
Practical Optional Types for Clojure

Ambrose Bonnaire-Sergeant†, Rowan Davies*,Sam Tobin-Hochstadt†

Indiana University†; Omnia Team, Commonwealth Bank of Australia*
{abonnair,samth}@indiana.edu, Rowan.Davies@cba.com.au

Abstract. Typed Clojure is an optional type system for Clojure, a dy-
namic language in the Lisp family that targets the JVM. Typed Clojure
enables Clojure programmers to gain greater confidence in the correct-
ness of their code via static type checking while remaining in the Clo-
jure world, and has acquired significant adoption in the Clojure com-
munity. Typed Clojure repurposes Typed Racket’s occurrence typing, an
approach to statically reasoning about predicate tests, and also includes
several new type system features to handle existing Clojure idioms.
In this paper, we describe Typed Clojure and present these type sys-
tem extensions, focusing on three features widely used in Clojure. First,
multimethods provide extensible operations, and their Clojure semantics
turns out to have a surprising synergy with the underlying occurrence
typing framework. Second, Java interoperability is central to Clojure’s
mission but introduces challenges such as ubiquitous null; Typed Clo-
jure handles Java interoperability while ensuring the absence of null-
pointer exceptions in typed programs. Third, Clojure programmers id-
iomatically use immutable dictionaries for data structures; Typed Clo-
jure handles this with multiple forms of heterogeneous dictionary types.
We provide a formal model of the Typed Clojure type system incorpo-
rating these and other features, with a proof of soundness. Additionally,
Typed Clojure is now in use by numerous corporations and developers
working with Clojure, and we present a quantitative analysis on the use
of type system features in two substantial code bases.

1 Clojure with static typing

The popularity of dynamically-typed languages in software development, com-
bined with a recognition that types often improve programmer productivity,
software reliability, and performance, has led to the recent development of a wide
variety of optional and gradual type systems aimed at checking existing programs
written in existing languages. These include TypeScript [19] and Flow [11] for
JavaScript, Hack [10] for PHP, and mypy [15] for Python among the optional
systems, and Typed Racket [23], Reticulated Python [25], and GradualTalk [1]
among gradually-typed systems.1

1 We use “gradual typing” for systems like Typed Racket with sound interoperation
between typed and untyped code; Typed Clojure or TypeScript which don’t enforce
type invariants we describe as “optionally typed”.

(ann pname [(U File String) -> (U nil String)])

(defmulti pname class) ; multimethod dispatching on class of argument

(defmethod pname String [s] (pname (new File s))) ; String case

(defmethod pname File [f] (.getName f)) ; File case, static null check

(pname "STAINS/JELLY") ;=> "JELLY" :- (U nil Str)

Fig. 1. A simple Typed Clojure program (delimiters: Java interoperation (green), type
annotation (blue), function invocation (black), collection literal (red), other (gray))

One key lesson of these systems, indeed a lesson known to early developers
of optional type systems such as StrongTalk, is that type systems for existing
languages must be designed to work with the features and idioms of the target
language. Often this takes the form of a core language, be it of functions or classes
and objects, together with extensions to handle distinctive language features.

We synthesize these lessons to present Typed Clojure, an optional type system
for Clojure. Clojure is a dynamically typed language in the Lisp family—built
on the Java Virtual Machine (JVM)—which has recently gained popularity as
an alternative JVM language. It offers the flexibility of a Lisp dialect, includ-
ing macros, emphasizes a functional style via immutable data structures, and
provides interoperability with existing Java code, allowing programmers to use
existing Java libraries without leaving Clojure. Since its initial release in 2007,
Clojure has been widely adopted for “backend” development in places where its
support for parallelism, functional programming, and Lisp-influenced abstrac-
tion is desired on the JVM. As a result, there is an extensive base of existing
untyped programs whose developers can benefit from Typed Clojure, an expe-
rience we discuss in this paper.

Since Clojure is a language in the Lisp family, we apply the lessons of Typed
Racket, an existing gradual type system for Racket, to the core of Typed Clojure,
consisting of an extended λ-calculus over a variety of base types shared between
all Lisp systems. Furthermore, Typed Racket’s occurrence typing has proved
necessary for type checking realistic Clojure programs.

However, Clojure goes beyond Racket in many ways, requiring several new
type system features which we detail in this paper. Most significantly, Clojure
supports, and Clojure developers use, multimethods to structure their code
in extensible fashion. Furthermore, since Clojure is an untyped language, dis-
patch within multimethods is determined by application of dynamic predicates
to argument values. Fortunately, the dynamic dispatch used by multimethods
has surprising symmetry with the conditional dispatch handled by occurrence
typing. Typed Clojure is therefore able to effectively handle complex and highly
dynamic dispatch as present in existing Clojure programs.

But multimethods are not the only Clojure feature crucial to type checking
existing programs. As a language built on the Java Virtual Machine, Clojure
provides flexible and transparent access to existing Java libraries, and Clo-
jure/Java interoperation is found in almost every significant Clojure code

base. Typed Clojure therefore builds in an understanding of the Java type sys-
tem and handles interoperation appropriately. Notably, null is a distinct type
in Typed Clojure, designed to automatically rule out null-pointer exceptions.

An example of these features is given in Figure 1. Here, the pname multi-
method dispatches on the class of the argument—for Strings, the first method
implementation is called, for Files, the second. The String method calls a File

constructor, returning a non-nil File instance—the getName method on File

requires a non-nil target, returning a nilable type.

Finally, flexible, high-performance immutable dictionaries are the most com-
mon Clojure data structure. Simply treating them as uniformly-typed key-value
mappings would be insufficient for existing programs and programming styles.
Instead, Typed Clojure provides a flexible heterogenous map type, in which
specific entries can be specified.

While these features may seem disparate, they are unified in important ways.
First, they leverage the type system mechanisms inherited from Typed Racket—
multimethods when using dispatch via predicates, Java interoperation for han-
dling null tests, and heterogenous maps using union types and reasoning about
subcomponents of data. Second, they are crucial features for handling Clojure
code in practice. Typed Clojure’s use in real Clojure deployments would not be
possible without effective handling of these three Clojure features.

Our main contributions are as follows:

1. We motivate and describe Typed Clojure, an optional type system for Clo-
jure that understands existing Clojure idioms.

2. We present a sound formal model for three crucial type system features:
multi-methods, Java interoperability, and heterogenous maps.

3. We evaluate the use of Typed Clojure features on existing Typed Clojure
code, including both open source and in-house systems.

The remainder of this paper begins with an example-driven presentation of the
main type system features in Section 2. We then incrementally present a core
calculus for Typed Clojure covering all of these features together in Section 3
and prove type soundness (Section 4). We then present an empirical analysis of
significant code bases written in core.typed—the full implementation of Typed
Clojure—in Section 5. Finally, we discuss related work and conclude.

2 Overview of Typed Clojure

We now begin a tour of the central features of Typed Clojure, beginning with
Clojure itself. Our presentation uses the full Typed Clojure system to illustrate
key type system ideas,2 before studying the core features in detail in Section 3.

2 Full examples: https://github.com/typedclojure/esop16

2.1 Clojure

Clojure [13] is a Lisp that runs on the Java Virtual Machine with support for
concurrent programming and immutable data structures in a mostly-functional
style. Clojure provides easy interoperation with existing Java libraries, with Java
values being like any other Clojure value. However, this smooth interoperability
comes at the cost of pervasive null, which leads to the possibility of null pointer
exceptions—a drawback we address in Typed Clojure.

2.2 Typed Clojure

A simple one-argument function greet is annotated with ann to take and return
strings.

(ann greet [Str -> Str])

(defn greet [n] (str "Hello, " n "!"))

(greet "Grace") ;=> "Hello, Grace!" :- Str

Providing nil (exactly Java’s null) is a static type error—nil is not a string.

(greet nil) ; Type Error: Expected Str, given nil

Unions To allow nil, we use ad-hoc unions (nil and false are logically false).

(ann greet-nil [(U nil Str) -> Str])

(defn greet-nil [n] (str "Hello" (when n (str ", " n)) "!"))

(greet-nil "Donald") ;=> "Hello, Donald!" :- Str

(greet-nil nil) ;=> "Hello!" :- Str

Typed Clojure prevents well-typed code from dereferencing nil.

Flow analysis Occurrence typing [24] models type-based control flow. In greetings,
a branch ensures repeat is never passed nil.

(ann greetings [Str (U nil Int) -> Str])

(defn greetings [n i]

(str "Hello, " (when i (apply str (repeat i "hello, "))) n "!"))

(greetings "Donald" 2) ;=> "Hello, hello, hello, Donald!" :- Str

(greetings "Grace" nil) ;=> "Hello, Grace!" :- Str

Removing the branch is a static type error—repeat cannot be passed nil.

(ann greetings-bad [Str (U nil Int) -> Str])

(defn greetings-bad [n i] ; Expected Int, given (U nil Int)

(str "Hello, " (apply str (repeat i "hello, ")) n "!"))

2.3 Java interoperability

Clojure can interact with Java constructors, methods, and fields. This program
calls the getParent on a constructed File instance, returning a nullable string.

Example 1(.getParent (new File "a/b")) ;=> "a" :- (U nil Str)

Typed Clojure can integrate with the Clojure compiler to avoid expensive reflec-
tive calls like getParent, however if a specific overload cannot be found based
on the surrounding static context, a type error is thrown.

(fn [f] (.getParent f)) ; Type Error: Unresolved interop: getParent

Function arguments default to Any, which is similar to a union of all types.
Ascribing a parameter type allows Typed Clojure to find a specific method.

Example 2(ann parent [(U nil File) -> (U nil Str)])

(defn parent [f] (if f (.getParent f) nil))

The conditional guards from dereferencing nil, and—as before—removing it
is a static type error, as typed code could possibly dereference nil.

(defn parent-bad-in [f :- (U nil File)]

(.getParent f)) ; Type Error: Cannot call instance method on nil.

Typed Clojure rejects programs that assume methods cannot return nil.

(defn parent-bad-out [f :- File] :- Str

(.getParent f)) ; Type Error: Expected Str, given (U nil Str).

Method targets can never be nil. Typed Clojure also prevents passing nil

as Java method or constructor arguments by default—this restriction can be
adjusted per method.

In contrast, JVM invariants guarantee constructors return non-null.3

Example 3(parent (new File s))

2.4 Multimethods

Multimethods are a kind of extensible function—combining a dispatch function
with one or more methods—widely used to define Clojure operations.

Value-based dispatch This simple multimethod takes a keyword (Kw) and says
hello in different languages.

Example 4(ann hi [Kw -> Str]) ; multimethod type

(defmulti hi identity) ; dispatch function `identity`

(defmethod hi :en [_] "hello") ; method for `:en`

(defmethod hi :fr [_] "bonjour") ; method for `:fr`

(defmethod hi :default [_] "um...") ; default method

3 http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.9.4

When invoked, the arguments are first supplied to the dispatch function—
identity—yielding a dispatch value. A method is then chosen based on the
dispatch value, to which the arguments are then passed to return a value.

(map hi [:en :fr :bocce]) ;=> ("hello" "bonjour" "um...")

For example, (hi :en) evaluates to "hello"—it executes the :en method be-
cause (= (identity :en) :en) is true and (= (identity :en) :fr) is false.

Dispatching based on literal values enables certain forms of method defini-
tion, but this is only part of the story for multimethod dispatch.

Class-based dispatch For class values, multimethods can choose methods based
on subclassing relationships. Recall the multimethod from Figure 1. The dis-
patch function class dictates whether the String or File method is chosen.
The multimethod dispatch rules use isa?, a hybrid predicate which is both a
subclassing check for classes and an equality check for other values.

(isa? :en :en) ;=> true

(isa? String Object) ;=> true

The current dispatch value and—in turn—each method’s associated dispatch
value is supplied to isa?. If exactly one method returns true, it is chosen. For
example, the call (pname "STAINS/JELLY") picks the String method because
(isa? String String) is true, and (isa? String File) is not.

2.5 Heterogeneous hash-maps

The most common way to represent compound data in Clojure are immutable
hash-maps, typicially with keyword keys. Keywords double as functions that
look themselves up in a map, or return nil if absent.

Example 5(def breakfast {:en "waffles" :fr "croissants"})
(:en breakfast) ;=> "waffles" :- Str

(:bocce breakfast) ;=> nil :- nil

HMap types describe the most common usages of keyword-keyed maps.

breakfast ; :- (HMap :mandatory {:en Str, :fr Str}, :complete? true)

This says :en and :fr are known entries mapped to strings, and the map is fully
specified—that is, no other entries exist—by :complete? being true.

HMap types default to partial specification, with '{:en Str :fr Str} ab-
breviating (HMap :mandatory {:en Str, :fr Str}).

Example 6(ann lunch '{:en Str :fr Str})
(def lunch {:en "muffin" :fr "baguette"})
(:bocce lunch) ;=> nil :- Any ; less accurate type

HMaps in practice The next example is extracted from a production system at
CircleCI, a company with a large production Typed Clojure system (Section 5.2
presents a case study and empirical result from this code base).

Example 7(defalias RawKeyPair ; extra keys disallowed

(HMap :mandatory {:pub RawKey, :priv RawKey},
:complete? true))

(defalias EncKeyPair ; extra keys disallowed

(HMap :mandatory {:pub RawKey, :enc-priv EncKey}, :complete? true))

(ann enc-keypair [RawKeyPair -> EncKeyPair])

(defn enc-keypair [kp]

(assoc (dissoc kp :priv) :enc-priv (encrypt (:priv kp))))

As EncKeyPair is fully specified, we remove extra keys like :priv via dissoc,
which returns a new map that is the first argument without the entry named by
the second argument. Notice removing dissoc causes a type error.

(defn enc-keypair-bad [kp] ; Type error: :priv disallowed

(assoc kp :enc-priv (encrypt (:priv kp))))

2.6 HMaps and multimethods, joined at the hip

HMaps and multimethods are the primary ways for representing and dispatching
on data respectively, and so are intrinsically linked. As type system designers, we
must search for a compositional approach that can anticipate any combination
of these features.

Thankfully, occurrence typing, originally designed for reasoning about if

tests, provides the compositional approach we need. By extending the system
with a handful of rules based on HMaps and other functions, we can automati-
cally cover both easy cases and those that compose rules in arbitrary ways.

Futhermore, this approach extends to multimethod dispatch by reusing oc-
currence typing’s approach to conditionals and encoding a small number of rules
to handle the isa?-based dispatch. In practice, conditional-based control flow
typing extends to multimethod dispatch, and vice-versa.

We first demonstrate a very common, simple dispatch style, then move on to
deeper structural dispatching where occurrence typing’s compositionality shines.

HMaps and unions Partially specified HMap’s with a common dispatch key
combine naturally with ad-hoc unions. An Order is one of three kinds of HMaps.

(defalias Order "A meal order, tracking dessert quantities."

(U '{:Meal ':lunch, :desserts Int} '{:Meal ':dinner :desserts Int}
'{:Meal ':combo :meal1 Order :meal2 Order}))

The :Meal entry is common to each HMap, always mapped to a known
keyword singleton type. It’s natural to dispatch on the class of an instance—
it’s similarly natural to dispatch on a known entry like :Meal.

Example 8(ann desserts [Order -> Int])

(defmulti desserts :Meal) ; dispatch on :Meal entry

(defmethod desserts :lunch [o] (:desserts o))

(defmethod desserts :dinner [o] (:desserts o))

(defmethod desserts :combo [o]

(+ (desserts (:meal1 o)) (desserts (:meal2 o))))

(desserts {:Meal :combo, :meal1 {:Meal :lunch :desserts 1},
:meal2 {:Meal :dinner :desserts 2}}) ;=> 3

The :combo method is verified to only structurally recur on Orders. This is
achieved because we learn the argument o must be of type '{:Meal :combo}
since (isa? (:Meal o) :combo) is true. Combining this with the fact that o is
an Order eliminates possibility of :lunch and :dinner orders, simplifying o to
'{:Meal ':combo :meal1 Order :meal2 Order} which contains appropriate
arguments for both recursive calls.

Nested dispatch A more exotic dispatch mechanism for desserts might be on
the class of the :desserts key. If the result is a number, then we know the
:desserts key is a number, otherwise the input is a :combo meal. We have
already seen dispatch on class and on keywords in isolation—occurrence typing
automatically understands control flow that combines its simple building blocks.

The first method has dispatch value Long, a subtype of Int, and the second
method has nil, the sentinel value for a failed map lookup. In practice, :lunch
and :dinner meals will dispatch to the Long method, but Typed Clojure infers
a slightly more general type due to the definition of :combo meals.

Example 9(ann desserts' [Order -> Int])

(defmulti desserts'

(fn [o :- Order] (class (:desserts o))))

(defmethod desserts' Long [o]

;o :- (U '{:Meal (U ':dinner ':lunch), :desserts Int}
; '{:Meal ':combo, :desserts Int, :meal1 Order, :meal2 Order})
(:desserts o))

(defmethod desserts' nil [o]

; o :- '{:Meal ':combo, :meal1 Order, :meal2 Order}
(+ (desserts' (:meal1 o)) (desserts' (:meal2 o))))

In the Long method, Typed Clojure learns that its argument is at least of
type '{:desserts Long}—since (isa? (class (:desserts o)) Long) must
be true. Here the :desserts entry must be present and mapped to a Long—
even in a :combo meal, which does not specify :desserts as present or absent.

In the nil method, (isa? (class (:desserts o)) nil) must be true—
which implies (class (:desserts o)) is nil. Since lookups on missing keys
return nil, either

– o has a :desserts entry to nil, like desserts nil:desserts nil, or
– o is missing a :desserts entry.

We can express this type with the :absent-keys HMap option

(U '{:desserts nil} (HMap :absent-keys #{:desserts}))

This eliminates non-:combo meals since their '{:desserts Int} type does not
agree with this new information (because :desserts is neither nil or absent).

From multiple to arbitrary dispatch Clojure multimethod dispatch, and Typed
Clojure’s handling of it, goes even further, supporting dispatch on multiple ar-
guments via vectors. Dispatch on multiple arguments is beyond the scope of
this paper, but the same intuition applies—adding support for multiple dispatch
admits arbitrary combinations and nestings of it and previous dispatch rules.

3 A Formal Model of λTC

After demonstrating the core features of Typed Clojure, we link them together in
a formal model called λTC . Building on occurrence typing, we incrementally add
each novel feature of Typed Clojure to the formalism, interleaving presentation
of syntax, typing rules, operational semantics, and subtyping.

3.1 Core type system

We start with a review of occurrence typing [24], the foundation of λTC .

Expressions Syntax is given in Figure 2. Expressions e include variables x, values
v, applications, abstractions, conditionals, and let expressions. All binding forms
introduce fresh variables—a subtle but important point since our type environ-
ments are not simply dictionaries. Values include booleans b, nil, class literals
C, keywords k, integers n, constants c, and strings s. Lexical closures [ρ, λxτ .e]c
close value environments ρ—which map bindings to values—over functions.

Types Types σ or τ include the top type >, untagged unions (
⋃ −→τ), single-

tons (Val l), and class instances C. We abbreviate the classes Boolean to B,
Keyword to K, Nat to N, String to S, and File to F. We also abbreviate the
types (

⋃
) to ⊥, (Val nil) to nil, (Val true) to true, and (Val false) to false. The

difference between the types (ValC) and C is subtle. The former is inhabited by
class literals like K and the result of (class :a)—the latter by instances of classes,

like a keyword literal :a, an instance of the type K. Function types x:σ
ψ|ψ−−→
o

τ

contain latent (terminology from [17]) propositions ψ, object o, and return type
τ, which may refer to the function argument x. They are instantiated with the
actual object of the argument in applications.

e ::= x | v | (e e) | λxτ .e | (if e e e) | (let [x e] e) Expressions
v ::= l | n | c | s | [ρ, λxτ .e]c Values
c ::= class | n? Constants

σ, τ ::= > | (
⋃ −→τ) | x:τ

ψ|ψ−−→
o

τ | (Val l) | C Types

l ::= k | C | nil | b Value types
b ::= true | false Boolean values

ψ ::= τπ(x) | τπ(x) | ψ ⊃ ψ | ψ ∧ ψ | ψ ∨ ψ | tt | ff Propositions
o ::= π(x) | ∅ Objects
π ::= −→pe Paths
pe ::= class | keyk Path elements

Γ ::=
−→
ψ Proposition environments

ρ ::= {−−−−→x 7→ v} Value environments

Fig. 2. Syntax of Terms, Types, Propositions and Objects

Objects Each expression is associated with a symbolic representation called an
object. For example, variable m has object m; (class (:lunch m)) has object
class(key:lunch(m)); and 42 has the empty object ∅ since it is unimportant in
our system. Figure 2 gives the syntax for objects o—non-empty objects π(x)
combine of a root variable x and a path π, which consists of a possibly-empty
sequence of path elements (pe) applied right-to-left from the root variable. We
use two path elements—class and keyk—representing the results of calling class
and looking up a keyword k, respectively.

Propositions with a logical system In standard type systems, association lists
often track the types of variables, like in LC-Let and LC-Local.

LC-Let
Γ ` e1 : σ Γ, x 7→ σ ` e2 : τ

Γ ` (let [x e1] e2) : τ

LC-Local
Γ(x) = τ

Γ ` x : τ

Occurrence typing instead pairs logical formulas, that can reason about ar-
bitrary non-empty objects, with a proof system. The logical statement σx says
variable x is of type σ.

T0-Let
Γ ` e1 : σ Γ, σx ` e2 : τ

Γ ` (let [x e1] e2) : τ

T0-Local
Γ ` τx

Γ ` x : τ

In T0-Local, Γ ` τx appeals to the proof system to solve for τ.
We further extend logical statements to propositional logic. Figure 2 describes

the syntax for propositions ψ, consisting of positive and negative type proposi-
tions about non-empty objects—τπ(x) and τπ(x) respectively—the latter pro-
nounced “the object π(x) is not of type τ”. The other propositions are standard

T-Local
Γ ` τx

σ = (∪ nil false)

Γ ` x : τ ; σx |σx ; x

T-Abs
Γ, σx ` e ⇒ e′ : σ′ ; ψ+|ψ− ; o

τ = x:σ
ψ+|ψ−−−−−−→

o
σ′

Γ ` λxσ .e ⇒ λxσ .e′ : τ ; tt|ff ; ∅

T-If
Γ ` e1 ⇒ e′1 : τ1 ; ψ1+|ψ1− ; o1

Γ, ψ1+ ` e2 ⇒ e′2 : τ ; ψ+|ψ− ; o
Γ, ψ1− ` e3 ⇒ e′3 : τ ; ψ+|ψ− ; o

e′ = (if e′1 e
′
2 e
′
3)

Γ ` (if e1 e2 e3)⇒ e′ : τ ; ψ+|ψ− ; o

T-Kw
Γ ` k : (Val k) ; tt|ff ; ∅

T-Num
Γ ` n : N ; tt|ff ; ∅

T-Nil
Γ ` nil : nil ; ff |tt ; ∅

T-False
Γ ` false : false ; ff |tt ; ∅
T-Const
Γ ` c : δτ(c) ; tt|ff ; ∅

T-Str
Γ ` s : S ; tt|ff ; ∅

T-Class
Γ ` C : (ValC) ; tt|ff ; ∅
T-True
Γ ` true : true ; tt|ff ; ∅

T-Let
Γ ` e1 ⇒ e′1 : σ ; ψ1+|ψ1− ; o1 ψ′ = (∪ nil false) x ⊃ ψ1+

ψ′′ = (∪ nil false) x ⊃ ψ1− Γ, σx , ψ
′, ψ′′ ` e2 ⇒ e′2 : τ ; ψ+|ψ− ; o

Γ ` (let [x e1] e2)⇒ (let [x e′1] e′2) : τ[o1/x] ; ψ+|ψ−[o1/x] ; o[o1/x]

T-App

Γ ` e ⇒ e1 : x:σ
ψf+

|ψf−−−−−−−→
of

τ ; ψ+|ψ− ; o

Γ ` e′ ⇒ e′1 : σ ; ψ′+|ψ
′
− ; o′

Γ ` (e e′)⇒ (e1 e
′
1) : τ[o′/x] ; ψf+|ψf−[o′/x] ; of [o′/x]

T-Subsume
Γ ` e ⇒ e′ : τ ; ψ+|ψ− ; o

Γ, ψ+ ` ψ
′
+ Γ, ψ− ` ψ

′
−

` τ <: τ ′ ` o <: o′

Γ ` e ⇒ e′ : τ ′ ; ψ′+|ψ
′
− ; o′

Fig. 3. Core typing rules

logical connectives: implications, conjunctions, disjunctions, and the trivial (tt)
and impossible (ff) propositions. The full proof system judgement Γ ` ψ says
proposition environment Γ proves proposition ψ.

Each expression is associated with two propositions—when expression e1 is
in test position like (if e1 e2 e3), the type system extracts e1’s ‘then’ and ‘else’
proposition to check e2 and e3 respectively. For example, in (if o e2 e3) we learn
variable o is true in e2 via o’s ‘then’ proposition (∪ nil false) o, and that o is
false in e3 via o’s ‘else’ proposition (∪ nil false) o.

To illustrate, recall Example 8. The parameter o is of type Order, written
Ordero as a proposition. In the :combo method, we know (:Meal o) is :combo,
based on multimethod dispatch rules. This is written (Val :combo)key:Meal(o)

, pro-

nounced “the :Meal path of variable o is of type (Val :combo)”.

To attain the type of o, we must solve for τ in Γ ` τo, under proposition
environment Γ = Ordero, (Val :combo)key:Meal(o)

which deduces τ to be a :combo
meal. The logical system combines pieces of type information to deduce more
accurate types for lexical bindings—this is explained in Section 3.6.

S-UnionSuper
∃i. ` τ <: σi

` τ <: (
⋃ −→σ i)

S-UnionSub
−−−−−−→
` τi <: σ

i

` (
⋃ −→τ i)<: σ

S-FunMono

` x:σ
ψ+|ψ−−−−−−→

o
τ <: Fn

S-Object
` C <: Object
S-SClass
` (ValC)<: Class
S-SBool
` (Val b)<: B

S-Fun
` σ′ <: σ ` τ <: τ ′ ψ+ ` ψ

′
+ ψ− ` ψ

′
− ` o <: o′

` x:σ
ψ+|ψ−−−−−−→

o
τ <: x:σ′

ψ′
+
|ψ′−−−−−−−→
o′

τ ′

S-Refl
` τ <: τ

S-Top
` τ <:>

S-SKw
` (Val k)<: K

Fig. 4. Core subtyping rules

B-IfTrue
ρ ` e1 ⇓ v1 v1 6= false
v1 6= nil ρ ` e2 ⇓ v
ρ ` (if e1 e2 e3) ⇓ v

B-IfFalse
ρ ` e1 ⇓ false or ρ ` e1 ⇓ nil

ρ ` e3 ⇓ v
ρ ` (if e1 e2 e3) ⇓ v

Fig. 5. Select core semantics

Typing judgment We formalize our system following Tobin-Hochstadt and Felleisen
[24]. The typing judgment Γ ` e ⇒ e′ : τ ; ψ+|ψ− ; o says expression e rewrites
to e′, which is of type τ in the proposition environment Γ, with ‘then’ proposition
ψ+, ‘else’ proposition ψ− and object o.

We write Γ ` e ⇒ e′ : τ to mean Γ ` e ⇒ e′ : τ ; ψ′+|ψ′− ; o′ for some ψ′+,
ψ′− and o′, and abbreviate self rewriting judgements Γ ` e ⇒ e : τ ; ψ+|ψ− ; o
to Γ ` e : τ ; ψ+|ψ− ; o.

Typing rules The core typing rules are given as Figure 3. We introduce the
interesting rules with the complement number predicate as a running example.

λd>.(if (n? d) false true) (1)

The lambda rule T-Abs introduces σx = >d to check the body. With Γ =
>d, T-If first checks the test e1 = (n? d) via the T-App rule, with three steps.

First, in T-App the operator e = n? is checked with T-Const, which uses δτ
(Figure 7, dynamic semantics in the supplemental material) to type constants.
n? is a predicate over numbers, and class returns its argument’s class.

Resuming (n? d), in T-App the operand e′ = d is checked with T-Local as

Γ ` d :> ; (∪ nil false)d|(∪ nil false)d ; d (2)

which encodes the type, proposition, and object information about variables.
The proposition (∪ nil false)d says “it is not the case that variable d is of type
(∪ nil false)”; (∪ nil false)d says “d is of type (∪ nil false)”.

Finally, the T-App rule substitutes the operand’s object o′ for the parameter
x in the latent type, propositions, and object. The proposition N d says “d is of
type N”; N d says “it is not the case that d is of type N”. The object d is the
symbolic representation of what the expression d evaluates to.

Γ ` (n? d) : B ; N d|N d ; ∅ (3)

To demonstrate, the ‘then’ proposition—in T-App ψ+[o′/x]—substitutes the
latent ‘then’ proposition of δτ(n?) with d, giving N x [d/x] = N d.

To check the branches of (if (n? d) false true), T-If introduces ψ1+ = N d to

check e2 = false, and ψ1− = N d to check e3 = true. The branches are first checked
with T-False and T-True respectively, the T-Subsume premises Γ, ψ+ ` ψ′+ and
Γ, ψ− ` ψ′− allow us to pick compatible propositions for both branches.

Γ,N d ` false : B ; N d|N d ; ∅
Γ,N d ` true : B ; N d|N d ; ∅

Finally T-Abs assigns a type to the overall function:

` λd>.(if (n? d) false true) : d:> N d|N d−−−−−−→
∅

B ; tt|ff ; ∅

Subtyping Figure 4 presents subtyping as a reflexive and transitive relation with
top type >. Singleton types are instances of their respective classes—boolean
singleton types are of type B, class literals are instances of Class and keywords
are instances of K. Instances of classes C are subtypes of Object. Function
types are subtypes of Fn. All types except for nil are subtypes of Object, so
> is similar to (

⋃
nil Object). Function subtyping is contravariant left of the

arrow—latent propositions, object and result type are covariant. Subtyping for
untagged unions is standard.

Operational semantics We define the dynamic semantics for λTC in a big-step
style using an environment, following [24]. We include both errors and a wrong
value, which is provably ruled out by the type system. The main judgment is
ρ ` e ⇓ α which states that e evaluates to answer α in environment ρ. We chose
to omit the core rules (included in supplemental material) however a notable
difference is nil is a false value, which affects the semantics of if (Figure 5).

3.2 Java Interoperability

We present Java interoperability in a restricted setting without class inheritance,
overloading or Java Generics. We extend the syntax in Figure 6 with Java field
lookups and calls to methods and constructors. To prevent ambiguity between
zero-argument methods and fields, we use Clojure’s primitive “dot” syntax: field
accesses are written (. e fld) and method calls (. e (mth−→e)).

In Example 1, (.getParent (new File "a/b")) translates to

(. (new F “a/b”) (getParent)) (4)

e ::= . . . (. e fld) | (. e (mth−→e)) | (new C−→e) Expressions

| (. e fldCC) | (. e (mthC
[[
−→
C],C]

−→e)) | (new
[
−→
C]

C −→e) Non-reflective Expressions

v ::= . . . | C {
−−−−→
fld : v} Values

ce ::= {m 7→ {
−−−−−−−−−−−→
mth 7→ [[

−→
C], C]}, f 7→ {

−−−−−−→
fld 7→ C}, c 7→ {[

−→
C]}} Class descriptors

CT ::= {
−−−−−→
C 7→ ce} Class Table

T-New

[
−→
Ci] ∈ CT [C][c]

−−−−−−−−−−→
JTnil(Ci) = τi

−−−−−−−−−−→
Γ ` ei ⇒ e′i : τi JT(C) = τ

Γ ` (new C−→ei)⇒ (new
[
−→
Ci]

C
−→
e′i) : τ ; tt|ff ; ∅

T-Method

Γ ` e ⇒ e′ : σ TJ(σ) = C1 mth 7→ [[
−→
Ci], C2] ∈ CT [C1][m]

−−−−−−−−−−→
JTnil(Ci) = τi

−−−−−−−−−−→
Γ ` ei ⇒ e′i : τi JTnil(C2) = τ ` σ <: Object

Γ ` (. e (mth−→ei))⇒ (. e′ (mthC1

[[
−→
Ci],C2]

−→
e′i)) : τ ; tt|tt ; ∅

T-Field
Γ ` e ⇒ e′ : σ ` σ <: Object TJ(σ) = C1 fld 7→ C2 ∈ CT [C1][f] JTnil(C2) = τ

Γ ` (. e fld)⇒ (. e′ fldC1
C2

) : τ ; tt|tt ; ∅

JTnil(Void) = nil
JTnil(C) = (

⋃
nil C)

JT(Void) = nil
JT(C) = C

TJ(τ) = C if ` τ <: JTnil(C)

B-Field
ρ ` e ⇓ v JVMgetstatic[C1, v1, f ld, C2] = v

ρ ` (. e fldC1
C2

) ⇓ v

B-New−−−−−−−→
ρ ` ei ⇓ vi JVMnew[C1, [

−→
Ci], [

−→vi]] = v

ρ ` (new
[
−→
Ci]

C −→ei) ⇓ v

B-Method

ρ ` em ⇓ vm
−−−−−−−→
ρ ` ea ⇓ va JVMinvokestatic[C1, vm,mth, [

−→
Ca], [−→va], C2] = v

ρ ` (. em (mthC1

[[
−→
Ca],C2]

−→ea)) ⇓ v

Fig. 6. Java Interoperability Syntax, Typing and Operational Semantics

δτ(class) = x:> tt|tt−−−−−→
class(x)

(
⋃

nil Class)

δτ(n?) = x:>
N x |N x−−−−−−→
∅

B

Fig. 7. Constant typing

But both the constructor and method are unresolved. We introduce non-
reflective expressions for specifying exact Java overloads.

(. (new[S] F “a/b”) (getParentF
[[],S]

)) (5)

From the left, the one-argument constructor for F takes a S, and the getParent
method of F takes zero arguments and returns a S.

We now walk through this conversion.

Constructors First we check and convert (new F “a/b”) to (new[S] F “a/b”).

The T-New typing rule checks and rewrites constructors. To check (new F “a/b”)
we first resolve the constructor overload in the class table—there is at most one
to simplify presentation. With C1 = S, we convert to a nilable type the argument
with τ1 = (

⋃
nil S) and type check “a/b” against τ1. Typed Clojure defaults to

allowing non-nilable arguments, but this can be overridden, so we model the more
general case. The return Java type F is converted to a non-nil Typed Clojure
type τ = F for the return type, and the propositions say constructors can never
be false—constructors can never produce the internal boolean value that Clojure
uses for false, or nil. Finally, the constructor rewrites to (new[S] F “a/b”).

Methods Next we convert (. (new[S] F “a/b”) (getParent)) to the non-reflective

expression (. (new[S] F “a/b”) (getParentF
[[],S]

)). The T-Method rule for unre-

solved methods checks (. (new[S] F “a/b”) (getParent)). We verify the target

type σ = F is non-nil by T-New. The overload is chosen from the class table
based on C1 = F—there is at most one. The nilable return type τ = (

⋃
nil S)

is given, and the entire expression rewrites to expression 5.
The T-Field rule (Figure 6) is like T-Method, but without arguments.
The evaluation rules B-Field, B-New and B-Method (Figure 6) simply eval-

uate their arguments and call the relevant JVM operation, which we do not
model—Section 4 states our exact assumptions. There are no evaluation rules
for reflective Java interoperability, since there are no typing rules that rewrite
to reflective calls.

3.3 Multimethod preliminaries: isa?

We now consider the isa? operation, a core part of the multimethod dispatch
mechanism. Recalling the examples in Section 2.4, isa? is a subclassing test for
classes, but otherwise is an equality test. The T-IsA rule uses IsAProps (Figure 8),
a metafunction which produces the propositions for isa? expressions.

To demonstrate the first IsAProps case, the expression (isa? (class x) K) is
true if x is a keyword, otherwise false. When checked with T-IsA, the object of
the left subexpression o = class(x) (which starts with the class path element)
and the type of the right subexpression τ = (Val K) (a singleton class type) to-
gether trigger the first IsAProps case IsAProps(class(x), (Val K)) = Kx |Kx , giv-
ing propositions that correspond to our informal description ψ+|ψ− = Kx |Kx .

The second IsAProps case captures the simple equality mode for non-class
singleton types. For example, the expression (isa? x :en) produces true when x
evaluates to :en, otherwise it produces false. Using T-IsA, it has the propositions
ψ+|ψ− = IsAProps(x, (Val :en)) = (Val :en)x |(Val :en)x since o = x and τ =
(Val :en). The side condition on the second IsAProps case ensures we are in
equality mode—if x can possibly be a class in (isa? x Object), IsAProps uses its
conservative default case, since if x is a class literal, subclassing mode could be
triggered. Capture-avoiding substitution of objects [o/x] used in this case erases
propositions that would otherwise have ∅ substituted in for their objects—it is
defined in the appendix.

The operational behavior of isa? is given by B-IsA (Figure 8). IsA explicitly
handles classes in the second case.

3.4 Multimethods

Figure 8 presents immutable multimethods without default methods to ease
presentation. Figure 9 translates the mutable Example 4 to λTC .

To check (defmulti x: K −→ S λxK.x), we note (defmulti σ e) creates a
multimethod with interface type σ, and dispatch function e of type σ′ , producing
a value of type (Multi σ σ′). The T-DefMulti typing rule checks the dispatch
function, and verifies both the interface and dispatch type’s domain agree. Our
example checks with τ = K, interface type σ = x: K −→ S, dispatch function

type σ′ = x: K
tt|tt−−−→
x

K, and overall type (Multix: K −→ S x: K
tt|tt−−−→
x

K).

Next, we show how to check (defmethod hi0 :en λxK.“hello”). The expres-
sion (defmethod em ev ef) creates a new multimethod that extends multimethod
em’s dispatch table, mapping dispatch value ev to method ef . The T-DefMulti
typing rule checks em is a multimethod with dispatch function type τd, then
calculates the extra information we know based on the current dispatch value
ψ′′+, which is assumed when checking the method body. Our example checks

with em being of type (Multix: K −→ S x: K
tt|tt−−−→
x

K) with o′ = x (from be-

low the arrow on the right argument of the previous type) and τv = (Val :en).
Then ψ′′+ = (Val :en)x from IsAProps(x, (Val :en)) = (Val :en)x |(Val :en)x (see
Section 3.3). Since τ = K, we check the method body with Kx , (Val :en)x `
“hello” : S ; tt|tt ; ∅. Finally from the interface type τm, we know ψ+ = ψ−
= tt, and o = ∅, which also agrees with the method body, above. Notice the
overall type of a defmethod is the same as its first subexpression em.

It is worth noting the lack of special typing rules for overlapping methods—
each method is checked independently based on local type information.

Subtyping Multimethods are functions, via S-PMultiFn, which says a multi-
method can be upcast to its interface type. Multimethod call sites are then
handled by T-App via T-Subsume. Other rules are given in Figure 8.

e ::= . . . | (defmulti τ e) | (defmethod e e e) | (isa? e e) Expressions
v ::= . . . | [v, t]m Values
t ::= {−−−→v 7→ v} Dispatch tables
σ, τ ::= . . . | (Multi τ τ) Types

T-DefMulti

σ = x:τ
ψ+|ψ−−−−−−→

o
τ ′ σ′ = x:τ

ψ′
+
|ψ′−−−−−−−→
o′

τ ′′ Γ ` e ⇒ e′ : σ′

Γ ` (defmulti σ e)⇒ (defmulti σ e′) : (Multiσ σ′) ; tt|ff ; ∅

T-DefMethod

τm = x:τ
ψ+|ψ−−−−−−→

o
σ τd = x:τ

ψ′
+
|ψ′−−−−−−−→
o′

σ′ Γ ` em ⇒ e′m : (Multi τm τd)

Γ ` ev ⇒ e′v : τv IsAProps(o′, τv) = ψ′′+|ψ
′′
−

Γ, τx , ψ
′′
+ ` eb ⇒ e′b : σ ; ψ+|ψ− ; o e′ = (defmethod e′m e′v λx

τ .e′b)

Γ ` (defmethod em ev λx
τ .eb)⇒ e′ : (Multi τm τd) ; tt|ff ; ∅

T-IsA
Γ ` e ⇒ e1 : σ ; ψ′+|ψ

′
− ; o Γ ` e′ ⇒ e′1 : τ IsAProps(o, τ) = ψ+|ψ−

Γ ` (isa? e e′)⇒ (isa? e1 e
′
1) : B ; ψ+|ψ− ; ∅

IsAProps(class(π(x)), (ValC)) = Cπ(x)|Cπ(x)
IsAProps(o, (Val l)) = ((Val l)x |(Val l)x)[o/x] if l 6= C

IsAProps(o, τ) = tt|tt otherwise

S-PMultiFn

` σt <: x:σ
ψ+|ψ−−−−−−→

o
τ ` σd <: x:σ

ψ′
+
|ψ′−−−−−−−→
o′

τ ′

` (Multiσt σd)<: x:σ
ψ+|ψ−−−−−−→

o
τ

S-PMulti
` σ <: σ′ ` τ <: τ ′

` (Multiσ τ)<: (Multiσ′ τ ′)

S-MultiMono

` (Multix:σ
ψ+|ψ−−−−−−→

o
τ x:σ

ψ′+|ψ
′
−−−−−−−→

o′
τ ′)<: Multi

B-DefMulti
ρ ` e ⇓ vd v = [vd, {}]m
ρ ` (defmulti τ e) ⇓ v

B-DefMethod
ρ ` e ⇓ [vd, t]m ρ ` e′ ⇓ vv ρ ` ef ⇓ vf v = [vd, t[vv 7→ vf]]m

ρ ` (defmethod e e′ ef) ⇓ v

GM(t, ve) = vf if −→vfs = {vf} where −→vfs = {vf |vk 7→ vf ∈ t and IsA(ve, vk) = true}
GM(t, ve) = err otherwise

B-IsA
ρ ` e1 ⇓ v1 ρ ` e2 ⇓ v2 IsA(v1, v2) = v

ρ ` (isa? e1 e2) ⇓ v

IsA(v, v) = true v 6= C
IsA(C,C′) = true ` C <: C′

IsA(v, v′) = false otherwise

B-BetaMulti
ρ ` e ⇓ [vd, t]m ρ ` e′ ⇓ v′ ρ ` (vd v

′) ⇓ ve GM(t, ve) = vf ρ ` (vf v
′) ⇓ v

ρ ` (e e′) ⇓ v

Fig. 8. Multimethod Syntax, Typing and Operational Semantics

(let [hi0 (defmulti x:K
tt|tt−−−→
∅

S λxK.x)]

(let [hi1 (defmethod hi0 :en λxK.“hello”)]

(let [hi2 (defmethod hi1 :fr λxK.“bonjour”)]
(hi2 :en))))

Fig. 9. Multimethod example

Semantics Multimethod definition semantics are also given in Figure 8. B-
DefMulti creates a multimethod with the given dispatch function and an empty
dispatch table. B-DefMethod produces a new multimethod with an extended
dispatch table.

The overall dispatch mechanism is summarised by B-BetaMulti. First the
dispatch function vd is applied to the argument v′ to obtain the dispatch value
ve. Based on ve, the GM metafunction (Figure 8) extracts a method vf from the
method table t and applies it to the original argument for the final result.

3.5 Precise Types for Heterogeneous maps

Figure 10 presents heterogeneous map types. The type (HMapEM A) con-
tains M, a map of present entries (mapping keywords to types), A, a set of
keyword keys that are known to be absent and tag E which is either C (“com-
plete”) if the map is fully specified by M, and P (“partial”) if there are un-
known entries. The partially specified map of lunch in Example 6 is writ-
ten (HMapP{(Val :en) S, (Val :fr) S} {}) (abbreviated Lu). The type of the
fully specified map breakfast in Example 5 elides the absent entries, written
(HMapC{(Val :en) S, (Val :fr) S}) (abbreviated Bf). To ease presentation, if
an HMap has completeness tag C then A is elided and implicitly contains all
keywords not in the domain of M—dissociating keys is not modelled, so the
set of absent entries otherwise never grows. Keys cannot be both present and
absent.

The metavariable m ranges over the runtime value of maps {
−−−→
k 7→ v}, usu-

ally written {
−→
k v}. We only provide syntax for the empty map literal, however

when convenient we abbreviate non-empty map literals to be a series of assoc
operations on the empty map. We restrict lookup and extension to keyword keys.

How to check A mandatory lookup is checked by T-GetHMap.

λbBf .(get b :en)

The result type is S, and the return object is key:en(b). The object keyk(x)[o/x]
is a symbolic representation for a keyword lookup of k in o. The substitution for
x handles the case where o is empty.

keyk(x)[y/x] = keyk(y) keyk(x)[∅/x] = ∅

e ::= . . . | (get e e) | (assoc e e e) Expressions
v ::= . . . | {} Values
τ ::= . . . | (HMapEM A) Types

M ::= {
−−−→
k 7→ τ} HMap mandatory entries

A ::= {
−→
k } HMap absent entries

E ::= C | P HMap completeness tags

T-AssocHMap
Γ ` e ⇒ (assoc e′ e′k e

′
v) : (HMapEM A) Γ ` ek ⇒ e′k : (Val k) Γ ` ev ⇒ e′v : τ k 6∈ A

Γ ` (assoc e ek ev)⇒ (assoc e′ e′k e
′
v) : (HMapEM[k 7→ τ] A) ; tt|ff ; ∅

T-GetHMap

Γ ` e ⇒ e′ : (
⋃ −−−−−−−−−−−−→

(HMapEM A)
i

) ; ψ1+|ψ1− ; o Γ ` ek ⇒ e′k : (Val k)
−−−−−−→
M[k] = τ

i

Γ ` (get e ek)⇒ (get e′ e′k) : (
⋃ −→τ i) ; tt|tt ; keyk(x)[o/x]

T-GetHMapAbsent
Γ ` e ⇒ e′ : (HMapEM A) ; ψ1+|ψ1− ; o Γ ` ek ⇒ e′k : (Val k) k ∈ A

Γ ` (get e ek)⇒ (get e′ e′k) : nil ; tt|tt ; keyk(x)[o/x]

T-GetHMapPartialDefault
Γ ` e ⇒ e′ : (HMapPM A) ; ψ1+|ψ1− ; o

Γ ` ek ⇒ e′k : (Val k) k 6∈ dom(M) k 6∈ A
Γ ` (get e ek)⇒ (get e′ e′k) :> ; tt|tt ; keyk(x)[o/x]

S-HMapMono

` (HMapEM A)<: Map

S-HMapP
∀i.M[ki] = σi and ` σi <: τi

` (HMapCM A′)<: (HMapP {
−−−→
k 7→ τ}

i
A)

S-HMap
∀i.M[ki] = σi and ` σi <: τi A1 ⊇ A2

` (HMapEM A1)<: (HMapE {
−−−→
k 7→ τ}

i
A2)

B-Assoc
ρ ` e ⇓ m ρ ` ek ⇓ k

ρ ` ev ⇓ vv
ρ ` (assoc e ek ev) ⇓ m[k 7→ vv]

B-Get
ρ ` e ⇓ m ρ ` e′ ⇓ k

k ∈ dom(m)

ρ ` (get e e′) ⇓ m[k]

B-GetMissing
ρ ` e ⇓ m

ρ ` e′ ⇓ k k 6∈ dom(m)

ρ ` (get e e′) ⇓ nil

Fig. 10. HMap Syntax, Typing and Operational Semantics

restrict(τ, σ) = ⊥ if 6 ∃v. ` v : τ ; ψ ; o and ` v : σ ; ψ′ ; o′

restrict(τ, σ) = τ if ` τ <: σ
restrict(τ, σ) = σ otherwise

remove(τ, σ) = ⊥ if ` τ <: σ
remove(τ, σ) = τ otherwise

Fig. 11. Restrict and remove

An absent lookup is checked by T-GetHMapAbsent.

λbBf .(get b :bocce)

The result type is nil—since Bf is fully specified—with return object key:bocce(b).
A lookup that is not present or absent is checked by T-GetHMapPartialDefault.

λuLu.(get u :bocce)

The result type is >—since Lu has an unknown :bocce entry—with return object
key:bocce(u). Notice propositions are erased once they enter a HMap type.

For presentational reasons, lookups on unions of HMaps are only supported
in T-GetHMap and each element of the union must contain the relevant key.

λu(
⋃

Bf Lu).(get u :en)

The result type is S, and the return object is key:en(u). However, lookups of
:bocce on (

⋃
Bf Lu) maps are unsupported. This restriction still allows us to

check many of the examples in Section 2—in particular we can check Example 8,
as :Meal is in common with both HMaps, but cannot check Example 9 because
a :combo meal lacks a :desserts entry. Adding a rule to handle Example 9 is
otherwise straightforward.

Extending a map with T-AssocHMap preserves its completeness.

λbBf .(assoc b :au “beans”)

The result type is (HMapC{(Val :en) S, (Val :fr) S, (Val :au) S}), a complete
map. T-AssocHMap also enforces k 6∈ A to prevent badly formed types.

Subtyping Subtyping for HMaps designate Map as a common supertype for
all HMaps. S-HMap says that HMaps are subtypes if they agree on E, agree
on mandatory entries with subtyping and at least cover the absent keys of the
supertype. Complete maps are subtypes of partial maps as long as they agree
on the mandatory entries of the partial map via subtyping (S-HMapP).

The semantics for get and assoc are straightforward.

3.6 Proof system

The occurrence typing proof system uses standard propositional logic, except for
where nested information is combined. This is handled by L-Update:

L-Update
Γ ` τπ′(x) Γ ` νπ(π′(x))

Γ ` update(τ, ν, π)π′(x)

It says under Γ, if object π′(x) is of type τ, and an extension π(π′(x)) is of
possibly-negative type ν, then update (τ, ν, π) is π′(x)’s type under Γ.

update((
⋃ −→τ), ν, π) = (

⋃ −−−−−−−−−−→
update(τ, ν, π))

update(τ, (ValC), π :: class) = update(τ, C, π)
update(τ, ν, π :: class) = τ
update((HMapEM A), ν, π :: keyk) = (HMapEM[k 7→ update(τ, ν, π)] A)

if M[k] = τ
update((HMapEM A), ν, π :: keyk) = ⊥ if ` nil 6<: ν and k ∈ A
update((HMapPM A), τ, π :: keyk) = (∪ (HMapPM[k 7→ τ] A)

(HMapPM (A ∪ {k})))
if ` nil <: τ, k 6∈ dom(M) and k 6∈ A

update((HMapPM A), ν, π :: keyk) = (HMapPM[k 7→ update(>, ν, π)] A)
if ` nil 6<: ν, k 6∈ dom(M) and k 6∈ A

update(τ, ν, π :: keyk) = τ
update(τ, σ, ε) = restrict(τ, σ)
update(τ, σ, ε) = remove(τ, σ)

Fig. 12. Type update (the metavariable ν ranges over τ and τ (without variables),
` nil 6<: τ when ` nil <: τ, see Figure 11 for restrict and remove.)

Recall Example 8. Solving Ordero, (Val :combo)key:Meal(o)
` τo uses L-Update,

where π = ε and π′ = [key:Meal].

Γ ` update(Order, (Val :combo), [key:Meal])o

Since Order is a union of HMaps, we structurally recur on the first case of
update (Figure 12), which preserves π. Each initial recursion hits the first HMap
case, since there is some τ such that M[k] = τ and E accepts partial maps P.

To demonstrate, :lunch meals are handled by the first HMap case and up-
date to (HMapPM[(Val :Meal) 7→ σ′] {}) where σ′ = update ((Val :lunch),
(Val :combo), ε) and M = {(Val :Meal) 7→ (Val :lunch), (Val :desserts) 7→ N }.
σ′ updates to ⊥ via the penultimate update case, because restrict ((Val :lunch),
(Val :combo)) = ⊥ by the first restrict case. The same happens to :dinner meals,
leaving just the :combo HMap.

In Example 9, Γ ` update(Order,Long, [class,key:desserts])o updates the
argument in the Long method. This recurs twice for each meal to handle the
class path element.

We describe the other update cases. The first class case updates to C if class
returns (ValC). The second keyk case detects contradictions in absent keys.
The third keyk case updates unknown entries to be mapped to τ or absent.
The fourth keyk case updates unknown entries to be present when they do not
overlap with nil.

4 Metatheory

We prove type soundness following Tobin-Hochstadt and Felleisen [24]. Our
model is extended to include errors err and a wrong value, and we prove well-

typed programs do not go wrong; this is therefore a stronger theorem than proved
by Tobin-Hochstadt and Felleisen [24]. Errors behave like Java exceptions—they
can be thrown and propagate “upwards” in the evaluation rules (err rules are
deferred to the appendix).

Rather than modeling Java’s dynamic semantics, a task of daunting com-
plexity, we instead make our assumptions about Java explicit. We concede that
method and constructor calls may diverge or error, but assume they can never
go wrong (other assumptions given in the supplemental material).

Assumption 1 (JVMnew). If ∀i. vi = Ci {
−−−−−→
fldj : vj} or vi = nil and vi is con-

sistent with ρ then either

– JVMnew[C, [
−→
Ci], [

−→vi]] = C {
−−−−−→
fldk : vk} which is consistent with ρ,

– JVMnew[C, [
−→
Ci], [

−→vi]] = err, or

– JVMnew[C, [
−→
Ci], [

−→vi]] is undefined.

For the purposes of our soundness proof, we require that all values are consis-
tent. Consistency (defined in the supplemental material) states that the types of
closures are well-scoped—they do not claim propositions about variables hidden
in their closures.

We can now state our main lemma and soundness theorem. The metavariable
α ranges over v, err and wrong. Proofs are deferred to the supplemental material.

Lemma 1. If Γ ` e′ ⇒ e : τ ; ψ+|ψ− ; o, ρ |= Γ, ρ is consistent, and ρ ` e ⇓ α
then either

– ρ ` e ⇓ v and all of the following hold:
1. either o = ∅ or ρ(o) = v,
2. either TrueVal(v) and ρ |= ψ+ or FalseVal(v) and ρ |= ψ−,
3. ` v ⇒ v : τ ; ψ′+|ψ′− ; o′ for some ψ′+, ψ′− and o′, and
4. v is consistent with ρ, or

– ρ ` e ⇓ err.

Theorem 1 (Type soundness). If Γ ` e′ ⇒ e : τ ; ψ+|ψ− ; o and ρ ` e ⇓ v
then ` v ⇒ v : τ ; ψ′+|ψ′− ; o′ for some ψ′+, ψ′− and o′.

5 Experience

Typed Clojure is implemented as core.typed [2], which has seen wide usage.

5.1 Implementation

core.typed provides preliminary integration with the Clojure compilation pipeline,
primarily to resolve Java interoperability.

The core.typed implementation extends this paper in several key areas
to handle checking real Clojure code, including an implementation of Typed

feeds2imap CircleCI

Total number of typed namespaces 11 (825 LOC) 87 (19,000 LOC)
Total number of def expressions 93 1834
� checked 52 (56%) 407 (22%)
� unchecked 41 (44%) 1427 (78%)
Total number of Java interactions 32 105
� static methods 5 (16%) 26 (25%)
� instance methods 20 (62%) 36 (34%)
� constructors 6 (19%) 38 (36%)
� static fields 1 (3%) 5 (5%)
Methods overriden to return non-nil 0 35
Methods overriden to accept nil arguments 0 1
Total HMap lookups 27 328
� resolved to mandatory key 20 (74%) 208 (64%)
� resolved to optional key 6 (22%) 70 (21%)
� resolved of absent key 0 (0%) 20 (6%)
� unresolved key 1 (4%) 30 (9%)
Total number of defalias expressions 18 95
� contained HMap or union of HMap type 7 (39%) 62 (65%)
Total number of checked defmulti expressions 0 11
Total number of checked defmethod expressions 0 89

Fig. 13. Typed Clojure Features used in Practice

Racket’s variable-arity polymorphism [22], and support for other Clojure idioms
like datatypes and protocols. There is no integration with Java Generics, so only
Java 1.4-style erased types are “trusted” by core.typed. Casts are needed to
recover the discarded information, which—for collections—are then tracked via
Clojure’s universal sequence interface [14].

5.2 Evaluation

Throughout this paper, we have focused on three interrelated type system fea-
tures: heterogenous maps, Java interoperability, and multimethods. Our hypoth-
esis is that these features are widely used in existing Clojure programs in inter-
connecting ways, and that handling them as we have done is required to type
check realistic Clojure programs.

To evaluate this hypothesis, we analyzed two existing core.typed code bases,
one from the open-source community, and one from a company that uses core.typed
in production. For our data gathering, we instrumented the core.typed type
checker to record how often various features were used (summarized in Fig-
ure 13).

feeds2imap feeds2imap4 is an open source library written in Typed Clojure. It
provides an RSS reader using the javax.mail framework.

4 https://github.com/frenchy64/feeds2imap.clj

Of 11 typed namespaces containing 825 lines of code, there are 32 Java inter-
actions. The majority are method calls, consisting of 20 (62%) instance methods
and 5 (16%) static methods. The rest consists of 1 (3%) static field access, and
6 (19%) constructor calls—there are no instance field accesses.

There are 27 lookup operations on HMap types, of which 20 (74%) resolve
to mandatory entries, 6 (22%) to optional entries, and 1 (4%) is an unresolved
lookup. No lookups involved fully specified maps.

From 93 def expressions in typed code, 52 (56%) are checked, with a rate of
1 Java interaction for 1.6 checked top-level definitions, and 1 HMap lookup to
1.9 checked top-level definitions. That leaves 41 (44%) unchecked vars, mainly
due to partially complete porting to Typed Clojure, but in some cases due to
unannotated third-party libraries.

No typed multimethods are defined or used. Of 18 total type aliases, 7 (39%)
contained one HMap type, and none contained unions of HMaps—on further
inspection there was no HMap entry used to dictate control flow, often handled
by multimethods. This is unusual in our experience, and is perhaps explained
by feeds2imap mainly wrapping existing javax.mail functionality.

CircleCI CircleCI [7] provides continuous integration services built with a mix-
ture of open- and closed-source software. Typed Clojure was used at CircleCI
in production systems for two years [8], maintaining 87 namespaces and 19,000
lines of code, an experience we summarise in Section 5.3.

The CircleCI code base contains 11 checked multimethods. All 11 dispatch
functions are on a HMap key containing a keyword, in a similar style to Exam-
ple 8. Correspondingly, all 89 methods are associated with a keyword dispatch
value. The argument type was in all cases a single HMap type, however, rather
than a union type. In our experience from porting other libraries, this is unusual.

Of 328 lookup operations on HMaps, 208 (64%) resolve to mandatory keys,
70 (21%) to optional keys, 20 (6%) to absent keys, and 30 (9%) lookups are
unresolved. Of 95 total type aliases defined with defalias, 62 (65%) involved one
or more HMap types. Out of 105 Java interactions, 26 (25%) are static methods,
36 (34%) are instance methods, 38 (36%) are constructors, and 5 (5%) are static
fields. 35 methods are overriden to return non-nil, and 1 method overridden to
accept nil—suggesting that core.typed disallowing nil as a method argument
by default is justified.

Of 464 checked top-level definitions (which consists of 57 defmethod calls
and 407 def expressions), 1 HMap lookup occurs per 1.4 top-level definitions,
and 1 Java interaction occurs every 4.4 top-level definitions.

From 1834 def expressions in typed code, only 407 (22%) were checked.
That leaves 1427 (78%) which have unchecked definitions, either by an ex-
plicit :no-check annotation or tc-ignore to suppress type checking, or the
warn-on-unannotated-vars option, which skips def expressions that lack ex-
pected types via ann. From a brief investigation, reasons include unannotated
third-party libraries, work-in-progress conversions to Typed Clojure, unsup-
ported Clojure idioms, and hard-to-check code.

Lessons Based on our empirical survey, HMaps and Java interoperability support
are vital features used on average more than once per typed function. Multimeth-
ods are less common in our case studies. The CircleCI code base contains only
26 multimethods total in 55,000 lines of mixed untyped-typed Clojure code, a
low number in our experience.

5.3 Further challenges

After a 2 year trial, the second case study decided to disabled type checking [9].
They were supportive of the fundamental ideas presented in this paper, but
primarily cited issues with the checker implementation in practice and would re-
consider type checking if they were resolved. This is also supported by Figure 13,
where 78% of def expressions are unchecked.

Performance Rechecking files with transitive dependencies is expensive
since all dependencies must be rechecked. We conjecture caching type state will
significantly improve re-checking performance, though preserving static sound-
ness in the context of arbitrary code reloading is a largely unexplored area.

Library annotations Annotations for external code are rarely available, so
a large part of the untyped-typed porting process is reverse engineering libraries.

Unsupported idioms While the current set of features is vital to checking
Clojure code, there is still much work to do. For example, common Clojure
functions are often too polymorphic for the current implementation or theory to
account for. The post-mortem [9] contains more details.

6 Related Work

Multimethods [20] and collaborators present a sequence of systems [4, 5, 20] with
statically-typed multimethods and modular type checking. In contrast to Typed
Clojure, in these system methods declare the types of arguments that they expect
which corresponds to exclusively using class as the dispatch function in Typed
Clojure. However, Typed Clojure does not attempt to rule out failed dispatches.

Record Types Row polymorphism [26, 3, 12], used in systems such as the OCaml
object system, provides many of the features of HMap types, but defined us-
ing universally-quantified row variables. HMaps in Typed Clojure are instead
designed to be used with subtyping, but nonetheless provide similar expressive-
ness, including the ability to require presence and absence of certain keys.

Dependent JavaScript [6] can track similar invariants as HMaps with types
for JS objects. They must deal with mutable objects, they feature refinement
types and strong updates to the heap to track changes to objects.

TeJaS [16], another type system for JavaScript, also supports similar HMaps,
with the ability to record the presence and absence of entries, but lacks a com-
positional flow-checking approach like occurrence typing.

Typed Lua [18] has table types which track entries in a mutable Lua table.
Typed Lua changes the dynamic semantics of Lua to accommodate mutability:

Typed Lua raises a runtime error for lookups on missing keys—HMaps consider
lookups on missing keys normal.

Java Interoperability in Statically Typed Languages Scala [21] has nullable refer-
ences for compatibility with Java. Programmers must manually check for null

as in Java to avoid null-pointer exceptions.

Other optional and gradual type systems Several other gradual type systems have
been developed for existing dynamically-typed languages. Reticulated Python [25]
is an experimental gradually typed system for Python, implemented as a source-
to-source translation that inserts dynamic checks at language boundaries and
supporting Python’s first-class object system. Clojure’s nominal classes avoids
the need to support first-class object system in Typed Clojure, however HMaps
offer an alternative to the structural objects offered by Reticulated. Similarly,
Gradualtalk [1] offers gradual typing for Smalltalk, with nominal classes.

Optional types have been adopted in industry, including Hack [10], and
Flow [11] and TypeScript [19], two extensions of JavaScript. These systems sup-
port limited forms of occurrence typing, and do not include the other features
we present.

7 Conclusion

Optional type systems must be designed with close attention to the language
that they are intended to work for. We have therefore designed Typed Clojure,
an optionally-typed version of Clojure, with a type system that works with
a wide variety of distinctive Clojure idioms and features. Although based on
the foundation of Typed Racket’s occurrence typing approach, Typed Clojure
both extends the fundamental control-flow based reasoning as well as applying
it to handle seemingly unrelated features such as multi-methods. In addition,
Typed Clojure supports crucial features such as heterogeneous maps and Java
interoperability while integrating these features into the core type system. Not
only are each of these features important in isolation to Clojure and Typed
Clojure programmers, but they must fit together smoothly to ensure that existing
untyped programs are easy to convert to Typed Clojure.

The result is a sound, expressive, and useful type system which, as imple-
mented in core.typed with appropriate extensions, is suitable for typechecking
a significant amount of existing Clojure programs. As a result, Typed Clojure is
already successful: it is used in the Clojure community among both enthusiasts
and professional programmers.

Our empirical analysis of existing Typed Clojure programs bears out our
design choices. Multimethods, Java interoperation, and heterogeneous maps are
indeed common in both Clojure and Typed Clojure, meaning that our type sys-
tem must accommodate them. Furthermore, they are commonly used together,
and the features of each are mutually reinforcing. Additionally, the choice to
make Java’s null explicit in the type system is validated by the many Typed
Clojure programs that specify non-nullable types.

References

1. Allende, E., Callau, O., Fabry, J., Tanter, É., Denker, M.: Gradual typing for
Smalltalk. Science of Computer Programming 96, 52–69 (2014)

2. Bonnaire-Sergeant, A., contributors: core.typed, https://github.com/clojure/

core.typed

3. Cardelli, L., Mitchell, J.C.: Operations on records. In: Mathematical Structures in
Computer Science. pp. 3–48 (1991)

4. Chambers, C.: Object-oriented multi-methods in Cecil. In: Proc. ECOOP (1992)
5. Chambers, C., Leavens, G.T.: Typechecking and modules for multi-methods. In:

Proc. OOPSLA (1994)
6. Chugh, R., Herman, D., Jhala, R.: Dependent types for JavaScript. In: Proc. OOP-

SLA (2012)
7. CircleCI: CircleCI, https://circleci.com
8. CircleCI: Why we’re supporting Typed Clojure, and you should too! (September

2013), http://blog.circleci.com/supporting-typed-clojure/
9. CircleCI; O’Morain, M.: Why we’re no longer using core.typed (September 2015),

http://blog.circleci.com/why-were-no-longer-using-core-typed/

10. Facebook: Hack language specification. Tech. rep., Facebook (2014)
11. Facebook: Flow language specification. Tech. rep., Facebook (2015)
12. Harper, R., Pierce, B.: A record calculus based on symmetric concatenation. In:

Proc. POPL (1991)
13. Hickey, R.: The Clojure programming language. In: Proc. DLS (2008)
14. Hickey, R.: Clojure sequence Documentation (February 2015), http://clojure.

org/sequences

15. Lehtosalo, J.: mypy, http://mypy-lang.org/
16. Lerner, B.S., Politz, J.G., Guha, A., Krishnamurthi, S.: TeJaS: Retrofitting type

systems for JavaScript. In: Proceedings of the 9th Symposium on Dynamic Lan-
guages. pp. 1–16. DLS ’13, ACM, New York, NY, USA (2013), http://doi.acm.
org/10.1145/2508168.2508170

17. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: Proc. POPL (1988)
18. Maidl, A.M., Mascarenhas, F., Ierusalimschy, R.: Typed Lua: An optional type

system for Lua. In: Proc. Dyla (2014)
19. Microsoft: Typescript language specification. Tech. Rep. Version 1.4, Microsoft

(2014)
20. Millstein, T., Chambers, C.: Modular statically typed multimethods. In: Informa-

tion and Computation. pp. 279–303. Springer-Verlag (2002)
21. Odersky, M., Cremet, V., Dragos, I., Dubochet, G., Emir, B., McDirmid, S., Mich-

eloud, S., Mihaylov, N., Schinz, M., Stenman, E., Spoon, L., Zenger, M., et al.: An
overview of the Scala programming language (second edition). Tech. rep., EPFL
Lausanne, Switzerland (2006)

22. Strickland, T.S., Tobin-Hochstadt, S., Felleisen, M.: Practical variable-arity poly-
morphism. In: Proc. ESOP (2009)

23. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of Typed
Scheme. In: Proc. POPL (2008)

24. Tobin-Hochstadt, S., Felleisen, M.: Logical types for untyped languages. In: Proc.
ICFP. ICFP ’10 (2010)

25. Vitousek, M.M., Kent, A.M., Siek, J.G., Baker, J.: Design and evaluation of gradual
typing for Python. In: Proc. DLS (2014)

26. Wand, M.: Type inference for record concatenation and multiple inheritance (1989)

A Soundness for Typed Clojure

Assumption A.1 (JVMnew). If ∀i. vi = Ci {
−−−−−→
fldj : vj} or vi = nil and vi is

consistent with ρ then either

– JVMnew[C, [
−→
Ci], [

−→vi]] = C {
−−−−−→
fldk : vk} which is consistent with ρ,

– JVMnew[C, [
−→
Ci], [

−→vi]] = err, or

– JVMnew[C, [
−→
Ci], [

−→vi]] is undefined.

Assumption A.2 (JVMgetstatic). If v1 = C1 {fld : vf ,
−−−−−→
fldl : vl}, then either

– JVMgetstatic[C1, v1, f ld, C2] = vf , and either

• vf = C2 {
−−−−−−→
fldm : vm} or

• vf = nil, or
– JVMgetstatic[C1, v1, f ld, C2] = err.

Assumption A.3 (JVMinvokestatic). If v1 = C1 {
−−−−−→
fldl : vl}, ∀i. vi = Ci {

−−−−−→
fldj : vj} or vi =

nil then either

– JVMinvokestatic[C1, vm,mth, [
−→
Ci], [

−→vi], C2] = v and either

• v = C2 {
−−−−−−→
fldm : vm} or v = nil, or

– JVMinvokestatic[C1, vm,mth, [
−→
Ci], [

−→vi], C2] = err, or

– JVMinvokestatic[C1, vm,mth, [
−→
Ci], [

−→vi], C2] is undefined.

Lemma A.1. If ρ and ρ′ agree on fv(ψ) and ρ |= ψ then ρ′ |= ψ.

Proof. Since the relevant parts of ρ and ρ′ agree, the proof follows trivially.

Lemma A.2. If

– ψ1 = ψ2[o/x],
– ρ2 |= ψ2,
– ∀v ∈ fv(ψ2)− x. ρ1(v) = ρ2(v),
– and ρ2(x) = ρ1(o)

then ρ1 |= ψ1.

Proof. By induction on the derivation of the model judgement.

Lemma A.3. If ρ |= Γ and Γ ` ψ then ρ |= ψ.

Proof. By structural induction on Γ ` ψ.

Lemma A.4. If Γ ` τπ(x), ρ |= Γ and ρ(π(x)) = v then ` v : τ ; ψ′+|ψ′− ; o′

for some ψ′+, ψ′− and o′.

Proof. Corollary of lemma A.3.

Lemma A.5 (Paths are independent). If ρ(o) = ρ1(o′) then ρ(π(o)) =
ρ1(π(o′))

Proof. By induction on π.

Lemma A.6 (class). If ρ ` (class ρ(π(x))) ⇓ C then ρ |= Cπ(x).

Proof. Induction on the definition of class.

Definition A.1. v is consistent with ρ iff ∀ [ρ1, λx
σ .e]c in v, if ` [ρ1, λx

σ .e]c : τ ; tt|ff ; ∅
and ∀ o′ in τ, either o′ = ∅, or o′ = π′(x), or ρ(o′) = ρ1(o′).

Definition A.2. ρ is consistent iff
∀v ∈ rng(ρ), v is consistent with ρ.

Definition A.3. TrueVal(v) iff v 6= false and v 6= nil.

Definition A.4. FalseVal(v) iff v = false or v = nil.

Lemma A.7 (isa? has correct propositions). If

– Γ ` v1 ⇒ v1 : τ1 ; ψ1+|ψ1− ; o1,
– Γ ` v2 ⇒ v2 : τ2 ; ψ2+|ψ2− ; o2,
– IsA(v1, v2) = v,
– ρ |= Γ,
– IsAProps(o1, τ2) = ψ′+|ψ′−,
– ψ′+ ` ψ+, and
– ψ′− ` ψ−,

then either

– if TrueVal(v) then ρ |= ψ+, or
– if FalseVal(v) then ρ |= ψ−.

Proof. By cases on the definition of IsA and subcases on IsA.

Subcase 1 (IsA(v1, v1) = true, if v1 6= C).
v1 = v2, v1 6= C, v2 6= C, TrueVal(v)
Since TrueVal(v) we prove ρ |= ψ+ by cases on the definition of IsAProps:

Subcase 2 (IsAProps(class(π(x)), (ValC)) = Cπ(x)|Cπ(x)).
o1 = class(π(x)), τ2 = (ValC), Cπ(x) ` ψ+

Unreachable by inversion on the typing relation, since τ2 = (ValC), yet
v2 6= C.
Subcase 3 (IsAProps(o, (Val l)) = ((Val l)x |(Val l)x)[o/x] if l 6= C).
τ2 = (Val l), l 6= C, (Val l)x [o1/x] ` ψ+

Since τ2 = (Val l) where l 6= C, by inversion on the typing judgement
v2 is either true, false, nil or k by T-True, T-False, T-Nil or T-Kw.
Since v1 = v2 then τ1 = τ2, and since τ2 = (Val l) then τ1 = (Val l), so
` v1 : (Val l)
If o1 = ∅ then ψ+ = tt and we derive ρ |= tt with M-Top.
Otherwise o1 = π(x) and (Val l)π(x) ` ψ+, and since ` v1 : (Val l) then

` ρ(π(x)) : (Val l), which we can use M-Type to derive ρ |= (Val l)π(x).

Subcase 4 (IsAProps(o, τ) = tt|tt).
ψ+ = tt

ρ |= tt holds by M-Top.
Subcase 5 (IsA(C1, C2) = true, if ` C1 <: C2).
v1 = C1, v2 = C2, ` C1 <: C2, TrueVal(v)
Since TrueVal(v) we prove ρ |= ψ+ by cases on the definition of IsAProps:

Subcase 6 (IsAProps(class(π(x)), (ValC)) = Cπ(x)|Cπ(x)).
o1 = class(π(x)), τ2 = (ValC2), C2π(x) ` ψ+

By inversion on the typing relation, since class is the last path element
of o1 then ρ ` (class ρ(π(x))) ⇓ v1.
Since ρ ` (class ρ(π(x))) ⇓ C1, as v1 = C1, we can derive from lemma A.6
ρ |= C1π(x).
By the induction hypothesis we can derive Γ ` C1π(x), and with the fact
` C1 <: C2 we can use L-Sub to conclude Γ ` C2π(x), and finally by
lemma A.3 we derive ρ |= C2π(x).

Subcase 7 (IsAProps(o, (Val l)) = ((Val l)x |(Val l)x)[o/x] if l 6= C).
τ2 = (Val l), l 6= C, (Val l)x [o1/x] ` ψ+

Unreachable case since τ2 = (Val l) where l 6= C, but v2 = C2.
Subcase 8 (IsAProps(o, τ) = tt|tt).
ψ+ = tt

ρ |= tt holds by M-Top.
Subcase 9 (IsA(v1, v2) = false, otherwise).
v1 6= v2, FalseVal(v)
Since FalseVal(v) we prove ρ |= ψ− by cases on the definition of IsAProps:

Subcase 10 (IsAProps(class(π(x)), (ValC)) = Cπ(x)|Cπ(x)).
o1 = class(π(x)), τ2 = (ValC), Cπ(x) ` ψ−
By inversion on the typing relation, since class is the last path element
of o1 then ρ ` (class ρ(π(x))) ⇓ v1.
By the definition of class either v1 = C or v1 = nil.
If v1 = nil, then we know from the definition of IsA that ρ(π(x)) = nil.
Since ` ρ(π(x)) : nil, and there is no v1 such that both ` ρ(π(x)) : C and
` ρ(π(x)) : nil , we use M-NotType to derive ρ |= Cπ(x).
Similarly if v1 = C1, by the definition of IsAProps we know ` C1 6<: C
and ρ(π(x)) = C1.
Since ` ρ(π(x)) : C1, and there is no v1 such that both ` v1 : C and
` v1 : C1, we use M-NotType to derive ρ |= Cπ(x).

Subcase 11 (IsAProps(o, (Val l)) = ((Val l)x |(Val l)x)[o/x] if l 6= C).

τ2 = (Val l), l 6= C, (Val l)x [o1/x] ` ψ−
Since τ2 = (Val l) where l 6= C, by inversion on the typing judgement
v2 is either true, false, nil or k by T-True, T-False, T-Nil or T-Kw.
If o1 = ∅ then ψ− = tt and we derive ρ |= tt with M-Top.

Otherwise o1 = π(x) and (Val l)π(x) ` ψ−. Noting that v1 6= v2, we

know ` ρ(π(x)) : σ where σ 6= (Val l), and there is no v1 such that
both ` v1 : (Val l) and ` v1 : σ so we can use M-NotType to derive ρ |=
(Val l)π(x).

Subcase 12 (IsAProps(o, τ) = tt|tt).
ψ− = tt

ρ |= tt holds by M-Top.

Lemma A.8. If Γ ` e′ ⇒ e : τ ; ψ+|ψ− ; o, ρ |= Γ, ρ is consistent, and ρ `
e ⇓ α then either

– ρ ` e ⇓ v and all of the following hold:

1. either o = ∅ or ρ(o) = v,
2. either TrueVal(v) and ρ |= ψ+ or FalseVal(v) and ρ |= ψ−,
3. ` v ⇒ v : τ ; ψ′+|ψ′− ; o′ for some ψ′+, ψ′− and o′, and
4. v is consistent with ρ, or

– ρ ` e ⇓ err.

Proof. By induction and cases on the derivation of ρ ` e ⇓ α, and subcases on
the penultimate rule of the derivation of Γ ` e′ ⇒ e : τ ; ψ+|ψ− ; o followed by
T-Subsume as the final rule.

Case 1 (B-Val).

Subcase 13 (T-True). v = true, e′ = true, e = true, ` true<:τ, tt ` ψ+,
ff ` ψ−, ` ∅ <: o
Proving part 1 is trivial: o is a superobject of ∅, which can only be ∅.
To prove part 2, we note that v = true and tt ` ψ+, so ρ |= ψ+ by M-Top.
Part 3 holds as e can only be reduced to itself via B-Val.
Part 4 holds vacuously.
Subcase 14 (T-HMap). v = {−−−−−→vk 7→ vv}, e′ = {−−−−−→vk 7→ vv}, e = {−−−−−→vk 7→ vv},
` (HMapCM)<: τ, tt ` ψ+, ff ` ψ−, ` ∅ <: o,

−−−−−−−−−→
` vk : (Val k),

−−−−−→
` vv : τv,

M = {
−−−−→
k 7→ τv}

Similar to T-True.
Part 4 holds by the induction hypothese on −→vk and −→vv .
Subcase 15 (T-Kw). v = k, e′ = k, e = k, ` (Val k)<: τ, tt ` ψ+,
ff ` ψ−, ` ∅ <: o
Similar to T-True.

Subcase 16 (T-Str). Similar to T-Kw.

Subcase 17 (T-False). v = false, e′ = false, e = false, ` false<:τ, ff `
ψ+, tt ` ψ−, ` ∅ <: o
Proving part 1 is trivial: o is a superobject of ∅, which must be ∅.
To prove part 2, we note that v = false and tt ` ψ−, so ρ |= ψ− by M-Top.
Part 3 holds as e can only be reduced to itself via B-Val.
Part 4 holds vacuously.
Subcase 18 (T-Class). v = C, e′ = C, e = C, ` (ValC)<: τ, tt ` ψ+,
ff ` ψ−, ` ∅ <: o
Similar to T-True.

Subcase 19 (T-Instance). v = C {
−−−−−→
fldi : vi}, e′ = C {

−−−−→
fld : v}, e = C {

−−−−→
fld : v},

` C <: τ, tt ` ψ+, ff ` ψ−, ` ∅ <: o
Similar to T-True.
Part 4 holds by the induction hypotheses on −→vi .
Subcase 20 (T-Nil). v = nil, e′ = nil, e = nil, ` nil<:τ, ff ` ψ+, tt ` ψ−,
` ∅ <: o
Similar to T-False.
Subcase 21 (T-Multi). v = [v1, {−−−−−→vk 7→ vv}]m e′ = [v1, {−−−−−→vk 7→ vv}]m, ` v1 ⇒ v1 : τ1,
−−−−−−−−−−→
` vk ⇒ vk :> ,

−−−−−−−−−→
` vv ⇒ vv : σ, e = [v1, {−−−−−→vk 7→ vv}]m, ` (Multiσ τ1)<: τ, tt `

ψ+, ff ` ψ−, ` ∅ <: o
Similar to T-True.
Subcase 22 (T-Const). e = c, ` δτ(c)<: τ, tt ` ψ+, ff ` ψ−, ` ∅ <: o
Parts 1, 2 and 3 hold for the same reasons as T-True.

Case 2 (B-Local). ρ(x) = v , ρ ` x ⇓ v

Subcase 23 (T-Local). e′ = x, e = x, (∪ nil false) x ` ψ+, (∪ nil false) x `
ψ−, ` x <: o, Γ ` τx
Part 1 follows from ρ(o) = v, since either o = x and ρ(x) = v is a premise
of B-Local, or o = ∅ which also satisfies the goal.
Part 2 considers two cases: if TrueVal(v), then ρ |= (∪ nil false)x holds by
M-NotType; if FalseVal(v), then ρ |= (∪ nil false)x holds by M-Type.
We prove part 3 by observing Γ ` τx , ρ |= Γ, and ρ(x) = v (by B-Local)
which gives us the desired result.
Part 4 holds vacuously.

Case 3 (B-Do). ρ ` e1 ⇓ v1, ρ ` e2 ⇓ v

Subcase 24 (T-Do). e′ = (do e′1 e
′
2), Γ ` e′1 ⇒ e1 : τ1 ; ψ1+|ψ1− ; o1,

Γ, ψ1+ ∨ ψ1− ` e′ ⇒ e : τ ; ψ+|ψ− ; o, e = (do e1 e2)
For all parts we note since e1 can be either a true or false value then ρ |=
Γ, ψ1+ ∨ ψ1− by M-Or, which together with Γ, ψ1+ ∨ ψ1− ` e2 : τ ; ψ+|ψ− ; o,
and ρ ` e2 ⇓ v allows us to apply the induction hypothesis on e2.
To prove part 1 we use the induction hypothesis on e2 to show either o = ∅
or ρ(o) = v, since e always evaluates to the result of e2.
For part 2 we use the induction hypothesis on e2 to show if TrueVal(v) then
ρ |= ψ+ or if FalseVal(v) then ρ |= ψ−.
Parts 3 and 4 follow from the induction hypothesis on e2.

Case 4 (BE-Do1). ρ ` e1 ⇓ err, ρ ` e ⇓ err
Trivially reduces to an error.

Case 5 (BE-Do2). ρ ` e1 ⇓ v1, ρ ` e2 ⇓ err, ρ ` e ⇓ err
As above.

Case 6 (B-New).
−−−−−−−→
ρ ` ei ⇓ vi, JVMnew[C1, [

−→
Ci], [

−→vi]] = v

Subcase 25 (T-New). e′ = (new C
−→
e′i), [

−→
Ci] ∈ CT [C][c],

−−−−−−−−−−−→
JTnil(Ci) = τi,−−−−−−−−−−→

Γ ` e′i ⇒ ei : τi, e = (new
[
−→
Ci]

C −→ei), ` JT(C)<: τ, tt ` ψ+, ff ` ψ−,

` ∅ <: o

Part 1 follows o = ∅.
Part 2 requires some explanation. The two false values in Typed Clojure
cannot be constructed with new, so the only case is v 6= false (or nil) where
ψ+ = tt so ρ |= ψ+. Void also lacks a constructor.

Part 3 holds as B-New reduces to a non-nilable instance of C via JVMnew

(by assumption A.1), and τ is a supertype of JT (C).

Subcase 26 (T-NewStatic). e′ = (new
[
−→
Ci]

C −→ei)
Non-reflective constructors cannot be written directly by the user, so we can
assume the class information attached to the syntax corresponds to an actual
constructor by inversion from T-New.

The rest of this case progresses like T-New.

Case 7 (BE-New1).
−−−−−−−−−−−→
ρ ` ei−1 ⇓ vi−1, ρ ` ei ⇓ err, ρ ` e ⇓ err

Trivially reduces to an error.

Case 8 (BE-New2).
−−−−−−−→
ρ ` ei ⇓ vi, JVMnew[C1, [

−→
Ci], [

−→vi]] = err, ρ ` e ⇓ err

As above.

Case 9 (B-Field). ρ ` e1 ⇓ C1 {fld : v}

Subcase 27 (T-Field). e′ = (. e′1 fld), Γ ` e′ ⇒ e : σ, ` σ <: Object , TJ
(σ) = C1, fld 7→ C2 ∈ CT [C1][f], e = (. e1 fld

C1

C2
) ` JTnil(C2)<: τ, tt ` ψ+,

tt ` ψ−, ` ∅ <: o

Part 1 is trivial as o is always ∅.
Part 2 holds trivially; v can be either a true or false value and both ψ+ and
ψ− are tt.

Part 3 relies on the semantics of JVMgetstatic (assumption A.2) in B-Field,
which returns a nilable instance of C2, and τ is a supertype of JTnil(C2). No-
tice ` σ <: Object is required to guard from dereferencing nil, as C1 erases
occurrences of nil in σ via TJ (σ) = C1.

Subcase 28 (T-FieldStatic). e′ = (. e1 fld
C1

C2
)

Non-reflective field lookups cannot be written directly by the user, so we can
assume the class information attached to the syntax corresponds to an actual
field by inversion from T-Field.

The rest of this case progresses like T-Field.

Case 10 (BE-Field). ρ ` e1 ⇓ err, ρ ` e ⇓ err

Trivially reduces to an error.

Case 11 (B-Method). ρ ` em ⇓ vm,
−−−−−−−→
ρ ` ea ⇓ va, JVMinvokestatic[C1, vm,mth, [

−→
Ca], [−→va], C2] =

v

Subcase 29 (T-Method). Γ ` e′ ⇒ e : σ, ` σ <: Object , TJ (σ) = C1,

mth 7→ [[
−→
Ci], C2] ∈ CT [C1][m],

−−−−−−−−−−−→
JTnil(Ci) = τi,

−−−−−−−−−−→
Γ ` e′i ⇒ ei : τi, e = (. em (mthC1

[[
−→
Ci],C2]

−→ea)),

` JTnil(C2)<: τ, tt ` ψ+, tt ` ψ−, ` ∅ <: o
Part 1 is trivial as o is always ∅.
Part 2 holds trivially, v can be either a true or false value and both ψ+ and
ψ− are tt.
Part 3 relies on the semantics of JVMinvokestatic (assumption A.3) in B-
Method, which returns a nilable instance of C2, and τ is a supertype of
JTnil(C2) = . Notice ` σ <: Object is required to guard from dereferencing
nil, as C1 erases occurrences of nil in σ via TJ (σ) = C1.
Subcase 30 (T-MethodStatic). e′ = (. e1 (mthC1

[[
−→
Ci],C2]

−→ei))
Non-reflective method invocations cannot be written directly by the user, so
we can assume the class information attached to the syntax corresponds to
an actual method by inversion from T-Method.
The rest of this case progresses like T-Method.

Case 12 (BE-Method1). ρ ` em ⇓ err, ρ ` e ⇓ err
Trivially reduces to an error.

Case 13 (BE-Method2). ρ ` em ⇓ vm,
−−−−−−−−−−−→
ρ ` en−1 ⇓ vn−1, ρ ` en ⇓ err, ρ ` e ⇓ err

As above.

Case 14 (BE-Method3). ρ ` em ⇓ vm,
−−−−−−−→
ρ ` ea ⇓ va, JVMinvokestatic[C1, vm,mth, [

−→
Ca], [−→va], C2] =

err, ρ ` e ⇓ err
As above.

Case 15 (B-DefMulti). v = [vd, {}]m, ρ ` ed ⇓ vd

Subcase 31 (T-DefMulti). e′ = (defmulti σ e′d), σ = x:τ1
ψ1+|ψ1−−−−−−−→

o1
τ2, τd

= x:τ1
ψ2+|ψ2−−−−−−−→

o2
τ3, Γ ` e′ ⇒ e : σ′ , e = (defmulti σ ed), ` (Multiσ τd)<: τ,

tt ` ψ+, ff ` ψ−, ` ∅ <: o
Part 1 and 2 hold for the same reasons as T-True. For part 3 we show `
[vd, {}]m : (Multiσ τd) by T-Multi, since ` vd : τd by the inductive hypothesis
on ed and {} vacuously satisfies the other premises of T-Multi, so we are
done.

Case 16 (BE-DefMulti). ρ ` ed ⇓ err, ρ ` e ⇓ err
Trivially reduces to an error.

Case 17 (B-DefMethod).

1. v = [vd, t
′]m,

2. ρ ` em ⇓ [vd, t]m,
3. ρ ` ev ⇓ vv,

4. ρ ` ef ⇓ vf ,
5. t′ = t[vv 7→ vf]

Subcase 32 (T-DefMethod).

6. e′ = (defmethod e′m e′v e
′
f),

7. τm = x:τ1
ψm+|ψm−−−−−−−−→

om
σ,

8. τd = x:τ1
ψd+|ψd−−−−−−−→

od
σ′ ,

9. Γ ` e′m ⇒ em : (Multi τm τd)
10. IsAProps(od, τv) = ψi+|ψi−,
11. Γ ` ev ⇒ ev : τv
12. Γ, τ1x , ψi+ ` e′f ⇒ ef : σ ; ψm+|ψm− ; om
13. e = (defmethod em ev ef),
14. ef = λxτ1 .eb,
15. ` (Multi τm τd)<: τ,
16. tt ` ψ+,
17. ff ` ψ−,
18. ` ∅ <: o

Part 1 and 2 hold for the same reasons as T-True, noting that the proposi-
tions and object agree with T-Multi.
For part 3 we show ` [vd, t[vv 7→ vf]]m : (Multi τm τd) by noting ` vd : τd,
` vv :> and ` vf : τm, and since t is in the correct form by the inductive
hypothesis on em we can satisfy all premises of T-Multi, so we are done.

Case 18 (BE-DefMethod1). ρ ` em ⇓ err, ρ ` e ⇓ err
Trivially reduces to an error.

Case 19 (BE-DefMethod2). ρ ` em ⇓ [vd, t]m, ρ ` ev ⇓ err, ρ ` e ⇓ err
Trivially reduces to an error.

Case 20 (BE-DefMethod3). ρ ` em ⇓ [vd, t]m, ρ ` ev ⇓ vv, ρ ` ef ⇓ err,
ρ ` e ⇓ err

Trivially reduces to an error.

Case 21 (B-BetaClosure).

– ρ ` e ⇓ v,
– ρ ` e1 ⇓ [ρc, λx

σ .eb]c,
– ρ ` e2 ⇓ v2,
– ρc[x 7→ v2] ` eb ⇓ v

Subcase 33 (T-App).

• e′ = (e′1 e
′
2),

• Γ ` e′1 ⇒ e1 : x:σ
ψf+
|ψf−−−−−−−→
of

τf ; ψ1+|ψ1− ; o1,

• Γ ` e′2 ⇒ e2 : σ ; ψ2+|ψ2− ; o2,
• e = (e1 e2),

• ` τf [o2/x]<: τ,
• ψf+[o2/x] ` ψ+,
• ψf−[o2/x] ` ψ−,
• ` of [o2/x]<: o

By inversion on e1 from T-Clos there is some environment Γc such that
• ρc |= Γc and

• Γc ` λxσ .eb : x:σ
ψf+
|ψf−−−−−−−→
of

τf ; ψ1+|ψ1− ; o1,

and also by inversion on e1 from T-Abs
• Γc, σx ` e′b ⇒ eb : τf ; ψf+|ψf− ; of .

From
• ρc |= Γc,
• Γ ` e′2 ⇒ e2 : σ ; ψ2+|ψ2− ; o2 and
• ρ ` e2 ⇓ v2,

we know (by substitution) ρc[x 7→ v2] |= Γc, σx .
We want to prove Γc ` e′b[v2/x]⇒ eb[v2/x] : τf [o2/x] ; ψf+|ψf−[o2/x] ; of [o2/x],
which can be justified by noting
• Γc, σx ` e′b ⇒ eb : τf ,
• Γ ` e′2 ⇒ e2 : σ ; ψ2+|ψ2− ; o2 and
• ρ ` e2 ⇓ v2.

From the previous fact and ρc |= Γc, we know ρc ` eb[v2/x] ⇓ v.
Noting that ` τf [o2/x]<: τ, ψf+[o2/x] ` ψ+, ψf−[o2/x] ` ψ− and ` of [o2/x]<: o,
we can use
• Γc ` e′b[v2/x]⇒ eb[v2/x] : τf [o2/x] ; ψf+|ψf−[o2/x] ; of [o2/x],
• ρc |= Γc,
• ρc is consistent (via induction hypothesis on e′1), and
• ρc ` eb[v2/x] ⇓ v.

to apply the induction hypothesis on e′b[v2/x] and satisfy all conditions.

Case 22 (B-Delta). ρ ` e1 ⇓ c, ρ ` e2 ⇓ v2, δ(c, v2) = v

Subcase 34 (T-App).

• e′ = (e′1 e
′
2),

• Γ ` e′1 ⇒ e1 : x:σ
ψf+
|ψf−−−−−−−→
of

τf ; ψ1+|ψ1− ; o1,

• Γ ` e′2 ⇒ e2 : σ ; ψ2+|ψ2− ; o2,
• e = (e1 e2),
• ` τf [o2/x]<: τ,
• ψf+[o2/x] ` ψ+,
• ψf−[o2/x] ` ψ−,
• ` of [o2/x]<: o

Prove by cases on c.

Subcase 35 (c = class). ` x:> tt|tt−−−−−→
class(x)

(
⋃

nil Class)<: x:σ
ψf+
|ψf−−−−−−−→
of

τf

Prove by cases on v2.

Subcase 36 (v2 = C {
−−−−−→
fldi : vi}). v = C

To prove part 1, note ` of [o2/x]<: o, and ` class(x)<: of . Then
either o = ∅ and we are done, or o = class(o2) and by the induction
hypothesis on e2 we know ρ(o2) = v2 and by the definition of path
translation we know ρ(class(o2)) = (class ρ(o2)), which evaluates to
v.
Part 2 is trivial since both propositions can only be tt.
Part 3 holds because v = C, ` (

⋃
nil Class)<: τf [o2/x] and ` τf [o2/x]<: τ,

so ` v : τ since ` C : (
⋃

nil Class).
Subcase 37 (v2 = C). v = Class
As above.
Subcase 38 (v2 = true). v = B
As above.
Subcase 39 (v2 = false). v = B
As above.
Subcase 40 (v2 = [ρ, λxτ .e]c). v = Fn
As above.
Subcase 41 (v2 = [vd, t]m). v = Map
As above.
Subcase 42 (v2 = {−−−−−→v1 7→ v2}). v = K
As above.
Subcase 43 (v2 = nil). v = nil
Parts 1 and 2 as above. Part 3 holds because v = nil and ` nil : (

⋃
nil Class).

Case 23 (B-BetaMulti).

– ρ ` e1 ⇓ [vd, t]m,
– ρ ` e2 ⇓ v2,
– ρ ` (vd v2) ⇓ ve,
– GM (t, ve) = vg,
– ρ ` (vg v2) ⇓ v,
– t = {−−−−−→vk 7→ vv}

Subcase 44 (T-App).

• e′ = (e′1 e
′
2),

• Γ ` e′1 ⇒ e1 : x:σ
ψf+
|ψf−−−−−−−→
of

τf ; ψ1+|ψ1− ; o1,

• Γ ` e′2 ⇒ e2 : σ ; ψ2+|ψ2− ; o2,
• e = (e1 e2),
• ` τf [o2/x]<: τ,
• ψf+[o2/x] ` ψ+,
• ψf−[o2/x] ` ψ−,
• ` of [o2/x]<: o,

By inversion on e1 via T-Multi we know
• Γ ` e′1 ⇒ e1 : (Multiσt σd) ; ψ1+|ψ1− ; o1,

• σt = x:σ
ψf+
|ψf−−−−−−−→
of

τf ,

• σd = x:σ
ψd+|ψd−−−−−−−→

od
τd,

• ` vd : σd
•
−−−−−→
` vk :> , and

•
−−−−−→
` vv : σt.

By the inductive hypothesis on ρ ` e2 ⇓ v2 we know Γ ` v2 ⇒ v2 : σ ; ψ2+|ψ2− ; o2.
We then consider applying the evaluated argument to the dispatch function:
ρ ` (vd v2) ⇓ ve.
Since we can satisfy T-App with

• ` vd : x:σ
ψd+|ψd−−−−−−−→

od
τd, and

• Γ ` v2 ⇒ v2 : σ ; ψ2+|ψ2− ; o2.
we can then apply the inductive hypothesis to derive Γ ` ve ⇒ ve : τd[o2/x] ; ψd+|ψd−[o2/x] ; od[o2/x].
Now we consider how we choose which method to dispatch to.
As GM (t, ve) = vg, by inversion on GM we know there exists exactly one
vk such that vk 7→ vg ∈ t and IsA(ve, vk) = true.
By inversion we know T-DefMethod must have extended t with the well-typed
dispatch value vk, thus ` vk : τk, and the well-typed method vg, so ` vg : σt.
We can also prove that given
• Γ ` ve ⇒ ve : τd[o2/x] ; ψd+|ψd−[o2/x] ; od[o2/x].
• Γ ` vk : τk,
• IsA(ve, vk) = true,
• ρ |= Γ,
• IsAProps(od[o2/x], τk) = ψ′+|ψ′−,
• ψ′+ ` ψ′+, and
• ψ′− ` ψ′−.

we can apply Lemma A.7 to derive then ρ |= ψ′+.
Now we consider applying the evaluated argument to the chosen method:
ρ ` (vg v2) ⇓ v.
By inversion via B-DefMethod we can assume vg = λxσ .eb, ie. that we have
chosen a method to dispatch to that is a closure.
Because ρ ` (vg v2) ⇓ v and Γ ` v2 : σ, by inversion via B-BetaClosure we
know v = eb[v2/x].
With the following premises:
• Γ, ψ′+ ` e′b[v2/x]⇒ eb[v2/x] : τf [o2/x] ; ψf+|ψf−[o2/x] ; of [o2/x] ,

* From Γ, σx ` eb ⇒ eb : τf ; ψf+|ψf− ; of via the inductive hypoth-
esis on ρ ` (λxσ .eb v2) ⇓ v,

* then we can derive Γ ` e′b[v2/x]⇒ eb[v2/x] : τf [o2/x] ; ψf+|ψf−[o2/x] ; of [o2/x]
via substitution and the fact that x is fresh therefore x 6∈ fv(Γ) so we
do not need to substitution for x in Γ.

* ρ |= Γ, ψ′+ because ρ |= Γ and ρ |= ψ′+ via M-And.
• ρ |= Γ, ψ′+,

* From ρ |= Γ and
* ρ |= ψ′+ via M-And.

• ρ is consistent, and
• ρ ` eb[v2/x] ⇓ v.

we can apply the inductive hypothesis to satisfy our overall goal for this
subcase.

Case 24 (BE-Beta1).
Reduces to an error.

Case 25 (BE-Beta2).
Reduces to an error.

Case 26 (BE-BetaClosure).
Reduces to an error.

Case 27 (BE-BetaMulti1).
Reduces to an error.

Case 28 (BE-BetaMulti2).
Reduces to an error.

Case 29 (BE-Delta).
Reduces to an error.

Case 30 (B-IsA). ρ ` e1 ⇓ v1, ρ ` e2 ⇓ v2, IsA(v1, v2) = v

Subcase 45 (T-IsA). e′ = (isa? e′1 e
′
2), Γ ` e′1 ⇒ e1 : τ1 ; ψ1+|ψ1− ; o1,

Γ ` e′2 ⇒ e2 : τ2 ; ψ2+|ψ2− ; o2, e = (isa? e1 e2), ` B<:τ, IsAProps(o1, τ2) =
ψ′+|ψ′−, ψ′+ ` ψ+, ψ′− ` ψ−, ` ∅ <: o
Part 1 holds trivially with o = ∅.
For part 2, by the induction hypothesis on e1 and e2 we know Γ ` v1 ⇒ v1 : τ1 ; ψ1+|ψ1− ; o1
and Γ ` v2 ⇒ v2 : τ2 ; ψ2+|ψ2− ; o2, so we can then apply Lemma A.7 to
reach our goal.
Part 3 holds because by the definition of IsA v can only be true or false, and
since Γ ` true : τ and Γ ` false : τ we are done.

Case 31 (BE-IsA1). ρ ` e1 ⇓ err
Trivially reduces to an error.

Case 32 (BE-IsA2). ρ ` e1 ⇓ v1, ρ ` e2 ⇓ err
Trivially reduces to an error.

Case 33 (B-Get). ρ ` em ⇓ vm, vm = {
−−−−→
(va vb)}, ρ ` ek ⇓ k, k ∈ dom({

−−−−→
(va vb)}),

{
−−−−→
(va vb)}[k] = v

Subcase 46 (T-GetHMap). e′ = (get e′m e′k), Γ ` e′m ⇒ em : (
⋃ −−−−−−−−−−−−→

(HMapEM A)) ; ψm+|ψm− ; om,

Γ ` e′k ⇒ ek : (Val k),
−−−−−−−→
M[k] = τi, e = (get em ek), ` (

⋃ −→τi)<: τ , ψ+ =
tt, ψ− = tt, ` keyk(x)[om/x]<: o
To prove part 1 we consider two cases on the form of om:
• if om = ∅ then o = ∅ by substitution, which gives the desired result;

• if om = πm(xm) then ` keyk(om)<: o by substitution. We note by the
definition of path translation ρ(keyk(om)) = (get ρ(om) k) and by the

induction hypothesis on em ρ(om) = {
−−−−→
(va vb)}, which together imply

ρ(o) = (get {
−−−−→
(va vb)} k). Since this is the same form as B-Get, we can

apply the premise {
−−−−→
(va vb)}[k] = v to derive ρ(o) = v.

Part 2 holds trivially as ψ+ = tt and ψ− = tt.

To prove part 3 we note that (by the induction hypothesis on em) ` vm : (
⋃ −−−−−−−−−−−−→

(HMapEM A)),

where
−−−−−−−→
M[k] = τi, and both k ∈ dom({

−−−−→
(va vb)}) and {

−−−−→
(va vb)}[k] = v imply

` v : (
⋃ −→τi).

Subcase 47 (T-GetHMapAbsent). e′ = (get e′m e′k), Γ ` e′k ⇒ ek : (Val k),

Γ ` e′m ⇒ em : (HMapEM A) ; ψm+|ψm− ; om, k ∈ A, e = (get em ek),
` nil<:τ, ψ+ = tt, ψ− = tt, ` keyk(x)[om/x]<: o

Unreachable subcase because k ∈ dom({
−−−−→
(va vb)}), contradicts k ∈ A.

Subcase 48 (T-GetHMapPartialDefault). e′ = (get e′m e′k), Γ ` e′k ⇒ ek : (Val k),

Γ ` e′m ⇒ em : (HMapPM A) ; ψm+|ψm− ; om, k 6∈ dom(M), k 6∈ A, e
= (get em ek), τ = >, ψ+ = tt, ψ− = tt, ` keyk(x)[om/x]<: o
Parts 1 and 2 are the same as the B-Get subcase. Part 3 is trivial as τ = >.

Case 34 (B-GetMissing). v = nil, ρ ` em ⇓ {
−−−−→
(va vb)}, ρ ` ek ⇓ k, k 6∈

dom({
−−−−→
(va vb)})

Subcase 49 (T-GetHMap). e′ = (get e′m e′k), Γ ` e′m ⇒ em : (
⋃ −−−−−−−−−−−−→

(HMapEM A)) ; ψm+|ψm− ; om,

Γ ` e′k ⇒ ek : (Val k),
−−−−−−−→
M[k] = τi, e = (get em ek), ` (

⋃ −→τi)<: τ, ψ+ = tt,
ψ− = tt, ` keyk(x)[om/x]<: o

Unreachable subcase because k 6∈ dom({
−−−−→
(va vb)}) contradicts M[k] = τ.

Subcase 50 (T-GetHMapAbsent). e′ = (get e′m e′k), Γ ` e′k ⇒ ek : (Val k),

Γ ` e′m ⇒ em : (HMapEM A) ; ψm+|ψm− ; om, k ∈ A, e = (get em ek),
` nil<:τ, ψ+ = tt, ψ− = tt, ` keyk(x)[om/x]<: o
To prove part 1 we consider two cases on the form of om:
• if om = ∅ then o = ∅ by substitution, which gives the desired result;
• if om = πm(xm) then ` keyk(om)<: o by substitution. We note by the

definition of path translation ρ(keyk(om)) = (get ρ(om) k) and by the

induction hypothesis on em ρ(om) = {
−−−−→
(va vb)}, which together imply

ρ(o) = (get {
−−−−→
(va vb)} k). Since this is the same form as B-GetMissing,

we can apply the premise v = nil to derive ρ(o) = v.
Part 2 holds trivially as ψ+ = tt and ψ− = tt.

To prove part 3 we note that em has type (HMapEM A) where k ∈ A, and

the premises of B-GetMissing k 6∈ dom({
−−−−→
(va vb)}) and v = nil tell us v must

be of type τ.
Subcase 51 (T-GetHMapPartialDefault). e′ = (get e′m e′k), Γ ` e′k ⇒ ek : (Val k),

Γ ` e′m ⇒ em : (HMapPM A) ; ψm+|ψm− ; om, k 6∈ dom(M), k 6∈ A, e
= (get em ek), τ = >, ψ+ = tt, ψ− = tt, ` keyk(x)[om/x]<: o
Parts 1 and 2 are the same as the B-GetMissing subcase of T-GetHMapAbsent.
Part 3 is trivial as τ = >.

Case 35 (BE-Get1).
Reduces to an error.

Case 36 (BE-Get2).
Reduces to an error.

Case 37 (B-Assoc). v = {
−−−−→
(va vb)}[k 7→ vv], ρ ` em ⇓ {

−−−−→
(va vb)}, ρ ` ek ⇓ k,

ρ ` ev ⇓ vv

Subcase 52 (T-AssocHMap). Γ ` e′m ⇒ em : (HMapEM A), Γ ` e′k ⇒ ek : (Val k),
Γ ` e′v ⇒ ev : τ, k 6∈ A, e′ = (assoc e′m e′k e′v), e = (assoc em ek ev),

` (HMapEM[k 7→ τ] A)<: τ, ψ+ = tt, ψ− = ff , o = ∅
Parts 1 and 2 hold for the same reasons as T-True.

Case 38 (BE-Assoc1).
Reduces to an error.

Case 39 (BE-Assoc2).
Reduces to an error.

Case 40 (BE-Assoc3).
Reduces to an error.

Case 41 (B-IfFalse). ρ ` e1 ⇓ false or ρ ` e1 ⇓ nil, ρ ` e3 ⇓ v

Subcase 53 (T-If). e′ = (if e′1 e
′
2 e
′
3), Γ ` e′1 ⇒ e1 : τ1 ; ψ1+|ψ1− ; o1,

Γ, ψ1+ ` e′2 ⇒ e2 : τ ; ψ2+|ψ2− ; o, Γ, ψ1− ` e′3 ⇒ e3 : τ ; ψ3+|ψ3− ; o, e
= (if e1 e2 e3), ψ2+ ∨ ψ3+ ` ψ+, ψ2− ∨ ψ3− ` ψ−
For part 1, either o = ∅, or e evaluates to the result of e3.
To prove part 2, we consider two cases:
• if FalseVal(v) then e3 evaluates to a false value so ρ |= ψ3−, and thus
ρ |= ψ2− ∨ ψ3− by M-Or,

• otherwise TrueVal(v), so e3 evaluates to a true value so ρ |= ψ3+, and
thus ρ |= ψ2+ ∨ ψ3+ by M-Or.

Part 3 is trivial as ρ ` e3 ⇓ v and ` v : τ by the induction hypothesis on e3.

Case 42 (B-IfTrue). ρ ` e1 ⇓ v1, v1 6= false, v1 6= nil, ρ ` e2 ⇓ v

Subcase 54 (T-If). e′ = (if e′1 e
′
2 e
′
3), Γ ` e′1 ⇒ e1 : τ1 ; ψ1+|ψ1− ; o1,

Γ, ψ1+ ` e′2 ⇒ e2 : τ ; ψ2+|ψ2− ; o, Γ, ψ1− ` e′3 ⇒ e3 : τ ; ψ3+|ψ3− ; o, e
= (if e1 e2 e3), ψ2+ ∨ ψ3+ ` ψ+, ψ2− ∨ ψ3− ` ψ−
For part 1, either o = ∅, or e evaluates to the result of e2.
To prove part 2, we consider two cases:
• if FalseVal(v) then e2 evaluates to a false value so ρ |= ψ2−, and thus
ρ |= ψ2− ∨ ψ3− by M-Or,

• otherwise TrueVal(v), so e2 evaluates to a true value so ρ |= ψ2+, and
thus ρ |= ψ2+ ∨ ψ3+ by M-Or.

Part 3 is trivial as ρ ` e2 ⇓ v and ` v : τ by the induction hypothesis on e2.

Case 43 (BE-If).
Reduces to an error.

Case 44 (BE-IfFalse).
Reduces to an error.

Case 45 (BE-IfTrue).
Reduces to an error.

Case 46 (B-Let). e = (let [x e1] e2), ρ ` e1 ⇓ v1, ρ[x 7→ v1] ` e2 ⇓ v

Subcase 55 (T-Let). e′ = (let [x e′1] e′2), Γ ` e′1 ⇒ e′1 : σ ; ψ1+|ψ1− ; o1,

ψ′ = (∪ nil false) x ⊃ ψ1+, ψ′′ = (∪ nil false) x ⊃ ψ1−, Γ, σx , ψ
′, ψ′′ `

e′2 ⇒ e2 : τ ; ψ+|ψ− ; o
For all the following cases (with a reminder that x is fresh) we apply the
induction hypothesis on e2. We justify this by noting that occurrences of x
inside e2 have the same type as e1 and simulate the propositions of e1 because

• Γ, σx , ψ
′, ψ′′ ` e′2 ⇒ e2 : τ ; ψ+|ψ− ; o,

• ρ[x 7→ v1] |= Γ, σx , ψ
′, ψ′′,

• ρ[x 7→ v1] is consistent, and
• ρ[x 7→ v1] ` e2 ⇓ v.

We prove parts 1, 2 and 3 by directly using the induction hypothesis on e2.

Case 47 (BE-Let).
Reduces to an error.

Case 48 (B-Abs). v = [ρ, λxσ .e1]c

Subcase 56 (T-Clos). e′ = [ρ, λxσ .e1]c, ∃Γ′.ρ |= Γ′ and Γ′ ` λxσ .e1 ⇒ λxσ .e1 : τ ; ψf+|ψf− ; of ,
e = [ρ, λxσ .e1]c, ψ+ = tt, ψ− = ff , o = ∅
We assume some Γ′, such that

• ρ |= Γ′

• Γ′ ` λxσ .e1 : τ ; ψ+|ψ− ; o.

Note the last rule in the derivation of Γ′ ` λxσ .e1 : τ ; ψ+|ψ− ; o must
be T-Abs, so ψ+ = tt, ψ− = ff and o = ∅. Thus parts 1 and 2 hold for
the same reasons as T-True. Part 3 holds as v has the same type as λxσ .e1
under Γ′.

Case 49 (B-Abs). v = [ρ, λxσ .e1]c, ρ ` λxτ .e1 ⇓ [ρ, λxσ .e1]c

Subcase 57 (T-Abs). e′ = λxσ .e′1, Γ, σx ` e′1 ⇒ e1 : τ ; ψ1+|ψ1− ; o1,

` x:σ
ψ1+|ψ1−−−−−−−→

o1
τ1 <: τ, tt ` ψ+, ff ` ψ−, o = ∅

Parts 1 and 2 hold for the same reasons as T-True. Part 3 holds directly via
T-Clos, since v must be a closure.

Case 50 (BE-Error). ρ ` e ⇓ err

Subcase 58 (T-Error). e′ = err, e = err, τ = ⊥, ψ+ = ff , ψ− = ff , o =
∅
Trivially reduces to an error.

Theorem A.1 (Well-typed programs don’t go wrong). If ` e′ ⇒ e : τ ; ψ+|ψ− ; o
then 6` e ⇓ wrong.

Proof. Corollary of lemma A.8, since by lemma A.8 when ` e′ ⇒ e : τ ; ψ+|ψ− ; o,
either ` e ⇓ v or ` e ⇓ err, therefore 6` e ⇓ wrong.

Theorem A.2 (Type soundness). If Γ ` e′ ⇒ e : τ ; ψ+|ψ− ; o and ρ ` e ⇓
v then ` v ⇒ v : τ ; ψ′+|ψ′− ; o′ for some ψ′+, ψ′− and o′.

Proof. Corollary of lemma A.8.

d, e ::= x | v | (e e) | λxτ .e | (if e e e) | (do e e) | (let [x e] e) | β | R | E | M | G Expressions
v ::= l | I | {} | c | n | s | m | [ρ, λxτ .e]c | [v, t]m Values
m ::= {−−−→v 7→ v} Map Values
c ::= class | n? Constants
G ::= (get e e) | (assoc e e e) Hash Maps

E ::= (. e fldCC) | (. e (mthC
[[
−→
C],C]

−→e)) | (new
[
−→
C]

C −→e) Non-Reflective Java Interop

R ::= (. e fld) | (. e (mth−→e)) | (new C−→e) Reflective Java Interop
M ::= (defmulti τ e) | (defmethod e e e) | (isa? e e) Immutable First-Class Multimethods

σ, τ ::= > | C | (Val l) | (
⋃ −→τ) | x:τ

ψ|ψ−−→
o

τ | (HMapEM A) | (Multi τ τ) Types

M ::= {
−−−→
k 7→ τ} HMap mandatory entries

A ::= {
−→
k } HMap absent entries

E ::= C | P HMap completeness tags
l ::= k | C | nil | b Value types
b ::= true | false Boolean values

ρ ::= {−−−−→x 7→ v} Value environments

ψ ::= τπ(x) | τπ(x) | ψ ⊃ ψ | ψ ∧ ψ | ψ ∨ ψ | tt | ff Propositions
o ::= π(x) | ∅ Objects
π ::= −→pe Paths
pe ::= class | keyk Path elements

Γ ::=
−→
ψ Proposition environments

t ::= {−−−→v 7→ v} Dispatch tables

ce ::= {m 7→ {
−−−−−−−−−−−→
mth 7→ [[

−→
C], C]}, f 7→ {

−−−−−−→
fld 7→ C}, c 7→ {[

−→
C]}} Class descriptors

CT ::= {
−−−−−→
C 7→ ce} Class Table

C ::= Object | K | Class | B | Fn | Multi | Map | Void Class literals

I ::= C {
−−−−→
fld : v} Class Values

β ::= wrong | err Wrong or error
α ::= v | β Defined reductions
pol ::= pos | neg Substitution Polarity

Fig.A.1. Syntax of Terms, Types, Propositions, and Objects

nil ≡ (Val nil)
true ≡ (Val true)
false ≡ (Val false)

Fig.A.2. Type abbreviations

Γ ` e : τ ≡ Γ ` e : τ ; ψ+|ψ− ; o for some ψ+, ψ−and o
τ[o/x] ≡ τ[o/x]pos

ψ[o/x] ≡ ψ[o/x]pos

ψ|ψ[o/x] ≡ ψ|ψ[o/x]pos

o[o/x] ≡ o[o/x]pos

Fig.A.3. Judgment abbreviations

T-Local
Γ ` τx

σ = (∪ nil false)

Γ ` x : τ ; σx |σx ; x

T-Const
Γ ` c : δτ(c) ; tt|ff ; ∅

T-True
Γ ` true : true ; tt|ff ; ∅

T-False
Γ ` false : false ; ff |tt ; ∅

T-Nil
Γ ` nil : nil ; ff |tt ; ∅

T-Num
Γ ` n : N ; tt|ff ; ∅

T-Do
Γ ` e1 ⇒ e′1 : τ1 ; ψ1+|ψ1− ; o1

Γ, ψ1+ ∨ ψ1− ` e ⇒ e′ : τ ; ψ+|ψ− ; o

Γ ` (do e1 e)⇒ (do e′1 e
′) : τ ; ψ+|ψ− ; o

T-If
Γ ` e1 ⇒ e′1 : τ1 ; ψ1+|ψ1− ; o1

Γ, ψ1+ ` e2 ⇒ e′2 : τ ; ψ+|ψ− ; o
Γ, ψ1− ` e3 ⇒ e′3 : τ ; ψ+|ψ− ; o

e′ = (if e′1 e
′
2 e
′
3)

Γ ` (if e1 e2 e3)⇒ e′ : τ ; ψ+|ψ− ; o

T-Let
Γ ` e1 ⇒ e′1 : σ ; ψ1+|ψ1− ; o1 ψ′ = (∪ nil false) x ⊃ ψ1+

ψ′′ = (∪ nil false) x ⊃ ψ1− Γ, σx , ψ
′, ψ′′ ` e2 ⇒ e′2 : τ ; ψ+|ψ− ; o

Γ ` (let [x e1] e2)⇒ (let [x e′1] e′2) : τ[o1/x] ; ψ+|ψ−[o1/x] ; o[o1/x]

T-App

Γ ` e ⇒ e1 : x:σ
ψf+

|ψf−−−−−−−→
of

τ ; ψ+|ψ− ; o

Γ ` e′ ⇒ e′1 : σ ; ψ′+|ψ
′
− ; o′

Γ ` (e e′)⇒ (e1 e
′
1) : τ[o′/x] ; ψf+|ψf−[o′/x] ; of [o′/x]

T-Abs
Γ, σx ` e ⇒ e′ : σ′ ; ψ+|ψ− ; o

τ = x:σ
ψ+|ψ−−−−−−→

o
σ′

Γ ` λxσ .e ⇒ λxσ .e′ : τ ; tt|ff ; ∅

T-Clos
∃Γ.ρ |= Γ and Γ ` λxτ .e ⇒ λxτ .e′ : σ ; ψ+|ψ− ; o

` [ρ, λxτ .e]c ⇒ [ρ, λxτ .e′]c : σ ; ψ+|ψ− ; o

T-Error
Γ ` err⇒ err :⊥ ; ff |ff ; ∅

T-Subsume
Γ ` e ⇒ e′ : τ ; ψ+|ψ− ; o

Γ, ψ+ ` ψ
′
+ Γ, ψ− ` ψ

′
−

` τ <: τ ′ ` o <: o′

Γ ` e ⇒ e′ : τ ′ ; ψ′+|ψ
′
− ; o′

Fig.A.4. Standard Typing Rules

T-New

[
−→
Ci] ∈ CT [C][c]

−−−−−−−−−−→
JTnil(Ci) = τi

−−−−−−−−−−→
Γ ` ei ⇒ e′i : τi JT(C) = τ

Γ ` (new C−→ei)⇒ (new
[
−→
Ci]

C
−→
e′i) : τ ; tt|ff ; ∅

T-NewStatic−−−−−−−−−→
JT(Ci) = τi JT(C) = τ

−−−−−−−−−−→
Γ ` ei ⇒ e′i : τi

Γ ` (new
[
−→
Ci]

C −→ei)⇒ (new
[
−→
Ci]

C
−→
e′i) : τ ; tt|ff ; ∅

T-Field
Γ ` e ⇒ e′ : σ ` σ <: Object TJ(σ) = C1 fld 7→ C2 ∈ CT [C1][f] JTnil(C2) = τ

Γ ` (. e fld)⇒ (. e′ fldC1
C2

) : τ ; tt|tt ; ∅

T-FieldStatic
JT(C1) = σ ` σ <: Object JTnil(C2) = τ Γ ` e ⇒ e′ : σ

Γ ` (. e fldC1
C2

)⇒ (. e′ fldC1
C2

) : τ ; tt|tt ; ∅

T-Method

Γ ` e ⇒ e′ : σ TJ(σ) = C1 mth 7→ [[
−→
Ci], C2] ∈ CT [C1][m]

−−−−−−−−−−→
JTnil(Ci) = τi

−−−−−−−−−−→
Γ ` ei ⇒ e′i : τi JTnil(C2) = τ ` σ <: Object

Γ ` (. e (mth−→ei))⇒ (. e′ (mthC1

[[
−→
Ci],C2]

−→
e′i)) : τ ; tt|tt ; ∅

T-MethodStatic −−−−−−−−−→
JT(Ci) = τi JT(C1) = σ

` σ <: Object JTnil(C2) = τ Γ ` e ⇒ e′ : σ
−−−−−−−−−−→
Γ ` ei ⇒ e′i : τi

Γ ` (. e (mthC1

[[
−→
Ci],C2]

−→ei))⇒ (. e′ (mthC1

[[
−→
Ci],C2]

−→
e′i)) : τ ; tt|tt ; ∅

T-Class
Γ ` C : (ValC) ; tt|ff ; ∅

T-Instance

Γ ` C {
−−−−→
fld : v} : C ; tt|ff ; ∅

Fig.A.5. Java Interop Typing Rules

T-DefMulti

σ = x:τ
ψ+|ψ−−−−−−→

o
τ ′ σ′ = x:τ

ψ′+|ψ
′
−−−−−−−→

o′
τ ′′ Γ ` e ⇒ e′ : σ′

Γ ` (defmulti σ e)⇒ (defmulti σ e′) : (Multiσ σ′) ; tt|ff ; ∅

T-DefMethod

τm = x:τ
ψ+|ψ−−−−−−→

o
σ τd = x:τ

ψ′+|ψ
′
−−−−−−−→

o′
σ′ Γ ` em ⇒ e′m : (Multi τm τd)

Γ ` ev ⇒ e′v : τv IsAProps(o′, τv) = ψ′′+|ψ
′′
−

Γ, τx , ψ
′′
+ ` eb ⇒ e′b : σ ; ψ+|ψ− ; o e′ = (defmethod e′m e′v λx

τ .e′b)

Γ ` (defmethod em ev λx
τ .eb)⇒ e′ : (Multi τm τd) ; tt|ff ; ∅

T-IsA
Γ ` e ⇒ e1 : σ ; ψ′+|ψ

′
− ; o Γ ` e′ ⇒ e′1 : τ IsAProps(o, τ) = ψ+|ψ−

Γ ` (isa? e e′)⇒ (isa? e1 e
′
1) : B ; ψ+|ψ− ; ∅

T-Multi

` v ⇒ v′ : τ
−−−−−−−−−→
` vk ⇒ v′k :>

−−−−−−−−−→
` vv ⇒ v′v : σ

` [v, {−−−−−→vk 7→ vv}]m ⇒ [v′, {
−−−−−→
v′k 7→ v′v}]m : (Multiσ τ) ; tt|ff ; ∅

Fig.A.6. Multimethod Typing Rules

T-HMap−−−−−−−−−−−−−−→
` vk ⇒ v′k : (Val k)

−−−−−−−−−−→
` vv ⇒ v′v : τv M = {

−−−−→
k 7→ τv}

` {−−−−−→vk 7→ vv} ⇒ {
−−−−−→
v′k 7→ v′v} : (HMapCM) ; tt|ff ; ∅

T-Kw
Γ ` k : (Val k) ; tt|ff ; ∅

T-GetHMap

Γ ` e ⇒ e′ : (
⋃ −−−−−−−−−−−−→

(HMapEM A)
i

) ; ψ1+|ψ1− ; o Γ ` ek ⇒ e′k : (Val k)
−−−−−−→
M[k] = τ

i

Γ ` (get e ek)⇒ (get e′ e′k) : (
⋃ −→τ i) ; tt|tt ; keyk(x)[o/x]

T-GetHMapAbsent
Γ ` e ⇒ e′ : (HMapEM A) ; ψ1+|ψ1− ; o Γ ` ek ⇒ e′k : (Val k) k ∈ A

Γ ` (get e ek)⇒ (get e′ e′k) : nil ; tt|tt ; keyk(x)[o/x]

T-GetHMapPartialDefault
Γ ` e ⇒ e′ : (HMapPM A) ; ψ1+|ψ1− ; o

Γ ` ek ⇒ e′k : (Val k) k 6∈ dom(M) k 6∈ A
Γ ` (get e ek)⇒ (get e′ e′k) :> ; tt|tt ; keyk(x)[o/x]

T-AssocHMap
Γ ` e ⇒ (assoc e′ e′k e

′
v) : (HMapEM A) Γ ` ek ⇒ e′k : (Val k) Γ ` ev ⇒ e′v : τ k 6∈ A

Γ ` (assoc e ek ev)⇒ (assoc e′ e′k e
′
v) : (HMapEM[k 7→ τ] A) ; tt|ff ; ∅

Fig.A.7. Map Typing Rules

SO-Refl
` o <: o

SO-Top
` o <: ∅

S-Refl
` τ <: τ

S-Top
` τ <:>

S-UnionSuper
∃i. ` τ <: σi

` τ <: (
⋃ −→σ i)

S-UnionSub
−−−−−−→
` τi <: σ

i

` (
⋃ −→τ i)<: σ

S-FunMono

` x:σ
ψ+|ψ−−−−−−→

o
τ <: Fn

S-Object
` C <: Object

S-SClass
` (ValC)<: Class

S-SBool
` (Val b)<: B

S-SKw
` (Val k)<: K

S-Fun
` σ′ <: σ ` τ <: τ ′ ψ+ ` ψ

′
+ ψ− ` ψ

′
− ` o <: o′

` x:σ
ψ+|ψ−−−−−−→

o
τ <: x:σ′

ψ′+|ψ
′
−−−−−−−→

o′
τ ′

S-PMultiFn

` σt <: x:σ
ψ+|ψ−−−−−−→

o
τ ` σd <: x:σ

ψ′+|ψ
′
−−−−−−−→

o′
τ ′

` (Multiσt σd)<: x:σ
ψ+|ψ−−−−−−→

o
τ

S-PMultiFn

` σt <: x:σ
ψ+|ψ−−−−−−→

o
τ ` σd <: x:σ

ψ′+|ψ
′
−−−−−−−→

o′
τ ′

` (Multiσt σd)<: x:σ
ψ+|ψ−−−−−−→

o
τ

S-PMulti
` σ <: σ′ ` τ <: τ ′

` (Multiσ τ)<: (Multiσ′ τ ′)

S-MultiMono

` (Multix:σ
ψ+|ψ−−−−−−→

o
τ x:σ

ψ′
+
|ψ′−−−−−−−→
o′

τ ′)<: Multi

S-HMapP
∀i.M[ki] = σi and ` σi <: τi

` (HMapCM A′)<: (HMapP {
−−−→
k 7→ τ}

i
A)

S-HMap
∀i.M[ki] = σi and ` σi <: τi A1 ⊇ A2

` (HMapEM A1)<: (HMapE {
−−−→
k 7→ τ}

i
A2)

S-HMapMono

` (HMapEM A)<: Map

Fig.A.8. Subtyping rules

JT(Void) = nil
JT(C) = C
JTnil(Void) = nil
JTnil(C) = (

⋃
nil C)

Fig.A.9. Java Type Conversion

δτ(class) = x:> tt|tt−−−−−→
class(x)

(
⋃

nil Class)

δτ(n?) = x:>
N x |N x−−−−−−→
∅

B

Fig.A.10. Constant Typing

δ(class, C {
−−−−→
fld : v}) = C

δ(class, C) = Class
δ(class, [ρ, λxτ .e]c) = Fn
δ(class, [vd, t]m) = Multi
δ(class,m) = Map
δ(class, k) = K
δ(class, n) = N

δ(class, true) = B
δ(class, false) = B
δ(class, nil) = nil

δ(n?, n) = true
δ(n?, e) = false

otherwise

Fig.A.11. Primitives

IsAProps(class(π(x)), (ValC)) = Cπ(x)|Cπ(x)
IsAProps(o, (Val l)) = ((Val l)x |(Val l)x)[o/x] if l 6= C

IsAProps(o, τ) = tt|tt otherwise

IsA(v, v) = true v 6= C
IsA(C,C′) = true ` C <: C′

IsA(v, v′) = false otherwise

Fig.A.12. Definition of isa?

GM(t, ve) = vf if −→vfs = {vf} where −→vfs = {vf |vk 7→ vf ∈ t and IsA(ve, vk) = true}
GM(t, ve) = err otherwise

Fig.A.13. Definition of get-method

B-Local
ρ(x) = v

ρ ` x ⇓ v

B-Do
ρ ` e1 ⇓ v1
ρ ` e ⇓ v

ρ ` (do e1 e) ⇓ v

B-Let
ρ ` ea ⇓ va

ρ[x 7→ va] ` e ⇓ v
ρ ` (let [x ea] e) ⇓ v

B-Val
ρ ` v ⇓ v

B-IfTrue
ρ ` e1 ⇓ v1 v1 6= false
v1 6= nil ρ ` e2 ⇓ v
ρ ` (if e1 e2 e3) ⇓ v

B-IfFalse
ρ ` e1 ⇓ false or ρ ` e1 ⇓ nil

ρ ` e3 ⇓ v
ρ ` (if e1 e2 e3) ⇓ v

B-Abs
ρ ` λxτ .e ⇓ [ρ, λxτ .e]c

B-BetaClosure
ρ ` ef ⇓ [ρc, λx

τ .eb]c
ρ ` ea ⇓ va

ρc[x 7→ va] ` eb ⇓ v
ρ ` (ef ea) ⇓ v

B-Delta
ρ ` e ⇓ c
ρ ` e′ ⇓ v
δ(c, v) = v′

ρ ` (e e′) ⇓ v′

B-BetaMulti
ρ ` e ⇓ [vd, t]m ρ ` e′ ⇓ v′ ρ ` (vd v

′) ⇓ ve GM(t, ve) = vf ρ ` (vf v
′) ⇓ v

ρ ` (e e′) ⇓ v

B-Field
ρ ` e ⇓ v JVMgetstatic[C1, v1, f ld, C2] = v

ρ ` (. e fldC1
C2

) ⇓ v

B-Method

ρ ` em ⇓ vm
−−−−−−−→
ρ ` ea ⇓ va JVMinvokestatic[C1, vm,mth, [

−→
Ca], [−→va], C2] = v

ρ ` (. em (mthC1

[[
−→
Ca],C2]

−→ea)) ⇓ v

B-New−−−−−−−→
ρ ` ei ⇓ vi JVMnew[C1, [

−→
Ci], [

−→vi]] = v

ρ ` (new
[
−→
Ci]

C −→ei) ⇓ v

B-DefMulti
ρ ` e ⇓ vd v = [vd, {}]m
ρ ` (defmulti τ e) ⇓ v

B-DefMethod
ρ ` e ⇓ [vd, t]m ρ ` e′ ⇓ vv ρ ` ef ⇓ vf v = [vd, t[vv 7→ vf]]m

ρ ` (defmethod e e′ ef) ⇓ v

B-IsA
ρ ` e1 ⇓ v1 ρ ` e2 ⇓ v2 IsA(v1, v2) = v

ρ ` (isa? e1 e2) ⇓ v

B-Assoc
ρ ` e ⇓ m ρ ` ek ⇓ k

ρ ` ev ⇓ vv
ρ ` (assoc e ek ev) ⇓ m[k 7→ vv]

B-Get
ρ ` e ⇓ m ρ ` e′ ⇓ k

k ∈ dom(m)

ρ ` (get e e′) ⇓ m[k]

B-GetMissing
ρ ` e ⇓ m

ρ ` e′ ⇓ k k 6∈ dom(m)

ρ ` (get e e′) ⇓ nil

Fig.A.14. Operational Semantics

BS-MethodRefl
ρ ` (. e (mth−→e)) ⇓ wrong

BS-FieldRefl
ρ ` (. e fld) ⇓ wrong

BS-NewRefl
ρ ` (. e fld) ⇓ wrong

BS-Beta
ρ ` ef ⇓ v

v 6= c v 6= [vd, t]m
v 6= [ρc, λx

τ .eb]c

ρ ` (ef ea) ⇓ wrong

BS-BetaMulti
ρ ` ef ⇓ [v, t]m

v 6= c v 6= [vd, t]m
v 6= [ρc, λx

τ .eb]c

ρ ` (ef ea) ⇓ wrong

BS-FieldTarget
ρ ` e ⇓ v1

v 6= C1 {
−−−−−→
fldi : vi}

ρ ` (. e fldC1
C2

) ⇓ wrong

BS-FieldMissing

ρ ` e ⇓ C1 {
−−−−−→
fldi : vi} fld 6∈ {

−−→
fldi}

ρ ` (. e fldC1
C2

) ⇓ wrong

BS-MethodTarget

ρ ` em ⇓ v v 6= C1 {
−−−−−→
fldi : vi}

ρ ` (. em (mthC1

[[
−→
Ca],C2]

−→ea)) ⇓ wrong

BS-MethodArity
i 6= a

ρ ` (. em (mthC1

[[
−→
Ci],C2]

−→ea)) ⇓ wrong

BS-MethodArg

ρ ` em ⇓ vm
−−−−−−−→
ρ ` ea ⇓ va

∃a. va 6= Ca {
−−−−−→
fldi : vi} or va 6= nil

ρ ` (. em (mthC1

[[
−→
Ca],C2]

−→ea)) ⇓ wrong

BS-NewArg−−−−−−−→
ρ ` ei ⇓ vi

∃i. vi 6= Ci {
−−−−−→
fldi : vi} or vi 6= nil

ρ ` (new
[
−→
Ci]

C −→ei) ⇓ wrong

BS-NewArity
i 6= a

ρ ` (new
[
−→
Ci]

C −→ea) ⇓ wrong

BS-AssocMap

ρ ` em ⇓ v v 6= {
−−−−→
(va vb)}

ρ ` (assoc em ek ev) ⇓ wrong

BS-AssocKey

ρ ` em ⇓ {
−−−−→
(va vb)} ρ ` ek ⇓ vk

vk 6= k

ρ ` (assoc em ek ev) ⇓ wrong

BS-GetMap

ρ ` em ⇓ v v 6= {
−−−−→
(va vb)}

ρ ` (get em ek) ⇓ wrong

BS-GetKey
ρ ` em ⇓ v ρ ` ek ⇓ vk

v 6= k

ρ ` (get em ek) ⇓ wrong

BS-Local
x 6∈ dom(ρ)

ρ ` x ⇓ wrong

BS-DefMethod
ρ ` em ⇓ vm vm 6= [vd, t]m

ρ ` (defmethod em ev ef) ⇓ wrong

Fig.A.15. Stuck programs

BE-ErrorWrong
ρ ` β ⇓ β

BE-Let
ρ ` ea ⇓ β

ρ ` (let [x ea] e) ⇓ β

BE-Do1
ρ ` e1 ⇓ β

ρ ` (do e1 e) ⇓ β

BE-Do2
ρ ` e1 ⇓ v1
ρ ` e ⇓ β

ρ ` (do e1 e) ⇓ β

BE-If
ρ ` e1 ⇓ β

ρ ` (if e1 e2 e3) ⇓ β

BE-IfTrue
ρ ` e1 ⇓ v1

v1 6= false v1 6= nil
ρ ` e2 ⇓ β

ρ ` (if e1 e2 e3) ⇓ β

BE-IfFalse
ρ ` e1 ⇓ false or ρ ` e1 ⇓ nil

ρ ` e3 ⇓ β
ρ ` (if e1 e2 e3) ⇓ β

BE-Beta1
ρ ` ef ⇓ β

ρ ` (ef ea) ⇓ β

BE-Beta2
ρ ` ef ⇓ vf
ρ ` ea ⇓ β

ρ ` (ef ea) ⇓ β

BE-BetaClosure
ρ ` ef ⇓ [ρc, λx

τ .eb]c
ρ ` ea ⇓ va

ρc[x 7→ va] ` eb ⇓ β
ρ ` (ef ea) ⇓ β

BE-BetaMulti1
ρ ` ef ⇓ [vd,m]m
ρ ` ea ⇓ va

ρ ` (vd va) ⇓ β
ρ ` (ef ea) ⇓ β

BE-BetaMulti2
ρ ` ef ⇓ [vd,m]m
ρ ` ea ⇓ va

ρ ` (vd va) ⇓ ve
GM(t, ve) = err

ρ ` (ef ea) ⇓ err

BE-Delta
ρ ` e ⇓ c
ρ ` e′ ⇓ v
δ(c, v) = β

ρ ` (e e′) ⇓ β

BE-Field
ρ ` e ⇓ β

ρ ` (. e fldC1
C2

) ⇓ β

BE-Method1
ρ ` em ⇓ β

ρ ` (. em (mthC1

[[
−→
Ca],C2]

−→e)) ⇓ β

BE-Method2
ρ ` em ⇓ vm−−−−−−−−−−−→

ρ ` en−1 ⇓ vn−1

ρ ` en ⇓ β
ρ ` (. em (mthC1

[[
−→
Ca],C2]

−→e)) ⇓ β

BE-Method3

ρ ` em ⇓ vm
−−−−−−−→
ρ ` ea ⇓ va

JVMinvokestatic[C1, vm,mth, [
−→
Ca], [−→va], C2] = err

ρ ` (. em (mthC1

[[
−→
Ca],C2]

−→ea)) ⇓ err

BE-New1−−−−−−−−−−−→
ρ ` en−1 ⇓ vn−1

ρ ` en ⇓ β
ρ ` (new

[
−→
Ci]

C −→e) ⇓ β

BE-New2−−−−−−−→
ρ ` ei ⇓ vi

JVMnew[C1, [
−→
Ci], [

−→vi]] = err

ρ ` (new
[
−→
Ci]

C −→ei) ⇓ err

BE-DefMulti
ρ ` ed ⇓ β

ρ ` (defmulti τ ed) ⇓ β

BE-DefMethod1
ρ ` em ⇓ β

ρ ` (defmethod em ev ef) ⇓ β

BE-DefMethod2
ρ ` em ⇓ [vd, t]m

ρ ` ev ⇓ β
ρ ` (defmethod em ev ef) ⇓ β

BE-DefMethod3
ρ ` em ⇓ [vd, t]m
ρ ` ev ⇓ vv
ρ ` ef ⇓ β

ρ ` (defmethod em ev ef) ⇓ β

BE-IsA1
ρ ` e1 ⇓ β

ρ ` (isa? e1 e2) ⇓ β

BE-IsA2
ρ ` e1 ⇓ v1
ρ ` e2 ⇓ β

ρ ` (isa? e1 e2) ⇓ β

BE-Assoc1
ρ ` em ⇓ β

ρ ` (assoc em ek ev) ⇓ β

BE-Assoc2

ρ ` em ⇓ {
−−−−→
(va vb)} ρ ` ek ⇓ β

ρ ` (assoc em ek ev) ⇓ β

BE-Assoc3

ρ ` em ⇓ {
−−−−→
(va vb)} ρ ` ek ⇓ vk ρ ` ev ⇓ β
ρ ` (assoc em ek ev) ⇓ β

BE-Get1
ρ ` em ⇓ β

ρ ` (get em ek) ⇓ β

BE-Get2

ρ ` em ⇓ {
−−−−→
(va vb)} ρ ` ek ⇓ β

ρ ` (get em ek) ⇓ β

Fig.A.16. Error and stuck propagation

ρ(x) = v (x, v) ∈ ρ
ρ(keyk(o)) = (get ρ(o) k)
ρ(class(o)) = (class ρ(o))

Fig.A.17. Path translation

update((
⋃ −→τ), ν, π) = (

⋃ −−−−−−−−−−→
update(τ, ν, π))

update(τ, (ValC), π :: class) = update(τ, C, π)
update(τ, ν, π :: class) = τ
update((HMapEM A), ν, π :: keyk) = (HMapEM[k 7→ update(τ, ν, π)] A)

if M[k] = τ
update((HMapEM A), ν, π :: keyk) = ⊥ if ` nil 6<: ν and k ∈ A
update((HMapPM A), τ, π :: keyk) = (∪ (HMapPM[k 7→ τ] A)

(HMapPM (A ∪ {k})))
if ` nil <: τ, k 6∈ dom(M) and k 6∈ A

update((HMapPM A), ν, π :: keyk) = (HMapPM[k 7→ update(>, ν, π)] A)
if ` nil 6<: ν, k 6∈ dom(M) and k 6∈ A

update(τ, ν, π :: keyk) = τ
update(τ, σ, ε) = restrict(τ, σ)
update(τ, σ, ε) = remove(τ, σ)

restrict(τ, σ) = ⊥ if 6 ∃v. ` v : τ ; ψ ; o and ` v : σ ; ψ′ ; o′

restrict(τ, σ) = τ if ` τ <: σ
restrict(τ, σ) = σ otherwise

remove(τ, σ) = ⊥ if ` τ <: σ
remove(τ, σ) = τ otherwise

Fig.A.18. Type Update

M-Or
ρ |= ψ1 or ρ |= ψ2

ρ |= ψ1 ∨ ψ2

M-Imp
ρ |= ψ1 implies ρ |= ψ2

ρ |= ψ1 ⊃ ψ2

M-And
ρ |= ψ1 ρ |= ψ2

ρ |= ψ1 ∧ ψ2

M-Top
ρ |= tt

M-Type
` ρ(π(x)) : τ ; ψ+|ψ− ; o

ρ |= τπ(x)

M-NotType
` ρ(π(x)) : σ ; ψ+|ψ− ; o

there is no v such that ` v : τ ; ψ1+|ψ1− ; o1 and ` v : σ ; ψ2+|ψ2− ; o2

ρ |= τπ(x)

Fig.A.19. Satisfaction Relation

L-Atom
ψ ∈ Γ

Γ ` ψ

L-True
Γ ` tt

L-False
Γ ` ff

Γ ` ψ

L-AndI
Γ ` ψ1

Γ ` ψ2

Γ ` ψ1 ∧ ψ2

L-AndE
Γ, ψ1, ψ2 ` ψ

Γ, ψ1 ∧ ψ2 ` ψ

L-ImplI
Γ, ψ1 ` ψ2

Γ ` ψ1 ⊃ ψ2

L-ImplE
Γ ` ψ1

Γ ` ψ1 ⊃ ψ2

Γ ` ψ2

L-OrI
Γ ` ψ1 or Γ ` ψ2

Γ ` ψ1 ∨ ψ2

L-OrE
Γ, ψ1 ` ψ
Γ, ψ2 ` ψ

Γ, ψ1 ∨ ψ2 ` ψ

L-Sub
Γ ` τπ(x) ` τ <: σ

Γ ` σπ(x)

L-SubNot
Γ ` σπ(x) ` τ <: σ

Γ ` τπ(x)

L-Bot
Γ ` ⊥π(x)

Γ ` ψ

L-Update
Γ ` τπ′(x) Γ ` νπ(π′(x))

Γ ` update(τ, ν, π)π′(x)

(The metavariable ν ranges over τ and τ (without variables).)

Fig.A.20. Proof System

ψ+|ψ−[o/x]pol = ψ+[o/x]pol |ψ−[o/x]pol

νπ(x)[π
′(y)/x]

pol
= (ν[π′(y)/x]

pol
)π(π′(y))

νπ(x)[∅/x]pos = tt

νπ(x)[∅/x]neg = ff

νπ(x)[o/z]pol = νπ(x) x 6= z and z 6∈ fv(ν)
νπ(x)[o/z]pos = tt x 6= z and z ∈ fv(ν)
νπ(x)[o/z]neg = ff x 6= z and z ∈ fv(ν)

tt[o/x]pol = tt

ff [o/x]pol = ff

(ψ1 ⊃ ψ2)[o/x]pos = ψ1[o/x]neg ⊃ ψ2[o/x]pos

(ψ1 ⊃ ψ2)[o/x]neg = ψ1[o/x]pos ⊃ ψ2[o/x]neg

(ψ1 ∨ ψ2)[o/x]pol = ψ1[o/x]pol ∨ ψ2[o/x]pol

(ψ1 ∧ ψ2)[o/x]pol = ψ1[o/x]pol ∧ ψ2[o/x]pol

π(x)[π′(y)/x]
pol

= π(π′(y))

π(x)[∅/x]pol = ∅
π(x)[o/z]pol = π(x) x 6= z

∅[o/x]pol = ∅

Substitution on types is capture-avoiding structural recursion.

Fig.A.21. Substitution

