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)) Model Size and Computation are Increasing
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[1] Brainwave, Berkeley EE290 Hardware in Machine Learning, 2020.
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[1] Image from https://blog.exxactcorp.com/what-can-you-do-with-the-openai-gpt-3-language-model/.
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[1] Image from https://cloud.google.com/tpu.
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Why Inference at the Edge? Power
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[1] Image from the Internet.



Why Inference at the Edge? Latency

[1] Image from the Internet.
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Quantization: Small Size and Fast Computation

INTELLIGENCE RESEARCH

r: real value

*  Tnax Tmin - Max/min of values Tax — Tmin
S —_

« B: Quantization Bit-width 2"B —1

« S (FP32): Scaling Factor r=5(q—2z)

* z (int): Zero Point

q. Fixed point quantized values

Some values are exactly Others end up getting rounded. Values outside the
Min/max real values map to representable, and 0.f is Dequantizing them back gives original min/max
min/max quantized value always one of them the nearest fixed-point number range get clamped
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Uniform 8-bit Quantization

[1] lllustration from Sahni Manas.
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Quantization: Low Power Consumption

L1 Cache/TLB
L2 Cache

Operation: Energy
(p3)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Multiply 0.2
32b Multiply 3.1
16b FP Multiply 1.1
32b FP Multiply 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

[Horowitz, ISSCC 2014]
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Which mixed-precision setting works better?
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Second Order Sensitivity Analysis

—4 —2 0 2 4
At the origin, the first derivative of y = 4x?, y =x?, y =0.1 x? is all the same: 0

The second derivative give more information: 8, 2, and 0.2 respectively



HAWQ: Hessian-AWare Quantization

Only quantize layers that have small top eigenvalue to ultra-low precision
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[1] Z. Dong, Z. Yao, A. Gholami, M. Mahoney, K. Keutzer, HAWQ: Hessian Aware Quantization of Neural Networks With Mixed Precision, ICCV’19



HAWQ: ResNet50 on ImageNet

Method w-bits a-bits Top-1 W-Comp Size(MB)
Baseline 32 32 7739 1.00x 97.8
Dorefa [43] 2 2 67.10 16.00x 6.11
Dorefa [43] 3 3 6990 10.67x 9.17
PACT [2] 2 2 7220 16.00x 6.11
PACT [2] 3 3 75.30 10.67x 9.17
LQ-Nets [40] 3 3 7420 10.67x 9.17
Deep Comp. [8] 3 MP 75.10 10.41x 9.36
HAQ [35] MP MP 7530 10.57x 9.22
HAWQ 2vp 4 wvme 7548 12.28% 796

[1] Z. Dong, Z. Yao, A. Gholami, M. Mahoney, K. Keutzer, HAWQ: Hessian Aware Quantization of Neural Networks With Mixed Precision, ICCV’19
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Method w-bits e-bits Acc Acc Size Size
m mm w/o-e

Baseline 32 32 84.00 84.40 4154 324.5
Q-BERT 83.91 83.83 103.9 81.2

DirectQ 76.69 77.00 63.4 40.6
Q-BERT 83.89 84.17 63.4 40.6

8
8
8
DirectQ g8 70.27 70.89 53.2 30.5
Q-BERT 3 8 83.41 83.83 53.2 30.5
8
8
8
8

W |~ | ce

Q-BERTwe 2/4 wmp 83.51 83.55 53.2 30.5

DirectQ 2 53.29 5332 43.1 204
Q-BERT 2 76.56 77.02 43.1 20.4
Q-BERTwe 2/3 mp 81.75 82.29 46.1 23.4

10t Layer

[1] Shen Sheng, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael Mahoney, Kurt Keutzer, Q-BERT: Hessian-based Quantization for BERT, AAAI 2020.
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)) Automated Mixed-Precision

We prove Hessian Trace is a better sensitivity metric than the Top-1 Eigenvalue.
Hessian Trace can be used to quantify second-order perturbation Q.

Mixed-precision quantization becomes an Integer Linear Programming (ILP) problem:

L L
Q=) Q=) Tr(H)-[|Q(W:) — Wi,
i=1 i=1
L
Objective: min ng"'),
{b }?, 1 Z 1

Subject to: Z M i(bi) < Model Size Limit,
i=1



Automated Mixed-Precision
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)) HAWQ-V2: ResNet50 on ImageNet

Precisions for all layers are 100% automatically selected.

Method w-bits  a-bits  Top-1  W-Comp Size(MB)
Baseline 32 32 77.39 1.00x 97.8
Dorefa [28] 2 2 67.10  16.00x 6.11
Dorefa [28] 3 3 69.90 10.67x 9.17
PACT [6] 2 2 72.20  16.00x 6.11
PACT [6] 3 3 75.30  10.67x 9.17
LQ-Nets [26] 3 3 74.20  10.67x 9.17
Deep Comp. [10] 3 MP  75.10 10.41x 9.36
HAQ [23] MP MP 7530  10.57x 9.22
HAWQ [7] 2 Mp 4mp 7548 12.28 x 7.96
HAWQ-V2 2 mp 4dme 7592  12.24x 7.99

[1] Z. Dong, Z. Yao, A. Gholami, M. Mahoney, K. Keutzer, HAWQ: Hessian Aware Quantization of Neural Networks With Mixed Precision, ICCV 2019.
[2] Z. Dong, Z. Yao, D. Arfeen, A. Gholami, M. Mahoney, K. Keutzer, HAWQ-V2: Hessian Aware trace-Weighted Quantization of Neural Networks, NeurlPS 2020.



)) HAWQ-V2: SqueezeNext on ImageNet

Precisions for all layers are 100% automatically selected.

Method w-bits a-bits  Top-1 W-Comp Size(MB)
Baseline 32 32 69.38 1.00x 10.1
Direct [7] 3 mp 8 65.39 9.04 x 1.12
HAWQ [7] 3 wmp 8 68.02 9.26 % 1.09
HAWQ-V2 3w 8 68.68 9.40 x 1.07

[1] Z. Dong, Z. Yao, A. Gholami, M. Mahoney, K. Keutzer, HAWQ: Hessian Aware Quantization of Neural Networks With Mixed Precision, ICCV 2019.
[2] Z. Dong, Z. Yao, D. Arfeen, A. Gholami, M. Mahoney, K. Keutzer, HAWQ-V2: Hessian Aware trace-Weighted Quantization of Neural Networks, NeurlPS 2020.
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Optimization

- A compiler stack for CPU, GPU () S

and accelerators

. AutoTVM
- Autotuning framework

Tensor Expression and Optimization Search Space

Need to add:
1. Mixed-precision support

éi’q ;

I R@ B & s | owans

2. Low bit operations support
About Apache (incubating) TVM. (n.d.). Retrieved from https://tvm.apache.org/about

[1] Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,
Carlos Guestrin, and Arvind Krishnamurthy. TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), pages 578-594, 2018. o5



Dyadic Quantization with Integer Arithmetic

INT4 Weights FP32 FP32 FP32 -> INT4
Multiplication Accumulation Requantization

—Q@—0—[&
INT4

INT4 Activations

INT4 Weights INT4 INT32  INT32-> INT4
__ Multplication Accumulation Dyadic Scaling

—Q0— 00—k

INT4

INT4 Activations
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HAWQ-V3: Hardware-Aware Deployment
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)) HAWQ-V3: Hardware-Aware Deployment

We find the best bit precision configuration such that:

 Minimally perturbs the model Objective: min ZQZ :

L
* Meets application specific requirements: Subject to: ZMi(bi) < Model Size Limit,

i=1
* Model size constraint L

Z ng"’) < Bops Limit,
* Total bit operations for inference i=1

L
Z Q") < Latency Limit.

* Inference Latency —
1=



Uniform 8-bit Performance

BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH
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[1] Image from https://tvm.apache.org/2019/04/29/opt-cuda-quantized
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Int4 Performance of ResNet18 on ImageNet

BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH

Convolution Benchmark for Resnet 18 Workloads

B int8 tensorcore(ms) [ int4 tensorcore(ms)

0.125000

0.100000 Resnet 18 Int8 (ms) Int4 (ms) Speed-up
— 0.075000 Batch=1 0.85 0.62 1.37x
% 0.050000 Batch=8 4,55 3.02 1.51x
i 0.025000 Batch=16 8.84 591 1.50x

0.000000

*A workload is a convolutional function with certain shape

workload




@ Open-Source Projects

® QTorch: coming soon (github keyword: HAWQ)
HAWQ-V3 + TVM,
Easy to use, such as torchvision,
Support Various Networks: ResNets, Inceptions, MobileNets, EfficientNets, and so on,
Easy deployment and Fast inference,
High accuracy mixed-precision models (19MB ResNet50, 77% Acc on ImageNet).

® PyHessian: https://github.com/amirgholami/PyHessian

® ZeroQ: https://qgithub.com/amirgholami/ZeroQ



https://github.com/amirgholami/PyHessian
https://github.com/amirgholami/ZeroQ
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Conclusion

We use Hessian information to help conduct mixed-precision quantization.
We develop an automated method to generate good mixed-precision settings.

Our methods generalize well for different models on classification, object detection and
NLP tasks.

We develop TVM implementation for our low bit mixed-precision models.

We show hardware-aware deployment where we jointly consider model size and latency.
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Thank you for listening!

Berkeley
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