Mimer SQL

Migration guide from
Oracle Rdb to Mimer SQL

Version 11.0

Mimer SQL, Migration guide from Oracle Rdb to Mimer SQL, Version 11.0, December 2025
© Copyright Mimer Information Technology AB

The contents of this manual may be printed in limited quantities for use at a Mimer SQL installation site. No parts of the
manual may be reproduced for sale to a third party.

Information in this document is subject to change without notice. All registered names, product names and trademarks of
other companies mentioned in this documentation are used for identification purposes only and are acknowledged as the
property of the respective company. Companies, names and data used in examples herein are fictitious unless otherwise
noted.

Produced and published by Mimer Information Technology AB, Uppsala, Sweden.
Mimer SQL Web Sites:

https://developer.mimer.com
https://www.mimer.com

https://www.mimer.com
https://developer.mimer.com

Contents

Contents

.. [
INEFOTUCTION ...ttt 1
TIINIS ottt 1
DAADASE ...t 1

Storage area Versus Databank ..o 1
DOCUMENT OVEIVIBW ...ttt nnes 2

THhe CONVEISION PrOCESSvcveveriiiiiieieieree sttt 3
OVBIVIBW ...ttt ettt 3
Conversion of database SChEMA ... 3
EXPOI SCREMA ... 3

Create schema in MIMEr SQL..........oooveeeieieieieeeeeeeeee s, 4

INDEX ANAIYSIS ...t 5
Move existing data to Mimer SQL.........ccoiiniirereese s 6

RAD MIGration SCIIPLS ..ot s 6
Conversion of appliCatioN COUE............ciiiirreer e 8

C R 8

CODOL s 8

FOITAN ... 9

MOAUIE SQL......oieeiiccie s 10
FUNCHIONAITTY TEVIBW ... 10
PerfOrMANCE FEVIEWvveieeeereieieieieie ettt esenes 11
EXPIAIN ..ot 11

MONILOMING ..o 12

i Contents

SPECITICS ..ttt 13
Storage layout and databankscccoovvieeinnneness s 13
Error NANAIING. ... 13
LI 10 1= RSO TT T TTRPRRPS 14
DYNAMIC SQL ...ttt nes 14
Table reCord 1eNQN ... 15
CRAACTEE SELS ... 15
PHIMAIY KEYS ...ttt sttt 16
DATE VMS ..o 16

Mimer SQL Version 11.0
Migration guide from Oracle Rdb to Mimer SQL

Chapter 1
Introduction

This document describes the steps needed to migrate a database and application code
from Oracle Rdb, henceforth referred to as Rdb, to Mimer SQL.

Terms

This section discusses various terms referred to in this document. In particular, focus is
on terms that are used somewhat differently in the two database systems.

Database

In Rdb a database is a collection of tables that logically belong together. An application
may use one or several databases in an application. Tables may be joined between
databases and the database name or alias is used as a schema name in SQL. For example:

select * fromdbl.tablel inner join db2.tab on tablel.cl = tab.cl

Here we are joining t abl el from database db1 with table t ab located in database db2.

In Mimer SQL, on the other hand, there is typically a single database containing several
schemas. The equivalent use of the above SQL statement is to have one schema named
db1 and another schema named db2, and both of these would be located in the same
Mimer SQL database.

A common case in Mimer SQL where you can have two databases is to have one for
testing and one for production. The other case is if the tables in the two databases are
completely separate and are never accessed together by an application.

When migrating from several Rdb databases to Mimer SQL, the tables in each schema
can be owned by a single user having several schemas, or by several users. When different
users own the tables, appropriate access privileges must be given to any user wishing to
access the two tables together.

Storage area versus Databank

In Rdb there is a term storage area that describes files in the operating system used by
Rdb. An Rdb database consist of many storage areas.

In Mimer SQL the corresponding term is a databank. In Mimer SQL there are four system
databanks that are used to store data dictionary (SYSDB), handle transactions
(TRANSDB), temporary storage (SQLDB) and recovery (LOGDB). The user adds his or
her own databanks to the original set of system databanks. Typically, only one or a few
databank files are added. The only time a databank is referenced is in create table when a
table is placed in a databank.

2 Chapter 1 Introduction
Document Overview

Document Overview

Chapter 2, The conversion process contains the overall description of the conversion
process to move a database and application from Rdb to Mimer SQL.

Chapter 3, Specifics goes into some depth on specific topics and considerations of the
conversion process and how to design you Mimer SQL database.

Mimer SQL Version 11.0 3
Migration guide from Oracle Rdb to Mimer SQL

Chapter 2

The conversion
process

Overview

The following general steps are needed to perform a migration from Oracle/Rdb to Mimer
SQL.

. Conversion of database schema

. Move existing data to Mimer SQL
. Conversion of application code

. Functionality review and testing

. Performance review and testing

Each of these topics will be considered in some detail in the rest of this chapter.

Conversion of database schema

Export schema

The database schema is exported from Rdb with the RMU utility. This step is repeated for
each database in Rdb.

Export schema from
Rdb
RMU/EXTRACT

$ rmu/extract=inventory_rdb_neta.sql inventory

In this command i nvent or y is the name of the database. The file
i nventory_rdb_neta. sql now contains the Rdb specific SQL statements needed to
create the database.

The file contains all the application objects. However, it may also contain Oracle
compatibility statements. These statements can be removed at this stage, or at a later
stage.

4

Chapter 2 The conversion process
Conversion of database schema

The next step is to convert this file with the Mimer SQL translator. The translator takes

the Rdb specific SQL statements and converts them to the corresponding Mimer SQL
statements:

$ sqgltranslator /rdb /node=script inventory_neta.sql inventory_mi ner_neta.sql

After running this command, open the file i nvent ory_mi nmer _net a. sgl in an editor
and examine the results. In particular, you can search for SYNTAX_ERROR. This will show
you the statements that sql t r ansl at or was unable to handle. Either this will be
statements you do not need in a Mimer SQL environment, or it is statements that must be
converted manually. Contact Mimer if you find statements that would be helpful to
include in the SQL translator.

When exporting the schema, sometimes various Oracle compatibility code is also
exported. These should typically be removed. They are called ORA_OUTPUT,
ORA_TRANS, ORA_M SC3 etc. In particular some errors occur when creating these
objects, as some objects are created in the wrong order and as there are also references to
system tables that are not present in Mimer SQL. You can safely ignore these errors.

Create schema in Mimer SQL

At this point we want to create the exported and converted schema in Mimer SQL. To do
so you must have a Mimer SQL database up and running. Please see the Mimer SQL
OpenVMS Guide, section Establishing a database
(https://docs.mimer.com/MimerOnVms/v110/html/VMS_Net/Establishing/Establishing.htm).

After setting up the Mimer SQL database server, run BSQL with the following commands:

$ BSQL

User nane: SYSADM

Passwor d:

SQL>CREATE | DENT APPOMNER AS USER USI NG ' APASSW ;
SQL>CREATE DATABANK APPDB;

SQL>GRANT SCHEMA, SEQUENCE TO APPOMNER;

SQL>GRANT TABLE ON DATABANK APPDB TO APPOMNER,
SQL>GRANT SEQUENCE ON DATABANK APPDB TO APPOMNER;

Substitute APPOANER above with the name of your choice and another password. Now
log in to the user that will own the schemas and tables you migrate from Rdb.

Export schema from
Rdb SQL Translator

REMU/EXTRACT for scripts

v

If you, for example, have two Rdb databases called | NVENTORY and STOCK you create
each one under a separate schema in Mimer SQL.

$ BSQL

User nane: APPOANER

Passwor d:

SQ.>CREATE SCHEMA | NVENTORY;

SQ.>CREATE SCHEMA STOCK;

SQ.>SET LC 0;

SQ.>WHENEVER ERROR CONTI NUE;

SQL>LOG | NPUT, QUTPUT ON 'inventory_m ner_neta.log';
SQ.>SET SCHEMA | NVENTCRY;

SQL>READ | NPUT FROM 'inventory_m nmer_neta.sql';

The SET LC (Line-Count) to zero is used when reading input files in BSQL.

https://docs.mimer.com/MimerOnVms/v110/html/VMS_Net/Establishing/Establishing.htm

Mimer SQL Version 11.0
Migration guide from Oracle Rdb to Mimer SQL

The SET SCHEMA command will let unqualified references in the
i nventory i mer_met a. sqgl file default to the | NVENTCORY schema.

So, for example, CREATE TABLE ABC will be treated as CREATE TABLE
| NVENTORY. ABC, and so on.

Index analysis

After the objects have been created it is time to do an index analysis. This is because index
handling varies somewhat between Mimer SQL and Rdb.

In Mimer SQL many database objects implicitly create indexes. For example, if a table
has a primary key there is no need to have a UNIQUE index on the primary key columns.
In fact, this will result in loss of performance and disk space as the UNIQUE index is
maintained unnecessarily.

The same is true for unique constraints and foreign keys. Indexes are implicitly created
for these objects.

Mimer SQL has a utility called DbAnal yzer which goes through the database and looks
at existing explicit and implicit indexes and recommends appropriate actions. The utility
can also find when indexes are overlapping and recommend which index to keep, and
which one to drop.

The output created by DbAnal yzer can actually be used as an input file to BSQL as
follows:
$ DEFI NE/ USER SYS$QUTPUT ANALYZE. TXT
$ DBANALYZER / user =APPOMER / passwor d=APASSW
$ BSQL
User nane: APPOMNER
Passwor d:
SQ>SET LC 0;
SQL>WHENEVER ERRCR CONTI NUE;
SQL>LOG | NPUT, QUTPUT ON ' ANALYZE. LOG ;
SQL>READ | NPUT FROM ' ANALYZE. TXT" ;

Note that any duplicate indexes are removed through this process.

ANALYZE. TXT should be reviewed, as it returns interesting information about the schema
before applying the changes.

DbAnal yzer by default analyzes all objects created by the login user. The switch
/ SCHEMA can be used to look at a specific schema owned by the user. For example:

$ DBANALYZER / user =APPOMER / passwor d=APASSW / schema=i nvent ory

6 Chapter 2 The conversion process
Move existing data to Mimer SQL

Move existing data to Mimer SQL

$ rmu/ unl oad/ RECORD_DEFI NI TI ON=(FORMAT=DELI M TED_TEXT, PREFI X="",
SUFFI X="|", separator="", null="_|") | NVENTORY ABC ABC. TXT

In this command | NVENTORY is the Rdb database name, ABC is the table name, and
ABC. TXT is the text file with the data from the table.

Note: This command will only work if there is no data with the delimiter character
‘| “. If you use the character in your data, pick another delimiter character that
is not used.

Use mi nl oad to load the data into Mimer SQL:

$ m nm oad - UAPPOMNER - p" APASSW "l oad from | oadabc.txt', '"abc.txt' |og
"abc_|l oad.log" "

The file | oadabc. t xt contains the following:

#dat a
col um separator '|'
null indicator "\-'

using insert into inventory(cl,c2,c3) values(?,?,7?);

This process is repeated for each table migrated. The insert command can be moved to
the m nl oad command line. However, command line lengths may interfere with long
insert statements in this case. The USING syntax in mi m oad is then used.

Rdb migration scripts

To ease the migration from Rdb to Mimer SQL a set of DCL scripts can be provided.
These scripts automate the extraction of schema and data from Rdb and the creation and
optimization of the schema in Mimer SQL as well as loading the data into Mimer SQL.

The entire migration can be performed on a single machine that has both Mimer SQL and
Rdb installed, or it can be done on separate machines.

The script unl oad_r db. comis executed on the OpenVMS machine that have Rdb
installed. To execute it, run @nl oad_rdb <path to Rdb dat abase> <schenma>,
for example @inl oad_r db DKAO: [db]i nvent orydb i nventory.

When the unload is finished, the migration and loading of the schema and data into Mimer
SQL is performed by running:

@ oad_m nmer <SYSADM passwor d> <schema> [<M mer SQL user> <M ner SQL password]

For the specified Mimer SQL user, a schema will be created, and all database objects will
be created within that schema.

Multiple Rdb databases can be unloaded and loaded using the same Mimer SQL user but
with different schema names. The schema corresponds to the name given by the decl ar e
al i as statement used with the Rdb database.

To handle objects that need to be manually migrated or to execute other custom SQL, the
| oad_mi nmer . comscript will look for sql files in the [. extra_sql] directory and
execute them if found. This can be used, for example, to create triggers that could not be
automatically converted to Mimer SQL.

Mimer SQL Version 11.0
Migration guide from Oracle Rdb to Mimer SQL

The | oad_nmi ner . comscript will perform the following steps:

O O A ODN =

10

Run sqltranslator on the Rdb SQL schema to make it compatible with Mimer SQL.
Create the Mimer SQL user if it does not exist.

Create a databank where database objects will be stored.

Create the Mimer SQL schema for the migrated Rdb database.

Execute the translated SQL schema file using Mimer SQL.

Run dbanalyzer and apply the suggested changes on the created schema to
optimize the database structure.

If[. extra_sqgl] <schema>-system after-create. sqgl or
[.extra_sgl]< schema>-after-create.sql exist, execute them to run
custom SQL, such as changing table or databank definitions.

Load each table that contains data.

If[.extra_sql] <schema>-after-|oad. sql exists, execute it to run custom
SQL, such as creating manually converted triggers.

Update database statistics for the Mimer SQL database to ensure efficient query
execution.

For more details, see the README file in the script distribution.

8 Chapter 2 The conversion process
Conversion of application code

Conversion of application code

The SQL translator used to convert the SQL script generated by RMU can also be used
to convert embedded SQL application code. In addition, if module SQL is used, the SQL
contained in the modules SQL file can also be converted by the SQL translator.

The intention is for the SQL translator to be used once to convert the source code. The
output file will be your new main source that you continue to work and develop.

The different languages are covered in the following sections.

Embedded Rdb C files typically use extension . SC. Mimer SQL Embedded C uses
extension . EC.

$ sqgltranslator /C sourcefile.SC sourcefile.EC
$ esql /C sourcefile.EC
$ CC sourcefile.C

DECLARE SECTION

When running the embedded SQL preprocessor, you may find that the host variables
referenced in the SQL statements in the file will not be found. The reason is that BEG N
DECLARE SECTI ONand END DECLARE SECTI ON are missing.

These have to be added to the . ECfile at appropriate places to guide the preprocessor. For
example:

EXEC SQ. BEG N DECLARE SECTI ON;
doubl e dbl var;
EXEC SQ. END DECLARE SECTI ON;

These statements can surround any number of variable declarations as long as they are
understood and supported by the esql preprocessor.

Cobol

The SQL Translator and the Mimer SQL Embedded preprocessor can handle Cobol
source both in standard format, and in the so-called terminal format.

On OpenVMS, Cobol files are by default in terminal format.

Embedded Rdb Cobol files typically use extension . SCO. Mimer SQL Embedded uses
extension . ECO

If you need to run the SQL translator several times on the same file, it is also possible to
add the statements to the original . SCOfile rather than the . ECOfile.

Mimer SQL Version 11.0
Migration guide from Oracle Rdb to Mimer SQL

Terminal format
When terminal Cobol format is used, Area A begins in position 1 and Area B begins in
position 5, and the source program records do not have line numbers.

So, for terminal format the following is used:

$ sqltranslator /COBOL / FORMAT=TERM NAL sourcefile. SCO newsourcefil e. ECO
$ esqgl /COBOL / FORVAT=TERM NAL newsour cefil e. ECO
$ cobol /NOANSI _FORMAT sourcefil e. COB

Standard format
When standard Cobol format is used, positions 1-6 are used for sequence numbers,
position 7 for indicators, and 72-80 is the identification area.

For standard format the following would be used:

$ sqgltranslator /COBOL / FORMAT=FI XED sourcefile. SCO targetfile. ECO
$ esqgl /COBOL / FORVAT=FI XED sour cefil e. ECO
$ cobol /ANSI _FORVMAT sourcefile. COB

DECLARE SECTION
When running the embedded SQL preprocessor, you may find that the host variables,
referenced in the SQL statements in the file, will not be found.The reason is that BEG N
DECLARE SECTI ONand END DECLARE SECTI ON are missing.

These have to be added to the . ECOfile at appropriate places to guide the preprocessor.
For example:

EXEC SQL BEG N DECLARE SECTI ON END- EXEC.
03 VARI ABLEX PI C 9(08).
EXEC SQL END DECLARE SECTI ON END- EXEC.

These statements can surround any number of variable declarations as long as they are
understood and supported by the esql preprocessor.

Fortran

Embedded Rdb Fortran files typically use extension .SFO. Mimer SQL Embedded
Fortran uses extension .EFO.
$ sqltransl ator /FORTRAN sourcefil e. SFO sourcefile. EFO

$ esql /FORTRAN sourcefile. EFO
$ fortran sourcefile. EFO

DECLARE SECTION

When running the embedded SQL preprocessor, you may find that the host variables
referenced in the SQL statements in the file will not be found. The reason is that BEG N
DECLARE SECTI ONand END DECLARE SECTI ON are missing.

These have to be added to the .EFO file at appropriate places to guide the preprocessor.
For example:
EXEC SQL BEG N DECLARE SECTI ON

CHARACTER* 36 ALPNUM
EXEC SQL BEG N DECLARE SECTI ON

These statements can surround any number of variable declarations as long as they are
understood and supported by the esql preprocessor.

10

Chapter 2 The conversion process
Functionality review

Module SQL

When Module SQL is used the SQL statements are stored in a separate file. The
application calls the statements for each operation, such as open cursor, f et ch, and
S0 on.

In Mimer SQL, the Module SQL file is converted to Embedded C and then to C. So, a C
compiler is required to use Module SQL with Mimer SQL.

Module SQL can thus be used for languages that are able to call routines in C. The calling
language is declared in the Module SQL file.

Functionality review

At this point both schema and data have been moved from Rdb to Mimer SQL. The
application code has been converted and it is time to test it.

If there exists unit tests or other test frameworks these are, of course, used to test the
integration with Mimer SQL.

Testing the application requires all SQL statements to be executed.

In particular error handling should be reviewed. This is discussed further in Error
handling on page 13.

A difference with regard to concurrency is that in Rdb applications a deadlock may occur
at any statement. The Mimer SQL equivalent is that a transaction is aborted due to a
conflict with another transaction executing concurrently. In Mimer SQL, this error occurs
at commit time. The application should thus test for this error code (-10001) after commit,
and retry the transaction when this occurs.

Mimer SQL Version 11.0
Migration guide from Oracle Rdb to Mimer SQL

Performance review

When an application works as intended, it is also important to look at the performance of
the application.

Explain
In particular, each SQL statement containing a query should be reviewed with regards to
performance.

Note: After the data has been loaded into Mimer SQL you should run the UPDATE
STATI STI CS statement. This will give the SQL optimizer information about
the data in the database. This is used to select indexes and greatly affects the
performance of SQL statements. This is discussed further in the Mimer SQL
System Management Handbook, chapter Database Satistics
(https://docs.mimer.com/MimerSqlManual/v110/html/Manuals/Statistics/Statistics.htm).

Apart from running each SQL statement and measuring how long it takes to execute, it is
also possible to look at the optimizer’s explain plan for each query.

This can be done in both a graphical environment using DbVisualizer (on Linux or
Windows etc), or in a command-line based environment with the BSQL utility.

1] Databases Saripts 4 » @ P 1:untitled* x| B 2: Untiled® x| TF abe (MIMER_STORE) product_detale X
| B Y-xX=- Pk - @ HE X B> F -0 ->-]|BLR
T e | Database Comnecton [] Sticky Database Schema MaxRows Max Chars

B, abc (MIMER_STORE) ~ | 1500 1
1select * from product_detalls where product <= "4 Darkening Staln’ order by product

sprg A A g3 s

¥ [order_jtems

1 | orders

[producers
#1- [products
#-[10 stop_words
T3 Views 1:23 [23] NS Auto Commit: ON| Cp1252 Untitied™

i [customer_addresses
1[I customer_detais
- [product_details i
=+ [} Columns
T eroduct
11 eroducer
format

Log | By EXPLAIN at 11:43:34 X a
- -] | (D) | Show Operation Detals = () Tree View (8) Graph View
a

ooooo

prce

stock
reorder_level S
release_date (47T ey el
1 ean_code Al . . e =

stabs (A e - ey

B product search owae || [TE=es FiE
tem_id =
7] category_id =
product_id 4V | oE
T dsploy_order = | = =
5 image _id e -
1 Triggers =
% [F swedish_customers
1Triggers.
41 g Synanyms. Ll i v
< > < : >
loomof stz Tl

In the DbVisualizer picture above green means complete primary key access, and yellow
means leading keys use indexed access. If anything is red, it means expensive and may
include a sequential scan of the whole table. It this is not intentional an index or a
reformulated query may be needed to speed up the query. The gray nodes are different
type of join nodes.

In BSQL the query plan is shown after SET EXPLAI N ONis given. The plan is displayed
in XML format.

Please see Explain for Mimer SQL 11, https://developer.mimer.com/article/explain-for-mimer-sgl-
11/, for more information.

https://developer.mimer.com/article/explain-for-mimer-sql-11/
https://docs.mimer.com/MimerSqlManual/v110/html/Manuals/Statistics/Statistics.htm

12 Chapter 2 The conversion process
Performance review

Monitoring

There are both graphical and command-line based tools to monitor the SQL execution in
the Mimer SQL server. So, when an application is running it is possible to examine which
SQL statements are using the most resources. The command line tool is called

sqgl nmoni t or and the graphical tool is called Mimer SQL Monitor and is installed with
the Mimer SQL Data Provider on Windows.

In addition, DbAnalyzer, with the / STATI STI CS option, can be used to view index usage
statistics.

Mimer SQL Version 11.0
Migration guide from Oracle Rdb to Mimer SQL

Chapter 3
Specifics

In this chapter we discuss various topics in detail. They may only be of interest in some
conversion scenarios depending on the functionality used by the application.

Storage layout and databanks

The layout of storage is rather complex in Rdb with many files etc. In Mimer SQL on the
other hand, the layout is simple.

A table and associated indexes are stored in a databank. A databank corresponds to a file
in the operating system. Many tables are typically stored in the same databank.

A databank is a unit of backup and restore. So, all tables in a databank are backed up
together.

A databank may, if it is large, be stored in several files. This allows the databank to be
stored on more than one disk thus allowing greater I/O throughput. When several files are
used, the data distribution between the files are handled automatically by Mimer SQL.

Which databank is used is decided in the CREATE TABLE command. For example:

create databank DBNAME set file ' Dl SK1:[Dl R DBNAVE. DBF' option LOG
create table TABL(CLl int) in DBNAME;

This means that this kind of structuring is a good idea to perform when migrating the data.
If no databank is specified the system will pick one for you.
For more information, please see:

CREATE DATABANK -
https://docs.mimer.com/MimerSgiManual/v110/html/Manuals/SQL _Statements/CREATE_DATABANK.htm

ALTER DATABANK -
https://docs.mimer.com/MimerSglManual/v110/html/Manuals/SQL_Statements/ALTER_DATABANK.htm

CREATE TABLE -
https://docs.mimer.com/MimerSgiManual/v110/html/Manuals/SQL _Statements/CREATE_TABLE.htm

Error handling

In Rdb the routine SQL$GET_ERROR_TEXT is used to retrieve error messages. Mimer
provides the source for an implementation of this routine towards Mimer SQL. The
routine uses the SQL Standard GET DI AGNCSTI CS statement to retrieve the error texts.

Applications that test specific error codes must be updated to use the corresponding error
code in Mimer SQL. Both systems use sqlcode for this. You can inspect you code by
looking for sqlcode to see if explicit error codes are used.

https://docs.mimer.com/MimerSqlManual/v110/html/Manuals/SQL_Statements/CREATE_DATABANK.htm
https://docs.mimer.com/MimerSqlManual/v110/html/Manuals/SQL_Statements/ALTER_DATABANK.htm
https://docs.mimer.com/MimerSqlManual/v110/html/Manuals/SQL_Statements/CREATE_TABLE.htm

14 Chapter 3 Specifics
Triggers

Here are some interesting Mimer SQL error codes that may be used in applications:

Error code Explanation

-10001 Transaction aborted due to conflict with other transaction. Can
occur after: EXEC SQL COMMIT

-10101 PRIMARY KEY constraint violated, attempt to insert duplicate
key in table

-10105 Referential constraint violated INSERT/UPDATE operation
not valid for table

-10106 Referential constraint violated UPDATE/DELETE operation
not valid for table

-10110 UNIQUE constraint violated for table

0 Success

100 End of table/query

For more error code texts, please see the Mimer SQL Programmer’s Manual, Appendix
Return Code,
(https://docs.mimer.com/MimerSgiManual/v110/html/Manuals/App_Return_Codes/App_Return_Codes.htm

Triggers

Triggers in Rdb are limited in what they can do. Because of this, triggers are sometimes
used with external stored procedures. These are written in a native language.

With Mimer SQL, external procedures are not allowed to execute within the database
server. So, external procedures need to be rewritten as Stored SQL procedures. Mimer
SQL does not have any limitations with regard to the SQL that can be used in a stored
procedure.

The same reasoning applies to external stored procedures in general, and not only when
they are used as triggers in Rdb.

Mimer SQL supports before row triggers and before and after statement triggers. Before
triggers, both row and statement triggers, are only allowed to query other tables or views
in Mimer SQL.

After statement triggers can be used to both query and modify objects in the database. So,
the general conversion rules are:

. Any trigger in Rdb that modifies the database with insert, update, and/or delete
statements is converted to after statement triggers.

. Before and after row triggers in Rdb are converted to before row triggers in Mimer
SQL.

Dynamic SQL

Much of the discussions in this document focus on how to translate from the Rdb SQL
dialect to Mimer SQL. If the SQL is constructed by the application in runtime, the SQL
may need to be adjusted to conform to the Mimer SQL syntax. For the most part, this is
easy, as the two products actually overlap to a very high degree.

https://docs.mimer.com/MimerSqlManual/v110/html/Manuals/App_Return_Codes/App_Return_Codes.htm

Mimer SQL Version 11.0
Migration guide from Oracle Rdb to Mimer SQL

One way of doing this is to run the application and extract the generated SQL with a
debugger or similar. These SQL statements can then be fed into the SQL translator to
determine the correct syntax. The application can then be modified appropriately so it
generates correct Mimer SQL syntax directly.

Table record length

Rdb has maximum record length of 65 272 bytes. All the data in a record must fit within
this restriction.

Mimer SQL has a maximum record length of 32 000 bytes. However, this does not
include large object columns of type CLOB, NCLOB or BLOB (character/national
character/binary large object). Each LOB column only occupies 19 bytes of the record
length.

So even if the maximum record length is somewhat larger in Rdb, Mimer SQL can handle
longer records than Rdb with appropriate use of large object columns.

CHAR, VARCHAR, BINARY and VARBINARY columns have a limit of 15 000 bytes.
NCHAR and NVARCHAR can be at most 5 000 characters, while BLOB, CLOB and
NCLOB can have any size as maximum.

L.e. the data of a single record can have virtually any size using large objects.

Character sets

In Mimer SQL there are two character data groups. The first one is CHAR, VARCHAR
and CLOB. The second one is NCHAR, NVARCHAR and NCLOB.

Data in the CHAR-group can be used to store Latin-1 data. So, only the 8-bit characters
in the ISO 8859-1 standard can be stored in columns with this data type. See
https://en.wikipedia.ora/wiki/ISO/IEC_8859-1.

In the NCHAR-group, any Unicode data can be stored. This means that characters from
any language can be stored in these columns.

When data is moved to or from the application and the database server the data is
converted. For example, assume the application is using a Greek character set for single
byte characters in the application. When storing these characters in Mimer SQL,
NVARCHAR would be used to store the data in the database as Greek has a number of
letters that are outside Latin-1. If the data is retrieved from a Windows system the Greek
letters will be automatically displayed correctly there.

However, it is not possible to set the locale to German and access the Greek data from the
NVARCHAR column. The letters have no representation in this locale. Fortunately, the
application can use a wide character type, such as wchar tin C, to access any data in an
NVARCHAR column.

In summary, this means that character sets are not part of the SQL language in Mimer
SQL. It is much easier to simply reference NCHAR data and not have to convert between
different incompatible character sets.

If character sets are used by the Rdb application that is converted, it is likely that character
columns should be converted to NVARCHAR rather than VARCHAR to be able to hold
the wanted characters.

https://en.wikipedia.org/wiki/ISO/IEC_8859-1

16 Chapter 3 Specifics
Primary keys

Applications that only use a single locale can retain their use of char-data with the correct
locale in the client. To handle multiple locales, wchar t or a single byte character set
based on Unicode, such as UTF-8, are the logical choices when moving ahead.

Primary keys

The storage mechanism in Mimer SQL is particularly good at handling primary keys. It
is therefore better to have a primary key than, for example, a unique index.

The difference between the two from an application perspective, is that primary key
columns are NOT NULL.

So, if you have tables with no primary key, but with a unique index, you should consider
whether the index columns can all be made NOT NULL as this would allow the index to
be a primary key instead.

The DbAnalyzer will suggest converting UNIQUE to PRIMARY KEY if the null
attributes allow this.

DATE VMS

The Mimer SQL data type BUI LTI N. DATE_VMS is used to support the Rdb data type
DATE VMS. To get full benefit of this type, both the client and the server must support
BUI LTI N. DATE_VMS. When an older client version is used, the type is treated the same
as TIMESTAMP(2) by the client.

The current implementation supports the following languages: English, Austrian,
Canadian, Danish, Dutch, Finish, German, Italian, Portuguese, Spanish, Swedish, Swiss
German and Swiss French.

On OpenVMS the language is set by the SYSSLANGUAGE logical name. The name can be
overridden with the M MER_LANGUAGE logical name. If no language is selected
ENGLISH is used as default. English is also always available as input language in
addition to the selected language.

On other platforms than OpenVMS, the environment variable M MER_LANGUAGE is used
to select the language. Use upper case language name, with underscore for
SW SS_GERMAN and SW SS_FRENCH.

In the current implementation the same language should be used in both server and client.
In practice this means only a single language can be selected for a given database. In the
future, the client setting will affect the language used by the server for this connection,
thus allowing language to be selected on a client basis.

In version 11.0 this data type is fully supported by the embedded SQL client. Other clients
treat the data type as a TIMESTAMP(2) column.

Index

Index

B
BUILTIN.DATE _VMS 16

C

C38
Cobol 8

D

databank 1, 13
database 1
establishing 13
DATE VMS 16
DbVisualizer 11
deadlock 10
DECLARE SECTION 8, 9
Dynamic SQL 14

E

explain plan 11
external stored procedures 14

F

Fortran 9

G
GET DIAGNOSTICS 13

installing
Mimer SQL 3

L

Latin-1 15

M
Mimer SQL 1

installing 3
MIMER _LANGUAGE 16
mimload 6
Module SQL 10

P

performance 11
primary key 16

R

README 7
record length 15
RMU 3, 8

S

SQLSGET ERROR TEXT 13
sqlcode 13

standard format 9

storage 13

storage area 1
SYSSLANGUAGE 16

T

terminal format 9
transaction abort 10
triggers 14

U

Unicode 15
unique index 16
UPDATE STATISTICS 11

17

18 Index

	Migration guide from Oracle Rdb to Mimer SQL
	Contents
	Introduction
	Terms
	Database
	Storage area versus Databank

	Document Overview

	The conversion process
	Overview
	Conversion of database schema
	Export schema
	Create schema in Mimer SQL

	Index analysis
	Move existing data to Mimer SQL
	Rdb migration scripts
	Conversion of application code
	C
	DECLARE SECTION

	Cobol
	Terminal format
	Standard format
	DECLARE SECTION

	Fortran
	DECLARE SECTION

	Module SQL

	Functionality review
	Performance review
	Explain
	Monitoring

	Specifics
	Storage layout and databanks
	Error handling
	Triggers
	Dynamic SQL
	Table record length
	Character sets
	Primary keys
	DATE VMS

	Index

