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Fig. 1: Human2LocoMan provides a unified framework for collecting human demonstrations and teleoperated robot whole-
body motions, along with cross-embodiment policy learning for quadrupedal manipulation. Human data is used for model
pretraining, while robot data is leveraged for policy finetuning. Human2LocoMan achieves positive transfer from human to
quadrupedal embodiments, facilitating versatile manipulation skills for unimanual and bimanual, non-prehensile and prehensile,

precise tool-use, and long-horizon tasks.

Abstract—Quadrupedal robots have demonstrated impressive
locomotion capabilities in complex environments, but equipping
them with autonomous versatile manipulation skills in a scalable
way remains a significant challenge. In this work, we introduce
a cross-embodiment imitation learning system for quadrupedal
manipulation, leveraging data collected from both humans and
LocoMan, a quadruped equipped with multiple manipulation
modes. Specifically, we develop a teleoperation and data collection
pipeline, which unifies and modularizes the observation and ac-
tion spaces of the human and the robot. To effectively leverage the
collected data, we propose an efficient modularized architecture
that supports co-training and pretraining on structured modality-
aligned data across different embodiments. Additionally, we
construct the first manipulation dataset for the LocoMan robot,
covering various household tasks in both unimanual and biman-
ual modes, supplemented by a corresponding human dataset. We
validate our system on six real-world manipulation tasks, where it
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achieves an average success rate improvement of 41.9% overall
and 79.7% under out-of-distribution (OOD) settings compared
to the baseline. Pretraining with human data contributes a
38.6% success rate improvement overall and 82.7% under OOD
settings, enabling consistently better performance with only half
the amount of robot data. Our code, hardware, and data are
open-sourced at: https://human2bots.github.io,

I. INTRODUCTION

While quadrupedal robots have demonstrated impressive
locomotion capabilities in complex environments [T} 2} 3] [4]
[5 [6, 7], and recent advances have extended their abilities
to manipulation tasks [8] [9] [10] [14]], enabling
autonomous and versatile quadrupedal manipulation at scale
remains a major challenge. Imitation learning has long been
a fundamental approach for teaching robots complex skills
through demonstrations [135], with the acquisition of high-
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quality data being critical for achieving efficient and effec-
tive learning. Prior works have explored various strategies
for collecting in-domain robot data, primarily focusing on
robot arms [16} [17, (18, [19], humanoid robots [20l 21, 22],
and quadrupeds equipped with top-mounted arms [10 [11}
23]]. However, collecting egocentric manipulation data on a
quadrupedal platform like LocoMan remains underexplored.
To scale up data collection for imitation learning, recent works
propose leveraging simulation data [24, 25, 26] or human
data [17, 27, 28, 29, 130, [31]. Human data, in particular,
have been used to provide high-level task guidance [17,
28], improve visual encoders [29]], simulate in-domain robot
data [27,130], or serve as additional egocentric data by treating
humans as an alternative embodiment [31, [32]. However, the
effectiveness of human data for manipulation tasks involving
non-traditional embodiments such as quadrupeds has yet to
be demonstrated. From another perspective, effective teleop-
eration or human demonstrations typically require a kinemat-
ically similar control system—either biological [21} [31, [32]]
or mechanical [18} |19} 27, |33} |34]—to the target robot, or a
specialized end effector [10, [11} |35]] at the end of the human
operator. However, the substantial embodiment gap between
humans and quadrupedal robots poses challenges to both data
collection and policy transfer.

To address these challenges, and drawing inspiration from
the LocoMan platform [14]—a quadrupedal robot equipped
with two leg-mounted loco-manipulators that offers a versatile
foundation for learning manipulation skills across multiple
operating modes—we propose Human2LocoMan, a unified
framework for quadrupedal manipulation learning using data
collected through human teleoperation and demonstrations.
Specifically, to enable scalable data collection, our system
leverages an extended reality (XR) headset to capture human
motions while streaming a first-person view (during human
data collection) or a first-robot view (during teleoperation) to
the operator. For human data collection, the operator simply
wears the XR headset and performs tasks naturally. During
teleoperation, in addition to mapping human hand motions
to the robot’s grippers, we also map head motions to the
robot’s torso, expanding the robot’s workspace and enhancing
its active sensing capabilities. The resulting target poses are
passed to a whole-body controller to generate coordinated
robot motions. To structure the data and bridge the embod-
iment gap, we align motions of the human and the quadruped
within a shared unified coordinate frame.

Different from the works that use egocentric human data to
pretrain vision encoders [29, [36]], learn interaction plan predic-
tion [28]], or co-train models with data from robots that share
similar kinematics with humans [31} 32]], we treat the human
as a distinct embodiment from the target robot and leverage
human data for model pretraining. Despite mapping human
and robot data to a unified frame, there exist obvious gaps
ranging from differences in dynamics to extra wrist cameras on
the robot. To facilitate cross-embodiment learning and preserve
modality-specific distributions unique to each embodiment,
we design a modular Transformer architecture, Modularized

Cross-embodiment Transformer (MXT), which shares a com-
mon Transformer trunk across embodiments while maintaining
embodiment-specific tokenizers and detokenizers for shared
modalities. The MXT policy is first pretrained on human data
and subsequently finetuned with a small amount of robot
data. A single pretrained model can be adapted to different
robot embodiments through finetuning. Notably, our approach
is orthogonal to prior work that leverages egocentric human
videos to pretrain visual encoders or co-trains models with
target robot data. Our architecture is compatible with any
pretrained visual encoder and supports co-training with multi-
embodiment data during both the pretraining and finetuning
stages. We evaluate our approach on six household tasks
across both unimanual and bimanual manipulation modes,
achieving a 41.9% average improvement and 79.7% under
OOD settings over the baseline. We also find that pretraining
with human data boosts success by 38.6% overall and 82.7%
under OOD scenarios, demonstrating effective positive transfer
from humans to quadrupedal embodiments despite the large
embodiment gap. These results highlight the effectiveness of
our system for learning versatile quadrupedal manipulation
skills and underscore its potential for scalable, large-scale
cross-embodiment learning.

In summary, our paper provides the following contributions:

e« We propose Human2LocoMan, a framework that en-
ables flexible and scalable collection of human demon-
strations and teleoperated robot trajectories for learning
versatile quadrupedal manipulation skills.

e We design MXT, a modularized Transformer architec-
ture that facilitates effective cross-embodiment learning
despite large embodiment gaps between humans and
quadrupedal robots.

« We introduce the first XR-based teleoperation system and
manipulation dataset for the open-source LocoMan [14]]
hardware platform.

o We demonstrate positive human-to-robot transfer, high
success rates, and strong robustness across six challeng-
ing household tasks, in both unimanual and bimanual
manipulation modes.

II. RELATED WORK

Embodiments for Diverse Loco-Manipulation Skills: Learn-
ing manipulation skills on quadrupedal robots has shown
promise and popularity in recent years, due to the versatility
and mobility of the platforms. Many manipulator configu-
rations and capabilities have been proposed for quadrupeds,
including non-prehensile manipulation using the quadruped’s
legs or body (e.g., dribbling a soccer ball, pressing buttons,
closing appliance doors, etc.) [37, 138 (39} 140, 41} 142, 43| 144],
using a back-mounted arm for tabletop tasks [8l 45], or
using leg-mounted manipulators for spatially-constrained (e.g.,
reaching toys underneath furniture) or bimanual manipula-
tion tasks [14]. In this work, we take inspiration from the
open-source LocoMan hardware platform [14]], with two leg-
mounted manipulators, which enable the training of policies
across challenging tasks and multiple operating modes.



Learning Versatile Quadrupedal Manipulation: Reinforce-
ment learning (RL) has been used for training individual
non-prehensile manipulation skills [37, 38| 140, 41} 42} 43|
44) 146, 47, 148, 149, 150, 51] and for training whole-body
controllers to track end-effector poses for uni-manual grasping
[8, 190 110L 152L 153L 154} 155]; here, policies are trained in simu-
lation then transferred to the real robot platform, often with
high cost in training complexity and training time. To mitigate
some of these issues, imitation learning (IL) allows robots to
directly learn from expert demonstrations [[15} 156} 157, 158]] and
thus provides an alternative approach to efficiently acquiring
more general manipulation skills [26} |59, 160l |61} 162]]. How-
ever, collecting robot data for quadrupedal platforms remains
challenging, due to their high degrees of freedom and the need
for stable whole-body controllers. Prior works have trained
non-prehensile quadrupedal manipulation policies by learning
from demonstrations collected in simulation [[12], or grasping
policies for a top-mounted arm using data collected from real-
world demonstrations [10 [11, [13]]. Our work introduces a
scalable way of achieving more versatile manipulation skills
on quadrupedal platforms encompassing both unimanual and
bimanual manipulation tasks, using a small amount of robot
data combined with human demonstrations collected via our
novel teleoperation and data collection system.

Data Collection for Imitation Learning: Various methods
have been utilized to collect data for imitation learning.
Joysticks and spacemouses [16} 163} 64] are commonly used
to directly teleoperate the robot for data collection. Cameras
are employed to capture human motions and map them to the
robot [17, 20, 165 166, 167]. VR controllers provide a more
intuitive way for the human to teleoperate the robot with
visual or haptic feedback for dexterous manipulation tasks
on robot arms, quadrupeds, and humanoid robots [13, 21}
22, 31} 168, 169, [70]. While most works above teleoperate
the robot in task space, other works employ ex-skeleton
or leader-follower systems to collect robot demonstrations
by mapping the joint positions of the leader system to the
robot [18} (19} 123131} [71]]. To ease the burdens of teleoperating
real robots and to scale up data collection, recent works have
achieved success by collecting human demonstrations in the
wild with AR-assisted [30] or hand-held grippers [11} 35],
though these are limited to a specific robot or end-effector
type. Other works enable more ergonomic data collection
with body-worn cameras [27, [72] or VR glasses [31]. We
introduce a unified framework to collect cross-embodiment
data including both robot and human demonstrations, where
the teleoperation system considers the whole-body motions of
the embodiments to extend its workspace and actively sense
the environment. The different manipulation modes of both
the robot and human are regarded as different embodiments
and the collected data can be used for model pretraining.
Cross-Embodiment Learning: Drawing from the success of
foundation models in computer vision and natural language,
there have been many endeavors to replicate the success in
robotics by training generalist policies on large-scale data
from different robot embodiments [73 (74 [75. [76, (77, 78, [79]],

where the heterogeneity and gaps in kinematics, vision, and
proprioception have to be handled. For example, CrossFormer
processes variable observation inputs by tokenizing images
and proprioceptive information, predicts variable action out-
puts using action readout tokens, and conditions on language
instructions or goal images [77]. HPT provides a reusable
trunk for cross-embodiment learning and encodes observations
into a fixed number of tokens, explicitly balancing image
and proprioception [78]]. In our work, we propose Modular-
ized Cross-embodiment Transformer (MXT), which adopts
a modular design for both tokenization and detokenization,
and further enhances modularity by identifying fine-grained
alignments of data modalities across embodiments.

While these works primarily rely on robot data, human
videos and demonstrations offer potentials for scaling up cross-
embodiment learning. Recent robotic foundation models [80}
81} 182]] leverage large-scale Internet data, including egocentric
human videos, to pretrain higher-level models that enhance
reasoning and semantic understanding. However, effectively
utilizing such data for robot motor policy learning remains
a significant challenge. Notably, EgoMimic [31] treats hu-
mans as another embodiment and demonstrates strong positive
transfer by co-training on both human and robot data. To
enable such transfer, EgoMimic narrows the kinematic gap
by selecting a human-like robot, reduces the proprioceptive
gap through action normalization and alignment, and mitigates
the appearance gap via visual masking. Our concurrent works
similarly leverage human data for co-training on target robots
that share similar embodiments with humans or the human
hand, and apply action normalization to bridge the embodi-
ment gap [32,134]. In comparison, Human2LocoMan does not
require observation and action normalization to align human
data with a specific embodiment. Instead, it structures data into
distinct modalities during collection and explicitly accounts
for distributional gaps on these modalities across embodi-
ments during training. This design enables greater flexibility
and scalability for cross-embodiment learning, allowing us to
achieve positive transfer from humans to multiple quadrupedal
embodiments without requiring explicit data processing for
domain alignment.

III. METHODOLOGY

In this section, we present the design and implementation
of our system, Human2LocoMan, which integrates teleopera-
tion, data collection, and a Transformer-based architecture for
cross-embodied learning.

A. HumanZ2LocoMan System Overview

We utilize the Apple Vision Pro headset and the Open-
Television system [21]] to capture human motions and stream
first-person or first-robot video to the human operator. A
lightweight stereo camera with a 120-degree horizontal field
of view is mounted on both the VR headset and the LocoMan
robot to provide egocentric views, while additional cameras,
such as RGB wrist cameras, can be optionally attached to the
robot. Through the Human2LocoMan teleoperation system
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Fig. 2: Human2LocoMan framework. Our system uses an XR headset for data collection, capturing egocentric human data
and teleoperated robot data, all mapped to a unified coordinate frame. The dataset consists of aligned vision, proprioception, and
actions from the human and the robot. We adopt a two-stage training process: the modularized cross-embodiment model is first
pretrained on easy-to-collect human data, and then finetuned on a small amount of robot data. The resulting Human2LocoMan
policies can be deployed on real robots for versatile manipulation tasks in both unimanual and bimanual modes.

(Section [[II-B)), the human operator can control the LocoMan
robot to perform versatile manipulation tasks in both uniman-
ual and bimanual modes. In the unimanual mode, we also map
human head motions to the robot’s torso movements to expand
the teleoperation workspace and enhance active sensing. The
Human2LocoMan system enables the collection of both hu-
man and robot data, transforming them into a shared space.
Masks are applied to distinguish across different embodiments
and manipulation modes. The collected human data are used
to pretrain an action model called the Modularized Cross-
embodiment Transformer (MXT). The in-domain robotic data
collected via teleoperation are used to finetune the pretrained
model to learn a manipulation policy that predicts the 6D
poses of LocoMan’s end effectors and torso, as well as gripper
actions.

B. Human2ILocoMan Teleoperation and Data Collection

A unified frame for both human and LocoMan. To map
human motions to LocoMan’s various operation modes via
VR-based teleoperation—and to enhance the transferability
of motion data across different embodiments—we establish
a unified reference frame, F,,, to align motions across embod-
iments. As shown in Figure|2| (a), this unified frame is attached
to the rigid body where the main camera is mounted. At the
embodiment’s reset pose, the x-axis points forward, aligned
with the workspace and parallel to the ground; the y-axis
points leftward; and the z-axis points upward, perpendicular
to the ground.

Motion mapping. We map the human wrist motions to Lo-
coMan’s end-effector motions, map the human head motions
to LocoMan’s torso motions, and hand poses to LocoMan’s
gripper actions. The 6D poses of the human hand, head,
and wrist poses in SE(3) in the VR-defined world frame
are streamed from the VR set to the Human2LocoMan
teleoperation server. The human head pose is represented as

(xhead Rhead) “and the wrist poses are (x5St REWVASY) and

(xbwist Rlwiist) - where ;. denotes the translation and R;,
denotes the rotation in the VR-defined world frame. Then,
the 6D poses can be transformed into the unified frame F,
(Tini> Rini) = (Rx,, Ry Ry, ), where Ry s the rotation
matrix of the VR-defined frame relative to the unified frame
Fu-

To initialize the teleoperation for each manipulation
mode, the robot 1is transferred to a reset pose
randomly initialized within a small range, termed as
po = (i, RN, Tint'o, Rislo, Tu oo Rt 0,66 )
including the 6D poses of the torso and both end
effectors, and the gripper actions. The human operator
starts to teleoperate the robot after an initializing

posture. The target pose for the robot at time step ft,

t torso,t torso,t  r-eef,t r-eef,t  l-eefit l-eef,t perippert
by = (wuni,t ’Runi,t ’:Buni,t ’Runi,t » ““uni,t 7Runi,t ’0t )’

can be expressed as follows.

it = Tam o+ 0 (gnitt — i)
R = Rp(Ri) T Rugi)
Tont = Tomro + 0 (@ — xl)
R = R (RS TR o
Tyt = Tumero + O (@i — i)

Rl-eef,t _ Rl-eef (( Rl—wrist)T Rl—wrist)

uni,t uni, 0 uni, 0 uni, ¢
gripper gripper
emax - amin
tip
dmax

l-eef

gripper,t tip gripper
at - ° dt + 0min

Here, o ot and ot are the scaling factors to map
human’s motions to robot’s torso, right end effector, and left
end effector, respectively. zngt~ and 25" are the maximum
and minimum gripper angles, respectively. dtt'p represents the
distances between the reference finger tips of both human
hands at time step ¢, and dﬁﬁix is the maximum finger tip
distance for the human operator.

Whole-body controller. The robot target pose at time t,

pl, is calculated from the teleoperation server, and sent to

torso
il



the whole-body controller of the LocoMan robot, which is
adapted from the one introduced in [14], a unified whole-
body controller designed to track the desired poses of the
torso, end effectors, and feet across multiple operation modes.
We employ null-space projection for kinematic tracking and
quadratic programming for dynamic optimization to compute
the desired joint positions, velocities, and torques.

To handle the large embodiment gap between the human and
the LocoMan robots, and to facilitate smooth teleoperation of
a dynamic quadrupedal platform with whole-body motions, we
consider the handling and recovery from robot’s joint limits,
singularity, and self-collision, and fast motions. We compute
the manipulability index as:

Tnani = 1/ det(JIT) )
to assess the proximity of the target pose to singularity, where
J represents the Jacobian of the robot’s manipulator at the
target pose. If I falls below a predefined threshold Tiani,
the target pose is considered near singularity. To detect self-
collisions, we utilize the Pinocchio library [83] to compute
collision pairs among the robot’s body parts. If any of the
following conditions are met—joint limit violation, singular-
ity, or self-collision—the whole-body controller tracks p._,
instead of p}. To mitigate rapid movements, we apply linear
interpolation between x1" and et :Jc:::i‘ and zfsy ),
Lﬁfftt lugfttil as well as 05"PP"™" and A¥"PP*™. Addition-
ally, quaternion interpolation is applied between RL‘:;S(;‘ and
Ript,, Rt and Rt and RUSH and RLS, oo
smooth large action variations.

Data Collection. We record the robot data {DR}L | during
teleoperation, where D} = {oR, a®} is the robot data at time
step t including the robot observations o} and robot actions aX,
and T is the episode length. We define the I,;, , and I,
are images obtained from the robot’s main stereo camera and
the wrist camera, respectively. Then, we can formulate of and

a® in the dataset as follows.

T and x

of‘[main image] := Imain,t,
of{ [wrist image] := ILyyist ¢,
oF[body pose] := [al55%, RO,
O [EF pose] := [of<, RIS, alesh, RLS]
OF[EEF to body pose] = [a1 — 0%, (RS RIS
wot, — @t (Rs) T Russ],
ol*[gripper actions] := Ofripper,
al[body pose] := [z Rt s
a[EEF pose] := [y ' Rusy ' Tory & Rumtt s
E

. . ipper, t
al[gripper actions] := """

3)
We record the human data {DH}7 , in real time during
human’s manipulation. Similarly, the human data at time step

t D = {of! all} can be defined by human observations of!

and human actions a!' as follows.

of'[main image] := Igain,tv
oi'[body pose] := [z, RiG),
OH[EEF pose] := [z5t, Ry, alt, Ry,
o;'[EEF to body pose] := [z — @iy, (Runid) ' Rinii"
Toirt — Tt (Rii) " R,
oll[grasping states] := GEPPT,
a;! [body pose] == [ayiy ', Ryt '],
al[EEF pose] := [(B::{Tt ‘ R{u‘:?t '
R
all[grasping actions] := @FPP" !

“)

In this way, we ensure that the human and robot data are

unified in terms of both format and spatial interpretation,

and can be used to train our proposed Modularized Cross-
Embodiment Transformer introduced in Section

C. Modularized Cross-embodiment Transformer

Given our unified multi-embodiment data collection
pipeline, we aim to train a cross-embodiment policy where
the overall structure and the majority of parameters are
transferrable, while accounting for modality-specific distribu-
tions unique to each embodiment. To this end, we propose
a modularized design called Modularized Cross-embodiment
Transformer (MXT). As illustrated in Figure [3} MXT consists
mainly of three groups of modules: tokenizers, Transformer
trunk, and detokenizers. The tokenizers act as encoders and
map embodiment-specific observation modalities to tokens in
the latent space, and the detokenizers translate the output
tokens from the trunk to action modalities in the action space
of each embodiment. The tokenizers and detokenizers are
specific to one embodiment and are reinitialized for each new
embodiment, while the trunk is shared across all embodiments
and reused for transferring the policy among embodiments.
Tokenizers. The tokenizers 7' transform raw observations into
tokens for the Transformer trunk. Similar to the design in
[78], we use a cross-attention layer to format observational
features into a fixed number of tokens for each modality.
For image inputs, the features are obtained from a pretrained
ResNet encoder that can be finetuned during training; for
proprioceptive or state-like inputs, the features are computed
by passing the raw input through a trainable MLP network.
Detokenizers. The detokenizers D serve as action decoder
heads, mapping the output tokens from the trunk to the
action modalities in each embodiment’s action space. To
reduce compounding errors and lower inference frequency, we
adopt action chunking [18], where the detokenizers predict
a sequence of h actions at each inference step. Within each
detokenizer, a cross-attention layer is used to transform the
latent action tokens—produced by the trunk at fixed posi-
tions—into a sequence of h actions matching the dimensions
of the corresponding action modality.
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Fig. 3: Modularized Cross-embodiment Transformer (MXT) architecture. The inputs are organized as a list of modalities
and encoded each by a separate tokenizer into a fixed number of tokens. The Transformer trunk handles decision making by
consuming the concatenated encoded tokens and producing a fixed number of raw output tokens. Each of the detokenizers at
the end decodes a fixed subset of the output tokens into a modality of the final actions.

Trunk. The trunk is an encoder-decoder Transformer, where
the input sequence length and the output sequence length are
both fixed, as the number of tokens for each observation or ac-
tion modality is fixed by design. By sharing the trunk weights
across human and robot embodiments, the model learns to
process and generate tokens of different modalities and capture
common decision-making patterns across embodiments.
Modality Decomposition in Tokenizers / Detokenizers. Due
to the aligned data format and the unified observation and
action spaces across embodiments, we are able to separately
transform each semantically distinct component of the obser-
vational input and the action output, which we refer to as
modality, and specify the compositional structure at the inter-
face of the Transformer trunk and the tokenizers / detokenizers.
This design preserves modality-specific distributions unique to
each embodiment and enables the model to explicitly account
for distributional gaps across embodiments, which is core to
the effectiveness of our method.

Concretely, for tokenization in the embodiment e, we en-
code the input observation o, with multiple tokenizers {7 ., }
at the finer granularity of modalities denoted by o;[m;]. For
instance, instead of aggregating all image inputs before passing
through the vision tokenizer, we use separate tokenizers for the
main camera and the wrist camera views . All the encoded
modalities are concatenated to compose the input tokens to
the Transformer trunk.

Similarly, for detokenization, we specify the subset of
the Transformer output tokens corresponding to each action
modality, e.g. body pose, end effector pose, and gripper
actions, and decode the selected tokens to yield each modality
with separate detokenizers {D. ,,, }. For convenience, we use
the set of observation and action modalities as defined by the
data collection formats in (@) and (@).

By explicitly decomposing the input and output modalities
and encoding them separately, we are leveraging the innate
structure of observations and actions and imposing such a
structure on the token sequences processed by the Transformer.
Consequently, the knowledge of how to process different
modalities learned during training can be shared across em-

bodiments, fostering efficient transfer of the policy.

Although we employ a consistent data format and aligned
input/output representations across embodiments, some modal-
ities are not present or available for all embodiments. For
example, the human operator is not equipped with a wrist cam-
era, while the LocoMan robot has a wrist camera in some tasks
to improve manipulation accuracy. In this case, we use masks
defined during data collection to signify redundant dimensions
in the observations as well as in the action labels. We refer
the reader to Appendix Section [A| for more implementation
details.

In general, the highly modularized design of our learning
framework offers great flexibility in handling all types of ma-
nipulation tasks across different embodiments, and effectively
enhances the learning performance by capturing the common
patterns in manipulation problems.

D. Training Paradigm

The details of our MXT training pipeline are outlined in

Algorithm [I} For a given task, we first pretrain the model
using the human dataset, followed by finetuning with the
corresponding LocoMan dataset. During finetuning, only the
Transformer trunk weights are initialized from the pretrained
checkpoint. For tasks that share similar semantics but differ
in manipulation modes (representing distinct embodiments in
Table [I), we jointly pretrain the model on human datasets
across these tasks with different manipulation modes and then
finetune it on each task using the corresponding LocoMan
robot dataset.
Learning Objective. We use the behavioral cloning objec-
tive for both pretraining and finetuning. In general, given a
dataset D, on an embodiment e and aligned action modalities
maq, ..., myg, the total loss to optimize when training on e is:

k
L(0) =) Lem, (), )
=1

where L. ,,, is the ¢; loss of the action modality m; with
respect to the dataset of embodiment e. In practice, we



TABLE I: Human2LocoMan embodiments (R=Right, L=Left).

Embodiments Head Wrist Body R-EEF L-EEF Body R-EEF L-EEF R-Grasp L-Grasp
i Images Image  Priop.  Priop. Priop. Pose Pose Pose Action Action
Human-Unimanual (R) v X v v X v v X v X
Human-Unimanual (L) v X v X v v X v X v
Human-Bimanual v X v v v v v v v v
LocoMan-Unimanual (R) v v v v v v v X v X
LocoMan-Unimanual (L) v v v v v v X v X v
LocoMan-Bimanual v X v v v X v v v v

optimize the following batched loss for each training batch

B, = {(0j,A;)}7_; as a proxy of L, (0):

n

Mol S taai i agmd)| . ©)

j=1 =1

Ee,mq, (Be) =

S|
Sl

where a;; [m;] = (A;); [m;] is the [-th step action of modality
m; in the action label sequence sample A; = {aj,l}?:l;
aj[m;] = [mg(0;)], [m] is the predicted action of modality
my; at step [, and h is the chunk size or the action horizon.

Algorithm 1 Pretraining MXT on human data and finetuning
on LocoMan data

Input: Human dataset Dy,man, LocoMan dataset Droconian
Qutput: Policy 7 for versatile LocoMan manipulation
Initialize the MXT policy network my with parameters 6.
Set pretraining learning rate Npretrain
for step = 1,2, ... do
Sample a batch B from Dy, an
Compute ‘Chumun(B) = Zi [«human,'m,i (B) with Eq@
Optimize the policy weights 6 with backpropagation

> Pretraining Stage

Reinitialize the tokenizers and detokenizers of 7. Preserve
the trunk weights 6y, learned from pretraining.
Set finetuning learning rate Nfnetune
for step = 1,2, ... do
Sample a batch B from Dy conan
Compute ELOC()]WHH(B) = Zz ELL)C()M:\]l,mi (B) with Eq-@
Optimize the policy weights 6 with backpropagation

> Finetuning Stage

return

IV. EXPERIMENTS

In this section, we aim to answer the following re-
search questions: (1) Does the Human2LocoMan system
enable versatile quadrupedal manipulation capabilities? (2)
How does MXT compare to state-of-the-art imitation learn-
ing architectures? (3) How does human data collected by
Human2LocoMan contribute to imitation learning perfor-
mance? (4) Do the design choices in MXT facilitate positive
transfer from Human to LocoMan?

A. Experimental Setup

1) Tasks: We evaluate MXT on six household tasks of
varying difficulty, across unimanual and bimanual manipula-
tion modes of the LocoMan robot, with data collected by the
Human2LocoMan system:

Unimanual Toy Collection (TC-Uni). In this task, the
robot must pick up a toy randomly positioned within
a rectangular area and place it into a designated basket
on the ground. Completing this task requires the robot
to coordinate its whole-body motions to efficiently and
accurately reach various locations on the ground and
above the basket. As shown in Figure @] we use 10
objects for robot finetuning and all objects for human
pretraining and real-robot evaluation. The substeps of this
task include: grasp the toy, and release the toy.
Bimanual Toy Collection (TC-Bi). Similar to Unimanual
Toy Collection, this task requires the robot to pick up a toy
randomly placed within two rectangular areas on either
side of a basket. We use 10 objects for robot finetuning,
while all objects are included in human pretraining and
real-robot evaluation. The substeps of this task include:
grasp the toy, and release the toy.

Unimanual Shoe Rack Organization (SO-Uni). This
longer-horizon task involves organizing two shoes placed
on different levels of a shoe rack. The robot must coordi-
nate whole-body motions to reach various rack levels and
utilize both prehensile and non-prehensile manipulation
skills. As shown in Figure ] this task involves three pairs
of shoes, with one pair being out-of-distribution (OOD).
The substeps of this task include: push the shoe on the
higher rack, tap the shoe on the higher rack, transfer the
gripper to the lower level, and tap the shoe on the lower
rack.

Bimanual Shoe Rack Organization (SO-Bi). One pair of
shoes is randomly placed at the edge of the third level of
the shoe rack. The robot must push one shoe inward and
align it with the other. The substeps of this task include:
push the shoe, and tap the shoe.

Unimanual Scooping (Scoop-Uni). The robot performs
unimanual manipulation using a litter shovel to scoop
a 3D-printed cat litter from varying locations and poses
within a litter box, and then dump it into a trash bin. This
long-horizon task involves both tool use and deformable
object manipulation. The task is decomposed into the
following substeps: grasp the shovel, scoop the litter, tilt
the shovel, dump the litter, and place the shovel back.
Bimanual Pouring (Pour-Bi). The robot performs biman-
ual manipulation to pour a Ping Pong ball from one cup
to another. This longer-horizon task requires the robot to
accurately reach both cups, which are randomly placed
within a rectangular area on a table, lift one cup, pour the
ball into the other, and then place both cups back on the
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Fig. 4: Rollouts of the MXT policy and the objects used across manipulation tasks in our experiments. Green arrows indicate
end-effector motions, red arrows denote torso movements, and pink arrows represent gripper actions. Both unimanual and
bimanual toy collection tasks assess the robot’s ability to grasp objects of varying shapes, colors, and positions. The unimanual
variant emphasizes coordination between the torso and end-effector, while the bimanual variant highlights synchronized control
of two loco-manipulators. Unimanual and bimanual shoe rack organization tasks evaluate non-prehensile manipulation skills
such as pushing and tapping. The unimanual variant additionally requires torso articulation to reach shoes placed at different
heights. Scooping is a complex task involving tool use, deformable object manipulation, and wide-range torso motion. Pouring
is a long-horizon task that demands precise coordination of both loco-manipulators.

table. This task evaluates the coordination and precision
of the robot’s bimanual manipulation. The substeps of
this task include: pick up both cups, pour the ball, and
place both cups.

2) Human2LocoMan Embodiments: As shown in Table[l]
the unimanual and bimanual modes of Human2LocoMan
represent distinct embodiments, each differing in morphology,
observations, and action spaces. In practice, we install and
utilize wrist cameras on the LocoMan robot for the three
unimanual manipulation tasks.

3) Data collection: For each task, we collect vari-
ous numbers of human and robot trajectories with the
Human2LocoMan system. The details of the collected data

are demonstrated in Table About 10% data of each task is
used for validation.

4) Training details.: For Toy Collection and Shoe Rack
Organzation, we pretrain a model that utilizes the human data
of both the unimanual and bimanual versions of the task, then
we finetune the model on each unimanual or bimanual task
with the corresponding robot data. For each task, we choose
a set of training hyperparameters (e.g. batch size, chunk size)
that are kept the same for all methods. (See Appendix Section
[C)) We also list the model hyperparameters we use for our
method and the baselines in the Appendix Section [A] and

5) Baselines: We compare Human2LocoMan to the fol-
lowing SOTA imitation learning baselines:



TABLE II: Result Summary. We report success rate (SR) 1 in % and task score (TS) 1 for each task. We highlight the best
performance in bold and the second best in underline. ID results are based on 24 trials, and OOD results on 12 trials.

\ Toy Collection Shoe Rack Organization Scooping Pouring
Unimanual Bimanual Unimanual Bimanual Unimanual Bimanual
ID 00D D 00D 1D 00D ID 00D D 00D ID 00D
Method  Pretrained Data SR TS SR TS SR TS SR TS SR TS SR TS SR TS SR TS SR TS SR TS SR TS SR TS
542 42 416 15 | 458 37 416 16 | 875 112 750 50 | 66.7 52 250 14 | 583 96 16.7 30 | 583 62 167 17
HIT larger | 792 57 583 23 | 583 47 583 21 | 792 107 833 52 | 833 63 333 15| 667 106 333 34 | 708 72 833 7
708 56 333 20 | 66.7 54 417 15 | 875 109 16.7 10 | 66.7 52 333 14 | 625 105 167 30 | 750 75 333 24
875 67 833 31 | 708 53 417 16 | 8.3 107 500 37 | 750 60 583 23 | 625 98 417 38 | 792 76 333 22
MXT Y smaller | 91.7 66 833 30 | 833 62 833 31 | 833 103 750 47 | 792 61 583 24 | 875 129 250 35 | 833 8 583 33
MXT Y larger | 958 67 917 34 | 91.7 67 100 36 | 958 116 833 52 | 833 63 750 29 | 875 129 667 52 | 91.7 88 833 42
* Number of trajectories: TC-Uni smaller=20, larger=40; TC-Bi smaller=30, larger=60; SO-Uni smaller=40, larger=80; SO-Bi smaller=40, larger=80;

Scoop-Uni smaller=30, larger=60; Pour-Bi smaller=30, larger=60.

TABLE III: Records of data collection for different tasks.

Task # human traj.  human time (min)  # robot traj.  robot time (min)
TC-Uni 300 25 150 15
TC-Bi 315 22 70 7
SO-Uni 240 34 90 23
SO-Bi 200 20 92 12
Scoop-Uni 340 96 66 22
Pour-Bi 210 35 64 22

o Humanoid Imitation Transformer (HIT): HIT [20] is an
imitation learning framework originally developed for
humanoid skill learning, with the capability to generalize
to other robot embodiments. It builds on ACT [18]] and
employs a decoder-only architecture that simultaneously
predicts future action sequences and future image fea-
tures. To prevent the vision-based policy from ignoring

visual inputs and overfitting to proprioceptive states, HI

T

introduces an L2 loss on image features in addition to
the standard behavioral cloning objective. Empirically,
HIT consistently outperforms ACT across our evaluated
tasks. While it is not designed to handle data from diverse
domains or embodiments, we position HIT as a strong
reference implementation for efficient imitation learning

from in-domain robot demonstrations.

o Heterogeneous Pretrained Transformer (HPT): HPT [78]]
is a framework that pretrains a policy on heterogeneous
datasets comprising simulation data, real robot trajecto-
ries, and human videos. It consists of stems, a trunk, and
a head, where the stems and head serve roles analogous
to our tokenizers and detokenizers. The trunk is designed

to learn the complex mapping between inputs and ou

t-

puts within a unified latent space through large-scale
pretraining. The implementation of HPT differs from our
framework in several aspects. First, we align data at the
modality level and design the modular architecture in
MXT to preserve modality-specific information across
embodiments. In contrast, HPT uses a single tokenizer

for visual inputs and another for proprioceptive input
along with a single detokenizer for all action dimension
Additionally, HPT freezes its ResNet image encode

S’
S.
r?

whereas we finetune the ResNet encoder together with
the rest of the network in an end-to-end manner for better

adaptation to a specific embodiment.

More implementation details of these baselines can be found
in Appendix Section [B] For the HPT baseline, we train with
several different settings: training with only LocoMan data,
pretraining with our human data and finetuning on LocoMan
data, and directly finetuning the released HPT checkpoints
with LocoMan data. For the HIT baseline, we only train on
LocoMan data, as it is unable to incorporate human data.

6) Evaluation Metrics: We present the evaluation results
using three metrics: i) success rate (SR), ii) task score (TS),
and iii) validation loss. To calculate the success rate and task
score, we perform a fixed number of real world rollouts using
the evaluated method for one task. The policy is rolled out for
24 times with in-distribution (ID) objects and 12 times with
out-of-distribution (OOD) objects.

For each task, we define a set of critical substeps necessary
to fully complete the task. When calculating the task score,
successfully completing each intermediate substep earns one
point, and reaching the final goal—i.e., completing the entire
task—earns an additional point. The final task score is the
sum of points across all rollouts for that task. The success
rate of a method on a given task, under either the ID or OOD
setting, is computed as the ratio of successful rollouts (i.e.,
rollouts where all substeps are completed) to the total number
of rollouts performed.

In addition, we report the best validation loss as another
metric for training performance. For all the included methods,
we align how the loss is computed so that these losses can be
meaningfully compared. Note that the validation loss is not a
faithful indicator of the policy performance, but it does reflect
how well the model is optimized, especially when there is a
significant difference in the validation loss of different policies
in the same setting. We mainly use this metric to analyze
the training process of different architectures (MXT, HIT and
HPT) and to provide a separate dimension to our evaluation.

B. Results and Analysis

(1) Does the HumanZLocoMan system enable versatile
quadrupedal manipulation capabilities?

Data collection. As shown in Table Human2LocoMan
teleoperation enables the collection of a substantial amount
of robot data (over 50 trajectories) within 30 minutes across
all tasks. Using the Human2LocoMan human data collection
system, over 200 trajectories can be gathered within the same
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Fig. 5: Ablation study on unimanual and bimanual toy collection. We compare MXT, its ablation MXT-Agg, and baseline
HPT on SR and TS. Here, “L” denotes the larger training set (40 trajectories for TC-Uni, 60 trajectories for TC-Bi), while
“S” denotes the smaller training set (20 trajectories for TC-Uni, 30 trajectories for TC-Bi).

time frame. Even for the most challenging task, a human
can collect over 300 trajectories within one and a half hours.
Notably, the robot’s manipulation speed is comparable to, and
in many tasks approaches, that of a human. These results
highlight the data collection efficiency of our system.

Task versatility. As depicted in Figure[d] Human2LocoMan’s
policy can perform tasks across a wide range of scenarios,
including unimanual and bimanual manipulation, prehensile
and non-prehensile manipulation, deformable object manipu-
lation, and tool use, while also generalizing to OOD objects
and conditions.

Task performance. We summarize the success rates and task
scores of our method and HIT across all tasks in Table [l
Human2LocoMan’s MXT presents strong performance using
a relatively small robot dataset, achieving success rates above
79% across all tasks. The baseline method also attains decent
performance on most tasks. These results highlight the high
quality of our collected data and demonstrate the effectiveness
of Human2LocoMan’s data collection and training pipeline.
(2) How does MXT compare to state-of-the-art imitation
learning architectures?

Compared to HIT. As shown in Table [l in most evaluated
tasks, spanning both unimanual and bimanual modes and
across both ID and OOD inference scenarios, MXT with-
out pretraining achieves comparable or superior performance
relative to HIT. Moreover, pretrained MXT consistently out-
performs the HIT baseline in terms of both SR and TS.
Specifically, pretrained MXT achieves an average SR improve-
ment of 41.9% overall and 79.7% under OOD settings, as
well as an average TS improvement of 28.9% overall and
51.4% under OOD settings. From Figure we find that
MXT demonstrates lower validation loss compared to HIT
on most tasks, indicating superior training convergence. The
performance improvement is particularly evident in tasks with
larger datasets, suggesting that MXT scales more effectively
with increasing data availability. Notably, HIT achieves a sig-
nificantly lower validation loss compared to the MXT variants
in unimanual shoe organization, while attaining comparable
performance in SR and TS metrics under both ID and OOD
settings relative to the best MXT model. As shown in the

== MXT-Pretrained-L
== MXT-Pretrained-S MXT-Scratch-S

Unimanual Shoe Org (ID) Pour (ID)

100 1007
£
951" z8 \ %

MXT-Scratch-L === HIT-L
HIT-S

Scoop (ID)

o o 80 N\ o
2 2 2
5 5 5
< %0 = 75 < 80
8 8 3
g g7 g
85 70
@ @ 65 & Ry Sy

80 60 60

push  tapl transfer tap2 pick pour
Substep Name Substep Name

Unimanual Shoe Org (OOD) Pour (OOD)

100 100 100 {13
q N\ 80

place pick scoop tilt dump place

Substep Name
Scoop (O0OD)

80

60 60

Success Rate (%)
o
3
Success Rate (%)
Success Rate (%)

.

40
40

20
20 20

push tapl transfer tap2 pick pour place
Substep Name Substep Name

pick scoop tilt dump place
Substep Name

Fig. 6: Substep success rate. The success rate for some substep
is calcuated as the percentage of trials where the robot success-
fully completed the substep. For each task, we calculate this
with 24 ID rollouts and 12 OOD rollouts. MXT-Pretrained:
MXT pretrained on human dataset (including unimanual and
bimanual if applicable), then finetuned on the LocoMan data.
MXT-Scratch: MXT trained only on the LocoMan data. “L”
denotes the larger training set (80 trajectories for SO-Uni, 60
trajectories for Pour and Scoop), while “S” denotes the smaller
training set (40 trajectories for SO-Uni, 30 trajectories for Pour
and Scoop).

substep success analysis in Figure [6 the primary failures of
the lower-performing MXT models occur during the first two
substeps, push” and tap1.” One potential reason for this is that
the unimanual shoe organization task exhibits relatively less
variation in object locations and types compared to other tasks,
which may favor HIT despite its lack of modular designs and
pretraining.

Compared to HPT. As shown in Figure [5] we present SR
and TS results based on 36 trials, comprising 24 OOD and
12 ID trials. HPT consistently underperforms compared to
MXT, both when finetuned and when trained from scratch,



across all data sizes on the toy collection tasks. We attribute
this performance gap to a combination of HPT’s lack of
modular architecture and its use of frozen image encoders.
Validation loss results, shown in Figure reveal a similar
trend in the unimanual toy collection task across a broader
range of dataset sizes. Notably, HPT-Small and HPT-Base fail
to achieve lower validation loss compared to HPT-Scratch,
even pretrained on the large public dataset. Their policy rollout
performance are evidently worse than HPT-Scratch and HPT-
Pretrained so we did not scale up the real-robot evaluation.
This indicates the challenge posed by the large embodiment
gap and underscores the effectiveness of the human data
collected by our system. Furthermore, we observe severe
overfitting in HPT experiments when training on our datasets,
a phenomenon not observed in MXT. This further suggests
that the modular design of the MXT architecture facilitates
better generalization.

(3) How does human data collected by Human2ILocoMan
contribute to imitation learning performance?

Efficiency, robustness, and generalizability. Summarizing
from Table [II} pretraining with human data improves the MXT
policy SR by 38.6% overall and 82.7% under OOD settings,
and boosts TS by 24.1% overall and 58.9% under OOD
settings. This enables consistently stronger performance with
only half the amount of robot data, demonstrating both the
efficiency and robustness of our system. We hypothesize that
MXT benefits from learning useful complementarities—i.e.,
positive transfer effects—between human demonstrations and
LocoMan robot data. Specifically, comparing MXT-Pretrained
to MXT-Scratch in Table [[, we observe that pretraining
improves performance on TC-Uni, TC-Bi, and Scooping tasks
under ID settings, where objects exhibit diverse locations.
MXT-Pretrained tends to produce smoother and more robust
motions, enabling more accurate localization of target objects.
For instance, as shown in Figure @, MXT-Pretrained achieves
substantially better scooping performance—which requires
precise localization—compared to all other methods. More-
over, Table [l reveals large performance gaps on OOD objects
in tasks such as TC-Bi, SO-Uni, and Pouring, where OOD
objects differ significantly from ID objects in shape, texture,
and color. These results suggest that MXT, by leveraging
human demonstrations during the pretraining stage, is able to
generalize effectively to novel scenarios unseen during robot
training.

Long-horizon performance. For a more detailed analysis on
long-horizon tasks that require multiple manipulation steps,
we present in Figure [6l how the success rate decays with each
substep in tasks including SO-Uni, Pour-Bi and Scoop-Uni.
MXT-Pretrained is shown to maintain a decent success rate as
the long-horizon task progresses, while MXT-Scratch and HIT
tend to fail more after the first substep, especially in Pouring
and Scooping tasks. We note that the second substep in these
tasks commonly involves moving and localizing an object
with precision, and pretraining with human data appears to
help with completing such challenging substeps. This suggests
that human data incorporated during pretraining can promote
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Fig. 7: Best validation loss of our method and HIT on
all our tasks. MXT-Pretrained: MXT pretrained on human
dataset (including unimanual and bimanual if applicable), then
finetuned on the LocoMan data. MXT-Scratch: MXT trained
only on the LocoMan data. The number suffix denotes the
number of demonstrations in the LocoMan training set.
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Fig. 8: Best validation loss of our method and HPT on the
unimanual Toy Collection task. MXT-Pretrained: MXT pre-
trained on human dataset (including unimanual and bimanual
if applicable), then finetuned on the LocoMan data. MXT-
Scratch: MXT trained only on the LocoMan data. HPT-
Pretrained: HPT trunk pretrained on our human data, then
finetuned on the LocoMan data. HPT-Scratch: HPT network
trained only on the LocoMan data. HPT-Base: Finetune with
our LocoMan data with HPT trunk initialized with released
HPT-Base weights. HPT-Small: Finetune with our LocoMan
data with HPT trunk initialized with released HPT-Small
weights.

manipulation accuracy, which is key to completing a sequential
long-horizon task.

(4) Do the design choices in MXT facilitate positive transfer
from Human to LocoMan?

We have shown in Figure [5] that MXT outperforms HPT un-
der both finetuning and training-from-scratch settings, benefit-
ing from its modularized design and unfrozen image encoders
in its architecture. Here, we observe the delta performance
brought by human data across different methods. While both
MXT and HPT benefit from pretraining on human data, MXT
exhibits more effective Human-to-LocoMan transfer, achieving
larger gains, especially in low-data and OOD settings. Addi-
tionally, as depicted in Figure |8] MXT-Pretrained consistently
achieves lower validation loss than MXT-Scratch, whereas
the gap between HPT-Pretrained and HPT-Scratch is less
consistent and does not always show the same trend. These
results highlight the ability of MXT to consume human data,



despite the large embodiment gap with LocoMan.

To further investigate the impact of modularity, we introduce
an ablation variant of MXT, referred to as MXT-Agg, in which
we aggregate the input modalities: a single visual tokenizer is
used to encode all visual observations, a single proprioceptive
tokenizer for all proprioceptive inputs, and a single detokenizer
for all action dimensions—mirroring HPT’s design. MXT-
Agg incorporates HPT’s key features, including cross-attention
tokenization and trunk weight sharing, while still finetuning
the vision encoders and remaining architecturally comparable
to MXT. Across evaluations, MXT consistently benefits from
pretraining and outperforms MXT-Agg when both are fine-
tuned, highlighting the advantages of modularized tokenization
for effectively leveraging human data. Notably, MXT-Agg
exhibits weaker transfer performance with respect to MXT and
HPT, as evidenced by little to no improvement when finetuning
the pretrained model compared with training from scratch.
This is likely due to increased representation power in the
tokenizer, which permits more overfitting in the transformer
trunk and could negatively impact the trunk transferability.
However, with the incorporation of our modular design, MXT
is trained with additional regularization and exhibits improved
transferability. The modular design effectively aids in the
trade-off between more network representation power and
better transferability in our framework, and allows attaining
both qualities.

V. LIMITATIONS

While our system introduces a novel and effective ap-
proach for cross-embodiment learning and data collection in
quadrupedal manipulation, it has several limitations. First, al-
though the teleoperation interface enables whole-body control
and flexible data collection, it still requires a learning curve
for operators. In particular, controlling the robot’s torso via
head motions may feel unintuitive and demand some practice
to achieve high precision. Second, despite the modular design
and cross-embodiment capability of our architecture, this work
focuses solely on the LocoMan platform. We have not yet
validated the generality of our system across a broader range
of robot embodiments, such as table-top or mobile arms and
humanoid robots. Lastly, while we have demonstrated effective
human-to-robot transfer, we rely on a pretraining-finetuning
pipeline for single robotic tasks, and future work could explore
co-training with human data in multi-task settings. Extending
Human2LocoMan to diverse robots, larger-scale datasets, and
more learning paradigms remains promising future directions.

VI. CONCLUSION

We present Human2LocoMan, a unified framework for
efficient data collection and cross-embodiment learning, en-
abling versatile quadrupedal manipulation skills on the open-
source LocoMan platform. Our system integrates XR-based
teleoperation with aligned human and robot data collection,
supporting a shared observation-action representation across
embodiments. To leverage this data effectively, we introduce

the Modularized Cross-embodiment Transformer, a modu-
lar policy architecture designed for scalable pretraining and
fine-tuning across different embodiments and manipulation
modes. Extensive real-world experiments across six chal-
lenging household tasks demonstrate that Human2LocoMan
achieves strong performance, robust generalization to out-of-
distribution settings, and high data efficiency, attaining high
success rates with only a small amount of robot data. Com-
parisons against strong baselines highlight the effectiveness
of our modular design and the benefits of cross-embodiment
pretraining using human data collected through our system.
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APPENDIX

A. Implementation and Training details of MXT

Training Details. We list the training optimizer and the
Transformer trunk hyperparamters in Table These hyper-
parameters are kept the same for all our experiments.

TABLE IV: MXT trunk and training hyperparameters

Hyperparameters Value

optimizer AdamW

learning rate Se-5 (finetuning/from scratch)
le-4 (pretraining)

scheduler constant

weight decay le-4

trunk encoder layers 4

trunk decoder layers 4

hidden dim. 128

Transformer feedforward dim. 256

#attention heads 16

Cross-Attention in Tokenizers and Detokenizers. In the
tokenizers of MXT, we employ a simple cross-attention mech-
anism to convert input features of arbitrary length into a fixed
set of tokens. Each attention layer in the tokenizers uses a
hidden dimension of 128, with 4 attention heads, each having
a head dimension of 32, and a dropout rate of 0.1. Other
hyperparameters of each tokenizer are shown in Table [V]

Similarly, we use cross-attention in the detokenizers to
decode action modalities from a fixed number of output
Transformer tokens. The attention layer is configured with
4 attention heads, each with a head dimension of 16, and a
dropout rate of 0.1. Other hyperparameters of each detokenizer
are shown in Table [V1I

TABLE V: MXT tokenizer hyperparameters

Modality Input dimensions ~ #tokens ~ MLP widths
main image (3, 480 1280) 16 N/A
wrist image (3, 480, 640) 8

body pose (6,) 4

EEF pose 12, 4

EEF-to-body pose (12) 4 (128, 128]
gripper angles (2, 4

TABLE VI: MXT detokenizer hyperparameters

Modalities Output dimensions  #tokens
body pose (6,) 6
EEF pose (12,) 6
gripper angle (2,) 6

Masks for aligning embodiment modalities. As previously
mentioned, masks are required to exclude redundant dimen-
sions or modalities that are absent in certain embodiments.
Below, we provide a more detailed description of our mask
implementation.

a) Masks on images. We recognize that some image views
may not be available across all embodiments. In the ecper-
iments of this paper, we assume at most two camera views
(or image modalities): a main camera and a wrist camera.
However, the framework can be easily extended to support
any number of camera views. When a particular view is
unavailable, we indicate this in the Transformer’s trunk mask
and insert dummy tokens at the corresponding positions. This
ensures that tokens associated with the missing image modality
are not attended to.

b) Masks on proprioceptive states. In some cases, certain
dimensions of the proprioceptive state may be irrelevant for a
specific embodiment. For example, in unimanual manipulation
modes for both the human and LocoMan, the proprioceptive
states of the inactive end-effector are not used. When only
part of a proprioceptive modality contains redundant dimen-
sions, we apply zero padding to those dimensions and encode
them through the tokenizer as usual. Unlike masked image
modalities, this does not affect the Transformer’s trunk mask.
However, when an entire proprioception modality should be
disregarded, we handle it similarly to image modalities by
applying the Transformer mask accordingly.

Data Normalization. For both human and LocoMan data, we
apply normalization to observations and action labels. For non-
image data, we compute the per-dimension mean and standard
deviation from the dataset, and normalize using the standard

formula:
Ty — mean

std

For image data, we adopt the standard ImageNet statistics for
the RGB channels to normalize each image in the dataset
using the same formula, with mean = [0.485,0.456, 0.406]
and std = [0.229, 0.224, 0.225].

Dropout in Pretraining. We find that increasing the dropout
rate in the Transformer trunk improves finetuning performance
for MXT. In practice, setting the pretraining dropout rate
to 0.5 for the scooping task and 0.4 for all other tasks
yields consistently good results. When training with LocoMan
data, whether training from scratch or during finetuning, the
Transformer trunk dropout rate is reverted to 0.1.

Ty =

TABLE VII: HIT hyperparameters

Hyperparameters Value
optimizer AdamW
learning rate 2e-5
scheduler constant
weight decay le-4
encoder layers 4
decoder layers 4
hidden dim 128
#attention heads 8
feature loss weight 0.001
image backbone ResNet18

B. Implementation details of baselines

HIT. Our implementation of Humanoid Imitation Transformer
[20] is based on the released codebase, with only minor



TABLE VIII: HPT hyperparameters

Hyperparameters Value

optimizer AdamW
Se-5 (finetuning/from scratch)

learning rate le-4 (pretraining)

scheduler constant
weight decay le-4
trunk
#Transformer blocks 16
hidden dim 128
feedforward dim 256
#attention heads 8
action head
#attention heads 8
head dim 64
dropout 0.1
output dim 20
image stem
encoder ResNet18
MLP widths [128]
#tokens 16
state stem
MLP widths [128]
#tokens 16

modifications to accommodate our data format. The hyper-
parameters used for training are summarized in Table

HPT. We follow the original implementation of HPT [78]],
with the main exception of modifying the data normalization
method to align with the approach used in other frameworks.
This ensures a fair comparison of validation loss. The hyperpa-
rameters used for training HPT are summarized in Table [VIII}

C. Global task-specific training parameters

We select a specific set of training parameters for each
task and keep these settings consistent across all methods, as
summarized in Table [X

TABLE IX: Global training parameters for each task

Task Mode Batch Size  Training Steps  Chunk Size
Toy Collection Unimanual 16 60000 60
Y Bimanual 16 60000 60
Shoe Oreanization Unimanual 24 80000 180
g Bimanual 24 100000 120
Scooping Unimanual 24 100000 120

Pouring Bimanual 24 80000 180
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