management

The database server is usually controlled using the mimadmin command, the
mimdbserver command or the mimcontrol command.

mimadmin

This is a menu based front-end tool involving different sub-commands to do various
database server administration, like;

. Controlling a database server

. Monitoring a database server

. Managing database server registration
. List started database servers

. List installed license keys

The mimadmin command is used as follows:

mimadmin [database]

If the database name is omitted, the setting of the MIMER DATABASE environment
variable is used. fMIMER DATABASE isn’t defined, the database in the default section of
the /etc/sglhosts file is used.

See the mimadmin man-page for details.

16

Chapter 3 The Database Server
Database home directory

mimdbserver

This is a command line based front-end tool involving different sub-commands. It
handles the following operations:

. Controlling a database server
. Monitoring a database server

As an example, to manually start the database server, use the command as follows:

mimdbserver -s [database]

If the database name is omitted, the setting of the MIMER DATABASE environment
variable is used. If MIMER DATABASE is not defined, the database in the default section
of the /etc/sglhosts file is used.

See the mimdbserver man-page for details.

mimcontrol

The two commands described just above are front-end tools involving other commands.
As can be seen in macOS Commands on page 35, there are many commands that can be
used on their own to administer the database system. For example, the bottom-line tool
for controlling a database server is the mimcontrol command.

As an example, to stop the database server program, use the following command:

mimcontrol -t [database]

If the database name is omitted, the setting of the MIMER DATABASE environment
variable is used. If the database name is omitted and the MIMER DATABASE is not defined,
the command will not work.

See the mimcontrol man-page for details.

Database home directory

The database home directory is the catalog where the SYSDB system databank file
resides. This path is registered in the sqlhosts file, usually located as /etc/sglhosts.
By using the environment variable MIMER SQLHOSTS, another file can be pointed out as
being the sqlhosts file.

The database home directory can be located using the following command:

mimpath <database name>

The Mimer SQL system databank SYSDB file will be located in the database home
directory and other databanks will typically be located relative to it, see Locating
Databank Files in System Management Handbook.

Logging database events

Database events are written to the mimer.log file, located in the database home directory.

The following command can be used to list the log-file:

mimdbfiles -L <database name>

Mimer SQL Version 11.0
Getting Started on macOS

Configuring a database server

The configuration file for an installed Mimer SQL database server is named multidefs
and is located in the database home directory.

The content of the configuration file can be seen by using the command:

mimdbfiles -C <database name>

The multidefs parameter file

The multidefs file holds the parameters adjustable for a database server. It is
automatically created when creating the database using the dbinstall command. A
default setup is made, but further configurations can be made manually if needed. Refer
to the Mimer SQL System Management Handbook or open a discussion with Mimer SQL
support representative.

If the multidefs file is not found when starting a database server, a new file will be
created using the default values for all parameters. The actual default values used may
vary and may depend on factors like machine type and the amount of physical memory
available on the machine.

Themultidefs settings can be modified after the database is created, and will be taken
into account at the next server startup.

The following is an example of a default multidefs parameter file:

-- Mimer SQL version 11.0.7F Beta Test parameters generated 2023-03-17 00:01
Databanks 100 # Max # of databanks (20-1000)

Tables 4000 # Max # of tables (500-1000000)

ActTrans 20000 # Max # of active trans (500-1000000)

SQLPool 1000 # Initial SQLPool (400-8388607 kB)

RequestThreads 8 # # of request threads (1-100)

BackgroundThreads 3 # # of background threads (1-100)

TcFlushThreads 1 # # of t-cache flush threads (0-20)

Users 100 # Max # of logged in users (1-5000)

DBCheck 1 # DB check [0=index, 1l=all, 2=immediate,
3=im. index, 4=im. all] (0-4)

Pages4K 203347 # # of 4K bufferpool pages (11-2147480000)

Pages32K 18465 # # of 32K bufferpool pages (7-2147480000)

Pagesl28K 2151 # # of 128K bufferpool pages (0-2147480000)

DelayedCommit 0 # Delayed commit [0=0ff, 1=0On, 2=Disabled]
(0-2)

DelayedCommitTimeout 100 # Delayed commit timeout in milliseconds
(0-60000)

GroupCommitTimeout 2 # Group commit timeout in milliseconds (0-20)

Oper # Receivers for messages

DumpPath . # Path for dump directory

TCPPort inetd # TCP/IP port

MaxSQLPool 216000 # SQLPool max size (2400-16777215 kB)

NetworkEncryption 1 # Client/server encryption [0=0ff,

1=Optional, 2=Required] (0-2)

MemLock 0 # Lock bpool in memory [0=0ff, 1=0On] (0-1)

MiniDump 1 # Small bufferpool dump (no page content)
[0=0ff, 1=0On] (0-1)

BackgroundPriority O # Thread priority [0=0ff, 1=On] (0-1)

AutoStart 1 # Autostart [0=0ff, 1=0On] (0-1)

DumpScript ./.dumper.sh $p # Dump Script

IOQueue 1024 # Max # of concurrent I/O requests (0-65535)

ServerType 3 # Server type [3=mimexper, 7=miminm] (3-7)

Comments in the file are introduced by the character sequence --, or by the character !
or #.

17

18 Chapter 3 The Database Server
Configuring a database server

A new multidefs file can also be generated manually. If no multidefs file is located in the
database home directory, the following command will generate a new one, having the
default values:

mimdbserver -g <database name>

The parameters in multidefs

Parameter Definition

Databanks Specifies the maximum number of databank files that
the database server can have open at any one time.

Tables Specifies the maximum number of tables that can be
accessed simultaneously by the database server.

ActTrans Specifies the maximum number of transactions that can
be active in the database server

SQLPool Initial size of the SQLPool area in K bytes. This area
contains information about each session, i.e. opened
tables and databanks, compiled SQL programs, etc. The
SQLPool area will expand automatically if it is too
small, but it will not be larger than MaxSQLPool.

RequestThreads The number of threads in the database server that can
serve client requests.

BackgroundThreads The number of background threads in the database
Server.
TcFlushThreads Extra threads that run in the background to help clear

the transaction cache. This is beneficial for systems
with long-running transactions. The thread keeps the
size of the transaction cache down by deleting records
that are no longer used.

When there are no long running transactions the cache
can be cleared efficiently without scanning the cache so
in this case the thread is not needed. Default is 1 thread.

To get the same behavior as in Mimer SQL version
10.0, specify 0 threads for this parameter. For very large
databases with long-running transactions more than 1
thread can be used.

Users The maximum number of users that are allowed to
connect to the database server. This parameter should
not exceed the number of users specified in the Mimer
SQL license key. This number is also used to calculate
the size of the shared memory region used for local
database server communication. About 70 Kbytes of
shared memory will be allocated for each user.

Mimer SQL Version 11.0
Getting Started on macOS

DBCheck

A number which specifies what kind of check that
should be performed when a databank is opened which
previously was not closed properly.

0 - check index pages

Index pages only are checked in the foreground
while applications that access the databank waits
for the operation to complete.

1 - check data pages

A full databank check (involving index and data
pages) provides for more secure operations, but
may take much longer to execute than an index
page check. When a full check is done, the index
pages are checked in the foreground and the data
pages are checked in the background so there is a
smaller effect on performance.

2 - Inmediate restart, no check

This option performs no checking when the file is
opened. The system still verifies the integrity of
each page through a checksum. A few pages may
have been pre-allocated and these are not
reclaimed when this option is used. If the option is
subsequently changed these pages will be
reclaimed the next time the databank is opened.

3 - Inmediate restart, check index pages

This option performs a check of all index pages in
the databank in the background. This is done
concurrently with other operations on the system.

4 - Immediate restart, check all pages

This option performs a check of all pages in the
databank in the background. This is done
concurrently with other operations on the system.

The Immediate restart options require a license
key module called ‘Imm Restart’. Databank
checks can be avoided by always shutting down
the database server properly with the
mimcontrol/mimdbserver command,
especially prior to shutting down the machine.

Pages4K

The number of 4 Kbytes pages in the bufferpool area
containing pages from the databank files. The default
value of this parameter is 12.5% of the total RAM

memory in the machine.

19

20 Chapter 3 The Database Server
Configuring a database server

Pages32K

The number of 32 Kbytes pages in the bufferpool area
containing pages from the databank files. The default
value of this parameter is 8.33% of the total RAM
memory in the machine.

Pagesl28K

The number of 128 Kbytes pages in the bufferpool area
containing pages from the databank files. The default
value of this parameter is 5% of the total RAM memory
in the machine.

DelayedCommit

This option controls how quickly a transaction commit
is secured on disk. It greatly affects the performance of
the database server. For example, if a single user
commits two transactions in quick sequence the
database server may use a single I/O to secure both
transactions when delayed commit is on. Transactions
are never reordered by using the delayed commit
option. L.e. it is not possible for a later transaction to be
secured on disk before an earlier one. The database is
thus always returned to a consistent state after a
machine crash. However, if a transaction has been
committed but not yet written to disk it will be lost if the
database server or machine goes down in an
uncontrolled fashion. Transactions that use the XA
transaction protocol are automatically committed with
delay commit disabled. The delayed commit option can
be set to one of the following:

0 - Default off

In this mode delayed commit is not used unless a
transaction is set to use delayed commit by the
application. This is the default.

1 - Default on

In this mode all transactions where the delay mode
has not been explicitly set are delayed. The
transaction will be secured within the time-out
period specified. If other transactions are
committed before the time-out occurs the
transactions may be combined into a single I/O to
boost performance.

2 - Disabled

In this mode all transactions are secured to disk
immediately and the application will not regain
control after a commit until the transaction has
been secured. This option overrides any
application settings for delay commit.

Mimer SQL Version 11.0
Getting Started on macOS

DelayedCommitTimeout

This specifies the number of milliseconds to wait before
the transaction is written to disk. If a value of zero is
specified transactions are not flushed until the server
determines that the commit set page is full. In general,
this is not recommended as transactions are likely to be
lost if there is an uncontrolled machine stop. Default is
100 milliseconds.

GroupCommitTimeout

How many milliseconds to wait for other transactions
to commit before proceeding with first transaction. If
another transaction arrives within the timeout period if
will be grouped with existing transactions before they
are committed together with a single 1/O rather. This
improves overall performance but the delay prolongs
commits time on a system with low load. Default is one
millisecond.

Oper

This parameter gives a list of host system users, i.e.
operators, or e-mail addresses that should receive e-mail
notification of serious problems with the database
Server.

DumpPath

This parameter may specify an alternate path for the
dump directories. The default is to create dump
directories under the database home directory.

TCPPort

Specifies how the database server should handle
incoming TCP/IP connection requests. If this parameter
is set to - (a single dash), the TCP/IP capability will be
disabled for the database server. The TCPPort
parameter is, by default, set to inetd - which means
that the TCP/IP port server program, mimtcp, will be
used for establishing a connection to any Mimer SQL
database server (of version 8 and later). In this case
clients may connect to the port to which mimtcp listens,
usually 1360, and the handshake will be passed over to
the requested Mimer SQL database server. If a TCP/IP
port number is specified, the database server will listen
directly to that port.

MaxSQLPool

The maximum size (in kilobytes) of the SQLPool. The
SQLPool memory area grows dynamically, but the size
will never exceed this parameter. Use this parameter to
control the maximum virtual size (maximum page file
usage) for the database server process.

21

22

Chapter 3 The Database Server
Configuring a database server

NetworkEncryption

Controls the use of encryption of network
communication over TCP/IP between server and
clients.

0 = Network encryption disabled

Network encryption is not supported or not used.

1 = Network encryption preferred

Network encryption is enabled for version 11
clients. Older clients use unencrypted network
communication. When this setting is used, older
clients without support for network encryption are
allowed to communicate with the database server
over TCP/IP.

Use this option when there is a mix of older and
newer clients that communicate with the database
server over TCP/IP.

This is the default value.

2 = Network encryption required

The database server requires all clients to use
encrypted communication when communicating
over TCP/IP.

Clients that do not support encryption are rejected
at login with error code -18531.

This option is recommended over option 1 when
possible (i.e. when there are no older clients that
need to be supported.)

MemLock A number which specifies whether the bufferpool and
communication buffers should be locked in memory (1)
or not locked in memory (0).

Minidump Small bufferpool dump (no page content), if enabled.

BackgroundPriority

Specifies if the background threads should run at a
higher priority than other server threads. During certain
circumstances like in situations where the background
threads cannot manage to shorten a transaction queue
this can be an alternative.

AutoStart

By default, this parameter is set to 1 which indicates that
the database should be started automatically when the
operating system goes into multi-user mode.

If the parameter is set to 0 the database will not be
started automatically at a computer restart.

Mimer SQL Version 11.0
Getting Started on macOS

DumpScript If the database server goes into an erroneous and
unrecoverable state, it will produce dumps of the
current internal database structures before it goes down.
If this situation occurs, it is of great importance for the
error detection process to get a macOS kernel stack
trace from the location where the error was located.

By defining this parameter to a command that can
produce a kernel trace stack information will be
automatically generated to mimer.log.

The %p option used in the example setting in the
beginning of this section, is used to get the current
process ID as a parameter to the command given.

I0Queue Specifies the maximum number of concurrent 1O
requests queued to the operating system. Default is
1024, but more advanced disk systems such as SAN’s,
battery backed caching 1O controllers, PCI Express
connected SSD’s and NVMe SSD’s can make use of
larger queues. This can give a significantly higher
database performance, but specifying a too large queue
can overload the 10 subsystems. Maximum queue
length is 65535.

ServerType This option decides which Mimer SQL database server
program that should be started to operate the database
files for the database:
3 - mimexper

The Mimer SQL Experience database server. This

is the standard database server.

7- miminm

The Mimer SQL In-memory database server.

Automatic database start and stop

When Mimer SQL is installed, autostart is automatically enabled. The mimservers
program will start or stop all local Mimer SQL v11.0 servers defined in the sqlhosts file.
The setup is done by using the mimautoset command, invoked during installation. For
details, see the man-page for mimautostart. To exclude a server from the automatic
start/stop procedure, set the AutoStart parameter in the multidefs file for that server to
0. To see the autostart installation made, the following command can be used:

mimautoset -1lv

The mimservers command is used to manage all database servers installed. The
following command will list the state for all database servers:

mimservers -Db

23

24 Chapter 3 The Database Server
Remote database access

Remote database access

Database TCP/IP connect dispatcher

When a Mimer SQL database is created using the dbinstall command the definitions
needed for remote access to the database is installed automatically.

When the setup is made, the mimtcp command is invoked by the operating system when
an incoming Mimer SQL database connection request is identified on the target TCP/IP
port. It finds out the database name in the handshake message and redirects the connection
to the target database using the registered information in /etc/sglhosts.

To see the setup made, the following command can be used:

miminetd -1

Note: It is possible to let a Mimer SQL database server listen directly to a TCP/IP
port, i.e. not using the mimtcp redirecting function. This is achieved by
changing the TCPPort parameter in the multidefs file from the default inetd
value to the actual port number used, usually 1360.

The mimtcp command

The mimtcp command is used to handle the handshake between a remote client and a
database server. It should be used with, and be invoked by, an Internet Service Daemon -
see Networking Setup on page 25.

Syntax
The overall syntax for MIMTCP is:
mimtcp [-1 [-f filename]
mimtcp [--log [--file filename]
mimtcp [-v]|--version] | [-?|--help]

Command-line Arguments
You can use the following arguments with MIMLOAD.

Argument Function

-1 Enable logging.

--log

-f file Define a log file.
--filename=file

-v Display version information.
--version

-2 Show help text.

--help

Mimer SQL Version 11.0 25
Getting Started on macOS

If mimtcp is used without any option, no logging is performed by the program. If a string
value is given in addition to the -1 option, that value will be used as the log file. If the -1
option is used without a value, the filename mimtcp . 1og will be used that will end up in
the root home folder under a sub directory called .mimer log.

The following example will start mimtcp with logging using the default log file, located
in ~/.mimer log/mimtcp.log:

mimtcp -1

Services setup

The /etc/services file holds the Internet network services list. The list is a mapping
between names for internet services, and their underlying assigned port numbers and
protocol types. The following excerpts from the file shows the header for the list and the
mimer entries:

Port Assignments:

#

Keyword Decimal Description References

mimer 1360/tcp # MIMER

mimer 1360/udp # MIMER

Having this definition done, the name MIMER can be used instead of 1360 when dealing
with services.

Networking Setup

The miminetd command is used to handle the networking setup. This is done
automatically during the installation.

Here are the miminetd options and a common setup display:

miminetd "-2"

Usage:
miminetd [-1]|-1] [-qgl-d]
miminetd [-v|-=7]
Options:
-i Install.
-1 List status.
-q Quiet operation.
-d More detailed, verbose operation.
-v Display version information.
-2 Display this usage text.
Description:

Command used to integrate Mimer SQL in the operating system
Internet services like systemd/inetd/xinetd/launchd.
#
miminetd -1
miminetd: launchd: existing
/Library/LaunchDaemons/com.mimer.mimersqglPortListen.plist is up-to-date
miminetd: launchd: Mimer SQL is installed in the launchd environment
(/Library/LaunchDaemons/com.mimer.mimersqlPortListen.plist)
miminetd: launchd: daemon is executing
miminetd: launchd: daemon found as /sbin/launchd
#

26 Chapter 3 The Database Server
Remote database access

Using odbc.ini data sources

The standard ODBC odbc. ini file and the Mimer SQL sqlhosts file are related to
each other in both being repositories for databases, or data sources. When using ODBC
to connect to a Mimer SQL database, data source names (DSN) defined in the odbc. ini
file can be used. In this case the odbc. ini file is accessed first, and only if needed the
ordinary database lookup is done in the /etc/sglhosts file.

When a Mimer SQL database is created using the dbinstall command, it gets defined in
the sqlhosts file in the LOCAL section. For example, if creating the database named my db
with the home directory /Library/Application Support/MimerSQL/my db, it
will end up in /etc/sqglhosts like this:

LOCAL:
my db /Library/Application Support/MimerSQL/my db

If an ODBC Driver Manager is installed, there will also be an option to automatically
define it in the global odbc. ini file, usually located as /etc/odbc.ini. Such a
definition will look like the following:

[my_db]

Driver = /usr/local/lib/libmimodbc.dylib
Database = my db

Host = localhost

Port = 1360

Trace = No

TraceFile = /tmp/mimersqgl.log

We can now look at a simple example where the Perl DBI/DBC-ODBC interface is used
to connect to a Mimer SQL database:

#!/usr/bin/perl -w
use DBI;

$data_source="dbi:0ODBC:my db";

Susername="sysadm";

Sauth="sysadm password";

$dbh = DBI->connect ($data source, S$Susername, $auth) or die $DBI::errstr;
print "Connected! ($dbh)\n";

In this case the my_db definition in the odbc.ini file will be used, more precisely the
attributes Driver, Database, Host and Port are used:

Driver The ODBC driver to be used, specific to each database
kind. For Mimer this is the 1ibmimodbc.dylib shared
library.

Database The name of the database to be accessed, as defined in the

sqlhosts file on the node where the database resides.

Host The name of the computer node where the database
resides. If this attribute is left out, the value of the
Database attribute will be looked up in the
/etc/sqglhosts file for further information about the
connection setup.

Port The port number to used for the database communication.
If this attribute is left out, the default '1360' will be
assumed.

Mimer SQL Version 11.0
Getting Started on macOS

Assuming a Mimer SQL database on a remote computer is defined in the REMOTE section
of the sqlhosts file as follows:

REMOTE :
prod db typhon.mimer. se tcp ' 1360
Also, assuming we have the following DSN defined in the odbc. ini file:

[remote prod]
Driver = /usr/local/lib/libmimodbc.dylib
Database = prod db

To connect to the prod_db database on the typhon.mimer.se node using the program
example above, we can simply change the data source definition in the program above to:

Sdata source="dbi:0ODBC:remote prod";

The data source remote prod will be looked up in odbc.ini. The database name
prod_db will be encountered, but there is no host defined so an attempt will be made to
find appropriate connection information for the given database in the sqlhosts file. When
the node typhon.mimer. se and the port 1360 are identified for the database name, the
connection will be completed.

The ODBCINI environment variable can be used to point out the odbc.ini file to be used.

Note: Tabs are not allowed in the odbc. ini file.

27

28 Chapter 3 The Database Server
Remote database access

Mimer SQL Version 11.0
Getting Started on macOS

Chapter 4

Development and
Example
Environments

When installing Mimer SQL, there are options to install an initial development setup and
an example database. The example database is described in detail in the article The
Example database, found as hitps://developer.mimer.com/article/the-example-database/.

If these parts were not installed during the dbinstall session, they can be installed
separately when needed. For the initial development setup, use the following command:

mimdevenv <database name>

For the example database, use the following command:

mimexampledb <database name >

To access the example environments, you can use:

DbVisualizer The GUI database front-end included in the installation
package and located in the desktop setup for Mimer SQL.

bsql The command line tool, usually available as
/usr/bin/bsqgl.

Any ODBC or JDBC | Standard database access tools using these database API’s
based SQL tool can be adapted.

The username MIMER STORE and password ‘GoodiesRUs’ (if you have used the
default password) is used for the example database.

For further information on the API’s described below, and on programming with Mimer
SQL in general, please refer to the Programmer's Manual within the Mimer SQL
Documentation Set - https://docs.mimer.com/MimerSqlManual/latest/.

‘29

https://developer.mimer.com/article/the-example-database/
https://docs.mimer.com/MimerSqlManual/latest/

30

Chapter 4 Development and Example Environments
Database APls

Database APIs
Embedded SQL

An embedded SQL preprocessor is included. It enables SQL commands to be embedded
in programs written in C, C++ and FORTRAN. The embedded syntax complies with the
ISO standard for embedded SQL.

For a proper Unicode behavior, internationalized C/C++ programs must include the
locale.h header file and call the setlocale () operating system function to initiate a
specific language operation. This can be done by calling setlocale () as follows:

setlocale (LC_ALL, "");

In the examples directory under the installation path, e.g.
/opt/mimersgll100-11.0.0A/examples, there is a basic programming
example provided along with a readme file named readme esql.txt.

Module SQL

A Module SQL preprocessor is included. It enables separation of SQL code and a host
application written in C, FORTRAN, COBOL or Pascal, into different source files,
simplifying modularity and reuse of SQL code.

For a proper Unicode behavior, internationalized C programs must include the 1ocale.h
header file and call the setlocale () operating system function to initiate a specific
language operation. This can be done by calling setlocale () as follows:

setlocale (LC_ALL, "");

In the examples directory under the installation path, e.g.
/opt/mimersgll100-11.0.0A/examples, there is a basic programming
example provided along with a readme file named readme msql. txt.

JDBC

For database access from Java a JDBC driver is included in the distribution. The driver is
a type 4 driver, which means that it is written entirely in Java. This provides the driver
with full portability so that it can be copied or downloaded to any Java enabled platform.
The driver uses TCP/IP to access a Mimer SQL server (version 8.2 or later) on any
platform. For details on the JDBC drivers, please refer to the Mimer JDBC Driver Guide,
https://docs.mimer.com/MimerJdbcGuide/latest/.

In the JDBC directory under the installation path, e.g.
/opt/mimersgll100-11.0.0A/examples, there is a basic programming
example provided along with a readme file named readme java.txt.

https://docs.mimer.com/MimerJdbcGuide/latest/

Mimer SQL Version 11.0 31
Getting Started on macOS

ODBC

The Mimer ODBC driver is a client library that enables applications to access Mimer SQL
database servers running on any platform. The driver complies with the ODBC 3.52
specification.

There are various third party ODBC Driver Manager available on the market that enable
applications to dynamically load drivers for different database products. But, you can also
choose to link your applications directly to the Mimer ODBC driver, without using any
Driver Manager. In the latter case we suggest usage of the provided ODBC header files,
introduced by including the mimc1i . h file.

For a proper Unicode behavior, internationalized programs must include the 1ocale.h
header file and call the setlocale () operating system function to initiate a specific
language operation. This can be done by calling setlocale () as follows:

setlocale (LC_ALL, "");

In the ODBC environment it can be mentioned that SQLWCHAR refers to a four byte
type (wchar t).

In the examples directory under the installation path, e.g.
/opt/mimersgll100-11.0.0A/examples, there is a basic programming
example provided along with a readme file named readme odbc. txt.

Mimer SQL C API

Mimer SQL C API is a native C library suitable for tool integration and application
development in environments where API standardization is not a requirement. The
following characteristics describe the API:

. Simplicity

. Platform independence

. Small footprint

. Tight fit with the Mimer SQL application/database communication model.

This MimerAPI is provided in the 1ibmimerapi.dylib shared library. The
mimerapi . hheader file provides prototypes and other handy defines. See Database API
article for MimerAPI and the Mimer SQL Programming Manual (found in the Mimer
SOL Documentation Set at the Documentation page.)

For a proper Unicode behavior, internationalized programs must include the 1ocale.h
header file and call the setlocale () operating system function to initiate a specific
language operation. This can be done by calling setlocale () as follows:

setlocale (LC ALL, "");
In the examples directory under the installation path, e.g.

/opt/mimersgll1100-11.0.0A/examples, there is a basic programming
example provided along with a readme file named readme mimerapi.txt.

32

Chapter 4 Development and Example Environments
Accessing the database

Python

A Mimer SQL database can be accessed from the Python programming language using
the MimerPy adapter. This adapter allows the user to connect to Mimer SQL through
Python, gaining access to the exceptional performance and powerful features provided by
a Mimer SQL database.

For details and programming examples, please see the specific MimerPy guide found as
https://docs.mimer.com/MimerPython/latest/, and the article at
https://developer.mimer.com/article/mimer-sql-python-adapter/.

A Mimer SQL database can be accessed from HTML using the PHP/ODBC interface.
PHP is a widely-used general-purpose scripting language that can be embedded into
HTML, and is therefore especially suited for web development.

In the examples directory under the installation path, e.g.
/opt/mimersgll100-11.0.0A/examples, there is a basic programming
example provided along with a readme file named readme php. txt. This example uses
the Apache HTTP Server which is an open source HTTP web server for a wide range of
platforms.

Also see the article describing the PHP/PDO access method,
https://developer.mimer.com/article/mimer-sql-driver-for-pdol/.

Accessing the database

Setting up and running DbVisualizer

DbVisualizer is a graphical front-end used to view and manage your database objects. It
is started from the desktop using an icon in the Mimer SQL installation menu.

To use DbVisualizer you may need to install Java. Once Java is installed DbVisualizer is
started. The very first time DbVisualizer is started two operations are automatically
initiated:

. First the New Connection Wizard is started

This wizard will set up a connection to the Mimer SQL database:

1 It will initially prompt for a name of the connection. A common naming scheme is
to use the database name followed by the username in parenthesis. For example
‘testdb (MIMER _STORE)’.

2 Inthe second step the database driver should be selected. Select ‘Mimer’ from the
drop down list.

3 In the third step you fill in the database name, username, and password used when
accessing the Mimer SQL server. Enter the name of the target database. If the
Mimer SQL Example database is installed, the username MIMER STORE and
password ‘GoodiesRUs’ (if you have used the default password) can be used. If
your database is on another computer remember to change the Server field to the
name of the computer. Before proceeding, make sure you test that your connection
is working properly.

https://docs.mimer.com/MimerPython/latest/
https://developer.mimer.com/article/mimer-sql-python-adapter/
https://developer.mimer.com/article/mimer-sql-driver-for-pdo/

Mimer SQL Version 11.0
Getting Started on macOS

4 The wizard is now completed and various objects in the target database can now be
explored by selecting them in the tree view to the left. Note that existing objects
can be modify and new ones can be created by right-clicking on the objects or
object types.

. Secondly, when DbVisualizer is invoked for the first time

The Driver Finder will locate the Mimer SQL JDBC Driver. Unless errors have
occurred, this dialog can simply be closed.

Running Mimer BSQL and other utilities

In order to run most of the Mimer SQL utilities from a command prompt window, a target
database to access must be specified. This can be furnished in different ways:

. Enter the database name on the command line, e.g.:

bsgl database name

. As mentioned before, use the environment variable MIMER DATABASE, €.g.:
export MIMER DATABASE=database_name
bsqgl

. Use an ODBC data source. When installing a database using the dbinstall
command, the default option is to define the database as an ODBC DSN (if such an
ODBC environment is present).

The order of the three methods is significant as the first methods override the later ones.
For example, specifying the database on the command line overrides the setting of the
MIMER DATABASE environment variable.

Environment Variables

The following table lists and explains the environment variables Mimer SQL uses.

Variable Explanation

HOME Used to locate the home directory from within various
Mimer SQL programs.

LD LIBRARY PATH Used on most platforms to locate shared libraries in
runtime.

On macOS the following resources are used until it finds a
compatible Mach-O file: SLD LIBRARY PATH,

$DYLD LIBRARY PATH, current working directory,

$DYLD FALLBACK LIBRARY PATH.

MIMER DATABASE Used to point out which database to access. If not set, the
default database, set in /etc/sqglhosts, is used.

MIMER EXTEND Used to change the number of pages to allocate when
dynamically extending a databank file.

If not set, the default is 128 pages (each of 4096 bytes). The
variable must be set for the process starting the database
server program.

34

Chapter 4 Development and Example Environments

Environment Variables

Variable

Explanation

MIMER HISTLINES

Used to change the number of command lines to be stored
in the recorded history for a Mimer BSQL session.

If not set, the default is 23.

MIMER KEYFILE

If set, the given string is treated as the name of the license
key file (overriding the /etc/mimerkey file).

MIMER MODE

Used to indicate the mode for which the database should be
accessed, that is, SINGLE or MULTI.

Use single mode if accessing a database for which the
database server program is not started. If not set, MULTT is
assumed.

MIMER NOEDIT

If set, the command line editing package for a Mimer BSQL
session is disabled.

MIMER ODBCINI

If set, the given string is treated as the name of the file for
ODBC Data Source lookup.

If not set, and if ODBCINT is not set, the home directory is
searched for the . odbc. ini file (using the HOME
environment variable).

MIMER SQLHOSTS

The default sqlhosts file is /etc/sglhosts. Another file
can be used by defining the MIMER SQLHOSTS
environment variable to hold the path of the target sqlhosts
file.

ODBCINI Same as MIMER ODBCINT.
Overrides MIMER ODBCINT if set.

PATH Used to locate Mimer executables.

SHELL Used shell when temporarily entering the operating system
shell prompt from within Mimer SQL.
If not set, /bin/sh is used.

TMPDIR If set, it is used as the placeholder for temporary files

created by Mimer SQL. If it is not set, the directory
$HOME/.mimer tmp is used.

Mimer SQL Version 11.0 35
Getting Started on macOS

macOS Commands

Command

Function

Used by

bsqgl

SQL command interpreter. See Mimer SOL
User’s Manual, Chapter 9, Mimer BSQL for
more information.

mimdevenv,
mimexampledb

dbc

Databank check utility. See the chapter
Databank Check Functionality in System
Management Handbook for more
information.

dbfiles

Lists the databank files for a database
server, as stored in the data dictionary.

mimdbfiles

dbinstall

Command used to install a new database, or
update an existing one.

mimexampledb

dbopen

Opens all user defined databanks at once.
See Chapter 7, Databank Open Function in
System Management Handbook for more
information.

dbuninstall

Command used to remove a database,
including its data files, registrations and
related resources.

esql

Embedded SQL preprocessor. See
Mimer SQL Programmer’s Manual,
Chapter 4, Embedded SQOL for more
information.

exload

Program used to create or delete the
example environment. (L.e.

MUSIC STORE, see
https:/developer.mimer.com/article/the-example-
database/)

dbinstall,
mimexampledb

mimaddpath

Used to add a value to an environment
variable (with duplicate check). The new
definition is displayed — not installed.
Especially used to update the shared library
search path.

(internal use)

mimadmin

Menu-based database server administration
utility.

mimautoset

Switches on/off the automatic server start
and stop functionality or gives the current
state of this interaction with the operating
system.

dbinstall

https://developer.mimer.com/article/the-example-database/
https://developer.mimer.com/article/the-example-database/

Chapter 4 Development and Example Environments
macOS Commands

Command Function Used by
mimcontrol Manages database servers. See Chapter 4, dbinstall,
Managing a Database Server in System mimadmin,
Management Handbook for more mimlistdb
information.
mimdbfiles Lists the databank file names for a database | dbinstall,
server, as stored in the file system. Can also | dbuninstall,
be used to change the ownership of the mimadmin
databank files (i.e. the new owner will be
the one that is dedicated to manage the
database server).
In addition, the command can be used for
displaying the database server log and
configuration files.
mimdbserver A front-end to the mimcontrol and miminfo | dbinstall,
programs, used to control and monitor the dbuninstall,
database server. mimadmin,
mimdbfiles
mimdevenv Command used to create a beginner's dbinstall
development environment.
mimdumper Creates or executes the . dumper.shfilefor | dbinstall
a database server.
The functionality is used to get detailed
operating system info about the process
where the database server program is
executed, especially in the case of a system
failure.
mimexampledb | Installs the example database environment.
(Invokes the ex1oad program.)
mimexec mimexec command is used to execute a (mainly for
given program and stay attached. This internal use)
command is used internally, especially
when invoking terminal based programs
using icons on the desktop
mimexper The Mimer SQL Experience database server | mimcontrol
program. You start mimexper using the
mimcontrol or mimdbserver commands.
mimhome Displays the home directory for the (mainly for

effective user. Especially used to find
location for log and tmp files.

internal use)

Mimer SQL Version 11.0

Getting Started on macOS
Command Function Used by
mimhosts Program to manage and to do lookup in the | dbinstall,
/etc/sglhosts file. See The sqlhosts file | douninstall,
on page 9 for more information. mimadmin,
mimowner,
mimdbfile,
mimdbserver,
mimdevenv,
mimexampledb,
mimexec
miminetd Command used to administer Mimer SQLin | dbinstall
the operating system Internet services
daemons.
miminfo Program to monitor database servers. See mimadmin
Chapter 4, Managing a Database Server in
System Management Handbook for more
information.
miminm Mimer SQL In-memory database server.
miminstall Command delivered with the distribution
TAR file used to unpack and install Mimer
SQL.
mimjdbcver Displays the version of the JDBC drivers
delivered with Mimer SQL.
mimlicense Used to manage the license keys in mimadmin,
/etc/mimerkey. See Mimer SQL license | miminstall
key on page 7 for more information.
mimlink Used to link Mimer SQL libraries, man miminstall
pages and executables to /usr/1ib,
/usr/man and /usr/bin, respectively.
mimlistdb Lists started database servers. mimadmin,
mimuninstall
mimload A command line front end to the Mimer
SQL Load/Unload functionality.
mimlocation Displays the location of the Mimer SQL (mainly for
installation currently accessed. internal use)
mimmem Lists current limits on memory usage.
mimodbc Program used to administer ODBC data mimodbcadmin,
sources and ODBC drivers (especially mimodbcdm
aimed at the managing iODBC data sources,
see http://www.iodbc.org.)
mimodbcadmin | Menu based ODBC data source and ODBC | dbinstall,
driver administration dbuninstall

37

http://www.iodbc.org

Chapter 4 Development and Example Environments
macOS Commands

Command Function Used by
mimodbcdm A front-end to the mimodbc program, used | mimodbcadmin
to administer ODBC data sources and
drivers.
mimowner Displays the name of the operating system | mimadmin,
user that is dedicated to manage a specific mimdbfiles,
database server. mimdbserver
mimpath Gets the path to databank locations. dbinstall,
dbuninstall,
mimadmin,
mimdbfiles,
mimexampledb,
mimowner
mimperf Used to monitor a running database server.
mimproc Lists various system information for a .dumper.sh
running process.
mimrepadm Program used to administrate the Mimer
SQL replication dictionary.
mimservers Starts/stops all database servers (of current | mimautoset
version) defined in /etc/sglhosts.
mimsglhosts A front-end to the mimhosts program, used | dbinstall,
to control the database registration file mimadmin
/etc/sqlhosts.
mimstatln Used to follow and display the source for a (mainly for
symbolic link. internal use)
mimsync Program used to synchronize replicated
Mimer SQL tables.
mimsysconf Displays the values of various host system
configuration parameters, all related to the
Mimer SQL system performance.
mimtcp Manages TCP port dispatching, i.e.
distributing incoming connect-attempts to
the requested database server.
mimuninstall | Command to uninstall Mimer SQL, if
installed via the tar package.
mimunlink Command used to remove symbolic links mimuninstall
from /usr/bin, /usr/share/man and
/usr/1lib, previously created by the
mimlink command.
mimversion Command used to get the installed Mimer mimadmin,
SQL version. mimodbcadmin

Mimer SQL Version 11.0

Getting Started on macOS

Command Function Used by
repserver The Mimer SQL replication server program. | mimrepadm

See REPSERVER - Replicating the Data in

System Management Handbook.
sdbgen Command used to create the system dbinstall

databanks for Mimer SQL. See SDBGEN -

Generating the System Databanks in System

Management Handbook.

macOS Link Libraries

Library

Description

libmimcomm.dylib

This is the shared library used when using Mimer
JDBC with local communication, i.e. not via TCP/IP.

libmimdbs.dylib

This is the shared library used when accessing the
database server in single user mode. It is automatically
invoked when a single user access is identified.

libmimer.dylib

This shared library contains several of the client
interfaces supported by Mimer SQL, i.e. Embedded
SQL and ODBC.

libmimerapi.dylib

This is the shared library for the Mimer SQL C API.

libmimerS.dylib

This is the Mimer setup library used by the unixODBC
Driver Manager GUI interface.

libmimmicroapi.dylib

This is the shared library for the Mimer SQL C
Micro API.

libmimodbc.dylib

This is the shared library for the Mimer ODBC
database interface when the ODBC client is presuming
the SQLWCHAR data type being 4 bytes.

libmimsgl.dylib

This shared library contains the Mimer SQL database
interface used for Embedded SQL client applications.

mimjdbc3.jar

This is the jar file to be used when accessing the
Mimer JDBC database interface from a JAVA client
using JRE 1.4 or later.

mimsglxa.o

This object file should be linked in when using the XA
functionality.

psmdebug.jar

This is an internal jar file for the PSM Debugger
application.

39

40 Chapter 4 Development and Example Environments
macOS Link Libraries

Index ‘ 41

Index

A

ARM 5
autostart 23

B

Big Sur 5
bsql 29

C

C language API 31
Catalina 5

D

database
establishing 15

dbfiles 35

dbinstall 8, 35

dbopen 35

dbuninstall 9, 35

DbVisualizer 32

E
embedded SQL 30

environment variables 33

esql 35
example database 29
exload 35

Intel 3

J

JDBC 30

L

license key 7

MI1 5
mimaddpath 35
mimadmin 35
mimautoset 23, 35
mimautostart 23
mimcontrol 36
mimdbfiles 36
mimdbserver 36
mimdevenv 36
mimdumper 36
Mimer SQL 1
MimerAPI 31
mimexampledb 36
mimexec 36
mimexper 36
mimhome 36
mimhosts 37
miminetd 25, 37
miminfo 37
miminm 37
miminstall 37
mimjdbcver 37
mimlicense 7, 37
mimlink 37
mimlistdb 37
MIMLOAD
command-line arguments 24
syntax 24
mimload 37
mimlocation 37
mimmem 37
mimodbc 37
mimodbcadmin 37
mimodbcdm 38
mimowner 38
mimpath 38
mimperf 38
mimproc 38
mimrepadm 38
mimservers 23, 38
mimsqlhosts 9, 38
mimstatln 38

42 Index

mimsync 38
mimsysconf 38
mimtcp 24, 38
mimuninstall 38
mimunlink 38
mimversion 38
Module SQL 30
multidefs 17

0]

ODBC 31

P

PDO 6
PHP 32
PHP/PDO 6
Python 6, 32

R

repserver 39

S

sdbgen 39
services 25
silicon 3
sqlhosts 9
sudo 5

T
TCP/IP 24

U

Unicode 30, 31
Universal Binary 3

X
x86-64 5

	Getting Started on macOS
	Contents
	Getting Started
	Licensing Mimer SQL
	Documentation
	Command line help and man pages
	Useful links

	Installing Mimer SQL
	It is really simple to get going!
	Using the Mimer SQL apps
	From the Terminal application

	Why do we need sudo access to install?
	System resources
	Physical memory
	Virtual memory

	Environment
	Which components will be installed?

	Running several Mimer SQL versions in parallel
	Mimer SQL license key
	Creating an initial database
	Upgrading an existing database
	Uninstalling the software
	Database registration
	The sqlhosts file

	The Database Server
	Database server management
	mimadmin
	mimdbserver
	mimcontrol

	Database home directory
	Logging database events
	Configuring a database server
	The multidefs parameter file
	Automatic database start and stop

	Remote database access
	Database TCP/IP connect dispatcher
	The mimtcp command
	Services setup
	Networking Setup
	Using odbc.ini data sources

	Development and Example Environments
	Database APIs
	Embedded SQL
	Module SQL
	JDBC
	ODBC
	Mimer SQL C API
	Python
	PHP

	Accessing the database
	Setting up and running DbVisualizer
	Running Mimer BSQL and other utilities

	Environment Variables
	macOS Commands
	macOS Link Libraries

	Index

