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Motivation

Why type theory in type theory?
@ Study the metatheory of type theory in a nice language
e Type-safe template type theory (metaprogamming)
» generic programming
» extensions of type theory justified by models

)
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Plan

@ Extrinsic vs. intrinsic syntax for simple type theory
© Extrinsic vs. intrinsic syntax for type theory
© Defining functions from the intrinsic syntax
e Relationship of extrinsic and intrinsic sytnax

© Models
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Extrinsic vs. intrinsic syntax for simple type theory
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Extrinsic syntax for simple type theory

4 inductive sets + 2 inductive relations.

X 1= zero|suc x

t=x|lamt|apptt’

Ai=1|A= A
Mr:=-|rA
B N, x: A
ARy zero: A BF,sucx:A

M-, x: A NAFt: B r-t:A—-B TFu:A

lN-x:A TkFlamt:A— B -apptu: B
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Intrinsic syntax for simple type theory
4 inductively defined families of sets.

Ty : Set
L Ty
-=>-Ty=Ty—=Ty
Con : Set
: Con

—,— :Con— Ty — Con
Var : Con — Ty — Set
zero :Var([LA)A
suc :VarTA—Var([,B)A
Tm : Con — Ty — Set
var :VarTA—TmTl A
lam  :Tm(ILA)B — Tml (A= B)
app Tml(A=B)—>TmlIA— TmlB
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Extrinsic vs. intrinsic syntax for type theory
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Extrinsic syntax

4 inductive sets + 8 inductive relations (we can't avoid talking about
conversion).

PCon, PTy, PTm,PTms : Set

Fcon PCon — Prop
Fry  : PCon —PTy — Prop
Frm :PCon — PTy —PTm — Prop
Frms : PCon — PCon — PTms — Prop
~Con - PCon — PCon — Prop
~1y :PCon —PTy — PTy —Prop

~Tm :PCon — PTy —PTm — PTm — Prop
~Tms : PCon — PCon — PTms — PTms — Prop

Relations are given by rules for ER, coercion, congruence, conversion.



Extrinsic syntax, PER variant (Dybjer: Undec... LCCC)
4 inductive sets + 4 inductive relations.
PCon, PTy,PTm,PTms : Set
~Con PCon — PCon — Prop
~1y :PCon —PTy — PTy — Prop
~Tm :PCon —-PTy —PTm — PTm — Prop
~Tms : PCon — PCon — PTms — PTms — Prop
Recovering typing relations as reflexive cases:
Fcon T =T ~con I
My A =MFA~1 A
MlNm t:A =Tt~ t A
lhFtms 0 A =T Fo~tms 0 A
Congruence rules and typing rules are identified. E.g.
Feon T e I ~con I FrEA~m A
Feon I, A is expressed by MA~con A
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Intrinsic syntax (James Chapman: TT should eat itself)

An inductive inductive definition of 4 families of sets + 4 families of
relations.

Con : Set

Ty : Con — Set

Tm :(:Con) — Tyl — Set

Tms : Con — Con — Set

~con : Con — Con — Prop

~1y :(I:Con) = Tyl — Tyl — Prop

~Tm ([ :Con)(A: Tyl - TmlIA— Tm[l A — Prop
~Tms : (TA:Con) = Tms' A — TmsI' A — Prop

No more separation of pre-things and things. One can only talk about
well-typed terms.
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Quotient intrinsic syntax
A quotient inductive inductive definition of 4 families of sets.

Con : Set

Ty :Con — Set

Tm :(I:Con) — Tyl — Set
Tms : Con — Con — Set

@ Conversion relation is the identity type for each set. Conversion rules
(e.g. B, n) are given as equality constructors.

@ Rules for ER, coercion and congruence are properties of the identity
type.

@ No more separation of convertible things. One can only do
constructions on the syntax up to equality.
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The syntax for a type theory with 'l and an empty universe

: Con [id] :Alid=A
—,— :([:Con) = Tyl = Con 00 :Alellv] = Alo o v]
-[-] :TyA—Tms[A = Tyl ido :idoo=o
id :TmslT oid :coid=c
—0—-:Tms©OA - Tms© — TmsT A oo :(ocov)od=oo(vod)
€ :TmsT - en {o:Tmsl} so=c¢
—— (6:TmsTA) -5 TmT Alog] = TmsT (A, A) mpB :m(o,t)=o
m TImsl(A,A) - TmsT A ™ :(mo,mo)=o
—[-] :TmAA—= (6:TmsT A) — TmT Afo] 0 (o t)ov=(oov),(gp«t])
7 :(o:TmsT (A, A)) — TmT A[m o] B (o, t) =P ¢t
] ATy = Ty (T,A) = TyT M :(MAB)[c]=MA[c]Blo 1]
lam :Tm([LA)B— Tml (MAB) Nng :app(lamt) =t
app Tml(MAB)— Tm(l,A)B Mn :lam(appt) =t

lam(] : (lam t)[o] =" lam (¢[o 1])

u t Tyl :Ule]=U
El :TmlU— Tyl EI] : (ElA)[o] = El (up.Al0])
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Defining functions from the intrinsic syntax
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Nondependent eliminator (recursor)
The inductive type of natural numbers:
N : Set
zero: N
suc: N —= N
Arguments of the recursor (a natural number algebra):
Nj : Set
zeroq @ Ny
SucCq : Nl — Nl
The recursor is a function which respects the operations (an algebra
morphism).
RecN: N — N

RecN zero = zero;
RecN (suc n) = sucy (RecN n)
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Recursor for a higher inductive type

Example:

Constructors: Arguments of the recursor:

| : Set I : Set

left Z| lefty i

right o right; h

segment : left = right segment; : left; = right;
The recursor:

Recl: 1 — Iy

Recl left = left;
Recl right = right;

ap Recl segment = segment;
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Recursor for intrinsic type theory

@ An algebra for the quotient intrinsic syntax is a categories with
families (CwF, a notion of model of type theory).

» An algebra for the intrinsic syntax is a more relaxed CwF, where

conversion can be interpreted by relations other than equality.

@ The recursor is a strict morphism of models from the initial model
(the syntax) to the model given by the arguments of the recursor.

@ The recursor for an inductive inductive type is recursive recursive

(Forsberg).
Con : Set Ty : Con — Set
Cony : Set Ty, : Con; — Set

RecCon : Con — Cony RecTy: Tyl — Ty; (RecConT)

16
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Recursor for quotient inductive types in Agda

{-# OPTIONS --rewriting #-}

postulate
Con : Set
Ty : Con — Set
(' : Con) - Ty I = Con

- =

RecCon : Con — Conjg
RecTy : Ty I — Ty; (RecCon I

B, : RecCon (I' , A) = RecCon I ,; RecTy A

{-# REWRITE (3, #-}
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Relationship of extrinsic and intrinsic sytnax
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From intrinsic to extrinsic syntax (work in progress)

@ Inductive inductive types can be represented by normal inductive
types and “typing relations” (noticed by Altenkirch and Capriotti).
Similar to representing indexed W-types by plain ones.

» If we start with intrinsic syntax, we get back an extrinsic syntax
which is
* fully annotated (e.g. — o — has 5 arguments)
* paranoid (e.g. typing for lam needs well-formedness of I")
» The usual syntax comes after some ad-hoc constructions
(removing assumptions that are admissible).

@ Going from quotient intrinsic syntax to intrinsic is doing an internal
setoid-interpretation. For example, the inductively defined setoid
equality relation for N:

~y :N—=N— Prop
~zero © ZEFO ~N ZErO

~suc - (Mo ~N N1) — sucng ~p suc ny
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From extrinsic to intrinsic syntax (Streicher: Semantics of
TT)
A model is given by a category with families C.
A preterm carries enough information to reconstruct its precontext (ctx)
and pretype (ty). Similarly for the other pre-things.
Partial functions by recursion on the presyntax:

[-lcon : PCon — [C|

[-Ivy :(A:PTy) = Tyc([ctx Alcon)

[-Ttm : (t:PTm) — Tme([ctx t]con, [ty t]Ty)

[-Itms : (0 : PTms) — C([dom o] con, [cod o] con)

By induction on the typing and conversion relations we have:
IFrm t: A= [t]tm is defined
FEt~tmt' A= [t]tm and [t']tm are defined and are equal

Similarly for contexts, types and subsitutions.
This can be used to map extrinsic syntax to quotient intrinsic syntax.
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Conjecture

Con = ((r:PcOn) X r)/NCOn

(F:Con) x Tyl
= ((F:PCon) x T x (A:PTy) x T+ A)/~con/~Ty
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Typechecking (not yet formalised)

inferTm : (T : Con)(t: PTm) — (A" : Tyl) x Tm A’
checkTm : (I : Con)(t: PTm) — (A" : Tyl) = Tml A
checkTy : (I': Con) — PTy — Tyl
inferTm I x := lookup " x
inferTm [ (t u) := caseinferTmT t of
((x: A') = B', t') > casecheckTm T u A'of
u'— (B'lx = o], ')
inferTm T (¢t : A) := casecheckTy ' Aof
A’ casecheckTmT t Alof
t'— (A, t)
checkTm T (Ax.t) ((x : A') = B’) := lam (checkTm ([, x : A") t B')
checkTmT t A := caseinferTm[ tof

(A, ¢) — if A= A'thent’



Models
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Models formalised in Agda (with K and funext)

For a theory with 1, a base type and a family over the base type.
@ Non-dependent eliminator:

» standard model
» presheaf model
» setoid model

@ Dependent eliminator:

» logical predicate translation of Bernardy
» presheaf logical predicate interpretation
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Standard model

@ A sanity check

@ Every syntactic construct is interpreted as the corresponding
metatheoretic construction.

Cony = Set
Ty [I] =[] — Set
M1 [A] = (v [F]) x [Al~v

My AT [B]y = (x: [A]7) = [B] (7. %)
lamy [ty = Ax — [t] (7, x)

ng, = refl

@ We defined this for a syntax with X, L, T, Bool, N, Id as well.
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Logical predicate interpretation

Parametricity expressed as a syntactic translation.

M rFA:U THt:A
P MPHAP AU P EP: APt

All of the following equations need to be well-typed (and preserve
conversion).

(T,x: AP =TP x: A xM . AP x
x" = xM
UP A =A-=U

((x:A)— B)P fi=(x:A)(M: AP x) = BP (fx)
(Ax.t)P = Ax xM P
(

fa)P =" aab
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NBE for dependent types

Presheaf logical predicate

Pa:VW.TmsW A — Set

Pa:VV.(p: TmsWT) — Prp— TmW A[p] — Set
Py :VWU.(p: TmsWT) = Prp— Pa(o0p)

Pe :YW.(p: TmsW)(p:Prp)— Papp(t[p])

At the base type:
P,pt=IisNfWw.t

Quote and unquote:

ga: (p:Prp)(t: TmWVA[p]) = Pappt — isNf W A[p] t
ua:(p:Prp)(t: TmWA[p]) = isNeWVA[p]t = Pappt
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NBE for a universe and Bool with large elimination (not
yet formalised)

Pa:YW.(p: TmsWA) — (r:Set) x (u:isNesWAp—r)
Pa:YW.(p: TmsWA) = Prpr— (t: TmWA[p])
— (r:Set) x (q:r—isNfWA[p] t)
X (u:isNeWA[p]t — r)
Pe :VW.(p: TmsWVA) = Prpr— Papq(tlp]).r

PuV(p: TmsW)(p: Prp)(A: TmWU).r
= isNfWU A x VQ.(3: REN(Q, ))(t : TmQ (EI A[3]))
— (r:Set) x (q:r—isNFQ(EIA[B]) t) x (u:isNeQ (EIA[S]) t — 1)
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Summary

Quotient intrinsic syntax has the following properties:

@ more abstract: close to categorical models; analogy with HITs and
setoids (c.f. Peter Dybjer’s talk)

@ get back old-style syntax using general methods (WIP)
@ typechecking and normalisation fit well
o definition of operations on the syntax in a type-safe way
Future work:
o finish unfinished things
o extend the syntax with QIITs to do full internalisation
o formalisation is hard
@ we need cubical type theory or similar to compute with quotient types

Formalisation: http://bitbucket.org/akaposi/tt-in-tt
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