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by Lifting 2D GAN to 3D Generative Radiance Field
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Abstract {Goal: Synthesize downstream task dataset \

This work explores the use of 3D generative models to
synthesize training data for 3D vision tasks. The key require-
ments of the generative models are that the generated data
should be photorealistic to match the real-world scenar-
ios, and the corresponding 3D attributes should be aligned
with given sampling labels. However, we find that the recent
NeRF-based 3D GANs hardly meet the above requirements
due to their designed generation pipeline and the lack of
explicit 3D supervision. In this work, we propose Lift3D, an
inverted 2D-to-3D generation framework to achieve the data
generation objectives. Lift3D has several merits compared to
prior methods: (1) Unlike previous 3D GANs that the output
resolution is fixed after training, Lift3D can generalize to any
camera intrinsic with higher resolution and photorealistic
output. (2) By lifting well-disentangled 2D GAN to 3D object
NeRE Lift3D provides explicit 3D information of generated
objects, thus offering accurate 3D annotations for down-
stream tasks. We evaluate the effectiveness of our framework
by augmenting autonomous driving datasets. Experimental
results demonstrate that our data generation framework can
effectively improve the performance of 3D object detectors.
Code: len—-1i.github.io/1ift3d-web

1. Introduction

It is well known that the training of current deep learning
models requires a large amount of labeled data. However, col-
lecting and labeling the training data is often expensive and
time-consuming. This problem is especially critical when
the data is hard to annotate. For example, it is difficult for
humans to annotate 3D bounding boxes using a 2D image
due to the inherent ill-posed 3D-2D projection (3D bounding
boxes are usually annotated using LiDAR point clouds).

To alleviate this problem, a promising direction is to use
synthetic data to train our models. For example, data genera-
tion that can be conveniently performed using 3D graphics

“Work done during an internship at NIO Autonomous Driving.
Corresponding author.

|

I N "
Noise z € Z Train 3D

e — [ g E

|

| Add novel objects

- ____ )
I(a: Previous 3D GANs 3p 2D \|
| l \ |
. - |
: Noisez€Z_ NeRF | —[tow | . ;lgh _, | Downstream | |
Reso. . Tasks (3D
: Pose p € P eso TE (3D) :
|\ 2D Upsample }I
( b: Ourapproach > - o )
f_% /_Aﬁ
| |
I - -~ S I
. Downstream
| — - . — |
| Noise z € Z — B NeRF Tasks (3D) |
| - N |
'\ Pose p € P }'

Figure 1. Our goal is to generate novel objects and use them to
augment existing datasets. (a) Previous 3D GANSs (e.g., [28,45])
rely on a 2D upsampler to ease the training of 3D generative ra-
diance field, while struggle a trade-off between high-resolution
synthesis and 3D consistency. (b) Our 2D-to-3D lifting process
disentangles the 3D generation from generative image synthesis,
leading to arbitrary rendering resolution and object pose sampling
for downstream tasks.

engines offers incredible convenience for visual perception
tasks. Several such simulated datasets have been created
in recent years [3, 14,30,31,42]. These datasets have been
used successfully to train networks for perception tasks such
as semantic segmentation and object detection. However,
these datasets are expensive to generate, requiring specialists
to model specific objects and environments in detail. Such
datasets also tend to have a large domain gap from real-world
ones.

With the development of Generative Adversarial Net-
works (GAN) [18], researchers have paid increasing atten-
tion to utilize GANs to replace graphics engines for syn-
thesizing training data. For example, BigDatasetGAN [23]
utilizes condition GAN to generate classification datasets via
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conditioning the generation process on the category labels.
SSOD [27] designs a GAN-based generator to synthesize
images with 2D bounding boxes annotation for the object
detection task. In this paper, we explore the use of 3D GANs
to synthesize datasets with 3D-related annotations, which is
valuable but rarely explored.

Neural radiance field (NeRF) [26] based 3D GANs [6,28],
which display photorealistic synthesis and 3D controllable
property, is a natural choice to synthesize 3D-related train-
ing data. However, our experimental results show that they
struggle to keep high-resolution outputs and geometry-
consistency results by relying on a 2D upsampler. Further-
more, the generated images are not well aligned with the
given 3D pose, due to the lack of explicit 3D consistency reg-
ularization. This misalignment would introduce large label
noise in the dataset, limiting the performance in downstream
tasks. In addition to these findings, the camera parameters
are fixed after training, making them challenging to align the
output resolution with arbitrary downstream data.

In this paper, we propose Lift3D, a new paradigm for syn-
thesizing 3D training data by lifting pretrained 2D GAN
to 3D generative radiance field. Compared with the 3D
GANS that rely on a 2D upsampler, we invert the gener-
ation pipeline into 2D-to-3D rather than 3D-to-2D to achieve
higher-resolution synthesis. As depicted in Fig. 1, we first
take advantage of a well-disentangled 2D GAN to generate
multi-view images with corresponding pseudo pose annota-
tion. The multi-view images are then lifted to 3D represen-
tation with NeRF reconstruction. In particular, by distilling
from pretrained 2D GAN, 1ift3D achieves high-quality syn-
thesis that is comparable to SOTA 2D generative models. By
decoupling the 3D generation from generative image synthe-
sis, Lift3D can generate images that are tightly aligned with
the sampling label. Finally, getting rid of 2D upsamplers,
Lift3D can synthesize images in any resolution by accumu-
lating single-ray evaluation. With these properties, we can
leverage the generated objects to augment existing dataset
with enhanced quantity and diversity.

To validate the effectiveness of our data generation frame-
work, we conduct experiments on image-based 3D object
detection tasks with KITTI [16] and nuScenes [4] datasets.
Our framework outperforms the best prior data augmen-
tation method [24] with significantly better 3D detection
accuracy. Furthermore, even without any labeled data, it
achieves promising results in an unsupervised manner. Our
contributions are summarized as follows:

* We provide the first exploration of using 3D GAN to
synthesize 3D training data, which opens up a new
possibility that adapts NeRF’s powerful capabilities of
novel view synthesis to benefit downstream tasks in 3D.

* To synthesize datasets with high-resolution images and
accurate 3D labels, we propose Lift3D, an inverted 2D-
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Figure 2. We compare our generation result with GIRAFFE
HD [45]. We zoom in or rotate the sampled 3D box to control
the generation of models. The rotation of the 3D box introduces
artifacts to images generated by GIRAFFE HD. All images are
plotted with sampled 3D bounding boxes.

to-3D data generation framework that disentangles 3D
generation from generative image synthesis.

* Our experimental results demonstrate that the synthe-
sized training data can improve image-based 3D detec-
tors across different settings and datasets.

2. Related Work

Data Generation for Downstream Tasks Benefiting
from low data acquisition costs, learning from synthesized
data is an attractive way to scale up the training data. Several
studies like [1, 3, 14,31] leverage graphic engines to synthe-
size training data without human annotation. However, they
rely on pre-built 3D assets to mimic the world, which is also
a non-negligible effort in the whole pipeline.

Without any burden of collecting 3D assets, generative
models can also be considered as a neural rendering alterna-
tive to graphics engines. For example, BigDatasetGAN [23]
generates classification datasets by conditioning the genera-
tion process on the class labels. SSOD [27] samples dataset
with 2D bounding boxes via generative image synthesis. Our
method goes further, utilizing 3D GAN to generate training
data with 3D annotation, greatly reducing labeling effort in
3D data.

3D-aware Generative Image Synthesis Recently, Gen-
erative Adversarial Networks (GANs) [ 8] have made great
progress in generating high-resolution photorealistic 2D im-
ages. One natural extension of the 2D GANSs is to endow
their 3D controllable ability as 2D images are projections
of the 3D world. To provide the 3D-aware ability, recent



work [6, 28] leverages neural implicit representation (i.e.,
NeRF [26]), a 3D rendering module, to represent the genera-
tor of GANSs. In these methods, the training of NeRF module
is via the adversarial discriminator between the generated
and real images. Due to a lack of 3D supervision, the 3D
consistency between the view angle and object position with
generated images is not explicitly regularized, making the
objects can not align well with provided 3D information as
depicted in Fig. 2. Furthermore, the high computation cost
of volumetric rendering in the generation process also makes
these methods suffer from scaling issues (e.g., resolution).
To alleviate this issue, several methods [5, 12, 19,28,29,45]
choose to leverage a separate 2D upsampler to produce a
high-resolution image from a low-resolution feature grid ren-
dered from NeRF (Fig. 1 (a)). Although this method achieves
high-resolution synthesis, the underlying multi-view consis-
tency is non-satisfactory as shown in Fig. 2.

Interpreting the latent representation of GANs [20, 32]
has benefited a body of work disentangling various factors
of generated objects in a 3D-controllable manner, e.g., view-
point and shape [25,33,50]. This indicates we can tune 2D
GANSs into 3D-aware generators by interpreting different
factors of disentangled latents. Owing to this powerful latent
representations of 2D GANs, we can achieve both high-
resolution photorealistic image synthesis and rough 3D con-
trollable property. For example, GANverse3D [50] manually
annotates the pose labels of StyleGAN?2 latents and distills
the 3D-aware generation to a mesh-based rendering module.
Shi et al. [33] disentangle and distill the 3D information
from StyleGAN2 to 3D-aware face generation. Although
they achieve 3D controllability of GAN, they haven’t tried
to convey the 3D-aware ability to benefit downstream tasks.

Data Augmentation in Object Detection Data augmen-
tation is an effective technique for improving the perfor-
mance of object detection. Although several data augmen-
tation methods have yielded impressive gains for 2D tasks,
they are hardly adapted to 3D vision tasks due to the vi-
olation of geometric relationship (i.e., when manipulating
the object in the image domain, it’s non-trivial to obtain the
corresponding bounding boxes in the 3D world.) To alleviate
this issue, recent work [10,24,49] designs geometry-aware
copy-paste methods that fix the relationship among the view-
ing angle, 2D and 3D position to obtain the corresponding
3D ground truth. However, these methods are limited to gen-
erating objects with fixed viewing angles and positions. They
are also restricted to use pre-collected asset banks.

In this work, we design a generative-based data genera-
tion method for 3D object detection, in which an unlimited
amount of objects with arbitrary position and rotation can be
generated for training. Based on our method, the diversity
of the training data can be effectively enhanced, leading to
better coverage of long-tail scenarios in the safety-critical
driving domain.

3. Method
3.1. Overview

We visualize the generation and augmentation pipelines in
Fig. 3. Our method aims to generate novel objects with corre-
sponding 3D bounding boxes annotation and compose them
into existing scenes for training. Without loss of generality,
we adopt monocular 3D object detection as the downstream
task to evaluate the effectiveness of our method.

3.2. 3D GANs
Recently, the community has witnessed an explosion in
the 3D generative radiance field [5,12,19,28,29,44,45,51,52].

However, as revealed in [19,36], none of them can preserve
strict multi-view consistency, partially on account of the
usage of a 2D upsampler and lack of explicit 3D supervision.
Fig. 2 shows the generation result of GIRAFFE HD [45],
the SOTA 3D generative network on Car. When we render
objects in fixed rotation and increasing depth, the objects
gradually lose details during zoom-out. In the meantime,
during sampling in fixed depth and varying rotation, the
images break multi-view consistency as the objects only fit
the 3D box in a single view. These unsatisfactory results
prevent their application in downstream tasks.

To benefit downstream tasks with 3D generative synthe-
sis, we design a method that (i) is able to generate high-
resolution photorealistic images, (ii) its generated images
are consistent with given sampling label, (iii) capable of
generating images in any wanted distribution (not restrict to
object-centric views).

The general idea of our method is to switch the order of
generation process to 2D-3D rather than 3D-2D. We first in-
troduce our efficient interpretation of StyleGAN?2 that serves
for dense multi-view synthesis in Sec. 3.3. Then, we detail
the proposed lifting process that provides high-resolution
synthesis and accurate 3D annotation in Sec. 3.4.

3.3. StyleGAN as a Proxy 3D Generator

To achieve (i), we propose to incorporate powerful Style-
GAN2 [21] to serve as a proxy 3D generator. Our goal is
to leverage pretrained StyleGAN?2 to densely sample multi-
view images with pose labels. Note that other GANs may
also work, but we choose [21] for its most photorealistic
synthesis.

We draw aspiration from GANSpace [20] and SeFa [32]
to disentangle StyleGAN?2. Specifically, StyleGAN2 is a syn-
thesis network that maps a latent code z € R%'% sampled
from a Gaussian distribution Z € N(0,I) into a real image.
The latent z is first transformed to w* = (w}, w3, ..., wis) €
R16%512 through 16 affine transformations. Then w* is serve
as conditional information to modulate different layers of
the synthesis network. GANSpace [20] found that different
layers in w* control different image attributes. For example,
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Figure 3. Lift3D is a 3D generation framework that enables training data generation by providing photorealistic synthesis and precise 3D
annotation. The framework comprises three key modules: (a) Interpretation of StyleGAN2: We obtain latent-label pairs with the guidance of
the ShapeNet renderings. (b) Lifting process: We optimize a shared conditional NeRF and randomly initialized latent codes to lift pretrained
StyleGAN?2 to 3D object NeRF. (¢) Training data generation: By sampling latents z, we can augment the existing dataset by adding novel

objects with label p.

styles in the early layers adjust the camera viewpoint, while
styles in the intermediate and higher layers influence shape,
texture, and background. That’s to say, if we sample a new
latent but keep the early layers unchanged, we generate im-
ages of an object with a different shape and appearance but
depicted in the same viewpoint. This motivates us to transfer
high-quality StyleGAN2 to 3D-aware generators without
retraining 3D GANS.

Following GANSpace [20], we empirically set the first
8 layers of latents as pose latents (denoted as wP), the re-
maining 8 layers of latents as shape and appearance latents.
Fig. 3 (a) shows how we obtain latent-label pairs w? and
P for the lifting process. Since graphics-based rendered
images naturally provide pose labels during rendering, we
randomly select a 3D car model from ShapeNet [7], and
render the model under 200 different viewpoints P, then use
optimization-based GAN inversion method [43] to find the
corresponding template latents. Thus, the first 8 layers of
template latents are associated with meaningful pose infor-
mation P (e.g., the pose latent w” in darker gray represents
a rendering from the front viewpoint). We next illustrate the
usage of these 200 latent-label pairs w” and P in Sec. 3.4.

3.4. Lifting 2D Images to 3D Radiance Field

Directly applying a 3D GAN in downstream tasks is non-
trivial as discussed in Sec. 3.2. In this work, we propose a
method that distills 3D knowledge from pretrained Style-
GAN?2: lifting generated images to 3D representation. As
depicted in Fig. 3 (b), we jointly optimize a shared condi-
tional NeRF and latent codes to lift StyleGAN2-generated
multi-view images to 3D object NeRF. Detailed network
structures are described below.

Generating 2D Data (I, P)  As shown in the right side of
Fig. 3 (b), we leverage the above disentangled StyleGAN2
to sample images I with pose label P for the lifting process.
During sampling, the first 8 layers of latents are sampled
from the pose latents w”. The remaining 8 layers of latents
are randomly sampled from Gaussian distribution Z for di-
verse synthesis.

Incorporating Priors via Global Optimization Z, Py A
naive method of lifting multi-view images to 3D assets is to
reconstruct each object with an isolated NeRF. However, due
to the randomness of GAN sampling and imperfect GAN
interpretation, the generated images and pose labels are noisy,



or even sometimes corrupted, hindering the reconstruction
of a single object. This method also neglects the inductive
bias in a certain category. To address the above issues, we
model the lifting process as Generative Latent Optimization
(GLO) [2], in which each object is assigned a corresponding
latent vector. We optimize a shared NeRF ®y(z, P) with
parameter 6 and randomly initialized latent codes z € Z for
all objects at the same time, thereby granting NeRF generator
to learn the shared shape and appearance prior within the
same category. The formula can be written as follows:

7,0 = arg min L(I, ®y(z, P)), )

z,0

where Z represents the concatenation of all latent codes, P
is the pose label obtained from GAN interpretation, £ is our
loss function that will be introduced in Sec. 3.6.

Efficient 3D Representation ®y  We represent our NeRF
network ®¢ with a tri-plane [5] representation for efficient
feature encoding. Specifically, we follow [5,21] and use a 2D
convolution neural network to map constant input to three
axis-aligned orthogonal feature planes with the condition of
latent code z. For any sampled 3D point z € R? of NeRF,
we query its feature vector by projecting it onto each of
the three feature planes, retrieving the corresponding three
feature vectors via bilinear interpolation, then summing the
three as the final feature vector. To further incorporate global
information, we then feed the final feature vector to a single
layer SIREN-based [35] MLP that conditions on z to output
the density and RGB value.

Volumetric Rendering  The expected color C(r) of cam-
eraray r(t) = o + td with nearest and furthest sampling
bounds ¢,, and ¢ is:
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where T(t) = exp ( /tja(r(s))ds> NG

The function T'(¢) denotes the accumulated transmittance
along the ray from ¢,, to ¢.

We also predict the binary mask of objects M by the
accumulated transmittance of the furthest sampling point to
extract the foreground pixels.
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During sampling, a significant advantage of our method
is that: we can synthesize any-resolution images by accumu-
lating single-ray evaluation without relying on upsamplers.
Fig. 3 (c) illustrates our sampling procedure.
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Figure 4. Disentanglement of our NeRF generation. By distilling
knowledge from pretrained StyleGAN2, our 3D generation frame-
work directly inherits the well-disentangled property to generate
the shape-appearance disentangled images.

Sample Position Our goal is to augment the existing
dataset by populating novel objects with any wanted pose
P’. To place objects, a simple way is to uniformly sample
positions on road planes, as camera height information can
be extracted from calibration. However, this method does not
consider relations between objects and environment layout
e.g., vehicles don’t appear inside a building. To mitigate this
problem, we use a pretrained semantic segmentation model
HRNet [37] to extract drivable areas in the 2D image plane.
Then we convert the perspective view into the bird’s-eye-
view (BEV) through Inverse Perspective Mapping (IPM).
During sampling, objects that are outside the drivable area
will be filtered out. Detailed parametrization of P’ can be
found in Supp. Material.

Shadow Generation As a non-negligible consequence
of lighting interactions, shadows play a vital role in both
visual quality [10] and downstream tasks [13,41]. Similar
to GeoSim [10], we cast a pre-computed shadow map at the
bottom of each object.

Composition After generating the foreground images, al-
pha blending is utilized to maintain the visual quality of
the object border when composing the foreground and back-
ground images. Specifically, we compute the output image as
Iy x M + 15 x (1 — M) where I; and I are the background
and foreground images, respectively. We apply a Gaussian
filter to foreground mask M to smooth out the edges of the
pasted objects.

3.6. Model Learning

In this section, we detail the learning objective of the
lifting process. Given N pairs of multi-view images with



pose annotations {I;, P;}~ ;, we jointly optimize latents and
NeRF generator parameters to minimize the following loss:

N

L= Z(ﬁRGB + ArovLrou + )\percﬁperc)v (5)
i=1

where Lrc g is photometric loss, Lor is IoU loss, Lyerc is
perceptual loss, and A, are loss weights.

Photometric Loss In order to optimize both latents and
NeRF generator to faithfully reconstruct input objects, we
encourage the pixels of the output image ®y(z;, P;) to ex-
actly match the pixels of the input image I;. If both have
shape C' x H x W, then the pixel loss is defined as

1
Lrep = mlh — Qy(zi, P, (6)
where | - | denotes the L, loss. z; and P; are object latents
and pose labels, respectively.

Perceptual Loss  We use perceptual loss to preserve high-
level feature reconstruction. The loss network VGG is the
16-layer VGG network [34] pretrained on ImageNet [11].

1 N
L = ——|\VGG(I;) — VGG(L;)|. 7
perc CHW| (I;) (1;)] @)
IoU Loss In addition, we use IoU loss to enforce silhouette
consistency.
M N M*
Lrov=1———, (8)
fov MU M~

where M is the binary mask predicted by volumetric ren-
dering, M™ is the ground truth binary mask predicted by
pretrained segmentation model PointRend [22].

4. Experiment

In this section, we evaluate the benefits of our 3D gen-
erative synthesis as data augmentation for the downstream
monocular 3D object detection task on the KITTI [17] and
nuScenes datasets [4].

4.1. Experimental Setup

KITTI [17] KITTI dataset is one of the most famous
autonomous driving datasets, which contains 7,481 training
and test frames with 80,256 annotated 3D bounding boxes.
Following [8, 9], we split the training data into the training
and validation subsets and evaluate the effectiveness of our
proposed method on the validation set.

nuScenes [4] nuScenes is a large-scale autonomous driv-
ing dataset. This dataset is collected using 6 surrounded-view
cameras that cover the full 360° field of view around the ego-
vehicle. Compared with the KITTI dataset, nuScenes dataset
contains 7x as many 3D bounding boxes in the urban scenes.

Sample Depth

(a) GIRAFFE

G
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Figure 5. Qualitative image comparisons between GIRAFFE [28],
GIRAFFE HD [45] and Ours. We render objects with randomly
sampled rotation while increasing the depth magnitude.

Evaluation Metrics In the KITTI dataset, we follow the
official protocol [17] and adopt the AP|40 evaluation met-
rics on 3D bounding box estimation tasks. The evaluation
is conducted separately based on the difficulty levels (Easy,
Moderate, and Hard). In the nuScenes dataset, we adopt
the provided [4] evaluation metrics to evaluate mAP of all
classes. We follow a similar setting in [41]. We use a 10%
subset of real data from the nuScenes training set. The subset
is sampled scene-wise to mimic label-efficient scenarios.

Asset Bank Creation For StyleGAN2 [21], we adopt
the official model' trained on the LSUN Car dataset [47]
to synthesize the multi-view images in an offline manner.
We synthesize images with pose label P, which is sampled
from the surface of a unit sphere that looks at the origin,
with 0 — 360° in azimuth and 0 — 20° in elevation. We
use segmentation network PointRend [22] to extract binary
mask of objects. During inference, images with a confidence
lower than 0.5 will be regarded as noisy data to filter out. We
created a large object bank of 1000 different vehicles, and
each vehicle is assigned 200 multi-view images (note that
nothing prevents us from generating a larger amount of data).
Then, we conduct the lifting process in the whole asset bank.

Ihttps://github.com/NVlabs/stylegan2
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Figure 6. Visualization of interpolation. We linearly interpolate
the latent codes of NeRF from left to right. Our method faithfully
generates a smooth and meaningful transition from one to another,
in both shape and appearance.

4.2. Comparisons

Qualitative Results We compare the visual quality with
the existing methods in Fig. 5. We utilize the foreground
mask in the generative model to filter out the background
pixels. Without any deformation of objects or broken parts,
our method is significantly more realistic than other methods.
Fig. 8 further shows the composition result of generated
objects and the original datasets, where our method achieves
harmonious visual quality without any post-processing.

Quantitative Results In Tab. 1, we provide the experi-
mental results of leveraging the augmented datasets to train
3D object detectors. Following existing settings [24,4 1], we
use CenterNet [53] (KITTI) and FCOS3D [40] (nuScenes)
trained on original data as baseline detectors. We compare
our method with several methods: ShapeNet model denotes
that we randomly select 20 CAD models from ShapeNet
car, rendering the models under different positions and ro-
tations to generate an augmented dataset. GIRAFFE and
GIRAFFE HD: Since they don’t contain real-world scale
and can not generalize to new camera parameters, we only
paste their generated objects in the center of images and
leverage object height to recover the ground truth depth.
We lighten their color for such issues. SimpleCopyPaste is

Method Easy | Mod | Hard
Original data 21.57 | 15.51 | 13.58
ShapeNet model 19.64 | 15.75 | 13.80
GIRAFFE [28] 20.79 | 15.10 | 12.50
GIRAFFE HD [45] 19.30 | 1444 | 12.39
SimpleCopyPaste [24] | 22.23 | 1547 | 13.24
Ours 24.07 | 18.09 | 15.06

Table 1. Quantitative Evaluation on the KITTI validation dataset.
AP)|40 of 3D bounding box on the Car category are reported.

3 XN 3 N 2
Augmented Tmage w/ Shadow, w/o Map Augmented Image w/ Shadow, w/ Map

Figure 7. Visualization of different composition strategies. “Map”’
denotes only sample objects in drivable areas. “Shadow” denotes
whether to add a shadow at the bottom of objects.

SOTA copy-paste augmentation method in monocular 3D de-
tection. As discussed in [24], it is restricted to using existing
objects with fixed viewpoints to do augmentation, while our
method can generate novel objects in arbitrary positions and
rotations. Consequently, our method can effectively enhance
the diversity of training data and achieve better results as
shown in Tab. 1.

Except for the KITTI dataset, we also validate the effec-
tiveness of our method on the nuScenes dataset. We augment
the full-surround view images of dataset with our method.
We use the same training strategy and model hyperparam-
eters as [40] but do not supervise attributes and velocity
as they are not included in the augmented data. It is worth
mentioning that, by only augmenting the car objects, we can
achieve consistent gain among the majority of classes even
though we do not directly augment these classes.

Method mAP Car Bus Pedestrian | Motorcycle
Original data | 0.136 | 0.231 | 0.072 0.277 0.142
Ours 0.146 | 0.254 | 0.086 0.297 0.154

Table 2. Experimental results of FCOS3D [40] on the nuScenes
validation set. mAP represents the mean average precision of 10 ob-
ject categories. We additionally present the AP of other classes that
are not directly augmented (e.g., bus, pedestrian, and motorcycle).

Unsupervised 3D Object Detection Besides augmenting
existing datasets, our framework can create datasets from
scratch, which means unsupervisedly train a 3D detector.
Specifically, we select the images with more than 90% of
background pixels as empty images by using a pretrained seg-
mentation network [37]. Then we populate novel objects into
these nearly-empty background images. During the whole

Method Easy | Mod | Hard
SDF-Label [48] | 1.23 | 0.54 | N/A
Our unsup. data | 5.15 | 3.80 | 3.48

Table 3. Comparison with unsupervised 3D detection methods.
Note that SDF-Label [48] additionally uses LiDAR point clouds
for accurate depth retrieval.
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Figure 8. Qualitative comparison of 3D generative synthesis serves as data augmentation on nuScenes and KITTI datasets. Our method is
able to generate more realistic shapes and textures, and the resulting objects blend more naturally with the background image.

process, the construction of the training data does not require
any human annotation for 3D bounding boxes. As shown in
Tab. 3, our trained model outperforms existing unsupervised
training solution by a large margin.

4.3. Ablation Study

We ablate different composition strategies that affect per-
formance in the downstream task in Tab. 4. We fix the sam-
pling pose of all synthesized objects and train the same
model [53] with different composition strategies. As shown
in Fig. 7 and Tab. 4, the improvement of downstream task
performance is consistent with the enhanced visual qual-
ity. These indicate the importance of realistic simulation in
downstream tasks.

Map | Shadow || Easy | Mod | Hard
2235 | 17.36 | 14.53

v 22.85 | 16.49 | 14.08
v 23.08 | 17.71 | 15.02
v v 24.07 | 18.09 | 15.06

Table 4. Ablation of different composition strategies on the KITTI
validation dataset. “Map” denotes road layout aware sampling.
“Shadow” denotes whether to cast a shadow at the bottom of objects.

5. Limitation and Future Work

Relation Reasoning The proposed method augments the
existing dataset by sampling novel objects uniformly on
the ground plane. If objects are not properly sampled in
reasonable positions, they can cause unharmonious in the

augmented images. For example, a vehicle may not follow
the lane lines or even rush to a building. Also, relations
between traffic participants are not modeled realistically. In
the future, these issues could be addressed by traffic flow
simulation [38,39], or geometry-aware composition [10].

Photorealistic Appearance Since our generated objects
have a different data source from the original datasets. There
exist an illumination gap between generated object and the
existing environment. For example, the rendered object in
driving scene should be darker in the afternoon, compared
with midnoon. Lighting estimation [41,46] can help with
this problem. In the meantime, high-quality material prop-
erties should be estimated in detail. Techniques proposed in
GET3D [15] could potentially be used to generate objects
with high-fidelity textures.

6. Conclusion

We propose Lift3D, a 3D generation framework that pro-
vides high-resolution synthesis and tight 3D annotation, with
the goal of training data generation. Compared with other 3D
generative models relying on a 2D upsampler, our lifting pro-
cess gives explicit 3D information of generated objects and
hence the objects align well with given 3D labels. Also, our
approach provides more realistic appearance generation by
distilling the knowledge from pretrained StyleGAN2. Based
on the proposed framework, we can enhance original datasets
both in quantity and diversity. Experimental results show sig-
nificant improvements over baseline in monocular 3D object
detection tasks. We hope this work can take us a step further
in 3D asset generation for driving scene simulation.
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