Formalising the metatheory of type theory using quotient
inductive types

Ambrus Kaposi
Eotvos Lordnd University, Budapest

j.w.w. Thorsten Altenkirch and Andras Kovacs

Workshop on Foundations for the
Practical Formalization of Mathematics,
Nantes,

27 April 2017

Motivation

Why type theory in type theory?
@ Study the metatheory of type theory in a nice language
e Type-safe template type theory (metaprogamming)
» generic programming
» extensions of type theory justified by models

)

29

Plan

@ Extrinsic vs. intrinsic syntax for simple type theory
© Extrinsic vs. intrinsic syntax for type theory
© Defining functions from the intrinsic syntax
e Relationship of extrinsic and intrinsic sytnax

© Models

3/29

Extrinsic vs. intrinsic syntax for simple type theory

4/29

Extrinsic syntax for simple type theory

4 inductive sets + 2 inductive relations.

X 1= zero|suc x

t=x|lamt|apptt’

Ai=1|A= A
Mr:=-|rA
B N, x: A
ARy zero: A BF,sucx:A

M-, x: A NAFt: B r-t:A—-B TFu:A

lN-x:A TkFlamt:A— B -apptu: B

5/29

Intrinsic syntax for simple type theory
4 inductively defined families of sets.

Ty : Set
L Ty
-=>-Ty=Ty—=Ty
Con : Set
: Con

—,— :Con— Ty — Con
Var : Con — Ty — Set
zero :Var([LA)A
suc :VarTA—Var([,B)A
Tm : Con — Ty — Set
var :VarTA—TmTl A
lam :Tm(ILA)B — Tml (A= B)
app Tml(A=B)—>TmlIA— TmlB

6

29

Extrinsic vs. intrinsic syntax for type theory

/29

Extrinsic syntax

4 inductive sets + 8 inductive relations (we can't avoid talking about
conversion).

PCon, PTy, PTm,PTms : Set

Fcon PCon — Prop
Fry : PCon —PTy — Prop
Frm :PCon — PTy —PTm — Prop
Frms : PCon — PCon — PTms — Prop
~Con - PCon — PCon — Prop
~1y :PCon —PTy — PTy —Prop

~Tm :PCon — PTy —PTm — PTm — Prop
~Tms : PCon — PCon — PTms — PTms — Prop

Relations are given by rules for ER, coercion, congruence, conversion.

Extrinsic syntax, PER variant (Dybjer: Undec... LCCC)
4 inductive sets + 4 inductive relations.
PCon, PTy,PTm,PTms : Set
~Con PCon — PCon — Prop
~1y :PCon —PTy — PTy — Prop
~Tm :PCon —-PTy —PTm — PTm — Prop
~Tms : PCon — PCon — PTms — PTms — Prop
Recovering typing relations as reflexive cases:
Fcon T =T ~con I
My A =MFA~1 A
MlNm t:A =Tt~ t A
lhFtms 0 A =T Fo~tms 0 A
Congruence rules and typing rules are identified. E.g.
Feon T e I ~con I FrEA~m A
Feon I, A is expressed by MA~con A

29

Intrinsic syntax (James Chapman: TT should eat itself)

An inductive inductive definition of 4 families of sets + 4 families of
relations.

Con : Set

Ty : Con — Set

Tm :(:Con) — Tyl — Set

Tms : Con — Con — Set

~con : Con — Con — Prop

~1y :(I:Con) = Tyl — Tyl — Prop

~Tm ([:Con)(A: Tyl - TmlIA— Tm[l A — Prop
~Tms : (TA:Con) = Tms' A — TmsI' A — Prop

No more separation of pre-things and things. One can only talk about
well-typed terms.

10/29

Quotient intrinsic syntax
A quotient inductive inductive definition of 4 families of sets.

Con : Set

Ty :Con — Set

Tm :(I:Con) — Tyl — Set
Tms : Con — Con — Set

@ Conversion relation is the identity type for each set. Conversion rules
(e.g. B, n) are given as equality constructors.

@ Rules for ER, coercion and congruence are properties of the identity
type.

@ No more separation of convertible things. One can only do
constructions on the syntax up to equality.

11/29

The syntax for a type theory with 'l and an empty universe

: Con [id] :Alid=A
—,— :([:Con) = Tyl = Con 00 :Alellv] = Alo o v]
-[-] :TyA—Tms[A = Tyl ido :idoo=o
id :TmslT oid :coid=c
—0—-:Tms©OA - Tms© — TmsT A oo :(ocov)od=oo(vod)
€ :TmsT - en {o:Tmsl} so=c¢
—— (6:TmsTA) -5 TmT Alog] = TmsT (A, A) mpB :m(o,t)=o
m TImsl(A,A) - TmsT A ™ :(mo,mo)=o
—[-] :TmAA—= (6:TmsT A) — TmT Afo] 0 (o t)ov=(oov),(gp«t])
7 :(o:TmsT (A, A)) — TmT A[m o] B (o, t) =P ¢t
] ATy = Ty (T,A) = TyT M :(MAB)[c]=MA[c]Blo 1]
lam :Tm([LA)B— Tml (MAB) Nng :app(lamt) =t
app Tml(MAB)— Tm(l,A)B Mn :lam(appt) =t

lam(] : (lam t)[o] =" lam (¢[o 1])

u t Tyl :Ule]=U
El :TmlU— Tyl EI] : (ElA)[o] = El (up.Al0])

12/29

Defining functions from the intrinsic syntax

13/29

Nondependent eliminator (recursor)
The inductive type of natural numbers:
N : Set
zero: N
suc: N —= N
Arguments of the recursor (a natural number algebra):
Nj : Set
zeroq @ Ny
SucCq : Nl — Nl
The recursor is a function which respects the operations (an algebra
morphism).
RecN: N — N

RecN zero = zero;
RecN (suc n) = sucy (RecN n)

14 /29

Recursor for a higher inductive type

Example:

Constructors: Arguments of the recursor:

| : Set I : Set

left Z| lefty i

right o right; h

segment : left = right segment; : left; = right;
The recursor:

Recl: 1 — Iy

Recl left = left;
Recl right = right;

ap Recl segment = segment;

15/29

Recursor for intrinsic type theory

@ An algebra for the quotient intrinsic syntax is a categories with
families (CwF, a notion of model of type theory).

» An algebra for the intrinsic syntax is a more relaxed CwF, where

conversion can be interpreted by relations other than equality.

@ The recursor is a strict morphism of models from the initial model
(the syntax) to the model given by the arguments of the recursor.

@ The recursor for an inductive inductive type is recursive recursive

(Forsberg).
Con : Set Ty : Con — Set
Cony : Set Ty, : Con; — Set

RecCon : Con — Cony RecTy: Tyl — Ty; (RecConT)

16

29

Recursor for quotient inductive types in Agda

{-# OPTIONS --rewriting #-}

postulate
Con : Set
Ty : Con — Set
(' : Con) - Ty I = Con

- =

RecCon : Con — Conjg
RecTy : Ty I — Ty; (RecCon I

B, : RecCon (I' , A) = RecCon I ,; RecTy A

{-# REWRITE (3, #-}

17 /29

Relationship of extrinsic and intrinsic sytnax

18/29

From intrinsic to extrinsic syntax (work in progress)

@ Inductive inductive types can be represented by normal inductive
types and “typing relations” (noticed by Altenkirch and Capriotti).
Similar to representing indexed W-types by plain ones.

» If we start with intrinsic syntax, we get back an extrinsic syntax
which is
* fully annotated (e.g. — o — has 5 arguments)
* paranoid (e.g. typing for lam needs well-formedness of I")
» The usual syntax comes after some ad-hoc constructions
(removing assumptions that are admissible).

@ Going from quotient intrinsic syntax to intrinsic is doing an internal
setoid-interpretation. For example, the inductively defined setoid
equality relation for N:

~y :N—=N— Prop
~zero © ZEFO ~N ZErO

~suc - (Mo ~N N1) — sucng ~p suc ny

19/29

From extrinsic to intrinsic syntax (Streicher: Semantics of
TT)
A model is given by a category with families C.
A preterm carries enough information to reconstruct its precontext (ctx)
and pretype (ty). Similarly for the other pre-things.
Partial functions by recursion on the presyntax:

[-lcon : PCon — [C|

[-Ivy :(A:PTy) = Tyc([ctx Alcon)

[-Ttm : (t:PTm) — Tme([ctx t]con, [ty t]Ty)

[-Itms : (0 : PTms) — C([dom o] con, [cod o] con)

By induction on the typing and conversion relations we have:
IFrm t: A= [t]tm is defined
FEt~tmt' A= [t]tm and [t']tm are defined and are equal

Similarly for contexts, types and subsitutions.
This can be used to map extrinsic syntax to quotient intrinsic syntax.

20/29

Conjecture

Con = ((r:PcOn) X r)/NCOn

(F:Con) x Tyl
= ((F:PCon) x T x (A:PTy) x T+ A)/~con/~Ty

21/29

Typechecking (not yet formalised)

inferTm : (T : Con)(t: PTm) — (A" : Tyl) x Tm A’
checkTm : (I : Con)(t: PTm) — (A" : Tyl) = Tml A
checkTy : (I': Con) — PTy — Tyl
inferTm I x := lookup " x
inferTm [(t u) := caseinferTmT t of
((x: A') = B', t') > casecheckTm T u A'of
u'— (B'lx = o], ')
inferTm T (¢t : A) := casecheckTy ' Aof
A’ casecheckTmT t Alof
t'— (A, t)
checkTm T (Ax.t) ((x : A') = B’) := lam (checkTm ([, x : A") t B')
checkTmT t A := caseinferTm[tof

(A, ¢) — if A= A'thent’

Models

23/29

Models formalised in Agda (with K and funext)

For a theory with 1, a base type and a family over the base type.
@ Non-dependent eliminator:

» standard model
» presheaf model
» setoid model

@ Dependent eliminator:

» logical predicate translation of Bernardy
» presheaf logical predicate interpretation

24 /29

Standard model

@ A sanity check

@ Every syntactic construct is interpreted as the corresponding
metatheoretic construction.

Cony = Set
Ty [I] =[] — Set
M1 [A] = (v [F]) x [Al~v

My AT [B]y = (x: [A]7) = [B] (7. %)
lamy [ty = Ax — [t] (7, x)

ng, = refl

@ We defined this for a syntax with X, L, T, Bool, N, Id as well.

25 /29

Logical predicate interpretation

Parametricity expressed as a syntactic translation.

M rFA:U THt:A
P MPHAP AU P EP: APt

All of the following equations need to be well-typed (and preserve
conversion).

(T,x: AP =TP x: A xM . AP x
x" = xM
UP A =A-=U

((x:A)— B)P fi=(x:A)(M: AP x) = BP (fx)
(Ax.t)P = Ax xM P
(

fa)P =" aab

26 /29

NBE for dependent types

Presheaf logical predicate

Pa:VW.TmsW A — Set

Pa:VV.(p: TmsWT) — Prp— TmW A[p] — Set
Py :VWU.(p: TmsWT) = Prp— Pa(o0p)

Pe :YW.(p: TmsW)(p:Prp)— Papp(t[p])

At the base type:
P,pt=IisNfWw.t

Quote and unquote:

ga: (p:Prp)(t: TmWVA[p]) = Pappt — isNf W A[p] t
ua:(p:Prp)(t: TmWA[p]) = isNeWVA[p]t = Pappt

27/29

NBE for a universe and Bool with large elimination (not
yet formalised)

Pa:YW.(p: TmsWA) — (r:Set) x (u:isNesWAp—r)
Pa:YW.(p: TmsWA) = Prpr— (t: TmWA[p])
— (r:Set) x (q:r—isNfWA[p] t)
X (u:isNeWA[p]t — r)
Pe :VW.(p: TmsWVA) = Prpr— Papq(tlp]).r

PuV(p: TmsW)(p: Prp)(A: TmWU).r
= isNfWU A x VQ.(3: REN(Q,))(t : TmQ (EI A[3]))
— (r:Set) x (q:r—isNFQ(EIA[B]) t) x (u:isNeQ (EIA[S]) t — 1)

28 /29

Summary

Quotient intrinsic syntax has the following properties:

@ more abstract: close to categorical models; analogy with HITs and
setoids (c.f. Peter Dybjer’s talk)

@ get back old-style syntax using general methods (WIP)
@ typechecking and normalisation fit well
o definition of operations on the syntax in a type-safe way
Future work:
o finish unfinished things
o extend the syntax with QIITs to do full internalisation
o formalisation is hard
@ we need cubical type theory or similar to compute with quotient types

Formalisation: http://bitbucket.org/akaposi/tt-in-tt

29 /29

http://bitbucket.org/akaposi/tt-in-tt

	Extrinsic vs. intrinsic syntax for simple type theory
	Extrinsic vs. intrinsic syntax for type theory
	Defining functions from the intrinsic syntax
	Relationship of extrinsic and intrinsic sytnax
	Models

