
Mimer SQL

Migration guide from

Oracle Rdb to Mimer SQL

Version 11.0

Mimer SQL, Migration guide from Oracle Rdb to Mimer SQL, Version 11.0, December 2025
© Copyright Mimer Information Technology AB

The contents of this manual may be printed in limited quantities for use at a Mimer SQL installation site. No parts of the
manual may be reproduced for sale to a third party.
Information in this document is subject to change without notice. All registered names, product names and trademarks of
other companies mentioned in this documentation are used for identification purposes only and are acknowledged as the
property of the respective company. Companies, names and data used in examples herein are fictitious unless otherwise
noted.

Produced and published by Mimer Information Technology AB, Uppsala, Sweden.

Mimer SQL Web Sites:
https://developer.mimer.com
https://www.mimer.com

https://www.mimer.com
https://developer.mimer.com

Contents i
Contents

 .. i

 Introduction.. 1
Terms ..1

Database.. 1
Storage area versus Databank ... 1

Document Overview ..2

 The conversion process ... 3
Overview ...3

Conversion of database schema..3

Export schema .. 3
Create schema in Mimer SQL... 4

Index analysis ..5

Move existing data to Mimer SQL...6

Rdb migration scripts..6

Conversion of application code..8

C.. 8
Cobol .. 8
Fortran .. 9
Module SQL... 10

Functionality review ..10

Performance review...11

Explain.. 11
Monitoring .. 12

ii Contents
 Specifics... 13
Storage layout and databanks ..13

Error handling...13

Triggers ...14

Dynamic SQL ..14

Table record length ..15

Character sets ..15

Primary keys ...16

DATE VMS...16

 Index ... 17

Mimer SQL Version 11.0 1
Migration guide from Oracle Rdb to Mimer SQL
Chapter 1

Introduction
This document describes the steps needed to migrate a database and application code
from Oracle Rdb, henceforth referred to as Rdb, to Mimer SQL.

Terms
This section discusses various terms referred to in this document. In particular, focus is
on terms that are used somewhat differently in the two database systems.

Database
In Rdb a database is a collection of tables that logically belong together. An application
may use one or several databases in an application. Tables may be joined between
databases and the database name or alias is used as a schema name in SQL. For example:

select * from db1.table1 inner join db2.tab on table1.c1 = tab.c1

Here we are joining table1 from database db1 with table tab located in database db2.
In Mimer SQL, on the other hand, there is typically a single database containing several
schemas. The equivalent use of the above SQL statement is to have one schema named
db1 and another schema named db2, and both of these would be located in the same
Mimer SQL database.
A common case in Mimer SQL where you can have two databases is to have one for
testing and one for production. The other case is if the tables in the two databases are
completely separate and are never accessed together by an application.
When migrating from several Rdb databases to Mimer SQL, the tables in each schema
can be owned by a single user having several schemas, or by several users. When different
users own the tables, appropriate access privileges must be given to any user wishing to
access the two tables together.

Storage area versus Databank
In Rdb there is a term storage area that describes files in the operating system used by
Rdb. An Rdb database consist of many storage areas.
In Mimer SQL the corresponding term is a databank. In Mimer SQL there are four system
databanks that are used to store data dictionary (SYSDB), handle transactions
(TRANSDB), temporary storage (SQLDB) and recovery (LOGDB). The user adds his or
her own databanks to the original set of system databanks. Typically, only one or a few
databank files are added. The only time a databank is referenced is in create table when a
table is placed in a databank.

2 Chapter 1 Introduction
Document Overview
Document Overview
Chapter 2, The conversion process contains the overall description of the conversion
process to move a database and application from Rdb to Mimer SQL.
Chapter 3, Specifics goes into some depth on specific topics and considerations of the
conversion process and how to design you Mimer SQL database.

Mimer SQL Version 11.0 3
Migration guide from Oracle Rdb to Mimer SQL
Chapter 2

The conversion
process

Overview
The following general steps are needed to perform a migration from Oracle/Rdb to Mimer
SQL.
• Conversion of database schema
• Move existing data to Mimer SQL
• Conversion of application code
• Functionality review and testing
• Performance review and testing
Each of these topics will be considered in some detail in the rest of this chapter.

Conversion of database schema

Export schema
The database schema is exported from Rdb with the RMU utility. This step is repeated for
each database in Rdb.

$ rmu/extract=inventory_rdb_meta.sql inventory

In this command inventory is the name of the database. The file
inventory_rdb_meta.sql now contains the Rdb specific SQL statements needed to
create the database.
The file contains all the application objects. However, it may also contain Oracle
compatibility statements. These statements can be removed at this stage, or at a later
stage.

4 Chapter 2 The conversion process
Conversion of database schema
The next step is to convert this file with the Mimer SQL translator. The translator takes
the Rdb specific SQL statements and converts them to the corresponding Mimer SQL
statements:

$ sqltranslator /rdb /mode=script inventory_meta.sql inventory_mimer_meta.sql

After running this command, open the file inventory_mimer_meta.sql in an editor
and examine the results. In particular, you can search for SYNTAX_ERROR. This will show
you the statements that sqltranslator was unable to handle. Either this will be
statements you do not need in a Mimer SQL environment, or it is statements that must be
converted manually. Contact Mimer if you find statements that would be helpful to
include in the SQL translator.
When exporting the schema, sometimes various Oracle compatibility code is also
exported. These should typically be removed. They are called ORA_OUTPUT,
ORA_TRANS, ORA_MISC3 etc. In particular some errors occur when creating these
objects, as some objects are created in the wrong order and as there are also references to
system tables that are not present in Mimer SQL. You can safely ignore these errors.

Create schema in Mimer SQL
At this point we want to create the exported and converted schema in Mimer SQL. To do
so you must have a Mimer SQL database up and running. Please see the Mimer SQL
OpenVMS Guide, section Establishing a database
(https://docs.mimer.com/MimerOnVms/v110/html/VMS_Net/Establishing/Establishing.htm).
After setting up the Mimer SQL database server, run BSQL with the following commands:

$ BSQL
Username: SYSADM
Password:
SQL>CREATE IDENT APPOWNER AS USER USING 'APASSW';
SQL>CREATE DATABANK APPDB;
SQL>GRANT SCHEMA, SEQUENCE TO APPOWNER;
SQL>GRANT TABLE ON DATABANK APPDB TO APPOWNER;
SQL>GRANT SEQUENCE ON DATABANK APPDB TO APPOWNER;

Substitute APPOWNER above with the name of your choice and another password. Now
log in to the user that will own the schemas and tables you migrate from Rdb.

If you, for example, have two Rdb databases called INVENTORY and STOCK you create
each one under a separate schema in Mimer SQL.

$ BSQL
Username: APPOWNER
Password:
SQL>CREATE SCHEMA INVENTORY;
SQL>CREATE SCHEMA STOCK;
SQL>SET LC 0;
SQL>WHENEVER ERROR CONTINUE;
SQL>LOG INPUT, OUTPUT ON 'inventory_mimer_meta.log';
SQL>SET SCHEMA INVENTORY;
SQL>READ INPUT FROM 'inventory_mimer_meta.sql';

The SET LC (Line-Count) to zero is used when reading input files in BSQL.

https://docs.mimer.com/MimerOnVms/v110/html/VMS_Net/Establishing/Establishing.htm

Mimer SQL Version 11.0 5
Migration guide from Oracle Rdb to Mimer SQL
The SET SCHEMA command will let unqualified references in the
inventory_mimer_meta.sql file default to the INVENTORY schema.
So, for example, CREATE TABLE ABC will be treated as CREATE TABLE
INVENTORY.ABC, and so on.

Index analysis
After the objects have been created it is time to do an index analysis. This is because index
handling varies somewhat between Mimer SQL and Rdb.
In Mimer SQL many database objects implicitly create indexes. For example, if a table
has a primary key there is no need to have a UNIQUE index on the primary key columns.
In fact, this will result in loss of performance and disk space as the UNIQUE index is
maintained unnecessarily.
The same is true for unique constraints and foreign keys. Indexes are implicitly created
for these objects.
Mimer SQL has a utility called DbAnalyzer which goes through the database and looks
at existing explicit and implicit indexes and recommends appropriate actions. The utility
can also find when indexes are overlapping and recommend which index to keep, and
which one to drop.
The output created by DbAnalyzer can actually be used as an input file to BSQL as
follows:

$ DEFINE/USER SYS$OUTPUT ANALYZE.TXT
$ DBANALYZER /user=APPOWNER /password=APASSW
$ BSQL
Username: APPOWNER
Password:
SQL>SET LC 0;
SQL>WHENEVER ERROR CONTINUE;
SQL>LOG INPUT, OUTPUT ON 'ANALYZE.LOG';
SQL>READ INPUT FROM 'ANALYZE.TXT';

Note that any duplicate indexes are removed through this process.
ANALYZE.TXT should be reviewed, as it returns interesting information about the schema
before applying the changes.
DbAnalyzer by default analyzes all objects created by the login user. The switch
/SCHEMA can be used to look at a specific schema owned by the user. For example:

$ DBANALYZER /user=APPOWNER /password=APASSW /schema=inventory

6 Chapter 2 The conversion process
Move existing data to Mimer SQL
Move existing data to Mimer SQL
$ rmu/unload/RECORD_DEFINITION=(FORMAT=DELIMITED_TEXT, PREFIX="",
SUFFIX="|", separator="", null="_|") INVENTORY ABC ABC.TXT

In this command INVENTORY is the Rdb database name, ABC is the table name, and
ABC.TXT is the text file with the data from the table.
Note: This command will only work if there is no data with the delimiter character

‘|‘. If you use the character in your data, pick another delimiter character that
is not used.

Use mimload to load the data into Mimer SQL:
$ mimload -uAPPOWNER -p"APASSW" "load from loadabc.txt', 'abc.txt' log
'abc_load.log' "

The file loadabc.txt contains the following:
#data
 column separator '|'
 null indicator '\-'
 using insert into inventory(c1,c2,c3) values(?,?,?);

This process is repeated for each table migrated. The insert command can be moved to
the mimload command line. However, command line lengths may interfere with long
insert statements in this case. The USING syntax in mimload is then used.

Rdb migration scripts
To ease the migration from Rdb to Mimer SQL a set of DCL scripts can be provided.
These scripts automate the extraction of schema and data from Rdb and the creation and
optimization of the schema in Mimer SQL as well as loading the data into Mimer SQL.
The entire migration can be performed on a single machine that has both Mimer SQL and
Rdb installed, or it can be done on separate machines.
The script unload_rdb.com is executed on the OpenVMS machine that have Rdb
installed. To execute it, run @unload_rdb <path to Rdb database> <schema>,
for example @unload_rdb DKA0:[db]inventorydb inventory.
When the unload is finished, the migration and loading of the schema and data into Mimer
SQL is performed by running:

@load_mimer <SYSADM password> <schema> [<Mimer SQL user> <Mimer SQL password]

For the specified Mimer SQL user, a schema will be created, and all database objects will
be created within that schema.
Multiple Rdb databases can be unloaded and loaded using the same Mimer SQL user but
with different schema names. The schema corresponds to the name given by the declare
alias statement used with the Rdb database.
To handle objects that need to be manually migrated or to execute other custom SQL, the
load_mimer.com script will look for sql files in the [.extra_sql] directory and
execute them if found. This can be used, for example, to create triggers that could not be
automatically converted to Mimer SQL.

Mimer SQL Version 11.0 7
Migration guide from Oracle Rdb to Mimer SQL
The load_mimer.com script will perform the following steps:
1 Run sqltranslator on the Rdb SQL schema to make it compatible with Mimer SQL.
2 Create the Mimer SQL user if it does not exist.
3 Create a databank where database objects will be stored.
4 Create the Mimer SQL schema for the migrated Rdb database.
5 Execute the translated SQL schema file using Mimer SQL.
6 Run dbanalyzer and apply the suggested changes on the created schema to

optimize the database structure.
7 If [.extra_sql]<schema>-system-after-create.sql or

[.extra_sql]< schema>-after-create.sql exist, execute them to run
custom SQL, such as changing table or databank definitions.

8 Load each table that contains data.
9 If [.extra_sql]<schema>-after-load.sql exists, execute it to run custom

SQL, such as creating manually converted triggers.
10 Update database statistics for the Mimer SQL database to ensure efficient query

execution.
For more details, see the README file in the script distribution.

8 Chapter 2 The conversion process
Conversion of application code
Conversion of application code
The SQL translator used to convert the SQL script generated by RMU can also be used
to convert embedded SQL application code. In addition, if module SQL is used, the SQL
contained in the modules SQL file can also be converted by the SQL translator.
The intention is for the SQL translator to be used once to convert the source code. The
output file will be your new main source that you continue to work and develop.
The different languages are covered in the following sections.

C
Embedded Rdb C files typically use extension .SC. Mimer SQL Embedded C uses
extension .EC.

$ sqltranslator /C sourcefile.SC sourcefile.EC
$ esql /C sourcefile.EC
$ CC sourcefile.C

DECLARE SECTION
When running the embedded SQL preprocessor, you may find that the host variables
referenced in the SQL statements in the file will not be found. The reason is that BEGIN
DECLARE SECTION and END DECLARE SECTION are missing.
These have to be added to the .EC file at appropriate places to guide the preprocessor. For
example:

EXEC SQL BEGIN DECLARE SECTION;
 double dblvar;
EXEC SQL END DECLARE SECTION;

These statements can surround any number of variable declarations as long as they are
understood and supported by the esql preprocessor.

Cobol
The SQL Translator and the Mimer SQL Embedded preprocessor can handle Cobol
source both in standard format, and in the so-called terminal format.
On OpenVMS, Cobol files are by default in terminal format.
Embedded Rdb Cobol files typically use extension .SCO. Mimer SQL Embedded uses
extension .ECO.
If you need to run the SQL translator several times on the same file, it is also possible to
add the statements to the original .SCO file rather than the .ECO file.

Mimer SQL Version 11.0 9
Migration guide from Oracle Rdb to Mimer SQL
Terminal format
When terminal Cobol format is used, Area A begins in position 1 and Area B begins in
position 5, and the source program records do not have line numbers.
So, for terminal format the following is used:

$ sqltranslator /COBOL /FORMAT=TERMINAL sourcefile.SCO newsourcefile.ECO
$ esql /COBOL /FORMAT=TERMINAL newsourcefile.ECO
$ cobol /NOANSI_FORMAT sourcefile.COB

Standard format
When standard Cobol format is used, positions 1-6 are used for sequence numbers,
position 7 for indicators, and 72-80 is the identification area.
For standard format the following would be used:

$ sqltranslator /COBOL /FORMAT=FIXED sourcefile.SCO targetfile.ECO
$ esql /COBOL /FORMAT=FIXED sourcefile.ECO
$ cobol /ANSI_FORMAT sourcefile.COB

DECLARE SECTION
When running the embedded SQL preprocessor, you may find that the host variables,
referenced in the SQL statements in the file, will not be found.The reason is that BEGIN
DECLARE SECTION and END DECLARE SECTION are missing.
These have to be added to the .ECO file at appropriate places to guide the preprocessor.
For example:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 03 VARIABLEX PIC 9(08).
EXEC SQL END DECLARE SECTION END-EXEC.

These statements can surround any number of variable declarations as long as they are
understood and supported by the esql preprocessor.

Fortran
Embedded Rdb Fortran files typically use extension .SFO. Mimer SQL Embedded
Fortran uses extension .EFO.

$ sqltranslator /FORTRAN sourcefile.SFO sourcefile.EFO
$ esql /FORTRAN sourcefile.EFO
$ fortran sourcefile.EFO

DECLARE SECTION
When running the embedded SQL preprocessor, you may find that the host variables
referenced in the SQL statements in the file will not be found. The reason is that BEGIN
DECLARE SECTION and END DECLARE SECTION are missing.
These have to be added to the .EFO file at appropriate places to guide the preprocessor.
For example:

EXEC SQL BEGIN DECLARE SECTION
CHARACTER*36 ALPNUM
EXEC SQL BEGIN DECLARE SECTION

These statements can surround any number of variable declarations as long as they are
understood and supported by the esql preprocessor.

10 Chapter 2 The conversion process
Functionality review
Module SQL
When Module SQL is used the SQL statements are stored in a separate file. The
application calls the statements for each operation, such as open cursor, fetch, and
so on.
In Mimer SQL, the Module SQL file is converted to Embedded C and then to C. So, a C
compiler is required to use Module SQL with Mimer SQL.
Module SQL can thus be used for languages that are able to call routines in C. The calling
language is declared in the Module SQL file.

Functionality review
At this point both schema and data have been moved from Rdb to Mimer SQL. The
application code has been converted and it is time to test it.
If there exists unit tests or other test frameworks these are, of course, used to test the
integration with Mimer SQL.
Testing the application requires all SQL statements to be executed.
In particular error handling should be reviewed. This is discussed further in Error
handling on page 13.
A difference with regard to concurrency is that in Rdb applications a deadlock may occur
at any statement. The Mimer SQL equivalent is that a transaction is aborted due to a
conflict with another transaction executing concurrently. In Mimer SQL, this error occurs
at commit time. The application should thus test for this error code (-10001) after commit,
and retry the transaction when this occurs.

Mimer SQL Version 11.0 11
Migration guide from Oracle Rdb to Mimer SQL
Performance review
When an application works as intended, it is also important to look at the performance of
the application.

Explain
In particular, each SQL statement containing a query should be reviewed with regards to
performance.
Note: After the data has been loaded into Mimer SQL you should run the UPDATE

STATISTICS statement. This will give the SQL optimizer information about
the data in the database. This is used to select indexes and greatly affects the
performance of SQL statements. This is discussed further in the Mimer SQL
System Management Handbook, chapter Database Statistics
(https://docs.mimer.com/MimerSqlManual/v110/html/Manuals/Statistics/Statistics.htm).

Apart from running each SQL statement and measuring how long it takes to execute, it is
also possible to look at the optimizer’s explain plan for each query.
This can be done in both a graphical environment using DbVisualizer (on Linux or
Windows etc), or in a command-line based environment with the BSQL utility.

In the DbVisualizer picture above green means complete primary key access, and yellow
means leading keys use indexed access. If anything is red, it means expensive and may
include a sequential scan of the whole table. It this is not intentional an index or a
reformulated query may be needed to speed up the query. The gray nodes are different
type of join nodes.
In BSQL the query plan is shown after SET EXPLAIN ON is given. The plan is displayed
in XML format.
Please see Explain for Mimer SQL 11, https://developer.mimer.com/article/explain-for-mimer-sql-
11/, for more information.

https://developer.mimer.com/article/explain-for-mimer-sql-11/
https://docs.mimer.com/MimerSqlManual/v110/html/Manuals/Statistics/Statistics.htm

12 Chapter 2 The conversion process
Performance review
Monitoring
There are both graphical and command-line based tools to monitor the SQL execution in
the Mimer SQL server. So, when an application is running it is possible to examine which
SQL statements are using the most resources. The command line tool is called
sqlmonitor and the graphical tool is called Mimer SQL Monitor and is installed with
the Mimer SQL Data Provider on Windows.
In addition, DbAnalyzer, with the /STATISTICS option, can be used to view index usage
statistics.

Mimer SQL Version 11.0 13
Migration guide from Oracle Rdb to Mimer SQL
Chapter 3

Specifics
In this chapter we discuss various topics in detail. They may only be of interest in some
conversion scenarios depending on the functionality used by the application.

Storage layout and databanks
The layout of storage is rather complex in Rdb with many files etc. In Mimer SQL on the
other hand, the layout is simple.
A table and associated indexes are stored in a databank. A databank corresponds to a file
in the operating system. Many tables are typically stored in the same databank.
A databank is a unit of backup and restore. So, all tables in a databank are backed up
together.
A databank may, if it is large, be stored in several files. This allows the databank to be
stored on more than one disk thus allowing greater I/O throughput. When several files are
used, the data distribution between the files are handled automatically by Mimer SQL.
Which databank is used is decided in the CREATE TABLE command. For example:

create databank DBNAME set file 'DISK1:[DIR]DBNAME.DBF' option LOG;
create table TAB1(C1 int) in DBNAME;

This means that this kind of structuring is a good idea to perform when migrating the data.
If no databank is specified the system will pick one for you.
For more information, please see:
CREATE DATABANK -
https://docs.mimer.com/MimerSqlManual/v110/html/Manuals/SQL_Statements/CREATE_DATABANK.htm

ALTER DATABANK -
https://docs.mimer.com/MimerSqlManual/v110/html/Manuals/SQL_Statements/ALTER_DATABANK.htm

CREATE TABLE -
https://docs.mimer.com/MimerSqlManual/v110/html/Manuals/SQL_Statements/CREATE_TABLE.htm

Error handling
In Rdb the routine SQL$GET_ERROR_TEXT is used to retrieve error messages. Mimer
provides the source for an implementation of this routine towards Mimer SQL. The
routine uses the SQL Standard GET DIAGNOSTICS statement to retrieve the error texts.
Applications that test specific error codes must be updated to use the corresponding error
code in Mimer SQL. Both systems use sqlcode for this. You can inspect you code by
looking for sqlcode to see if explicit error codes are used.

https://docs.mimer.com/MimerSqlManual/v110/html/Manuals/SQL_Statements/CREATE_DATABANK.htm
https://docs.mimer.com/MimerSqlManual/v110/html/Manuals/SQL_Statements/ALTER_DATABANK.htm
https://docs.mimer.com/MimerSqlManual/v110/html/Manuals/SQL_Statements/CREATE_TABLE.htm

14 Chapter 3 Specifics
Triggers
Here are some interesting Mimer SQL error codes that may be used in applications:

For more error code texts, please see the Mimer SQL Programmer’s Manual, Appendix
Return Code,
(https://docs.mimer.com/MimerSqlManual/v110/html/Manuals/App_Return_Codes/App_Return_Codes.htm

Triggers
Triggers in Rdb are limited in what they can do. Because of this, triggers are sometimes
used with external stored procedures. These are written in a native language.
With Mimer SQL, external procedures are not allowed to execute within the database
server. So, external procedures need to be rewritten as Stored SQL procedures. Mimer
SQL does not have any limitations with regard to the SQL that can be used in a stored
procedure.
The same reasoning applies to external stored procedures in general, and not only when
they are used as triggers in Rdb.
Mimer SQL supports before row triggers and before and after statement triggers. Before
triggers, both row and statement triggers, are only allowed to query other tables or views
in Mimer SQL.
After statement triggers can be used to both query and modify objects in the database. So,
the general conversion rules are:
• Any trigger in Rdb that modifies the database with insert, update, and/or delete

statements is converted to after statement triggers.
• Before and after row triggers in Rdb are converted to before row triggers in Mimer

SQL.

Dynamic SQL
Much of the discussions in this document focus on how to translate from the Rdb SQL
dialect to Mimer SQL. If the SQL is constructed by the application in runtime, the SQL
may need to be adjusted to conform to the Mimer SQL syntax. For the most part, this is
easy, as the two products actually overlap to a very high degree.

Error code Explanation

-10001 Transaction aborted due to conflict with other transaction. Can
occur after: EXEC SQL COMMIT

-10101 PRIMARY KEY constraint violated, attempt to insert duplicate
key in table

-10105 Referential constraint violated INSERT/UPDATE operation
not valid for table

-10106 Referential constraint violated UPDATE/DELETE operation
not valid for table

-10110 UNIQUE constraint violated for table

0 Success

100 End of table/query

https://docs.mimer.com/MimerSqlManual/v110/html/Manuals/App_Return_Codes/App_Return_Codes.htm

Mimer SQL Version 11.0 15
Migration guide from Oracle Rdb to Mimer SQL
One way of doing this is to run the application and extract the generated SQL with a
debugger or similar. These SQL statements can then be fed into the SQL translator to
determine the correct syntax. The application can then be modified appropriately so it
generates correct Mimer SQL syntax directly.

Table record length
Rdb has maximum record length of 65 272 bytes. All the data in a record must fit within
this restriction.
Mimer SQL has a maximum record length of 32 000 bytes. However, this does not
include large object columns of type CLOB, NCLOB or BLOB (character/national
character/binary large object). Each LOB column only occupies 19 bytes of the record
length.
So even if the maximum record length is somewhat larger in Rdb, Mimer SQL can handle
longer records than Rdb with appropriate use of large object columns.
CHAR, VARCHAR, BINARY and VARBINARY columns have a limit of 15 000 bytes.
NCHAR and NVARCHAR can be at most 5 000 characters, while BLOB, CLOB and
NCLOB can have any size as maximum.
I.e. the data of a single record can have virtually any size using large objects.

Character sets
In Mimer SQL there are two character data groups. The first one is CHAR, VARCHAR
and CLOB. The second one is NCHAR, NVARCHAR and NCLOB.
Data in the CHAR-group can be used to store Latin-1 data. So, only the 8-bit characters
in the ISO 8859-1 standard can be stored in columns with this data type. See
https://en.wikipedia.org/wiki/ISO/IEC_8859-1.
In the NCHAR-group, any Unicode data can be stored. This means that characters from
any language can be stored in these columns.
When data is moved to or from the application and the database server the data is
converted. For example, assume the application is using a Greek character set for single
byte characters in the application. When storing these characters in Mimer SQL,
NVARCHAR would be used to store the data in the database as Greek has a number of
letters that are outside Latin-1. If the data is retrieved from a Windows system the Greek
letters will be automatically displayed correctly there.
However, it is not possible to set the locale to German and access the Greek data from the
NVARCHAR column. The letters have no representation in this locale. Fortunately, the
application can use a wide character type, such as wchar_t in C, to access any data in an
NVARCHAR column.
In summary, this means that character sets are not part of the SQL language in Mimer
SQL. It is much easier to simply reference NCHAR data and not have to convert between
different incompatible character sets.
If character sets are used by the Rdb application that is converted, it is likely that character
columns should be converted to NVARCHAR rather than VARCHAR to be able to hold
the wanted characters.

https://en.wikipedia.org/wiki/ISO/IEC_8859-1

16 Chapter 3 Specifics
Primary keys
Applications that only use a single locale can retain their use of char-data with the correct
locale in the client. To handle multiple locales, wchar_t or a single byte character set
based on Unicode, such as UTF-8, are the logical choices when moving ahead.

Primary keys
The storage mechanism in Mimer SQL is particularly good at handling primary keys. It
is therefore better to have a primary key than, for example, a unique index.
The difference between the two from an application perspective, is that primary key
columns are NOT NULL.
So, if you have tables with no primary key, but with a unique index, you should consider
whether the index columns can all be made NOT NULL as this would allow the index to
be a primary key instead.
The DbAnalyzer will suggest converting UNIQUE to PRIMARY KEY if the null
attributes allow this.

DATE VMS
The Mimer SQL data type BUILTIN.DATE_VMS is used to support the Rdb data type
DATE VMS. To get full benefit of this type, both the client and the server must support
BUILTIN.DATE_VMS. When an older client version is used, the type is treated the same
as TIMESTAMP(2) by the client.
The current implementation supports the following languages: English, Austrian,
Canadian, Danish, Dutch, Finish, German, Italian, Portuguese, Spanish, Swedish, Swiss
German and Swiss French.
On OpenVMS the language is set by the SYS$LANGUAGE logical name. The name can be
overridden with the MIMER_LANGUAGE logical name. If no language is selected
ENGLISH is used as default. English is also always available as input language in
addition to the selected language.
On other platforms than OpenVMS, the environment variable MIMER_LANGUAGE is used
to select the language. Use upper case language name, with underscore for
SWISS_GERMAN and SWISS_FRENCH.
In the current implementation the same language should be used in both server and client.
In practice this means only a single language can be selected for a given database. In the
future, the client setting will affect the language used by the server for this connection,
thus allowing language to be selected on a client basis.
In version 11.0 this data type is fully supported by the embedded SQL client. Other clients
treat the data type as a TIMESTAMP(2) column.

Index 17
Index

B
BUILTIN.DATE_VMS 16

C
C 8
Cobol 8

D
databank 1, 13
database 1

establishing 13
DATE VMS 16
DbVisualizer 11
deadlock 10
DECLARE SECTION 8, 9
Dynamic SQL 14

E
explain plan 11
external stored procedures 14

F
Fortran 9

G
GET DIAGNOSTICS 13

I
installing

Mimer SQL 3

L
Latin-1 15

M
Mimer SQL 1

installing 3
MIMER_LANGUAGE 16
mimload 6
Module SQL 10

P
performance 11
primary key 16

R
README 7
record length 15
RMU 3, 8

S
SQL$GET_ERROR_TEXT 13
sqlcode 13
standard format 9
storage 13
storage area 1
SYS$LANGUAGE 16

T
terminal format 9
transaction abort 10
triggers 14

U
Unicode 15
unique index 16
UPDATE STATISTICS 11

18 Index

	Migration guide from Oracle Rdb to Mimer SQL
	Contents
	Introduction
	Terms
	Database
	Storage area versus Databank

	Document Overview

	The conversion process
	Overview
	Conversion of database schema
	Export schema
	Create schema in Mimer SQL

	Index analysis
	Move existing data to Mimer SQL
	Rdb migration scripts
	Conversion of application code
	C
	DECLARE SECTION

	Cobol
	Terminal format
	Standard format
	DECLARE SECTION

	Fortran
	DECLARE SECTION

	Module SQL

	Functionality review
	Performance review
	Explain
	Monitoring

	Specifics
	Storage layout and databanks
	Error handling
	Triggers
	Dynamic SQL
	Table record length
	Character sets
	Primary keys
	DATE VMS

	Index

