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Abstract

Homomorphic encryption (HE) offers strong privacy guaran-
tees by enabling computation over encrypted data. However,
the performance of tensor operations in HE is highly sensitive
to how the plaintext data is packed into ciphertexts. Large
tensor programs introduce numerous possible layout assign-
ments, making it both challenging and tedious for users to
manually write efficient HE programs.

In this paper, we present Rotom, a compilation framework
that autovectorizes tensor programs into optimized HE pro-
grams. Rotom systematically explores a wide range of layout
assignments, applies state-of-the-art optimizations, and au-
tomatically finds an equivalent, efficient HE program. At its
core, Rotom utilizes a novel, lightweight ApplyRoll layout
conversion operator to easily modify the underlying data lay-
outs and unlock new avenues for performance gains. Our
evaluation demonstrates that Rotom scalably compiles all
benchmarks in under 5 minutes, reduces rotations in manu-
ally optimized protocols by up to 4 x, and achieves up to 80x
performance improvement over prior systems.

1 Introduction

The recent revolution in advanced machine learning and data
analytics offers unprecedented opportunities. However, these
technologies have also introduced new and significant privacy
risks [49,52,53]. For example, inference-as-a-service offer-
ings like ChatGPT have caused many concerns about user
data privacy. These concerns have led to bans from major
companies like Samsung [33,46] and temporary government
restrictions in countries such as Italy [48]. The growing con-
cern over user privacy has led to increasing regulatory pres-
sures, with laws and policies threatening to stifle progress if
these challenges are not adequately addressed [7,21,48].
Cryptographic primitives for secure computation are a
promising approach. In particular, homomorphic encryption
(HE) is one such powerful primitive that enables computation
directly on encrypted data. HE allows a party Py to encrypt

Fraser Brown
Carnegie Mellon University
fraserb@cmu.edu

Wenting Zheng
Carnegie Mellon University
wenting @ cmu.edu

its input x using a private key to get a ciphertext Enc(x). A
different party P; applies a function f over the ciphertext to
get f(Enc((x)), where f(Enc(x)) = Enc(f(x)). P cannot see
the decrypted result of f(x) as it does not own the private key.
Since Py owns the private key, Enc(f(x)) can be decrypted
by P to get f(x).

There are two variants of HE: partially HE (PHE) and fully
HE (FHE). PHE is only viable when the target computation
has limited multiplicative depth; FHE removes this restric-
tion by introducing a bootstrapping operation that enables
unbounded computation. Both PHE and FHE are important
building blocks in end-to-end secure computation protocols,
such privacy-preserving inference-as-a-service applications
[22,25,26,28,32,40,41,43,44,54].

These applications predominantly use lattice-based HE
schemes such as BFV/BGV/CKKS [6, 10, 20], which provide
significant speedups over prior designs. One common trait
of the schemes is their vector programming model, where
multiple plaintext values are encrypted into a single cipher-
text with thousands of slots (n = 4K — 64K). The schemes
support only three homomorphic operations over encrypted
vectors: element-wise addition, element-wise multiplication,
and cyclic rotations. While single-instruction, multiple data
(SIMD) operations improve performance through parallelism,
their benefits are only realized through high slot utilization,
i.e., by packing as many plaintext values as possible into
the ciphertext(s). Most HE programs require a mix of SIMD
additions/multiplications and data movement operations to
achieve high slot utilization. Unfortunately, these data move-
ment operations are limited to expensive intra-ciphertext rota-
tions. Therefore, different layouts—the order in which plain-
text values are packed into ciphertext(s)—can result in wildly
different data movement and performance. Optimizing layout
choices is imperative, but manually doing so is tedious.

Cryptography experts have spent substantial effort [26, 32,
41,43, 54] carefully crafting packing schemes for various
machine learning applications. These workloads support oper-
ations over large tensors suitable for the high-parallelized,
SIMD operations used in HE. For example, Gazelle [32]



optimized packing schemes for ciphertext-plaintext matrix-
vector multiplication used in convolutional neural networks.
Bolt [43] later showed that such techniques do not directly
generalize to efficient ciphertext-plaintext matrix multiplica-
tion used in transformers. Naive generalization leads to an
overhead of 128 x more multiplications and over 2000 more
rotations than an optimized scheme. Manually optimized pro-
tocols show that different applications can require entirely
different packings, and simply generalizing a packing scheme
from one application to another is neither easy for a user nor
efficient in performance.

Is it possible to design compilers that can automatically
generate optimized, application-specific vectorized HE im-
plementations? We define this question as the layout assign-
ment problem, a search problem where an automated system
has to explore numerous possible layouts to find an assign-
ment that leads to the least costly HE program. Prior com-
piler works [1, 14,18, 19, 34,39,47,50] proposed a variety
of solutions to this problem, but these works all have one of
two drawbacks. As with any search problem, the main chal-
lenge is the tussle between search speed and search quality.
Many works used heuristics and limited, restrictive layout
options [1,18,19,34,50] in order to improve the search speed.
However, the restricted layouts can introduce expensive data
movement costs (i.e., conversions between layouts) that re-
duce search quality. One recent work proposed to search
more complex input layouts, but suffered from long com-
pilation times—over 13 hours for a single matrix multipli-
cation [47]. In fact, brute-forcing a fully optimal solution
is infeasible as realistic tensor workloads oftentimes have
hundreds-of-thousands of layout possibilities to consider. The
main challenge is devising a way to ensure finding an ef-
fective search quality for commonly seen workloads, while
minimizing search speed.

In this paper, we present Rotom, a compiler framework
that efficiently finds an optimized layout assignment from a
high-level tensor program. Rotom’s main goal is to resolve
the tension between layout search speed and search quality.

To this end, Rotom relies on three key techniques. First, we
formalize layout alignment rules that allow Rotom to deter-
mine how to implement a tensor operator in HE and derive
its associated costs. When searching for an efficient layout
assignment, these rules help Rotom easily reason about differ-
ent layout choices and their respective HE implementations.
For a given binary tensor operator, Rotom uses alignment to
check whether the operand layouts satisfy the logical require-
ments to implement a tensor operator in HE; otherwise, it
will determine which layout conversions are required. While
alignment is used implicitly by prior works, Rotom’s contri-
bution extends these rules to also handle alignment for more
complex layouts, such as the diagonal packing.

Second, we design a new lightweight layout conversion op-
erator, ApplyRoll, that can be used to generate inexpensive
layout conversions. In many common scenarios, our new lay-

out conversion operator can provide 3 — 8 x more performance
compared to approaches used in prior works. Furthermore,
ApplyRoll lowers to a very structured set of HE operators—
a fixed step-size rotations and multiplications with evenly
spaced 0-1 bitmasks—making it amicable to additional opti-
mizations. For example, this structure pattern-matches on the
well-known baby-step giant step optimization [32] that can
reduce the number of HE rotations by a square root factor.

Lastly, we introduce 4 cost-based, symmetry-breaking
heuristics to reduce the search time without compromising
search quality. Rotom uses a top-down enumeration search to
find an efficient layout assignment. Naively performing this
search would be intractable, as there are potentially hundred-
of-thousands of different layout choices to consider for real-
world application workloads. Instead, Rotom employs these
heuristics to help control the search space, reducing the layout
choices to just hundreds and enabling Rotom to compile large
tensor programs in seconds.

We implement Rotom in /12,000 lines of Python and
evaluate Rotom on tensor programs used in realistic work-
loads. Rotom efficiently compiles most workloads within a
few seconds and all workloads in under 5 minutes. Rotom
reduce rotations used in hand-tuned protocols by up to 4x
and outperforms prior HE compilers by up to 80x.

To summarize, Rotom makes the following contributions:

1. A lightweight layout conversion operator, ApplyRoll.
2. A formalization of layout alignment with rolled layouts.

3. 4 novel peephole optimizations derived from ApplyRoll
that enables 3 — 80 improvement over prior work.

4. 4 cost-based, symmetry-breaking heuristics to scalably
perform layout assignment within seconds, where prior
work did not finish compiling within 24 hours.

5. An evaluation across 7 tensor workloads, including auto-
matically packing a transformer model’s attention layer
for the first time.

2 Background

The following sections introduce background preliminaries
for our target HE schemes and motivate the importance and
difficulty of finding "good" layout assignments.

2.1 Preliminary: Homomorphic Encryption

Lattice-based HE schemes like BFV/BGV/CKKS [6, 10, 20]
have recently gained interest thanks to their relative efficiency.
A common trait of these schemes is that they support a vec-
tor programming model, where n plaintext values are in en-
crypted into a single ciphertext (with 7 slots). For example, a
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Figure 1: (D shows an HE matrix multiplication with simple layouts and expensive data movement. 2) shows a more optimized

implementation using a diagonalized layout.

single plaintext vector v = [v},v2,...,v,] can be entirely en-
crypted into a single ciphertext Enc(v). The schemes support
only three HE operations: element-wise addition and multi-
plication (also known as “single instruction, multiple data” or
SIMD), and ciphertext rotation that cyclically shifts the under-
lying plaintext vector. The number of available slots within
each vector is typically very large (e.g., n = 4K — 64K).

While addition and ciphertext-plaintext (ct-pt) multiplica-
tion are relatively low-cost in HE schemes (=0. lms), rotation
and ciphertext-ciphertext (ct-ct) multiplication are orders of
magnitudes more expensive (=10-30ms). Unfortunately, rota-
tions are the sole operation that facilitates intra-ciphertext data
movement. Therefore, minimizing the number of rotations—
in other words, minimizing data movement—is crucial to HE
program performance.

In end-to-end secure computation protocols, such as
privacy-preserving inference applications, HE is used in pre-
dominantly two ways: partially HE (PHE) and fully HE
(FHE). PHE is only viable when the computation has lim-
ited multiplicative depth. This variant is often used along-
side other cryptographic primitives in secure two-party com-
putation (2PC) protocols [26,28, 32,40, 43]. FHE removes
this restriction by introducing a bootstrapping operation, en-
abling unbounded computation with arbitrary multiplicative
depth; end-to-end protocols can be implemented solely in
FHE [22,25,41,44,54]. The tradeoff between PHE and FHE
is that the former exhibits more communication, while the lat-
ter exhibits significantly more computation. The performance
of PHE + 2PC or FHE for particular application depends on
a variety of factors like network bandwidth and latency, the
availability of GPU or specialized accelerator for FHE, etc.

2.2 Finding A Good Layout Assignment Is
Hard

Manually writing an HE program is extremely tedious. Users
must determine how to pack plaintext data into ciphertexts
with thousands of slots while working with a limited set of
data movement instructions. Unfortunately, different input
layouts can result in HE programs with wildly different data
movement and costs. Even worse, changing the input lay-
out of an HE program requires rewriting the layouts for all
downstream operations. Brute-forcing an optimal solution
is practically infeasible as there are numerous layout assign-
ments to explore for real-world applications (e.g., a 64 x 64
matrix alone can have 12! different tilings).

To illustrate the impact of layouts on HE performance,
Figure 1 compares two vectorized implementations of matrix
multiplication, a key operation in transformer workloads. In
this simplified setup, we use 4 x 4 matrices and assume each
ciphertext has n = 16 slots. Matrix A (blue) is encrypted and
sent by the client; B (orange) is a private, plaintext server-
side matrix; and C (green) is the encrypted result returned to
the client. Both A and C are compactly packed into a single
ciphertext to minimize communication costs. B is plaintext
matrix and can be freely repacked by the server. Each partial
product of C is labeled as ci. j, where i refers to the final output
index and j refers to the index of the partial products for
summation. Part () shows a costly HE program with simple
layouts; and part (2) presents an optimized implementation
using a diagonal layout.

In part (D, A is row-packed, B is column-packed into 4 sep-
arate ciphertexts where each column of B is repeated, and C
is row-packed. First, the program computes a multiplication
the rows of A and the first column of B. The partial prod-
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Figure 2: Rotom compilation pipeline. Each component references a section in the paper.
ucts are summed together using a rotate-and-sum routine—a from rotom import Tensor, MatMul, Conv2D

series of rotations and additions to sum elements together
within a ciphertext—to get the first column of C. Garbage
partial products (marked in gray) are later removed using
multiplications with 0-1 bitmasks (masking). The multiply,
rotate-and-sum, and mask steps are repeated 3 more times
for each column in B. Finally, the resulting ciphertexts are
compacted together into a single ciphertext. In total, this im-
plementation results in 4 multiplications, 11 rotations and 11
additions.

In part ), A is column-packed, B is diagonally-packed
where each diagonal value is repeated 4 times, and C is
column-packed. In this implementation, each column of A is
multiplied by a repeated diagonal in B, resulting in a partial
product of C that is aligned for summation across the slots of
the ciphertexts. Imperatively, this input packing avoids extra-
neous data movement operations compared to part (1. Using
optimized layouts, part Q) reduces the total computation to 4
multiplications, 3 rotations, and 3 additions.

As demonstrated in Figure 1, different input layouts result
in different HE implementations, output layouts, and overall
costs. Notably, the output layouts are later used in downstream
operations; writing an efficient HE program requires careful
reasoning and cheap layout conversions between different
layout choices. Rotom alleviates these challenges by auto-
matically exploring a wide range of layout choices using its
lightweight conversion operator, ApplyRoll.

3 Overview

Rotom is a compiler framework that takes in a high-level ten-
sor program, finds an efficient layout assignment, and lowers
to an HE program that can be run by an HE backend (see Fig-
ure 2). In the following sections, we walk through Rotom’s
compilation pipeline in more detail.

3.1 Rotom’s Compilation Pipeline

We describe Rotom’s tensor DSL, its tensor and layout IRs,
layout alignment rules it uses for layout conversions, opti-
mizations over layout IR, and its strategy lowering layout IR
to HE backends.

—_
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# matmul example

A = Tensor ( , (64,64), secret=True)
B = Tensor ( , (64,64), secret=False)
matmul_res = MatMul (A, B)

# convolution example

I = Tensor , (3,32,32) secret=True)
W = Tensor ( , (16,3,3), secret=False)
conv_res = Conv2D (I, W, stride=1, )

Listing 1: MatMul and Convolution in Rotom DSL.

3.1.1 Tensor DSL and IR

To cut down on programming headaches, Rotom supports a
python-based tensor DSL, similar to writing programs using
PyTorch [45]. This DSL exposes common tensor operators
used in machine learning, like matrix multiplication and con-
volutions. Listing 1 illustrates how to use Rotom’s DSL to
write simple tensor programs with only a few lines of code.
In the example, the Tensor operator defines entry points for
public and encrypted tensors; MatMul and Conv2D describe
tensor operations on those inputs. Rotom then parses this
program into its tensor IR, a direct acyclic graph (DAG) of
tensor operators which are a one-to-one match to the tensor
DSL. Appendix A details the tensor operators within this IR.

3.1.2 Layout IR

Rotom represents a layout assignment using layout operators
in its layout IR. When searching for a layout assignment, Ro-
tom lowers each tensor operator into an HE Kernel—a DAG
of layout operators that implements a single tensor operator.
Each layout operator extends a tensor operator by maintaining
a layout representation (see Section 4) of how tensor elements
are packed into the ciphertext(s).

Rotom’s layout IR supports conversion operators—such as
ApplyPermute, ApplyReplication, and ApplyCompact—
which transform one layout to another. ApplyRoll is a new
conversion operator introduced by Rotom and is the main
workhorse behind most of Rotom’s layout optimizations. Ap-




pendix B details the layout operators in this IR.

3.1.3 Layout Alignment

When Rotom encounters a binary tensor operator, it may re-
quire layout conversions to ensure the corresponding HE
kernel is both correct and has high-slot utilization. Rotom
uses layout alignment rules (see Section 5) to reason about
these layout conversions and their associated data movement
costs, directly from the layout representation. Additionally,
Rotom provides new rules to reason about alignment with its
new ApplyRoll conversion operator.

3.1.4 IR Optimizations

To improve the performance of an HE kernel, Rotom in-
troduces 4 new peephole optimizations (see Section 6).
Many of these peephole optimizations stem from re-writing
ApplyPermute to ApplyRoll in specific, yet common pat-
terns in our layout IR. Moreover, ApplyRoll lowers to a
structured set of HE operations that makes it amicable to
further optimization opportunities.

3.1.5 Search Space Heuristics

Rotom uses a top-down enumeration search to find a layout
assignment. However, enumerating all possible layouts is
extremely expensive as there are numerous layout options to
consider. To prevent search-space explosion, Rotom employs
4 symmetry-breaking, cost-based heuristics (see Section 7.2)
that either restrict when layout conversions are applied or
prune costly HE kernels that are not along the Pareto frontier
of existing solutions.

While Rotom does not guarantee finding the optimal so-
lution, as it would be infeasible to search the entire possible
space of layouts, it’s approach finds the best solution within
its restricted search space. Rotom’s search heuristics only
removes layout assignments that are strictly worse than a
found solution. These heuristics improves search speed while
maintaining search quality.

3.1.6 Lowering to OpenFHE

After finding a layout assignment, Rotom lowers its layout
assignment (in layout IR) into an HE program. The HE pro-
gram is composed of an HE operator IR, which is a one-to-one
match of the HE operations exposed by backend HE libraries.
This low-level IR acts as a common abstraction to connect Ro-
tom to OpenFHE [2] and other frameworks (e.g., HEIR [13]).

4 Preliminary: Layout Representation

L1

This section describes the layout representation (or “layout
for short) that Rotom uses to define how tensors are packed
into ciphertexts. Like prior systems [1, 18, 34,47], Rotom
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Figure 3: Different packings using our layout representation.

uses a high-level layout representation to easily reason about
different layout assignments and conversions between lay-
outs. Rotom adopts the layout representation introduced by
Viaduct-HE [47] as both systems use rolls (further detailed
in Section 4.3). Rotom’s main difference is in formalizing a
lightweight conversion operator and abstractions that enable
Rotom to efficiently apply rolls to any layout.

A layout defines a mapping between ciphertext(s) slots and
tensor elements. It is composed of three components: a list of
traversal dimensions, a segmentation operator, and a list of
rolls. Together, these ingredients help Rotom abstract over a
wide range of layouts to find an efficient layout assignment.

To illustrate how to interpret a layout, we use Figure 3 as a
running example. Part (D shows a 4 x 4 tensor, A, with tensor
dimensions 0 and 1 for the rows and columns, respectively.
As we explain each layout component, we show how to pack
A into different layouts.

4.1 Traversal dimensions

A layout representation’s most basic goal is to dictate how
a plaintext tensor is packed into ciphertexts. We do so by
using a traversal dimension, which is defined as a sequence
of tensor indices (materialized into tensor elements) along a
tensor dimension.

The notation for a traversal dimension is [dim:extent:
stride], where dim denotes the tensor dimension, extent
denotes the length of a traversal, and st ride denotes the step-
size of the traversal (a stride of 1 can be omitted from the
representation). Note that extents are padded to the closest



power-of-two; this practice is commonly used in other sys-
tems [34,47] as it simplifies layout conversions and provides
a more natural packing into ciphertexts, which also have a
power-of-two number of slots. To represent an iteration over
the first column of A (in blue), we write [0:4:1] (or [0:4]).
In this iteration, the dim being traversed is 0, since we iterate
down a column; the extent of the traversal is 4 elements;
and the stride of the traversal is 1, because we intend to it-
erate over every element without skipping any of them. Since
dimension 1 is not specified in our layout, the default value
for the traversal is 0. This layout, [0:4], corresponds to the
tensor indices: { (0,0), (1,0), (2,0), (3,0) }.

A multi-dimensional tensor is compactly represented as
a nested loop iteration using multiple traversal dimensions.
Let’s consider packing A column-wise into a single n = 16
ciphertext. To do so, we write [1:4] [0:4]. Part (@ shows the
tensor indices of the layout represented with a nested loop;
i indexes the dim:1 of A and j indexes dim:0 of A, shown
by A[/][{] in the loop body. The extent and stride of both the
loops and traversal dimensions are 4 and 1, respectively. As
shown in part (), this layout results in the tensor indices:
{(0,0),(1,0),(2,0),...,(1,3),(2,3),(3,3) }.

To represent repeated and zeroed-out slots, Rotom also
makes use of two special traversal dimensions: repeated and
gap dimensions. In both cases, the extent of the traversal
dimension defines the length of either the repetition or zero-
filled slots; stride is omitted as it has no effect to the layout.
A repeated dimension is used to repeat values within a cipher-
text, denoted by [R:extent ], where the R stands for repeated.
For example, part @ shows how [R:4][1:4] maps to the
first row of A repeated 4 times, since the extent of [R:4] is
4. An empty dimension is used to represent zero-filled ele-
ments within a ciphertext, denoted by [G:extent], where G
stands for gap slots. Part (3 shows how [1:4][G:4] maps
to the first row of A spaced out by a step-size of 4. Here, the
non-zero indices represented by [G:4] (e.g., tensor indices:
{(0,1),(0,2), (0,3)}) are zeroed out.

4.2 Segmentation

A ciphertext has a fixed number of slots, n, and traversal di-
mensions that iterate more than n elements must be packed
into multiple ciphertexts. Rotom uses segmentation to sep-
arate traversal dimensions into vector dimensions and slot

[T L]

dimensions. This is done using the ““;” operator. Traversal di-

6,

mensions before “;” constitute vector dimensions, and traver-
sal dimensions after ““; ” constitute slot dimensions. The vector
dimensions define which ciphertext a tensor index is mapped
to, and slot dimensions define the slot position within that
ciphertext. If a layout representation does not have a seg-
mentation operator, then all traversal dimensions are slot di-
mensions and all data can fit within a single ciphertext. Part
(® shows a segmented column-major layout [1:4]; [0:4],
where each column of A is packed into its own ciphertext.
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Figure 4: (D presents the input matrix A with dimensions 0 and
1, each with extent 4. Q) describes the diagonal-major layout,
using a roll, and the corresponding loop traversal over A. 3
shows how A is packed diagonally into a single ciphertext
with n = 16.

4.3 Rolls

Originally introduced by Viaduct-HE [47], rolls were used as
a preprocessing step to pack ciphertexts into more complex
layouts. As demonstrated in Figure 1, complex layouts can
result in more efficient layout assignments that reduce data
movement costs.

At a high level, rolls cyclically rotate slot elements along
a specified traversal dimension in a layout, akin to how the
np.roll [27] function shifts plaintext tensor elements along a
specified axis. In a layout representation, a roll is defined by
Roll (i, 3j), where i and j represent the index of the traver-
sal dimension fo roll and the traversal dimension to roll by.
Rolling i by j will update the tensor indices of i to be the
result of a modular addition with the tensor indices of both
traversal dimensions, modulo the extent of the traversal di-
mension at i.

Figure 4 illustrates how a roll can be used to represent
a diagonal layout, Ro11(1,0) [1:4][0:4]. In Ro11(1,0),
i= 1 which represents [0:4], and j= 0 which represents
[1:4].Roll(1,0) performs a modular addition between the
tensor indices of [0:4] and [1:4], while leaving [1:4] un-
changed. Part (2) shows how this roll modifies the tensor
indices, i.e., (i+7j) %4 in the loop body. As a result, the tensor
indices of [0:4] changed from {0,1,2,3,0,1,2,3,...}to
{0,1,2,3,1,2,3,0,...}. This roll is the same as perform-
ing a cyclic rotation of each column by its column index (i.e.,
shifting the Oth column by 0, shifting the 1st column by 1,
and so on), resulting in the diagonal layout.

5 Layout Alignment

The previous section presents our high-level layout representa-
tion that Rotom uses to explore a wide range of layouts. In this
section, we explore how Rotom uses layout alignment rules
(or "alignment" for short) on its layouts to correctly and de-
terministically generate an HE kernel from a tensor operator.
Alignment checks whether operand layouts satisfy the logical
requirements of a tensor operator in HE and determines if



layout conversions are needed.

Prior HE compilers use alignment to determine how HE
kernels are implemented and their associated cost. By de-
termining the cost, compilers can then reason about differ-
ent layout choices when searching for a layout assignment.
CHET [18], HECO [50], and HE Layers [1] all use alignment
implicitly by predefining HE kernel implementations or re-
stricting available layout choices. While this approach makes
it easy find a layout assignment, the restricted layouts can
result in expensive conversions. To reduce conversion costs,
both Fhelipe [34] and Viaduct-HE [47] use a more flexible
layout representation. These systems use alignment explic-
itly, constructing HE kernels in two steps. First, they align
operand layouts using layout conversions operators, then use
HE operators to perform the tensor operator.

While Viaduct-HE supports rolled layouts (Fhelipe does
not), it does not have high-level abstractions to reason about
alignment with rolls. To determine the implementation (and
cost) of an HE kernel, Viaduct-HE fully materializes the large
underlying ciphertext vectors, greatly hindering its compi-
lation speed on large tensor inputs. Rotom alleviates this
problem by formalizing alignment over its high-level layout
representation.

5.1 How Rotom Uses Alignment

When Rotom constructs an HE kernel, operand layouts for
binary tensor operators may require layout conversions to re-
align the slots values for high slot utilization. Alignment helps
determine which traversal dimensions and rolls in a layout
are misaligned, and what layout conversions are necessary to
realign the layouts. Additionally, alignment standardizes how
HE kernels are constructed by separating layout conversion
operators (e.g., ApplyPermute) from operational operators
(e.g., MatMul). Since all layout operators have a fixed im-
plementation, Rotom can then easily reason about both the
cost and lowering of an HE kernel directly from its layout
representation.

5.2 Dimension Alignment

Recall that Rotom uses traversal dimensions in a layout to
represent how to iterate over a tensor. When encountering a
binary tensor operator, the traversal dimensions in the operand
layouts have to be aligned to guarantee high-slot utilization
and good performance. Different tensor operators have differ-
ent alignment constraints, and these constraints are derived
from a nested loop representation of the tensor operator.

To give a concrete example using Einstein’s notation, C;; =
Y« AixByj represents a possible nested loop computation for
the MatMul operator, where i, j, and k are the loop iterators.
In this example, assume that all loop iterators have an extent
of 4. For tensor A, i indexes the Oth dimension, k£ indexes
the Ist dimension, and j repeats the value denoted by Aj.

Following the loop iterator order of i, j, and k, this traversal
is represented with the layout A: [0:4] [R:4] [1:4], where j
is denoted with a repeated dimension. Using the same loop
iterator order for B, the aligned traversal is represented with
the layout B: [R:4][1:4][0:4]. Since A and B both share &,
the A :[1:4] is aligned to the B :[0:4], where these traversal
dimensions materialize to the same tensor indices. Notably,
alignment does not fix the ordering of a layout’s traversal
dimensions, but rather the relative positioning of the traversal
dimensions. For example, another set of aligned layouts can
be implemented by swapping the order of i and k, resulting in
A: [1:4][R:4][0:4] and B: [0:4][1:4] [R:4].

5.3 Roll Alignment

As Rotom is the first compiler to support the ApplyRoll op-
erator, Rotom generalizes its alignment rules to handle rolled
layouts. Recall that rolls shift the tensor elements within a
ciphertext, effectively modifying the tensor indices of the lay-
out. If two operand layouts are dimension aligned but have
different rolls applied, then the rolls could break alignment.
Rotom’s alignment rules for rolls guarantee that shared traver-
sal dimensions must have the same roll applied.

Using the same matrix multiplication example, layouts
A:Rol11(0,1)[1:4][R:4][0:4] and B: [0:4][1:4][R:4]
are not aligned for MatMul because A: [1:4] is rolled whereas
B:[0:4] is not. Since this is a shared dimension, align-
ment dictates these traversal dimensions need to have the
same tensor indices. To align these two layouts, Rotom uses
ApplyRoll to apply the same roll, Ro11 (0, 1), to B. Not all
rolls need to be matched in order to reach alignment. A rolled
traversal dimension that is aligned with a repeated dimension
does not disrupt alignment, as the modified tensor indices still
map to the same repeated tensor indices, despite any shifts.
For example, layouts A: Ro11(0,1) [0:4] [R:4][1:4] and
B: [R:4][1:4][0:4] are aligned for MatMul, even though B
does not have a rolled layout.

6 Improving Layout Search Quality via Rolls

With alignment, Rotom computes the cost of an HE kernel by
summing conversion costs (cost to convert a layout into an
aligned layout in HE) and operation costs (cost to perform the
tensor operator in HE). In this section, we explain how Rotom
uses our new ApplyRoll operator to find optimizations that
improves both fronts.

One common component to achieving alignment is by
swapping the positions of two traversal dimensions. Rotom’s
first insight stems from designing a new ApplyRoll opera-
tor that can inexpensively perform this swap to align layouts
(Section 6.1). In addition, we observe that ApplyRoll low-
ers to a structure set of HE operators, namely rotations with
a fixed step-size and masking with evenly spaced slots. Ro-
tom’s second insight is that this structure makes ApplyRoll



amicable to more optimization opportunities that can further
minimize data movement costs (Section 6.2). We implement
all of these insights as peephole optimizations in Rotom’s
compiler pipeline.

6.1 ApplyRoll Swaps Traversal Dimensions

To align layouts, prior works introduced conversion op-
erators that are relatively expensive. Rotom formalizes
these operators as ApplyPermute, ApplyReplication, and
ApplyCompact. ApplyPermute is a conversion operator that
can be used to arbitrarily permute the order, extent, and strides
of a layout’s traversal dimensions. To swap two traversal di-
mensions with ApplyPermute, misaligned slot dimensions
are first masked into individual ciphertexts, then the gap slots
are filled either by ApplyCompact (rotating and adding dif-
ferent ciphertexts together) or ApplyReplication (rotating
and adding the same ciphertext together).

In Rotom, we find that using ApplyRoll is not only useful
for creating complex layouts, but also as a cheap layout con-
version operator. Our key insight is that rolling any traversal
dimension by a repeated dimension (commonly seen in tensor
operators such as matrix multiplication) can swap the two
traversal dimensions. Recall that a roll modifies the tensor in-
dices of a traversal dimension by applying a modular addition
with another traversal dimension’s indices. The intuition be-
hind this conversion is that modular addition is commutative,
thus swapping the order of the traversal dimensions does not
change the resulting tensor indices. This property only holds
when one of the rolled traversal dimensions is a repeated di-
mension; otherwise, swapping two traversal dimensions could
potentially change the tensor indices of the roll by dimension.
For example, Ro11(1,0) [R:4]; [0:4][1:4] is equivalent to
Rol1(0,1)[0:4]; [R:4][1:4], where traversal dimensions
[R:4] and [0:4] are swapped. Rotom uses this insight to
do local re-writes of ApplyPermute: when it encounters an
ApplyPermute operator that swaps a traversal dimension
with a repeated dimension, it will replace ApplyPermute with
ApplyRoll.

While both ApplyPermute and ApplyRoll can swap di-
mensions (and thus be used for alignment), these two oper-
ators lead to very different conversion costs. Figure 5 illus-
trates how these operators are used to swap [1:4] with the
repeated dimension [R:4] in a repeated column-major layout
[R:4];[1:4][0:4]. In both cases, all slot positions end with
the same values across the ciphertexts. Part () shows the
conversion using ApplyPermute; each column (color) is first
masked, then replicated within each ciphertext. The conver-
sion results in 4 multiplications, 8 rotations, and 8 additions,
as the replicate step requires a rotate-and-sum routine for each
ciphertext. Part (2) shows the conversion using ApplyRoll;
each column is rotated internally within the ciphertext. This
process requires 1 mask, subtraction, and rotation to get each
rotated partition; the partitions are then compacted together.

This conversion uses 3 multiplications, 6 rotations, and 6 ad-
ditions. Crucially, ApplyRoll avoids the Replicate step used
by ApplyPermute, which saves on rotations as the extents of
tensor dimensions and number of slots increases.

In this example, ApplyRoll can be further reduced to
only use 3 HE rotations. This optimization works when an
ApplyRoll rolls the leftmost slot dimension by a repeated
vector dimension. The intuition is as follows. If we can en-
sure all tensor indices within a ciphertext are shifted by the
same amount, then the conversion can be lowered to just rota-
tions. Since the leftmost slot dimension defines contiguous
segments of values within a ciphertext, rolling by a vector
dimension adds a fixed offset to each segment, fulfilling our
condition. When Rotom encounters this pattern, it re-writes
the ApplyRoll operator to the ApplyRotRoll operator.

6.2 Reducing Rotations with ApplyRoll

With the introduction ApplyRoll, Rotom identifies additional
opportunities to apply the well-known baby-step giant-step
(BSGS) optimization [24] to greatly reduce the number of
rotations. The insight behind this optimization stems from
the regular structure of HE operators used to implement
ApplyRoll, which includes a set of rotations with a fixed
step-size and multiplications evenly-spaced 0-1 bit-masks.
Rotom leverages this structure to create two new peephole
optimizations that re-writes ApplyRoll into ApplyBSGSRoll
and ApplyBSGSMatMul.

6.2.1 Baby-step Giant-step Optimizations

BSGS is an optimization that reduces the overall number
of rotations from O(n) to O(y/n). BSGS can be used when
it pattern-matches on two constraints. First, a ciphertext is
rotated multiple times by a progressively increasing offset
(i.e., rotations by k, 2k, ... nk). Second, rotated ciphertexts fol-
low a multiply-and-accumulate pattern (e.g., multiplication
with plaintext masks then a compaction step). Rather than
performing all individual rotations, this optimization decom-
poses them into two rotation groups: the baby-step group and
the giant-step group. First, the baby-step group is processed
by using rotations, multiplications, and partial summations.
The intermediate results are then rotated by the giant-step
group and summed again to produce the final result. By amor-
tizing rotations across the baby-step group, this optimizations
reduces the total number of rotations by a square root factor.

Rotom applies BSGS when ApplyRoll is used on
two slot dimensions, re-writing the conversion operator to
ApplyBSGSRoll. In this scenario, ApplyRoll is implemented
by first masking the original ciphertext into partitions, rotating
each partition (with an increasing step-size) to its desired loca-
tion, and compacting the partitions together. This operation ex-
hibits the rotate, multiply, and accumulate structure that BSGS
is designed to optimize. Additionally, when ApplyRoll is
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Figure 5: Comparison of ApplyPermute and ApplyRoll to swap two traversal dimensions.

used with a matrix multiplication, Rotom will rewrite both the
conversion and MatMul operator to ApplyBSGSMatMul. The
computation also matches the BSGS pattern; ApplyRoll cre-
ates rotations with an increasing step-size and MatMul follows
the multiply-and-accumulate structure.

6.2.2 Moving summation dimensions to vector dimen-
sions

Many tensor operators (e.g., matrix multiplication) include
a summation of values along a tensor dimension as a sub-
operation. Within a layout, we call the traversal dimension to
be summed the summation dimension. A summation dimen-
sion can either be a vector dimension or a slot dimension. We
observe summations along vector dimensions is more perfor-
mant as it can be done by directly adding ciphertexts together.
On the other hand, summation along slot dimensions uses a
rotate-and-sum routine, which not only requires additional
rotations, but also leaves behind garbage values that mandates
additional masking. This is one reason why diagonal packing
is efficient for matrix multiplication.

Taking advantage of this observation requires efficient lay-
out conversion operators that can cheaply move the appro-
priate traversal dimensions to be vector dimensions. Prior
works could not use this observation because their layout
conversions (ApplyPermute) were too expensive, and the
cost of conversion outweighed any performance benefits from
moving traversal dimensions. Conversely, ApplyRoll is of-
ten cheap enough to warrant applying this optimization to
generate more efficient HE kernels.

Consider the example A - B, where A is the ciphertext ma-
trix and is initially column-packed and replicated, with layout
[R:4];[1:4][0:4]. B is a plaintext matrix, which means
changing the layout of B to align it to A’s layout comes at
no additional cost. The summation dimension for A is [1:4].
Moving it to the vector dimension requires swapping [1:4]
and [R:4]. Using ApplyPermute offers no performance ben-
efits compared to summing within the slot dimensions, as
both HE kernels result in the same cost. In both cases, the HE
kernel requires 4 multiplications, 4 rotate-and-sum routines, 4
masks, and a final compaction step. Instead, Rotom swaps the
two traversal dimensions using ApplyRotRoll, which uses
only 3 rotations and avoids the rotate-and-sum, mask, and
compaction step. This operation can be further optimized

with BSGS as the size of the input tensors increases.

6.2.3 Strassen’s Algorithm

Strassen’s algorithm [29] reduces MatMul compute costs us-
ing a divide-and-conquer approach that recursively operates
over tiled input matrices. In Rotom, we take advantage of
Strassen’s to improve the runtime of ciphertext-ciphertext (ct-
ct) matrix multiplication when an input tensor is tiled into 4
square tilings that span 4 ciphertexts. Rather than performing
8 matrix multiplication across all pair-wise tiles, Strassen’s
algorithm reduces multiplications at the cost of additional ad-
dition and subtraction operations. Fortunately, in HE, addition
(and subtraction) is much cheaper than multiplication. Using
Strassen’s reduces the number of ciphertext multiplications
in half. While Strassen’s algorithm reduces arithmetic com-
plexity, paired with ApplyRoll and ApplyBSGSRoll, Rotom
further reduces cost of conversions. Using ApplyRoll and its
optimizations, Rotom improves over baseline ct-ct matrix mul-
tiplication by ~6x, whereas Strassen’s with ApplyPermute
only improves performance by 1.27x (detailed in Table 3).

7 Layout Assignment in Rotom

The previous sections present techniques for aligning and
optimizing HE kernels using our ApplyRoll operator. In
this section, we explore how Rotom uses these techniques in
conjunction with search space heuristics to find an efficient
layout assignment.

Previous approaches either limited the search space to sim-
ple layouts—leading to suboptimal assignments, or employed
a bottom-up strategy that exhaustively explored a wide variety
of complex layout assignments—resulting in compile times
that took more than 24 hours. To achieve competitive search
times, Rotom introduces 4 cost-based symmetry-breaking
heuristics to prune costly layout assignments. Rotom outper-
forms prior approaches because it retains search quality using
complex rolled layouts without sacrificing search time.

7.1 How Rotom Works

Rotom finds an efficient layout assignment using a top-down
enumeration with search space heuristics. To begin, Rotom
uses a single topological traversal over its tensor IR. When



Rotom encounters a tensor operator, Rotom generates can-
didate HE kernels—each with different input/output layouts
and costs. Rotom builds each HE kernel iteratively by using
the output layouts from the previous tensor operator (or with
an initial compact row/column layout) as input layouts to
the next tensor operator. This process guarantees that each
newly generated kernel inherits an input layout that exactly
matches the output layout of a previously generated kernel,
ensuring consistent layouts across kernel dependencies. Given
two input layouts, Rotom uses alignment to deterministically
construct correct HE kernels for each tensor operator such
that the resulting HE kernel has high slot utilization and good
performance. Next, Rotom uses its peephole optimizations to
improve the cost of each candidate HE kernel. To avoid long
search times, Rotom applies heuristics to prune expensive
HE kernels and eliminate symmetries among equivalent ones.
Lastly, Rotom picks the layout assignment—a map of each
tensor operator to an HE kernel—with the least overall cost.

7.2 Cost-based Symmetry-breaking Heuristics

While the proposed approach finds the optimal solution within
the search space, it’s still not scalable. This is because when
building an HE kernel, Rotom uses the output layouts from the
previous kernel as input layouts to the next kernel, causing an
exponential blowup based on the depth of the tensor program.
To keep layout assignment scalable, Rotom introduces four
symmetry-breaking heuristics designed to prune the search
space and ensure scalability. The heuristics are as follows:
Cost-based Pruning. To avoid evaluating all possible layout
assignment options, Rotom keeps the most efficient HE kernel
for each unique output layout pairing. Since Rotom builds
each HE kernel iteratively, keeping the most efficient HE
kernel for each unique output layout retains the Pareto frontier
of HE kernels. Thus, Rotom is only removing HE kernels that
are a strictly worse solution that an existing solution. This
heuristic does not affect the optimality of the search.
Selective application of ApplyRoll. Rotom only uses
ApplyRoll when they are necessary: either to achieve layout
alignment or to move a summation dimension into the vector
dimension, which can enable cheaper homomorphic opera-
tions. By only applying cost-efficient rolls, Rotom prevents
arbitrary applications of rolls from polluting the layout search
space. Intuitively, randomly applying arbitrary rolls to HE
kernels is not beneficial as it pollutes the search space and
adds additional conversion costs with no benefits.

Tiling and Compaction Heuristic. To further constrain
layout diversity, Rotom applies a heuristic when en-
countering ApplyCompaction, which compacts multiple
ciphertexts with gap slots into fewer ciphertexts. In-
stead of compacting vector dimensions arbitrarily, Ro-
tom will try to group vector dimensions with slot di-
mensions that share the same tensor dimension (i.e., the
same dim in a traversal dimension). For example, given a
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layout [1:4][0:4:4];[0:4][1:4:4]1[G:4], Rotom would
compact the layout into [0:4:4];[0:4][1:16] (a row-
major packing) over [1:4]; [0:4][1:4:4][0:4:4] (atiled
column-major packing). This is because many downstream
tensor operations, such as matrix multiplication, perform re-
ductions along a tensor dimensions. Packing same dimensions
together will result in less internal fragmentation (uneven runs
of gap slots) among traversal dimensions.

Canonical Vector Dimension Ordering. Rotom en-
forces a strict ascending order on vector dimensions of
each layout. This ordering does not affect the pack-
ing of each individual ciphertext, but rather standard-
izes the order of multiple ciphertexts within a layout.
For example, layouts [0:4:4][1:4:4];[0:4][1:4] and
[1:4:4]1[0:4:4];[0:4][1:4] contain the exact same ci-
phertexts and differ only in their order. By canonicalizing
the order of vector dimension, Rotom eliminates redundant
layout variants that are semantically equivalent, reducing the
number of layout configurations considered during search.

7.3 Limitations

In this section, we describe the design limitations within Ro-
tom. We leave exploring these directions to future work.
Search optimality: Rotom does not guarantee finding the
most optimal solution from the space of all possible layouts.
Rotom’s layout representation only supports different tilings
and rolled layouts. There could exist new conversion operators
apart from ApplyRoll that could use unrepresented layouts
with reduced data movement costs. Within Rotom’s search
space, it does guarantee finding the best layout assignment.
Power-of-two padding: Like Fhelipe and Viaduct-HE, Ro-
tom pads each tensor shape to the nearest power-of-two, which
works well for common real-world workloads. However, this
could theoretically lead to wasted slots and suboptimal pack-
ings. For example, a 3 x 9 tensor could fit within a n = 32
ciphertext; however, Rotom will pad to 4 x 16 and use n = 64.
One way we would address this limitation is to relax our
padding constraints so traversal dimension extents are no
longer restricted to a power-of-two. We would also need to
update both roll alignment rules and ApplyRoll to support
rolling by irregular extents. These changes would allow Ro-
tom to find hybrid diagonal packings that could fita 3 x 9
tensor in a diagonal packing within a n = 32 ciphertext.
Slot-based encoding: Rotom only handles slot-based encod-
ing methods, yet there have been new hand-tuned protocols
that use coefficient-based encoding to perform cheaper ten-
sor operations [4,31,38]. Finding a common abstraction that
bridges the gap between both encoding formats could lead to
even cheaper layout assignments.

Bootstrap placement: Rotom primarily research goal fo-
cuses on finding an efficient layout assignment. Rotom does
not handle placing noise management operations, such as
bootstrap, to enable FHE workloads. Instead, Rotom can be



used as a tensor frontend and lowered to other FHE compiler
frameworks.

8 How to use Rotom in FHE/MPC compilers

Rotom is a compiler framework for generating efficient layout
assignments. It can be used with existing fully homomorphic
encryption (FHE) and hybrid MPC compilers, or used as a
standalone tool to help users write and optimize secure com-
putation workloads. In this section, we describe how Rotom
can be integrated into existing FHE compilers [1, 13,47, 50],
and how a developer can use Rotom to design a 2PC protocol
for transformers inference.

Using Rotom in existing FHE compilers There are two
types of FHE compilers that exist today. Some compil-
ers [5,11,12,16,17,23,30,36,37,51] do not automatically
pack ciphertexts and instead rely on users to explicitly spec-
ify the packing schemes. Users write programs directly us-
ing primitive HE operators—additions, multiplication, and
rotations—and the compiler lowers those programs to an HE
operator IR. Then, the compiler runs FHE-related passes, like
rescale and bootstrap placement, on the HE operator IR.

To extend to one of these compilers (HEIR [13]) without
automated packing, we integrate Rotom as a tensor frontend
and layout optimizer. Users write programs in Rotom’s DSL,
and Rotom lowers the resulting layout assignment to the ex-
isting compiler’s HE operator IR; this is a simple lowering
pass, since the target IR consists of standard HE operations
with no extra ciphertext maintenance operations (e.g., noise
and scale management). For each compiler, Rotom’s lowering
pass requires less than 250 lines of Python.

A second category of FHE compilers introduces mecha-
nisms to automate packing [3,8,9,14,18,19,34,39,47,50,51].
They typically compile from a higher-level DSL to an IR that
can express ciphertext packings; after running any optimiza-
tions on this IR, the compilers lower to an HE program, and
run noise management and optimization passes on the HE
program. To extend these compilers with a more expressive
layout IR and more advanced layout optimizations, we can
once again integrate Rotom as a higher-level frontend. Users
write programs in Rotom’s DSL, and Rotom lowers these pro-
grams to its own layout IR, and then to an existing compiler’s
HE operator IR—yielding a combination of Rotom ’s layout
optimizations and the existing compiler’s backend optimiza-
tions. Our example Rotom frontend for HECO requires under
250 lines of Python.

There are two compilers in this category with which Rotom
doesn’t easily interoperate, since these compilers deviate from
the standard automated HE compiler pipeline. Integrating
Rotom into Fhelipe would be difficult as Fhelipe’s layout
representation is limited and does not support rolls. Rotom
can generate (better) layouts that cannot be represented in
Fhelipe’s layout IR. Rotom also cannot connect to Orion, as
this framework does not support an IR to target. Instead, Orion
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compiles tensor operations written in PyTorch to directly
Lattigo [42].

Using Rotom in manually optimized protocols Developers
and expert cryptographers can use Rotom to design manually
optimized 2PC protocols. For example, Bolt [43] presents a
hybrid 2PC protocol for transformers inference that uses both
HE and secret sharing. One of the paper’s contributions is a
new ciphertext packing scheme for matrix multiplication in
transformers. Rotom can automatically generate Bolt’s new
packing schemes; we expand in our evaluation.

We ran an informal investigation to answer the question,
“how easy is it to use Rotom in a manual workflow to generate
an optimized ciphertext packing?”” To answer this question
anecdotally, we asked 2 Ph.D. and 1 undergraduate students
to write the attention layer from BERT using Rotom’s DSL.
On average, the students took around 5 minutes to write this
function; where ~60% of the time was spend on understand-
ing how to use reshape and permute functions. One student
remarked on how closely the interface resembled PyTorch
and was surprised by Rotom’s ease-of-use.

9 Implementation

We implement Rotom in ~12,000 lines of Python code. Ro-
tom targets the CKKS implementation of the OpenFHE li-
brary [2]. Users can define the input scales and the degree of
a ciphertext (i.e., n). All other cryptographic parameters are
abstracted away from the user and automatically chosen by
OpenFHE to ensure 128 bits of security. In addition, Rotom
relies on the noise and scale management passes available
in OpenFHE to automatically insert ciphertext maintenance
operations (rescales, relinearization, and modswitches).

10 Evaluation

To evaluate Rotom, we run benchmarks to determine the scal-
ability of Rotom’s compilation pass and search quality of
the layout assignments. We use tensor benchmarks that are
already present in the HE compiler literature or exist as a
component from a secure inference protocol. These bench-
marks use large tensor sizes (64 — 1024) that are equivalent
to realistic workloads. Lastly, we evaluate Rotom against
two state-of-the-art HE tensor compilers, Fhelipe [34] and
Viaduct-HE [47]. To perform a controlled experiment, we
run the compiled programs from all systems on OpenFHE,
keeping all cryptographic parameters consistent across all
benchmarks.

Evaluation Setup We compiled and executed all of our bench-
marks on a 64-core Intel Xeon CPU with 256 GB of RAM.
To measure the cost of sending ciphertexts over the network,
we model a LAN network with bandwith 1Gbps, and a WAN
network with bandwidth 100Mbps. Each benchmark result is



the average over 5 runs with the relative standard error below
5%.

10.1 Microbenchmarks

To determine the effectiveness of our novel ApplyRoll lay-
out operator, we conduct two microbenchmarks that compare
the execution time of ApplyRoll (and their optimized ver-
sions) against ApplyPermute. Additionally, we show how
ApplyRoll reduces conversion costs when using Strassen’s
algorithm for HE ct-ct MatMul.

Operator ‘ Add Mul Rot ‘ Time [s]  Speed up
ApplyPermute | 384 64 447 1.18 -
ApplyRoll 126 127 63 0.23 5.13x
ApplyRotRoll 0 0 63 0.14 8.43 %

Table 1: Performance comparison of swapping the leftmost
slot dimension with a repeated vector dimension.

Table 1 compares swapping the leftmost slot di-
mension with a vector dimension using ApplyPermute,
ApplyRoll, and ApplyRotRoll. The benchmark is initial-
ized with a 64 x64 tensor, replicated in a row-major layout:
[R:64];[0:64][1:64]. The goal is to swap the positions of
[R:64] and [0:64]. Our results show how using ApplyRoll
and ApplyRotRoll greatly reduces layout conversion costs,
improving conversion performance by 5.13x and 8.43x re-
spectively. From the table, we can clearly see how ApplyRoll
and ApplyRotRoll reduces the total number of HE opera-
tions, namely rotations, by avoiding the rotate-and-sum rou-
tine used in ApplyPermute.

Operator ‘ Add Mul Rot ‘ Time [s]  Speedup
ApplyPermute 64 69 132 0.36 -
ApplyRoll 126 127 126 0.35 1.02x
ApplyBSGSRoll 126 127 28 0.11 3.27x

Table 2: Performance comparison of swapping a traversal
dimension within slot dimensions.

Table 2 compares swapping two slot dimensions within
a single ciphertext. Again, the benchmark is initialized
with a row-major 64x64 tensor: [0:64][1:64]. The ob-
jective is to swap the [1:64] into the position of [0:64].
For ApplyPermute, the resulting layout is [1:64] [R:64],
whereas for the roll layout operators, the resulting layout
iSRo11(1,0) [0:64][1:64]. The table shows that perform-
ing ApplyPermute and ApplyRoll is quite similar in per-
formance, where much of the runtime is dominated by
rotations. However, by applying baby-step giant-step in
ApplyBSGSRoll, we see a 3.27 x improvement by reducing
the number of rotations by a square-root factor.

Our final microbenchmark illustrates how Strassen’s can
be made more applicable in HE applications by reducing con-
version costs with ApplyRoll. We evaluate a ct-ct MatMul
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Operator | Add Mul CMul Rot | Time [s]
MatMul w/o Roll | 4224 768 512 4344 | 19.78
Strassens w/oRoll | 3268 512 256 3328 | 1552
MatMul w/Roll | 1024 128 512 1148 | 578
Strassens w/Roll | 1344 889 256 574 | 3.12

Table 3: Performance comparison of Strassen’s Algorithm.

workload with two 128x128 tensors and n = 4096. For
Strassens, the inputs are given as four 64 x 64 squares tiles,
whereas for MatMul, Rotom is left to specify the input layouts.
Matmul w/o Roll is comparable to implementations found by
prior works.

Table 3 shows how expensive our baseline of MatMul w/o
Roll is, using thousands of rotations for both operational and
conversion costs. By applying only St rassens, Rotom can re-
duce the number of ciphertext multiplications in half, and the
number of rotations by /1,000, gaining a slight improvement
in runtime. Using a combination of our roll optimizations
and Strassens, Rotom finds an HE implementation that is
6.34x faster than Matmul w/o Roll.

10.2 Application-level benchmarks

Rotom evaluates on a suite of 7 tensor workloads that exist in
real-world applications and compares the layout assignment
to both Fhelipe [34] and Viaduct-HE [47]. Note that Fhelipe is
targeted at FHE workloads, and thus they also introduce boot-
strap placement. On the other hand, Rotom’s goal is to build
a compiler framework that automatically vectorizes tensor
workloads for HE. Rotom compares to Fhelipe’s vectoriza-
tion pass; though, our contributions are complementary to
their bootstrap placement strategy. Our benchmarks are as
follows:

1. Distance [47] computes the euclidean distance between
a target point and 128 test points, each with 64 dimen-
sions.

2. MatMul [47] performs a single ct-pt MatMul between
A and B, where A is encrypted and B is not. For n = 8K,
A: 128 x 64, B: 64 x 128; for n = 32K, all shapes are
doubled.

3. Double-MatMul [47] performs two consecutive ct-ct
MatMul between A, B, and C. For n = 8K, A,C: 128 X
64, B: 64 x 128. For n = 32K, all shapes are doubled.

4. TTM [34] is a tensor kernel benchmark introduced by
Fhelipe. This benchmark computes the third-order tensor
matrix product. All inputs have are 64 x 64.

5. Convolution [35] performs a single convolution over an
8-channel input image with a filter size of 3 and a stride
of 1. For n = 8K, image: 32 x 32; for n = 32K, image:
64 x 64.
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Figure 6: Compile time in Log-Scale. 7-out indicates the benchmark did not compile within 24hrs.

LogReg-MatVecMul [25] This workload takes one of
the 32 iterations and performs two consecutive matrix-
vector multiplications with a batch size of 1024 and 197
features.

7. Bert Attention [41,43] performs the attention layer from
the BERT-base model, where m=128, d=768, and H=12.
This benchmark is highly complex, including both ct-pt
and ct-ct MatMul, transpose, and tensor addition.

10.2.1 Rotom Achieves Fast Search Speed

Figure 6 details the compile time in log-scale [s] of Rotom
compared to Fhelipe and Viaduct-HE. 7-out (in red) denotes
benchmarks that did not compile within 24 hours. Viaduct-
HE has two compilation modes, e1-00 and e2-o01, that trades
off compilation speed for better search quality and circuit
optimizations; we evaluate both modes.

Across all benchmarks, Rotom and Fhelipe find a layout
assignment within 5 minutes. Viaduct-HE’s layout assign-
ment pass requires array materialization to derive rotated and
masked ciphertexts from existing ciphertexts. This derivation
and materialization procedure makes their compilation time
dependent on the size of the input tensors. Viaduct-HE times
out on larger benchmarks, such as BERT, where MatMul is
performed with 128x768 and 768 x768 tensors. By using
ApplyRoll to derive rotated vectors directly from the layout
abstraction, Rotom finds complex derivations from existing
ciphertexts without materialization.

Rotom heuristics help control the search space of layout as-
signments explored. For example, Rotom explores only 7623
on BERT Attention. Without these heuristics, the number of
layout assignments grows to over 50,000 after a few MatMul
operators.

10.2.2 Rotom Achieves High Search Quality

To determine the efficiency of our layout assignments, we
compare the execution time of our compiled benchmarks
against that of Fhelipe and Viaduct-HE. Figure 7 shows in
log-scale that Rotom either matches or outperforms Fhelipe
and Viaduct-HE across all benchmarks. Each bar includes
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the communication costs of sending and receiving ciphertexts
in both LAN and WAN settings (denoted by the diagonal
hash bars). Notably on benchmarks that Viaduct-HE did not
compile, Rotom outperforms Fhelipe on Double-MatMul by
8.6x and BERT by 80.3 x.

Distance: Rotom matches the packing and performance of
Viaduct-HE. Fhelipe doesn’t find a replicated input layout,
thus requires an additional rotate-and-sum routine for replcia-
tion.

MatMul: On n = 8K, Rotom outperforms both Fhelipe and
Viaduct-HE-e2-01 by 39x and 1.65x respectively. Both Ro-
tom and Viaduct-HE find a diagonalized input packing. Ro-
tom gains a slight performance gain by employing BSGS
to reduce the number of HE rotations. On n = 32K, Rotom
outperforms both by 20x and 34.29x,

Double-MatMul: On n = 8K, Rotom outperforms both Fhe-
lipe and Viaduct-HE-e2-o01 by 7.45x and 1.49x respectively.
This is because it is cheaper to send multiple ciphertexts than
to convert the layout of a ciphertext in the LAN setting. Rotom
and Viaduct-HE both optimize their HE kernels by moving
summation dimensions to the vector dimensions. On n = 32K,
Rotom outperforms Fhelipe by 8.6 x.

Convolution: For n = 8K, Rotom matches Fhelipe’s packing.
Viaduct-HE fails to find a plaintext hoisting optimization
that combines the masks to the plaintext weight matrix and
uses 2 x more multiplications. On n = 32K, both Rotom and
Viaduct-HE-e2-00 have similar packings and HE kernels that
rely on sending multiple ciphertexts.

TTM/LogReg-MatMul: In both of these benchmarks, Rotom
outperforms Fhelipe and Viaduct-HE, for similar reasons to
the MatMul and Double-MatMul benchmarks.

BERT: For n = 8K, Rotom outperforms Fhelipe by 10x. Sim-
ilarly with previous microbenchmarks, Rotom finds cheaper
conversion costs using ApplyRoll, that improves the HE
kernel costs of ct-pt MatMul and ct-ct MatMul. On n = 32K,
Rotom finds a better packing that fully utilizes of all cipher-
text slots, whereas Fhelipe’s packing uses one ciphertext for
each attention head, performing around 80 more rotations.
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10.3 Comparison to Hand-tuned Protocols

To determine whether the layout assignments from Rotom
can match that of expertly hand-tuned protocols, we compare
both the ciphertext-plaintext (ct-pt) and ciphertext-ciphertext
(ct-ct) matrix multiplication packings to that of Bolt’s and
Thor’s [41,43]. Bolt is 2PC transformer model that mixes
both HE and MPC; Thor is an FHE transformer model.

When comparing ct-pt matrix multiplication, Rotom
matches the exact packing given by Bolt. Comparing to Thor,
their ct-pt matrix multiplication algorithm requires an internal
rotation on the input ciphertext, incurring an additional multi-
plication depth. Rotom avoids this initial conversion step and
optimizes using BSGS, incurring 4 x less rotations and ~1/3
less multiplications.

For ct-ct matrix multiplication with an input column and
row packing, Rotom is finds the exact layout assignment from
Bolt. Compared to the proposed packing starting with a di-
agonal and column packing, Rotom is able to improve the
computational cost using its ApplyRoll operator. Specifi-
cally, Rotom avoids having to replicate the diagonal major
packing with a rotate-and-sum routine, but instead chooses to
apply a roll to internally rotate the column packing, resulting
in less rotations and additions. Rotom also saves on half of
the ct-pt multiplication costs by deriving the internal rotation
through subtraction rather than from two masks. Compared to
Thor, Rotom finds a similar implementation. In fact, their lay-
out conversion into the diagonal packing can be implemented
exactly with the ApplyRoll operator.

11 Related work

Early iterations of compilers for automatically packing HE
ciphertexts [1, 8, 12, 18, 50] used simpler reasoning heuris-
tics and limited layout options. For example, some works
restricted to only row-major or column-major layouts in order
to scale to larger end-to-end machine learning benchmarks.
Using a limited set of layouts makes layout assignment eas-
ier to reason about since the compiler can force each tensor
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operation to begin and end with a specific layout, allowing
composability between tensor operations. Unfortunately, lim-
iting layouts also induces more expensive layout conversions
that can greatly degrade overall performance.

Fhelipe is a recent work that addresses these limitations
by having a flexible layout abstraction, allows arbitrary and
intermixed dimension orderings [34]. However, the main lim-
itation with Fhelipe’s search approach and layout abstraction
is that it doesn’t factor in operation costs nor does it sup-
port more complex data layouts, such as diagonalization and
tiling. These complex layout permutations can greatly reduce
the operational costs of frequent tensor operations, such as
matrix multiplication, by reducing rotations and moving the
summation dimension to vector dimensions.

Viaduct-HE is another recent work that has a similar lay-
out abstraction as Rotom, and provides additional support
for more complex data layouts than Fhelipe [47]. However,
this system uses a bottom-up enumeration combined with a
breadth-first search to explore an immense search space, re-
sulting in long search times. In particular, vector derivation in
Viaduct-he is useful in reducing operations by composing one
ciphertext efficiently from an existing ciphertext (using a rota-
tion). However, their process for finding vector derivations is
quite expensive, especially since this is done by materializing
the vector and comparing indexing sites. Orion [19] is an-
other recent FHE framework for deep learning, with a special
focus on convolutional neural networks (CNNs). The frame-
work supports optimized but specialized packing strategies
for matrix-vector multiplication and convolution. Compared
to Orion, Rotom is able to produce ciphertext packing for a
variety of models beyond CNNSs. Specifically, Rotom’s search
can efficient convolutions similar to those used in Orion.

Other works such as Porcupine and Coyote use heavy-
weight search techniques, i.e., program synthesis and simu-
lated annealing, to solve layout assignment [15,39]. These
approaches have a very expensive search procedure and do
not scale past small programs.



12 Conclusion

Rotom addresses a key barrier to practical homomorphic en-
cryption by automating the complex, layout-sensitive opti-
mization process for tensor programs. By introducing the
novel ApplyRoll operator and combining it with systematic
layout exploration and cost-based selection, Rotom delivers
efficient, vectorized HE implementations with minimal de-
veloper effort. Our results show that Rotom not only scales
to large tensor programs but also achieves significant perfor-
mance improvements—paving the way for more practical and
performant privacy-preserving computation.

A Tensor Operators

Tensor Operator ‘ Description

Tensor tensor initialization
+ tensor addition
* tensor multiplication
- tensor subtraction
@ matrix multiplication
conv2d 2d convolution
sum summation along a tensor dimension
product product along a tensor dimension
transpose tensor transpose
reshape tensor reshape
permute permute the dimension order
index index into a tensor dimension

B Layout Operators

Layout Operator ‘ Description
Tensor operators -
ApplyReplication add a replicated dimension
ApplyPermute apply an arbitrary conversion
ApplyRoll roll one traversal dimension by another
ApplyCompact compact ciphertexts together
ApplyRotRoll optimize ApplyRoll w/ only rotations
ApplyBSGSRoll optimize ApplyRoll w/ BSGS
ApplyBSGSMatMul optimize ct-pt @ w/ BSGS
ApplyStrassens optimize ct-ct @ w/ Strassen’s
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