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Model Size and Computation are Increasing

[1] Brainwave, Berkeley EE290 Hardware in Machine Learning, 2020.



Model Size and Computation are Increasing

[1] Image from https://blog.exxactcorp.com/what-can-you-do-with-the-openai-gpt-3-language-model/.



Model Size and Computation are Increasing

[1] Image from https://cloud.google.com/tpu.

https://cloud.google.com/tpu


Why Inference at the Edge? Privacy

[1] Image from the Internet.



Why Inference at the Edge? Power

[1] Image from the Internet.



Why Inference at the Edge? Latency

[1] Image from the Internet.



Quantization: Small Size and Fast Computation

• 𝑟: real value

• 𝑟𝑚𝑎𝑥, 𝑟𝑚𝑖𝑛 : max/min of values

• 𝐵: Quantization Bit-width

• 𝑆 (FP32): Scaling Factor

• 𝑧 (int): Zero Point

• 𝑞: Fixed point quantized values

Uniform 8-bit Quantization

S =
𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛

2^𝐵 − 1

𝑟 = 𝑆 𝑞 − 𝑧

[1] Illustration from Sahni Manas.



Quantization: Low Power Consumption

L1 Cache/TLB

L2 Cache

Galaxy S7



Mixed-Precision: Exponential Search Space

Which mixed-precision setting works better?
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Second Order Sensitivity Analysis

At the origin, the first derivative of  y = 4x2, y =x2 ,  y =0.1 x2 is all the same: 0

The second derivative give more information: 8 , 2, and 0.2 respectively 



HAWQ: Hessian-AWare Quantization

Only quantize layers that have small top eigenvalue to ultra-low precision 

[1] Z. Dong, Z. Yao, A. Gholami, M. Mahoney, K. Keutzer, HAWQ: Hessian Aware Quantization of Neural Networks With Mixed Precision, ICCV’19



HAWQ: ResNet50 on ImageNet

[1] Z. Dong, Z. Yao, A. Gholami, M. Mahoney, K. Keutzer, HAWQ: Hessian Aware Quantization of Neural Networks With Mixed Precision, ICCV’19



Hessian Aware Quantization for BERT-Base on MNLI

[1] Shen Sheng, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael Mahoney, Kurt Keutzer, Q-BERT: Hessian-based Quantization for BERT, AAAI 2020.

4th Layer

10th Layer
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Automated Mixed-Precision

We prove Hessian Trace is a better sensitivity metric than the Top-1 Eigenvalue.

Hessian Trace can be used to quantify second-order perturbation Ω.

Mixed-precision quantization becomes an Integer Linear Programming (ILP) problem:



Automated Mixed-Precision
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HAWQ-V2: ResNet50 on ImageNet

[1] Z. Dong, Z. Yao, A. Gholami, M. Mahoney, K. Keutzer, HAWQ: Hessian Aware Quantization of Neural Networks With Mixed Precision, ICCV 2019.

[2] Z. Dong, Z. Yao, D. Arfeen, A. Gholami, M. Mahoney, K. Keutzer, HAWQ-V2: Hessian Aware trace-Weighted Quantization of Neural Networks, NeurIPS 2020.

Precisions for all layers are 100% automatically selected.



HAWQ-V2: SqueezeNext on ImageNet

[1] Z. Dong, Z. Yao, A. Gholami, M. Mahoney, K. Keutzer, HAWQ: Hessian Aware Quantization of Neural Networks With Mixed Precision, ICCV 2019.

[2] Z. Dong, Z. Yao, D. Arfeen, A. Gholami, M. Mahoney, K. Keutzer, HAWQ-V2: Hessian Aware trace-Weighted Quantization of Neural Networks, NeurIPS 2020.

Precisions for all layers are 100% automatically selected.
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TVM

- A compiler stack for CPU, GPU 
and accelerators

- Autotuning framework

Need to add:

1. Mixed-precision support

2. Low bit operations support
About Apache (incubating) TVM. (n.d.). Retrieved from https://tvm.apache.org/about

25

[1] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, 

Carlos Guestrin, and Arvind Krishnamurthy. TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. In 13th USENIX Symposium 

on Operating Systems Design and Implementation (OSDI 18), pages 578–594, 2018.



Dyadic Quantization with Integer Arithmetic
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HAWQ-V3: Hardware-Aware Deployment

28



HAWQ-V3: Hardware-Aware Deployment

We find the best bit precision configuration such that:

• Minimally perturbs the model

• Meets application specific requirements:

• Model size constraint

• Total bit operations for inference

• Inference Latency



Uniform 8-bit Performance

[1] Image from https://tvm.apache.org/2019/04/29/opt-cuda-quantized

https://tvm.apache.org/2019/04/29/opt-cuda-quantized


Int4 Performance of ResNet18 on ImageNet

*A workload is a convolutional function with certain shape

Resnet 18 Int8 (ms) Int4 (ms) Speed-up

Batch=1 0.85 0.62 1.37x

Batch=8 4.55 3.02 1.51x

Batch=16 8.84 5.91 1.50x



Open-Source Projects

• QTorch: coming soon (github keyword: HAWQ)
HAWQ-V3 + TVM,
Easy to use, such as torchvision,
Support Various Networks: ResNets, Inceptions, MobileNets, EfficientNets, and so on,
Easy deployment and Fast inference,
High accuracy mixed-precision models (19MB ResNet50, 77% Acc on ImageNet).

• PyHessian: https://github.com/amirgholami/PyHessian

• ZeroQ: https://github.com/amirgholami/ZeroQ

https://github.com/amirgholami/PyHessian
https://github.com/amirgholami/ZeroQ
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Conclusion

• We use Hessian information to help conduct mixed-precision quantization.

• We develop an automated method to generate good mixed-precision settings.

• Our methods generalize well for different models on classification, object detection and 
NLP tasks.

• We develop TVM implementation for our low bit mixed-precision models.

• We show hardware-aware deployment where we jointly consider model size and latency.



Thank you for listening!


