
ADVANCED LOGICAL TYPE SYSTEMS FOR UNTYPED LANGUAGES

Andrew M. Kent

Submitted to the faculty of the University Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

in the Department of Computer Science,

Indiana University

October 2019

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

Doctoral Committee

Sam Tobin-Hochstadt, Ph.D.

Jeremy Siek, Ph.D.

Ryan Newton, Ph.D.

Larry Moss, Ph.D.

Date of Defense: 9/6/2019

ii

Copyright © 2019

Andrew M. Kent

iii

To Caroline, for both putting up with all of this and helping me stay sane throughout.

Words could never fully capture how grateful I am to have her in my life.

iv

ACKNOWLEDGEMENTS

None of this would have been possible without the community of academics and friends

I was lucky enough to have been surrounded by during these past years. From patiently

helping me understand concepts to listening to me stumble through descriptions of half-

baked ideas, I cannot thank enough my advisor and the professors and peers that donated

a portion of their time to help me along this journey.

v

Andrew M. Kent

ADVANCED LOGICAL TYPE SYSTEMS FOR UNTYPED LANGUAGES

Type systems with occurrence typing—the ability to refine the type of terms in a control

flow sensitive way—now exist for nearly every untyped programming language that has gained

popularity. While these systems have been successful in type checking many prevalent idioms,

most have focused on relatively simple verification goals and coarse interface specifications. We

demonstrate that such systems are naturally suited for combination with more advanced type

theoretic concepts—specifically refinement types and semantic subtyping—with both formal

mathematical models and experiences reports from implementing such systems at scale.

Sam Tobin-Hochstadt, Ph.D.

Jeremy Siek, Ph.D.

Ryan Newton, Ph.D.

Larry Moss, Ph.D.

vi

TABLE OF CONTENTS

Acknowledgements . v

Abstract . vi

List of Figures . xi

Chapter 1: Introduction and Background . 1

1.1 Refinement Types . 2

1.2 Set-theoretic types . 3

1.3 Thesis Statement and Outline . 6

Chapter 2: Occurrence Typing . 8

2.1 Occurrence Typing Examples . 9

2.2 λOT : A Calculus for Occurrence Typing . 14

2.2.1 λOT Syntax . 14

2.2.2 λOT Type System . 16

2.2.3 λOT Subtyping . 19

2.2.4 λOT Logic and Type Metafunctions 19

2.2.5 λOT Semantics . 23

2.2.6 λOT Soundness . 25

2.2.7 Scaling Up λOT . 26

2.2.8 Related Work in Occurrence Typing 30

vii

Chapter 3: Occurrence Typing with Refinement Types 35

3.1 Beyond Occurrence Typing . 37

3.1.1 Occurrence Typing with Linear Arithmetic 37

3.1.2 Occurrence Typing with Bitvectors 39

3.2 Formal Model . 40

3.2.1 Syntax . 40

3.2.2 Typing Rules . 43

3.2.3 Subtyping and Proof System . 46

3.2.4 Integrating Additional Theories . 51

3.2.5 Semantics and Soundness . 52

3.3 Scaling to a Real Implementation . 55

3.3.1 Efficient, Algorithmic Subtyping . 55

3.3.2 Mutation . 56

3.3.3 Type Inference and Polymorphism 57

3.3.4 Complex Macros . 57

3.4 Case Study: Safe Vector Access . 59

3.4.1 Enriching the Math Library . 60

3.5 Adding Refinements to Typed Racket . 62

3.5.1 Compiling Dependent Types into Contracts 64

3.5.2 Pay-as-you-go costs for developers 65

3.5.3 Dealing with Existentials . 65

3.6 Related Work . 66

Chapter 4: Semantic Subtyping . 69

4.1 Set-theoretic Types . 69

viii

4.1.1 Subtyping . 70

4.1.2 Semantic Subtyping . 71

4.1.3 Deciding Inhabitation, Normal Forms 72

4.2 Type Representation . 75

4.2.1 Types as Data Structures . 75

4.2.2 Base DNF Representation . 77

4.2.3 Product and Function DNFs . 80

4.2.4 Parsing and Example Types . 84

4.3 Type Inhabitation . 85

4.3.1 Deciding Type Inhabitation . 86

4.4 Other Type-level Metafunctions . 92

4.4.1 Product Projection . 92

4.4.2 Function Domain . 94

4.4.3 Function Application . 95

4.5 Strategies for Testing . 98

4.6 Related Work . 99

4.6.1 Other Tutorials and Overviews . 99

4.6.2 First-order or incomplete semantic subtyping 100

4.6.3 Semantic subtyping with additional features 101

4.6.4 Expressive Syntactic Subtyping . 101

Chapter 5: A Set-theoretic Foundation for Occurrence Typing 103

5.1 Logical Inversion . 103

5.1.1 Function Application Inversion . 105

5.1.2 Algorithm Intuition . 106

ix

5.1.3 Algorithm . 107

5.1.4 Soundness and Completeness . 108

5.1.5 Efficient Implementation . 109

5.1.6 Conservative Function Application Inversion 111

5.2 Formal Language Model . 112

5.2.1 λSO Syntax . 113

5.2.2 λSO Type System . 115

5.2.3 λSO Semantics . 119

5.2.4 λSO Soundness . 119

5.2.5 Additional Language Features . 123

5.3 Semantic Numeric Tower . 124

5.3.1 Semantic Types for Comparison Operators 125

5.3.2 Semantic Types for Other Numeric Operators 128

5.3.3 Semantic/Syntactic Function Type Comparison 130

5.3.4 Challenges and Future Work . 132

5.4 Expressiveness . 133

5.5 Related Work . 136

Appendix A: Function Application Inversion Proofs 138

Appendix B: Numeric Tower Types . 156

Appendix C: CDuce Numeric Tower . 166

References . 169

Curriculum Vitae

x

LIST OF FIGURES

2.1 λOT Syntax . 15

2.2 λOT Typing Judgment . 17

2.3 λOT Constant Type-Results . 17

2.4 λOT Subtyping . 20

2.5 λOT Type-related Logic Rules and Metafunctions 21

2.6 λOT Big-step Reduction Relation . 24

2.7 λOT Primitive Types . 24

2.8 λOT Models Relation . 25

3.1 max with refinement types . 36

3.2 λRTR Syntax . 41

3.3 λRTR Primitive Types . 43

3.4 λRTR Typing Judgment . 44

3.5 λRTR Subtyping . 47

3.6 λRTR-specific Logic Rules . 48

3.7 λRTR type-update metafunction . 50

3.8 λRTR Big-step Reduction Relation . 52

3.9 λRTR Primitive Semantics . 53

3.10 λRTR Models Relation . 53

xi

3.11 safe-vec-ref case study . 60

4.1 Set-theoretic Types . 69

4.2 Subtyping/Inhabitation Equivalence . 72

4.3 Canonical form for representing types . 74

4.4 Internal type representation . 76

4.5 Top and bottom type representations . 77

4.6 Internal type operations . 78

4.7 Internal base type representation . 79

4.8 Internal base DNF operations . 79

4.9 Lazy BDDs for type representation . 83

4.10 BDD node smart constructor . 84

4.11 BDD difference and negation . 85

4.12 BDD union and intersection . 86

4.13 Type parsing . 87

4.14 Semantic subtyping, defined in terms of type emptiness 87

4.15 Type emptiness predicate . 87

4.16 Sets of atoms . 88

4.17 Product BDD inhabitation functions . 89

4.18 Functions for checking if a function BDD is uninhabited 91

4.19 Functions for projecting from a product type 94

4.20 Domain calculation for function types . 95

4.21 Function application result type calculations 98

5.1 Function Application Inversion Examples 106

xii

5.2 Function Application Inversion Algorithm 108

5.3 Efficient algorithm for function application inversion. 110

5.4 Conservative Function Application Inversion Algorithm 112

5.5 λSO Syntax . 113

5.6 λSO Typing Judgment . 115

5.7 λSO Type Metafunctions . 117

5.8 λSO Logic and Subtyping . 118

5.9 λSO Small-step Reduction Semantics . 120

5.10 Numeric Tower Overview for Number (left) and Integer (right) 124

5.11 (Partial) Syntactic Type of < (7 of 88 arrows shown) 126

5.12 Semantic Type of < . 127

5.13 Syntactic Type of add1 . 129

5.14 Semantic Type of add1 . 130

5.15 Size of certain Racket math operations (syntactically vs semantically) . . . 132

B.1 Syntactic Type of + (1 of 4) . 161

B.2 Syntactic Type of + (2 of 4) . 162

B.3 Syntactic Type of + (3 of 4) . 163

B.4 Syntactic Type of + (4 of 4) . 164

B.5 Semantic Type of + . 165

xiii

CHAPTER 1

INTRODUCTION AND BACKGROUND

For almost every untyped programming language that has gained popularity, a type system

has sprung up in its wake. This is true for early systems such as Lisp[1] and Smalltalk[2], but

is now widely appreciated in the context of JavaScript[3, 4, 5, 6, 7, 8], Racket[9], Clojure[10],

Lua [11], PHP [12], Python [13], and more. In each of these systems, type system designers

face a central challenge: accommodating the idioms of the existing untyped language in a

sound, statically-typed fashion.

Consider the following function move (adapted from the TypeScript online documenta-

tion) which is capable of moving Birds and Fish:

function move(pet : Bird|Fish) {
if (isFish(pet)) pet.swim();
else pet.fly();

}

Here we see two features found in TypeScript and most other type systems designed for

existing untyped languages: basic set-theoretic types (i.e. ad-hoc unions), and occurrence

typing. Union types such as Bird|Fish denote all values that are either a value of the

first or second type (i.e. either a Bird or a Fish) and are essential for precisely describing

the ubiquitous set-based reasoning used in untyped languages. To discriminate between the

different possibilities of such a union, programmers use some form of type-based predicates.

In this example, the user has written a predicate function isFish, which not only determines

whether the input is a Fish, but is known to the type system to do so. In other words,

because of the conditional test isFish(pet), the type system knows the occurrence of pet

in the first branch (i.e. the “then-branch”) has type Fish (making pet.swim() well typed)

and the occurrence in the second branch (i.e. the “else-branch”) has type Bird (making

pet.fly() well typed). This ability for the type checker to check different occurrences of

the same variable at different types based on control flow-sensitive reasoning is known as

1

occurrence typing[14].1

Because of their ability to cope with common idiomatic patterns from untyped pro-

gramming, basic set-theoretic types (i.e. unions) and occurrence typing2 are now featured

in numerous languages, ranging from the logical types found in Typed Racket[9] to sim-

ple syntactic patterns[17, 18, 15] to flow-analysis driven approaches[19, 8] to TypeScript’s

expressive but unchecked (and thus unsound) type predicates.

1.1 Refinement Types

Although type systems with occurrence typing are capable of supporting many untyped

language-specific idioms, the majority have focused on relatively simple type system fea-

tures, i.e. those which can rule out dynamic type errors such as including a string in an

arithmetic computation. While these guarantees are certainly a welcome improvement, we

argue that such type systems—which already perform logical reasoning in a control flow-

sensitive way—are well suited for verifying more precise program properties. In particular,

using flow-sensitive reasoning along with refinement types has emerged as a popular way to

provide more robust guarantees for programs while leveraging well understood off-the-shelf

tools such as satisfiability modulo theories (SMT) solvers [20, 21, 22, 23].

Recall that a refinement type {v : t | P} describes all values v of type t for which

the logical predicate P holds. For a simple example, let us consider the following Haskell

function which guards division with an explicit zero test:

divide :: Int -> Int -> Int
divide n m = if m == 0

then error "cannot divide by zero"
else n `div` m

Because the type Int includes 0, Haskell’s type system is unable to statically guarantee

0 is never passed as an argument. We must instead settle for a run-time check which may

fail during program execution:

1This same idea is sometimes also referred to as flow-sensitive typing [15, 16] or smart casts [17].
2Occurrence typing can be seen as an elimination form for ad-hoc union types.

2

> divide 42 0

*** Exception: cannot divide by zero

By using a more advanced type system which can refine Haskell’s types with logical

predicates—e.g. Liquid Haskell [23]—we can instead encode and enforce such invariants

while type checking:

{-@ divide :: Int -> {v: Int | v != 0 } -> Int @-}
divide :: Int -> Int -> Int
divide n m = if m == 0

then unreachable "cannot divide by zero"
else n `div` m

We cannot call this version of divide unless the type checker can prove the provided

second argument (i.e. corresponding to parameter m) is non-zero. Furthermore, the usage of

unreachable ensures the then branch will not type check unless it is provably unreachable.

In other words, the type system must learn from the test m == 0 and understand that in

the then-branch any occurrence of m would have type {v: Int | (v != 0) ∧ (v ==

0)}, which is impossible, and so that branch is in fact dead code.

With this more specific type signature, callers of divide must provide provably non-zero

terms for the second argument:

average :: [Int] -> Int
average xs = divide (foldl (+) 0 xs) (length xs)
--Error: Type Mismatch
-- Inferred type
-- {v : Int | v >= 0 && v == len xs}
-- not a subtype of Required type
-- {v : Int | v != 0}

In the case of average, there is an implicit requirement that xs be a non-empty list of

Int. Since this invariant is not enforced in any way (i.e. either by a refinement on the xs

argument to average or with a dynamic check), the call to divide in the body of average

fails.

1.2 Set-theoretic types

Although the majority of type systems with occurrence typing feature some set-theoretic

types, most suffer from two notable flaws which hinder their ability to describe some

3

language-specific idioms. First, they fail to reason completely about their types (e.g. sub-

typing), meaning that programs which may seem obviously correct to a programmer may

fail to type check. And second, they are unable to reason about types as sets of values in

ways besides unions (i.e. they omit intersection and/or negation tyoes); ways that can feel

just as natural to programmers and appear in existing untyped idioms.

We can observe the first problem—that of incomplete reasoning—examining why syn-

tactic subtyping rules (i.e. those used almost universally by type systems) frequently fail

to recognize valid subtyping relations that occur in real programs featuring set-theoretic

types. For example, consider these standard syntactic rules describing reflexivity, union,

and product subtyping:

τ <: τ

τ <: σ1
τ <: σ1 ∪ σ2

τ <: σ2
τ <: σ1 ∪ σ2

τ1 <: σ τ2 <: σ

τ1 ∪ τ2 <: σ

τ1 <: σ1 τ2 <: σ2
τ1 × τ2 <: σ1 × σ2

With these rules, it is impossible to prove (α∪β)×β <: (α×β)∪ (β×β) even though

both types describe the exact same set of values: pairs with an α or β in the first field

and a β in the second field. This unfortunately means users of such systems are explicitly

encouraged by the type system to reason set-theoretically and then punished for doing so.

The unfortunate effects of the second problem—lacking intersection and/or negation

types—we see when trying to precisely describe the behavior for the commonly used hash-ref

function in Racket:

(define (hash-ref h k [fail (λ () (error "key not found"))])
(cond
[(hash-has-key? h k) (unsafe-hash-ref h k)]
[(procedure? fail) (fail)]
[else fail]))

Here are some simple REPL examples of hash-ref at work:

> (define ages (hash "Charlotte" 9
"Harrison" 7
"Sydney" 4))

> (hash-ref ages "Sydney") ;; ==> 4

4

> (hash-ref ages "Dwight" 10) ;; ==> 10
> (hash-ref ages "Dwight" (λ () 10)) ;; ==> 10
> (hash-ref ages "Dwight") ;; ERROR! key not found

We redefined hash-ref—a primitive in Racket— to call an invented primitive function

unsafe-hash-ref to more clearly illustrate hash-ref’s semantics. It’s arguments can be

interpreted as follows:

• h is a hash table,

• k is the key whose associated value should be fetched from h, and

• fail is an optional argument that determines what the result is when no entry for k

is found in h. In particular, if there is no entry for k in h, then:

– if fail is a procedure, the result is the result of calling fail with no arguments,

otherwise

– if fail is not a procedure, the result is simply fail itself.

When ascribing a type to hash-ref, the first two argument types are straightforward:

h should be of type (Hashtable A B) and k should be of type A. If no third argument is

provided, the function will return a B or error. But what about when the third argument

(i.e. fail) is provided? From the definition, we see the behavior of hash-ref can vary

depending on whether fail is a procedure or a non-procedure. If it is a procedure, it must

take no arguments and it will return some value, say of type C, making fail have type

(-> C). If it is any non-procedure—i.e. a value of type C and (¬ Procedure)—then that

value is simply returned. The following is a polymorphic, overloaded function type that

captures these three possibilities:

(All (A B C)
(case->

[(Hashtable A B) A -> B]
[(Hashtable A B) A (-> C) -> (U B C)]
[(Hashtable A B) A (∩ C (¬ Procedure)) -> (U B C)]))

Because negation types are not present in Typed Racket, however, the following incom-

plete type is used instead:3
3the real type is actually slightly more complex for non-interesting reasons, but we present the key ideas.

5

(All (A B C)
(case->

[(Hashtable A B) A -> B]
[(Hashtable A B) A (-> C) -> (U B C)]
[(Hashtable A B) A False -> (U B False)]))

And while this type is indeed sound, it limits what programmers can provide for the

third argument, interfering with many basic uses (e.g. storing booleans in the hash table

and using a symbol to signal no entry was found).

Both of these issues are illustrative of the challenges that often occur in occurrence typing

systems which do not completely reason about and/or do not feature the complete spectrum

of set-theoretic types. As we will argue in more detail shortly, a type system can overcome

such challenges by considering a semantic interpretation of types, in which the meaning of a

type is the set of values it denotes. In fact, we will show how embracing semantic subtyping

and the full range of set-theoretic types can enrich and simplify occurrence typing systems.

1.3 Thesis Statement and Outline

With occurrence typing defined and some intuition for how it might relate to refinement

and set-theoretic types generally, we can present our thesis statement:

Occurrence typing combines with refinement and set-theoretic types to form more

expressive and more complete type systems.

In particular, by “more expressive and more complete” we mean the resulting systems

are capable of accurately describing more untyped idioms with types and can successfully

check more programs because of this. This thesis is defended in the remainder of this

document as follows:

• chapter 2 lays out a foundational calculus for occurrence typing and gives an overview

of various occurrence typing approaches;

• chapter 3 describes an occurrence typing calculus with refinement types and the results

of scaling the approach to larger systems along with related work;

6

• chapter 4 gives an overview of set-theoretic types, their semantic interpretation, and

how to actually implement such systems;

• chapter 5 describes an occurrence typing calculus built on set-theoretic types and

semantic subtyping and examines how non-trivial real world systems—such as Typed

Racket’s numeric tower—might benefit from the added expressiveness.

7

CHAPTER 2

OCCURRENCE TYPING

Stated broadly, occurrence typing is the ability for a type system to check different oc-

currences of the same variable at different types. This is highlighted in the name perhaps

because it is the most “obvious” feature necessary for effectively type checking untyped

programs and it stands in stark contrast to the standard practice (i.e. where a variable

has exactly on type for the entirety of its lexical scope). In practice however, we find that

occurrence typing is necessary but not sufficient for type checking many untyped programs.

To cover many of the idioms used by programmers in the wild, we argue a collection of type

system features similar to the following is desirable:

• occurrence typing;

• type predicates;

• untagged (i.e. true) union types;

• positive and negative reasoning about the results of type predicates;

• idiomatic reasoning about “null-checks”;

• logical reasoning; and

• structural reasoning about certain values.

We give descriptions and justification for these features in the following section, which

reviews examples given by Tobin-Hochstadt and Felleisen [9] as demonstrative examples

of untyped idioms a type checker of untyped languages should handle. Admittedly, some

system designers may choose a slightly different feature set, however the above list seems

both foundational and large enough to be useful in practice, and so we will use it for our

study of occurrence typing generally in this work. The key ideas can be easily adapted to

similar systems.

8

2.1 Occurrence Typing Examples

Here we review some examples from prior work [9] which help illustrate why the aforemen-

tioned type system features make a reasonable starting point when studying “real-world”

occurrence typing system. Although these examples are drawn from a Lisp/Scheme-like

language (Racket), the same fundamental patterns arise in most untyped languages. If the

reader needs no convincing or is already familiar with the aforementioned features, this

section can be safely skipped. A core calculus for a type checker well-suited for checking

these kinds of programs is given later in this chapter (see section 2.2).

The most basic example of occurrence typing can be seen in example 1. Here, regardless

of what value x has, the expression will return a number:

Example 1

(if (number? x)
(add1 x)
0)

We believe this expression is well typed for primarily two reasons: (1) the number?

function is known to be a type predicate for numbers (i.e. it accepts any value and

returns true if and only if the input is a number, otherwise it returns false) and (2)

we know that in the “then-branch” the test expression (number? x) was positive (i.e.

produced a non-false value) and so the occurrence of x in (add1 x) is indeed a number.

While example 1 shows how simple positive reasoning about type predicates can be of

use, example 2 shows how the negative result of a type predicate (i.e. when it returns

false) and an untagged union can work together to inform the type system:

Example 2

(: magnitude (-> (U String Number) Number))
(define (magnitude x)

(if (number? x)
(abs x)
(string-length x)))

Because of the type annotation we know that the parameter x has the union type

(U String Number), i.e. it is either a String or Number. The then-branch checks as it

9

did in example 1, while the “else-branch” type checks because of the negative information

that is gleaned regarding x. In particular, when the predicate returns false, we learn that

x is not a number. This combined with what we initially we knew about the type of x allows

us to conclude in the else-branch that x must be a String and thus (string-length x)

too is well typed.

Example 3 is similar to examples 1 and 2, except that instead of an explicit predicate,

we perform a null-check of sorts on x by testing directly whether or not it is false:

Example 3

(let ([x (assoc v l)])
(if x

;; compute with x ...
(error (format "~v not in ~v" v l))))

In the non-false case (the commented out then-branch), we expect the type system

to conclude that x is indeed the key/value pair for v in the association list l (since assoc

returns either that or false).

Now let us consider why logical reasoning is necessary for an effective occurrence

typing system. To type check this next example we must reason correctly about logical

disjunctions and their implications:

Example 4

(if (or (number? x)
(string? x))

(magnitude x)
0)

In particular, in example 4 we expect the type system to understand that in the then-

branch exactly one of the predicates for x produced true (although precisely which is

uncertain). Because of this, we should be able to pass x to a function which accepts either

type (such as magnitude from example 2). Similarly, the type system should be able to

reason about the logical implications of conjunctions as well:

10

Example 5

(if (and (number? x) (string? y))
(+ x (string-length y))
0)

In example 5 we use predicate tests over multiple variables and the type system should

learn something about all applicable variables when the conjunction of those tests returns

true. Example 6 is similar to example 5, except with a subtle “programmer error” that

must be highlighted by the type system:

Example 6

;; x is a Number or String
(if (and (number? x) (string? y))

(+ x (string-length y))
(string-length x))

Here the test-expression and then-branch should type check successfully, but the else

branch should fail because it is not clear why the test-expression produced false: it could

be because x is a string instead of a number, or it could simply be that y is not a string.

Example 7 is also similar to example 5 except that the and-macro has been expanded.

The type system should still be able to reason about this control flow to see that the

then-branch of the outer-most if is only executed when x is a Number and y is a String.

Example 7

(if (if (number? x) (string? y) false)
(+ x (string-length y))
0)

Example 8 demonstrates an important feature: the ability for the user to abstract over

a type predicate (in this case for the type (U String Number)):

Example 8

(: str-num? (-> Any Boolean : (U String Number)))
(define (str-num? x)

(or (string? x) (number? x)))

This ability is key because predicates for untagged union types—a staple in reasoning

11

about most any untyped language—simply do not exist a priori: they must be constructed

and/or synthesized by composing more primitive pre-existing predicates.

Example 9 is the macro-expansion of example 4, i.e. the or-macro connecting the type

tests for x has been expanded into the equivalent let-expression:

Example 9

(if (let ([tmp (number? x)])
(if tmp tmp (string? x)))

(magnitude x)
0)

Similarly here the type checker should still be able to conclude that in the then-branch x

must have type Number or String since the logically equivalent expansion of the or-macro

must have produced true.

Example 10 introduces the need for structural reasoning about a term:1

Example 10

(if (and (pair? p) (number? (fst p)))
(add1 (fst p))
7)

In other words, initially p can have any type. If (pair? p) produces true, we know at

a minimum it is of type (Pair Any Any) and that the other expression in the conjunct will

be executed. With p having type (Pair Any Any), we can successfully type check (fst p)

and ask if it is a number. If this conjunction produces true, we know in the then-branch

(fst p) now has type Number, and we can thus check (add1 (fst p)) successfully.

Example 11 is like example 10 but shows that not only should the type of expressions

such as (fst p) be able to be updated via occurrence typing, but that those updates should

impact the type of p itself. I.e., in this example, testing the types of both fst and snd of

p has the effect up updating the type of p itself.

1We use fst and snd in lieu of the actual (and more opaque) pair accessor names car and cdr.

12

Example 11

(: norm (-> (Pair Number Number) Number))
(define (norm p)

(sqrt (+ (expt (fst p) 2) (expt (snd p) 2))))

(λ ([p : (Pair Any Any)])
(if (and (number? (fst p)) (number? (snd p)))

(norm p)
(error "non-number pair!")))

Example 12 indicates that predicate abstraction should also work for the structural

subcomponents of arguments when desired. I.e., fst-num? is essentially a number predicate

for the fst field of its argument.

Example 12

(: fst-num? (-> (Pair Any Any) Boolean : (Pair Number Any)))
(define (fst-num? p)

(number? (fst p)))

Example 13 creates a setting where all of this logical reasoning should work together in

a complex conditional expression:

Example 13

(cond [(and (number? x) (string? y))
;; clause 1
...]

[(number? x)
;; clause 2
...]

[else
;; clause 3
...])

In particular, in clause 1, we know that x is a Number and y is a String. In clause 2, x

is known to be a Number and y is known to not be a String (since the previous predicate

regarding x and y produced false). Finally, in clause 3 y is known to be a String (since

we now know x is not a Number).

Finally, example 14 is like example 13 but includes structural reasoning, presenting a

function whose correctness depends on almost all of the aforementioned features working

together within the type checker:

13

Example 14

(λ ([input : (U String Number)]
[extra : (Pair Any Any)])

(cond [(and (number? input) (fst-num? extra))
(+ input (fst extra))]

[(fst-num? extra)
(+ (string-length input) (fst extra))]

[else 0]))

2.2 λOT : A Calculus for Occurrence Typing

We define a λ-calculus—dubbed λOT—which acts as a foundation upon which we can build

and experiment. λOT is roughly equivalent to the λTR calculus introduced by Tobin-

Hochstadt and Felleisen [9] with a slightly modified syntax. We use this formalism be-

cause it is expressive enough to cope with many real-world idioms that arise in untyped

programming (i.e. those found in section 2.1) and it still accurately describes how some

non-trivial occurrence typing systems in use today—such as Typed Racket and Typed

Clojure—fundamentally operate.

Because the formalisms introduced in sections 3.2 and 5.2 closely resemble the approach

taken by λOT , it will be a useful to first understand how λOT works before examining how

refinements and semantic set-theoretic types might affect such a system.

2.2.1 λOT Syntax

The syntax of expressions, types, propositions, and other forms are given in figure 2.1.

Constants and Expressions in λOT describe a relatively simple lambda calculus:

it has integers, booleans, and unary primitive operations as its constants; variables and

function application are standard; λ-abstractions are annotated with their argument type

for simplicity of type checking; conditionals and local binding forms are standard; pair

construction and projection is explicit, allowing us to omit polymorphism for simplicity.

Indices abstract over valid pair indices, simplifying some rules and metafunctions.

Types deserve some detailed description. The universal “top” type Any is the type

which describes all well typed terms. Int is the type of integers, while True and False are

14

i ::= 1 | 2 Indices
e ::= Expressions

| c constant
| x, y, z variables
| (e e) application
| (λ(x :τ) e) abstraction
| (if e e e) conditional
| (let (x e) e) local binding
| (pair e e) pair construction
| (proj i e) pair projection

τ, σ ::= Types
| Any universal type
| Int integer type
| True true types
| False false type
| τ × τ product type
| (x :τ)→R arrow type
| (
∪∪∪

τ⃗) type union
R ::= ⟨τ, p, q, o⟩ Type-Results

c ::= Constants
| int integer value
| true true value
| false false value
| uop primitive ops

π ::= Paths
| x variable
| (proj i π) field access

o ::= Symbolic Objects
| π path object
| ⊤o empty object

p, q ::= Propositions
| tt trivial prop
| ff absurd prop
| p∧ p conjunction
| p∨ p disjunction
| π ∈ τ π is of type τ

| π /∈ τ π is not of type τ

Γ ::= −→p Type Env

Figure 2.1: λOT Syntax

the types of the boolean values true and false. Pair types are written τ × σ, describing

pairs whose first field is of type τ and whose second field is of type σ. Function types consist

of a named argument x, a domain type τ , and codomain type-result R in which x is bound.

(
∪∪∪ −→τ) describes a “true” (i.e. untagged) union of the components in −→τ . For convenience

we write the boolean type (
∪∪∪

True False) as Bool and the uninhabited ‘bottom’ type (
∪∪∪

)

as Empty.

Propositions are a key component of λOT , providing for a standard propositional logic

with some type-specific features. tt and ff are the trivial and absurd propositions, while

p ∧ q and p ∨ q represent the conjunction and disjunction of propositions p and q. Type

information is expressed by propositions of the form π ∈ τ and π /∈ τ , which state that the

path π is and is not of type τ respectively.

Paths. Our type system supports occurrence typing by allowing logical propositions

about the types of certain pure terms in our language, which we dub paths. λOT supports

variable and pair-projection paths. One can think of them as representing some known,

pure computational path to a value about which we can make type-related claims.

15

Symbolic Objects. This syntactic abstraction can be thought of as a “maybe path”,

i.e. either some path π or ⊤o to indicate no path. ⊤o is used to identity expressions whose

type the logic will not reason about. In λOT we essentially use ⊤o to indicate a term’s value

will not necessarily correspond to a named value (i.e. a variable or variable’s subfield),

but in more complex systems ⊤o could also be used for potentially impure computations

(allowing mutation to be soundly supported without reasoning about effects explicitly, for

example).

Type-Results allow λOT to easily reason about more than the just the type τ of an

expression. I.e., in addition to describing an expression’s type, a type-result further informs

the system by explicitly describing (1) what can be inferred in the respective branches

of a conditional if this expression is used as the test-expression—described by the pair of

propositions p (the ‘then proposition’) and q (the ‘else proposition’) in the type result—and

(2) which symbolic object o the expression’s evaluation would corresponds to.

Environments are simply collections of propositions. Note that in an efficient imple-

mentation of such a system it is useful to separate the environment into two portions: a

traditional mapping of variables to types along with a set of currently known propositions.

The latter can then be used to refine the former during type checking.

2.2.2 λOT Type System

Instead of assigning types, λOT ’s typing judgment assigns type-results to expressions:

Γ ⊢ e : ⟨τ, p, q, o⟩

This judgment states that in environment Γ

• e has type τ ;

• if e evaluates to a non-false (i.e. treated as true) value, “then proposition” p holds;

• if e evaluates to false, “else proposition” q holds;

• e’s value corresponds to the symbolic object o.

16

Γ ⊢ e : R
T-Const
Γ ⊢ c : ∆(c)

T-Abs
Γ, x ∈ τ ⊢ e : R

Γ ⊢ (λ(x :τ) e) : ⟨(x :τ)→R, tt, ff,⊤o⟩

T-Var
Γ ⊢ x ∈ τ

Γ ⊢ x : ⟨τ, x /∈ False, x ∈ False, x⟩
T-If

Γ ⊢ e1 : ⟨Any, p1, q1,⊤o⟩
Γ, p1 ⊢ e2 : R Γ, q1 ⊢ e3 : R

Γ ⊢ (if e1 e2 e3) : R

T-Subsume
Γ ⊢ e : R′ Γ ⊢ R′ <: R

Γ ⊢ e : R
T-Let

Γ ⊢ e1 : ⟨τ1, p1, q1, o1⟩
px = (x /∈ False∧ p1)∨ (x ∈ False∧ q1)

Γ, x ∈ τ1, px ⊢ e : R2

Γ ⊢ (let (x e1) e2) : R2[x 7→ o1]

T-App
Γ ⊢ e1 : ⟨(x :τ)→R, tt, tt,⊤o⟩

Γ ⊢ e2 : ⟨τ, tt, tt, o2⟩
Γ ⊢ (e1 e2) : R[x 7→ o2]

T-Pair
Γ ⊢ e1 : ⟨τ1, tt, tt,⊤o⟩
Γ ⊢ e2 : ⟨τ2, tt, tt,⊤o⟩

Γ ⊢ (pair e1 e2) : ⟨τ1 × τ2, tt, ff,⊤o⟩

T-Proj
Γ ⊢ e : ⟨τ1 × τ2, tt, tt, o⟩ o′ = (proj i x)

R = ⟨τi, o′ /∈ False, o′ ∈ False, o′⟩
Γ ⊢ (proj i e) : R[x 7→ o]

Figure 2.2: λOT Typing Judgment

∆ : c → R
∆(int) = ⟨Int, tt, ff,⊤o⟩
∆(true) = ⟨True, tt, ff,⊤o⟩
∆(false) = ⟨False, ff, tt,⊤o⟩
∆(not) = ⟨(x :Any)→⟨Bool, x ∈ False, x /∈ False,⊤o⟩, tt, ff,⊤o⟩
∆(zero?) = ⟨(x :Int)→⟨Bool, tt, tt,⊤o⟩, tt, ff,⊤o⟩
∆(sub1) = ⟨(x :Int)→⟨Int, tt, ff,⊤o⟩, tt, ff,⊤o⟩
∆(add1) = ⟨(x :Int)→⟨Int, tt, ff,⊤o⟩, tt, ff,⊤o⟩
∆(int?) = ⟨(x :Any)→⟨Bool, x ∈ Int, x /∈ Int,⊤o⟩, tt, ff,⊤o⟩
∆(bool?) = ⟨(x :Any)→⟨Bool, x ∈ Bool, x /∈ Bool,⊤o⟩, tt, ff,⊤o⟩
∆(pair?) = ⟨(x :Any)→⟨Bool, x ∈ Any× Any, x /∈ Any× Any,⊤o⟩, tt, ff,⊤o⟩

Figure 2.3: λOT Constant Type-Results

17

T-Const is used for type checking the respective constants values, consulting the ∆

metafunction described in figure 2.3. Note that the then- and else-propositions are consistent

with whether the constant is non-false or false. They all have the symbolic object ⊤o

since we gain nothing from reasoning about the type of language constants (i.e. they are

already assigned their most precise type).

T-Var may assign any type τ to variable x so long as the system can derive Γ ⊢ x ∈ τ .

The then- and else-propositions reflect the self evident fact that if x evaluates to a non-

false value then x is not of type False, otherwise it is of type False. The symbolic object

informs the type system that this expression corresponds to the path x.

T-Abs, the rule for checking lambda abstractions, checks the body of the abstraction in

the extended environment which maps x to τ . We use the standard convention of choosing

fresh names not currently bound when extending Γ with new bindings. The type-result

from checking the body is then used as the range for the function type, and the then- and

else-propositions report the non-falseness of a function value.

T-App handles function application, first checking that e1 and e2 are well-typed indi-

vidually and then ensuring the type of e2 is a subtype of the domain of e1. The overall

type-result of the application is R from the type of e1, with the symbolic object of the

operand, o2, substituted for the name x (this allows the type result to now specifically talk

about the argument which was provided in this case: o2).

T-If is used for conditionals, describing the important process by which information

learned from evaluating test-expressions is projected into the respective branches. After

ensuring e1 is well-typed at some type, we make note of the then- and else-propositions p1

and q1. We then extend the environment with the appropriate proposition, dependent upon

which branch we are checking: p1 is assumed while checking the then-branch and q1 for the

else-branch. The type result of a conditional is simply the type result implied by both

branches (which can be determined by pointwise unioning their respective type-results).

T-Let first checks whether the expression e1 whose value will be bound to x is well

typed. When checking the body, the environment is extended with the type for x and a

proposition describing x’s then- and else- propositions (i.e. what we can learn from testing

x). Since x is chosen to be fresh it is unbound outside the body; we then substitute o1 for

18

x on the result as we do with function application, since we know what object corresponds

to x and x will not be in scope outside of this expression.

In order to omit polymorphism we use explicit pair introduction and elimination rules.

T-Pair introduces pairs, first checking the types for e1 and e2. The type-result then includes

the product of these individual types, propositions reflecting the non-false nature of the

value, and a trivial symbolic object (note that in principle we could have symbolic objects for

pairs as well). Pair elimination forms are checked with T-Proj, which ensure its argument

is indeed a pair before returning the respective type and a symbolic object describing which

field was accessed.

Object Substitution on type-results is performed pointwise and structurally on the

respective subcomponents. When substituting the object ⊤o for a variable x in a path π, if

x ∈ fvs(π) then π[x 7→ ⊤o] = ⊤o. When substituting in a proposition (π ∈ τ) or (π /∈ τ), if

π becomes ⊤o then the entire proposition becomes tt.

Well Formedness. For any judgment Γ ⊢ e : R, we require that the free variables in e

and R be a subset of those found in Γ.

2.2.3 λOT Subtyping

Figure 2.4 describes the subtyping relation <: for types and symbolic objects.

For objects, the null object ⊤o is the top object and the relation is reflexive.

All types are subtypes of themselves and of the top type Any. A type is a subtype of a

union if it is a subtype of any element of the union. Unions are only subtypes of a type if

every member of the union is a subtype of that type. Function subtyping has the standard

contra- and co-variance in the domain and range. Pair subtyping is standard.

Type-result subtyping is the pointwise subtyping/implication of the respective parts

(with the environment contributing for the propositions).

2.2.4 λOT Logic and Type Metafunctions

The logic for λOT is a standard natural deduction-style propositional logic with a few

additional type-related rules which are described in figure 2.5. We omit introduction and

elimination rules for the atomic propositions and logical connectives as they are entirely

19

o <: o
SO-Refl
o <: o

SO-Null
o <: ⊤o

τ <: τ

S-Refl
τ <: τ

S-Top
τ <: Any

S-Union1
∀τ ′ in τ⃗ . τ ′ <: σ

(
∪∪∪

τ⃗) <: σ

S-Union2
∃σ′ in σ⃗. τ <: σ′

τ <: (
∪∪∪

σ⃗))

S-Pair
τ1 <: τ2 σ1 <: σ2

τ1 × σ1 <: τ2 × σ2

S-Fun
τ2 <: τ1 Γ ⊢ R1 <: R2

(x :τ1)→R1 <: (x :τ2)→R2

Γ ⊢ R <: R
SR-Sub
τ <: τ ′ o <: o′ Γ, p ⊢ p′ Γ, q ⊢ q′

Γ ⊢ ⟨τ, p, q, o⟩ <: ⟨τ ′, p′, q′, o′⟩

Figure 2.4: λOT Subtyping

standard. Like the typing judgment, we require variables mentioned on the right-hand side

of the turnstile to be a subset of those mentioned on the left, i.e. for Γ ⊢ p to be well-formed,

fvs(p) ⊆ fvs(Γ) must hold.

T-Empty is analogous to the traditional principle of “ex falso quodlibet”, i.e. if we can

prove a term has the uninhabited type we can prove anything.

Rules T-Update+ and T-Update- allow us to refine the type of a term by combining

its known type with some other known positive or negative information about that term.

For example, suppose we know a path π is of type τ and that some field further into that

path (proj i⃗ π)2 is or is not of type σ. We roughly want to update the type along that

potentially deeper path as follows: if we know (proj i⃗ π) ∈ σ—that the field along i⃗ within

π is of type σ—we update that field’s type τ ′ to be restrict(τ ′, σ) (i.e. the conservative

“intersection” of the two types); conversely, updating a field’s type τ ′ with the knowledge

that the field is not σ updates the field to be remove(τ ′, σ) (i.e. the conservative “difference”

between the two).

The update metafunction—also described in figure 2.5—essentially describes how to
2Here we abbreviate (proj in (... (proj i1 π))) as (proj i⃗ π) where i⃗ is the (potentially empty) sequence

of field accesses in :: ... :: i1.

20

L-Empty
Γ ⊢ π ∈ Empty

Γ ⊢ p

L-Sub
Γ ⊢ π ∈ σ σ <: τ

Γ ⊢ π ∈ τ

L-SubNot
Γ ⊢ π /∈ σ τ <: σ

Γ ⊢ π /∈ τ

L-Update+
Γ ⊢ π ∈ τ

Γ ⊢ (proj i⃗ π) ∈ σ

Γ ⊢ π ∈ update+(τ, i⃗, σ)

L-Update–
Γ ⊢ π ∈ τ

Γ ⊢ (proj i⃗ π) /∈ σ

Γ ⊢ π ∈ update−(τ, i⃗, σ)

update : ± τ i⃗ τ → τ

update±(τ1 × τ2, i⃗ ::1, σ) = update±(τ1, i⃗, σ)× τ2
update±(τ1 × τ2, i⃗ ::2, σ) = τ1 × update±(τ2, i⃗, σ)
update+(τ, ϵ, σ) = restrict(τ, σ)
update−(τ, ϵ, σ) = remove(τ, σ)
update±((

∪∪∪
τ⃗), i⃗, σ) = (

∪∪∪ −−−−−−−−−−−→
update±(τ, i⃗, σ))

restrict : τ τ → τ
restrict(τ, σ) = Empty if ̸ ∃v. ⊢ v : τ and ⊢ v : σ

restrict((
∪∪∪

τ⃗), σ)= (
∪∪∪ −−−−−−−−→

restrict(τ, σ))
restrict(τ, σ) = τ if ⊢ τ <: σ
restrict(τ, σ) = σ otherwise

remove : τ τ → τ
remove(τ, σ) = Empty if ⊢ τ <: σ

remove((
∪∪∪

τ⃗), σ)= (
∪∪∪ −−−−−−−−→

remove(τ, σ))
remove(τ, σ) = τ otherwise

Figure 2.5: λOT Type-related Logic Rules and Metafunctions

21

syntactically combine type information from two propositions in a conservative syntactic

manner. update itself traverses the necessary fields so the correct part of the type is updated

before calling either restrict (to combine positive type information) or remove (to subtract

negative information from a type). We provide some relatively straightforward derivations

to further clarify the utility of the update-related rules in the logic:3

Given Γ1 = {x ∈ (
∪∪∪

Int True), x ∈ (
∪∪∪

Int False)}, we can derive Γ1 ⊢ x ∈ Int by

using L-Update+ to combine the positive information regarding x:

Γ1 ⊢ x ∈ (
∪∪∪

Int True) Γ1 ⊢ x ∈ (
∪∪∪

Int False)

Γ1 ⊢ x ∈ update+((
∪∪∪

Int True), ϵ, (
∪∪∪

Int False))
L-Update+

Int = update+((
∪∪∪

Int True), ϵ, (
∪∪∪

Int False))

Γ1 ⊢ x ∈ Int

Given Γ2 = {x ∈ Bool, x /∈ False}, we can derive Γ2 ⊢ x ∈ True by combining the

known type with the negative information about x with L-Update-:

Γ2 ⊢ x ∈ Bool Γ2 ⊢ x /∈ False

Γ2 ⊢ x ∈ update−(Bool, ϵ, False)
L-Update-

True = update−(Bool, ϵ, False)

Γ2 ⊢ x ∈ True

Given Γ3 = {x ∈ Int × (
∪∪∪

Int True), (proj 2 x) ∈ Bool}, we can derive Γ3 ⊢ x ∈

Int× True by using L-Update+ to update the second field of the product type which is

known for x:

3For convenience we automatically flatten and remove Empty from union types when calling update; we
could instead add a usage of L-Sub, which would perform the simplification explicitly.

22

Γ3 ⊢ x ∈ Int× (
∪∪∪

Int True) Γ3 ⊢ (proj 2 x) ∈ Bool

Γ3 ⊢ x ∈ update+(Int× (
∪∪∪

Int True), 2, Bool)
L-Update+

Int× True = update+(Int× (
∪∪∪

Int True), 2, Bool)

Γ3 ⊢ x ∈ Int× True

Given Γ4 = {x ∈ Int × (Bool × False), (proj 1 (proj 2 x)) /∈ False}, we can derive

Γ4 ⊢ x ∈ Int× (True× False) by using L-Update- to update the first field of the second

field of the known type for x:

Γ4 ⊢ x ∈ Int× (Bool× False) Γ4 ⊢ (proj 1 (proj 2 x)) /∈ False

Γ4 ⊢ x ∈ update−(Int× (Bool× False), 1 :: 2, False)
L-Update-

Int× (True× False) = update−(Int× (Bool× False), 1 :: 2, False)

Γ4 ⊢ x ∈ Int× (True× False)

2.2.5 λOT Semantics

λOT uses the big-step reduction semantics described in figure 2.6, calling the metafunction

in figure 2.7 for primitive ops. To understand these semantics, first we describe values (v)

and runtime environments (ρ) for λOT :

v ::= c | (pair v v) | [ρ, (λ(x :τ) e)]

ρ −−−−→x := v

Note that higher-order values are represented with closures—this is because it suits

the unique model-theoretic proof technique introduced to prove soundness for this style of

calculus [9].

The evaluation judgment ρ ⊢ e ⇓ v states that in runtime-environment ρ, expression e

evaluates to the value v. Like many untyped languages, λOT treats all non-false values

as “true” for the purposes of conditional test-expressions.

23

ρ ⊢ e ⇓ v

B-Const
ρ ⊢ c ⇓ c

B-Var
ρ(x) = v

ρ ⊢ x ⇓ v

B-Let
ρ ⊢ e1 ⇓ v1

ρ[x := v1] ⊢ e2 ⇓ v

ρ ⊢ (let (x e1) e2) ⇓ v

B-Abs
ρ ⊢ (λ(x :τ) e) ⇓ [ρ, (λ(x :τ) e)]

B-Proj
ρ ⊢ e ⇓ (pair v1 v2)

ρ ⊢ (proj i e) ⇓ vi

B-Pair
ρ ⊢ e1 ⇓ v1 ρ ⊢ e2 ⇓ v2

ρ ⊢ (pair e1 e2) ⇓ (pair v1 v2)

B-Beta
ρ ⊢ e1 ⇓ [ρc, (λ(x :τ) e)]

ρ ⊢ e2 ⇓ v2
ρc[x := v2] ⊢ e ⇓ v

ρ ⊢ (e1 e2) ⇓ v

B-Prim
ρ ⊢ e1 ⇓ uop
ρ ⊢ e2 ⇓ v2

δ(uop, v2) = v

ρ ⊢ (e1 e2) ⇓ v

B-IfTrue
ρ ⊢ e1 ⇓ v1
v1 ̸= false
ρ ⊢ e2 ⇓ v

ρ ⊢ (if e1 e2 e3) ⇓ v

B-IfFalse
ρ ⊢ e1 ⇓ false

ρ ⊢ e3 ⇓ v

ρ ⊢ (if e1 e2 e3) ⇓ v

Figure 2.6: λOT Big-step Reduction Relation

δ : uop v → v

δ(not, v) =

{
true if v = false
false otherwise

δ(zero?, int) =

{
true if int = 0

false otherwise
δ(sub1, int) = int − 1
δ(add1, int) = int + 1

δ(int?, v) =

{
true if v is an integer
false otherwise

δ(bool?, v) =

{
true if v is a boolean
false otherwise

δ(pair?, v) =

{
true if v is a pair
false otherwise

Figure 2.7: λOT Primitive Types

24

ρ ⊨ p

M-Top
ρ ⊨ tt

M-Or
ρ ⊨ p1 or ρ ⊨ p2

ρ ⊨ p1 ∨ p2

M-And
ρ ⊨ p1 ρ ⊨ p2

ρ ⊨ p1 ∧ p2

M-Type
⊢ ρ(π) : τ

ρ ⊨ π ∈ τ

M-TypeNot
⊢ ρ(o) : σ ̸ ∃v. ⊢ v : τ and ⊢ v : σ

ρ ⊨ o /∈ τ

Figure 2.8: λOT Models Relation

2.2.6 λOT Soundness

Because our formalism is described as a type-theory aware logic, it is convenient to examine

its soundness using a model-theoretic approach similar to those used in the study of proof

theory. For λOT a model is any runtime-value environment ρ (i.e. a mapping from variables

to values) and is said to satisfy a proposition p (written ρ ⊨ p) when its assignment of values

to the free variables of p make the proposition a tautology. The details of satisfaction are

defined in figure 2.8. The satisfaction relation extends to environments in a pointwise

manner.

In order to complete our definition of satisfaction and prove our soundness theorem, we

also require a typing rule for closures:

T-Closure

∃Γ. ρ ⊨ Γ Γ ⊢ (λ(x :τ) e) : R

⊢ [ρ, (λ(x :τ) e)] : R

The satisfaction rules are mostly straightforward. tt is always satisfied, while the logical

connectives ∨ and ∧ are satisfied in the standard ways.

From M-Type we see propositions stating a path π is of type τ are satisfied when the

value of π in ρ is a subtype of τ . Similarly M-TypeNot tells us if a path π’s value in ρ

has a type which does not overlap with τ , then the proposition π /∈ τ is satisfied.

Soundness

Our first lemma states that our proof theory respects models.

25

Lemma 1. If ρ ⊨ Γ and Γ ⊢ p then ρ ⊨ p.

Proof. By structural induction on Γ ⊢ p.

With our proof theory and models in sync and our operational semantics defined, we

can state and prove the next key lemma for type soundness which deals with evaluation.

Lemma 2. If Γ ⊢ e : ⟨τ, p, q, o⟩, ρ ⊨ Γ and ρ ⊢ e ⇓ v then all of the following hold:

1. either o = ⊤o, or for some path π, o = π and ρ(π) = v,

2. v ̸= false and ρ ⊨ p, or v = false and ρ ⊨ q, and

3. Γ ⊢ v : ⟨τ, tt, tt,⊤o⟩

Proof. By induction on the derivation of ρ ⊢ e ⇓ v.

Now we can state our soundness theorem for λOT .

Theorem 1. (Type Soundness for λOT). If ⊢ e : τ and ⊢ e ⇓ v then ⊢ v : τ .

Proof. Corollary of lemma 2.

Although this model-theoretic proof technique works quite naturally, it includes the

standard drawbacks of big-step soundness proofs, saying nothing about diverging or stuck

terms. We could address this by adding an error value of type Empty that is propagated

upward during evaluation and modify our soundness claim to show error is not derived from

evaluating well-typed terms.

2.2.7 Scaling Up λOT

The descriptions in previous sections sought to be straightforward and declarative to high-

light the key ideas governing how λOT operates. In the following sections, we review addi-

tional features and implementation strategies which are useful in practice.

26

Mutation

The simplest way to support mutation in λOT is to note which variables are mutated and

then simply allow no propositions to be introduced for those variables aside from those

declaring their initial type when they are bound.

In other words, once we know which variables are immutable and which are mutable,

we simply use two typing rules for variables:

T-ImmutableVar

Γ ⊢ x ∈ τ x is immutable

Γ ⊢ x : ⟨τ, x /∈ False, x ∈ False, x⟩

T-MutableVar

Γ ⊢ x ∈ τ x is mutable

Γ ⊢ x : ⟨τ, tt, tt,⊤o⟩

T-ImmutableVar is identical to T-Var since for immutable variables we can always

safely learn facts about them when examining their value. T-MutableVar on the other

hand is conservative and provides no propositions or symbolic object, since facts learned

from testing a mutable variable’s value may not always hold (i.e. the variable may be

mutated at some future point).

We also will need two rules for local bindings: one for when the locally bound variable

is potentially mutated and one for when it is not:

T-ImmutableLet

x is immutable

Γ ⊢ e1 : ⟨τ1, p1, q1, o1⟩

px = (x /∈ False∧ p1)∨ (x ∈ False∧ q1)

Γ, x ∈ τ1, px ⊢ e : R2

Γ ⊢ (let (x e1) e2) : R2[x 7→ o1]

T-MutableLet

x is mutable

Γ ⊢ e1 : ⟨τ1, tt, tt,⊤o⟩

Γ, x ∈ τ1 ⊢ e : R2

Γ ⊢ (let (x e1) e2) : R2

Like the variable rules, T-ImmutableLet is the same as T-Let, but T-MutableLet

omits the propositions for the variable except for the initial type declaration.

A more expressive approach to supporting mutation would be to add an affect system

and allow the refining of mutable variables’ types so long as no effects may change their

value (Flow [8] uses this approach), but we will not discuss that here since it would involve

many changes to the type system.

27

Aliasing

For simplicity in λOT we do not reason about how variable’s values relate to one another.

Doing so, however, can greatly reduce the number of propositions that need to be ac-

counted for when checking the body of local binding forms. For example, in the following

program the inner-most body of the let-expressions has three variables in scope which can

be logically reasoned about: p, x, and y.

(let ([p ...])
(let ([x (fst p)]

[y (snd p)])
...)

However, the expressions being bound to x and y both have non-trivial symbolic objects

which simply refer to subcomponents of p, i.e. x is literally just an alias for the value at

(proj 1 p) and y for the value at (proj 2 p). If, instead of reasoning about x and y, we note

this aliasing and instead reason about (proj 1 p) and (proj 2 p) whenever x and y occur

in that lexical portion of the program, we can reduce the size of our logical environment

dramatically. When done consistently, this can be viewed as a form of “copy propagation”

which reduces the number of unique variables in a lexical context. Furthermore, tracking

these aliasing relations between local objects and their symbolic objects allows for more

programs to type check, because information learned about the types of any of the three

identifiers can refine the type of the other two.

This explicit aliasing is included in the calculus described in chapter 3, but the technique

can be useful even in the absence of refinement types. (In fact, this feature was added to

Typed Racket long before refinements.)

Checking vs Synthesizing Logical Information

As may come as no surprise, an implementation of a system like λOT is often done as a

bidirectional type checker in the style first formally introduced by Pierce and Turner [24].

I.e., when an expected type for an expression is present, the type checker can propagate

that information downward into the appropriate subcomponents of that expression which

can simplify type checking. When there is no expected type for an expression, however,

28

the type must be synthesized and (in our case) all logical information that may be gleaned

from that expression’s evaluation must be propagated outward by the typing derivation.

For example, suppose the following expression (example 9 from section 2.1) were being type

checked with the expected type Number:

(if (let ([tmp (number? x)])
(if tmp tmp (string? x)))

(magnitude x)
0)

Because both the then- and else-branches can contribute to the result, both are visited by

the type checker in “check mode” with expected type of the entire expression (Number) and

no “learned propositions” from those expressions (if any existed) need to be considered.

However, the test-expression does not have an expected type, and therefore it must be

checked in “synthesis mode”, reporting both its type and any learned logical propositions.

In particular, this means the expression (if tmp tmp (string? x)) will be checked in

synthesis mode and thus its propositions will be the disjunction of the propositions from

its then- and else-branches, since we must know what can be learned in either case to

understand what can be learned from the entire expression.

While the difference in this case may seem trivial, in large expressions with nested

conditionals—like those arising in the expansion of match statements in Racket—the dif-

ference in the size and complexity of the generated propositions can be vast: each nested

conditional will result in a disjunction of the learned information from each branch which

can lead to fruitless exponential blowup in proposition size. If, however, the nesting of

conditionals has an expected type, the logical information can be ignored entirely since we

only care that each branch is indeed of the expected type.

Context Conjunctive Normal Form

The following steps help keep Γ in conjunctive normal form (CNF), which in our experience

makes logical inquiries during type checking easier to decide. First, continually combine

and remove redundant propositions from the environment, i.e. (proj 1 π) ∈ τ can update

π ∈ Any× σ to be π ∈ τ × σ, at which point (proj 1 π) ∈ τ is redundant (since it should

be implied by π ∈ Any × σ) and can be removed, etc. Second, perform standard logical

29

transformations so Γ is in CNF. Note that atoms in disjunctions with the same subject

often can be combined or “cancel eachother out” by making the union a tautology, and that

statements such as π ∈ Any and π ∈ Empty are logically equivalent to tt and ff respectively.

Once in CNF, use the principle of disjunctive syllogism to simplify and reduce disjunctions

by eliminating their provably absurd atoms.

More Subsumption

Subsumption in λOT relies on the simple “sub-result” relation defined in figure 2.4. This

relation can be naturally extended with two obviously sound rules which help simplify type

checking in practice by eliminating propositions the type indicates will not hold:

SR-NonFalse

̸ ∃v. Γ ⊢ v : τ and Γ ⊢ v : False

Γ ⊢ ⟨τ, p, q, o⟩ <: ⟨τ, p, ff, o⟩

SR-False

τ <: False

Γ ⊢ ⟨τ, p, q, o⟩ <: ⟨τ, ff, q, o⟩

Essentially SR-NonFalse allows us to discard the else-proposition when we can tell

from the type that the result cannot be false, and SR-False allows us to discard the

then-proposition when the result must be false.

Additionally, in practice subsumption should be used each time the environment is

extended with a logical proposition (i.e. T-If and T-Let) so the information from that

proposition is included in the overall output type-result.

2.2.8 Related Work in Occurrence Typing

In this section we give an overview of the ways different systems support occurrence typing

and discuss how they relate to λOT .

Syntactic Type Tests

The simplest method for supporting occurrence typing involves syntactically recognizing

type-tests and updating the type environment appropriately for the respective branches.

This approach has the advantages of being both easy to understand and implement and

30

directly pairing with the syntactic type tests many languages feature. To demonstrate, let

us consider several TypeScript4 examples which make use of this feature in similar ways.

The simplest and perhaps most common syntactic test we would want an occurrence

typing system to understand is the ubiquitous “null check”:

function louder(s: string | null): string {
if (s) return s.concat("!");
else return "";

}

This check could also be written as (s !== null); in either case we are expecting the

type system to learn that in the then-branch since s is non-null and therefore a string.

In other cases, it may be that certain functions are known a priori to be type predicates

(e.g., PHP has a slew of these functions). Some occurrence typing systems recognize when

these particular functions appear in a conditional test and will appropriately inform the

type system in either branch:

function louder(s: string | null): string {
if (is_string(s)) return s.concat("!");
else return "";

}

Finally, some languages have special syntactic constructs which inspects a value’s type.

Occurrence typing systems may syntactically recognize this pattern and determine which

type is being tested for in each instance:

function louder(s: string | null): string {
if (typeof(s) == "string") return s.concat("!");
else return "";

}

The main limitation of this approach is that it is inherently first order and thus may be

at odds a more functional style of programming. For example, consider the filter function

which takes a predicate p and a list l and returns a list containing each element x in l for

which (p x) produced a non-false value. The type for filter ideally would reflect the

fact that when given a type predicate, the type of the resulting list is determined by what

type the predicate was for. E.g., if we use number? as the predicate, the result should have

type (Listof Number):
4TypeScript 3.2 with the strictNullChecks option enabled so types are non-nullable by default.

31

> (define l (list 1 "2" 3 'four (list 5)))
> (filter number? l)
'(1 3)

However this is only possible when the type of a predicate—not merely its syntactic

occurrence in a program—somehow meaningfully witnesses its “predicate-ness”; this allows

the type of a function which takes higher-order values (like filter) to accurately describe

its behavior.

Languages with Syntactic Type Tests

The syntactic approach has been used extensively in both industrial and academic type

systems over the years.

Untyped languages such as JavaScript seem well-suited for this approach with their C-

like style and idiomatic type-tag tests. The industrial languages TypeScript [3], Flow[25],

and Hack[25] all use this approach as the means of supporting occurrence typing in their

respective systems. Many academic systems for these languages also use this approach:

Safe TypeScript[6] and the “flow-typing” approach introduced by Guha et al. [26], both in

the context of JavaScript.

Statically typed languages which support type-testing are also amenable to this kind of

reasoning. Ceylon[15] and Kotlin[17] are JVM-based statically typed languages which use

occurrence typing to statically reason about their respective JVM instanceof tests, which

among other things allow them to statically rule out the ubiquitous null-pointer errors that

occur in Java-like languages.

Finally, several advanced type systems have built-in syntactic type-case constructs which

the type checker is aware of. The Whiley programming language[16] features untagged

union types and type-case constructs the type system is aware of to support occurrence

typing (called in their work “flow typing”). Several projects based on semantic subtyping

have featured syntactic-based occurrence typing as a means for effectively working with

their untagged unions [21, 27], while others have merely support type-based dispatch while

introducing a fresh name instead of refining the type of an existing name[28]. Generalized

algebraic data types[29] also—perhaps surprisingly—admit a form of occurrence typing

32

since in their presence “pattern matching causes type refinement”.

Dependent Types

Dependent types—types which may depend on non-type program terms—are capable of

supporting occurrence typing as well. However, this approach is not as common as the

syntactic technique and has certain trade-offs. For example, with dependent types the user

is able to create their own abstractions which can act as predicates, however this comes at

the price of having a more complicated type system for the user to reason about and the

language designer to implement.

Our calculus λOT uses a special dependent function type capable of describing what the

result of a function’s application entails; these unique function types also appear in Typed

Racket [9] and Typed Clojure[30]. Other calculi[31]—such as Dependent JavaScript[4]—

instead heavily invests in refinement types to support occurrence typing, allowing for a

predicate type such as the following:

x : Any → {ν : bool | ν ? (tag(x) = "string") : (tag(x) ̸= "string")}

where the codomain is a boolean with a refinement relating its truth-value to whether

the type tag of the argument equals a particular value (in this case "string").

Finally, dependently typed systems supporting a somewhat automated form of language-

integrated verification—such as Liquid Haskell[23], F⋆[22], Sage[32], and others[20, 33, 34,

35]—fundamentally support occurrence typing since they utilize the control flow of the pro-

gram when attempting to automatically prove the subtyping constraints for the occurrences

of the same terms at various points in the program.

Untagged Union Normalization

The final approach we discuss allows the programmer to reason via occurrence typing while

indirectly attacking the issue in the type checker. It comes from the insight that any program

with untagged unions can be expanded into an equivalent set of possible programs with no

untagged unions. For instance, we could expand the aforementioned example function

33

louder—whose parameter s had type string | null—into the following two programs

(i.e. one for each possibility in the union type):

function louder1(s: string): string {
if (s) {

return s.concat("!");
} else {

return ""; // dead code
}

}

function louder2(s: null): string {
if (s) {

return s.concat("!"); // dead code
} else {

return "";
}

}

If all of the branches in this program are either well-typed or proven unreachable, then

the original program (where s had type string | null) contains no type errors. Note

however that there will be an exponentional number of possible programs to type check as

the number of variables with union types increases. This “two-phase” approach to support-

ing occurrence typing has been used thus far to target JavaScript with both simple types

[7] and refinement types[36].

34

CHAPTER 3

OCCURRENCE TYPING WITH REFINEMENT TYPES

Applying a static type discipline to an existing code base written in a dynamically-typed

language such as JavaScript, Python, or Racket requires a type system tailored to the

idioms of the language. When building gradually–typed systems, designers have focused

their attention on type systems with relatively simple goals, e.g. ruling out dynamic type

errors such as including a string in an arithmetic computation. These systems—ranging

from widely-adopted industrial efforts such as TypeScript [3], Hack [12], and Flow [25]

to more academic systems such as Typed Racket [37], Typed Clojure [10], Reticulated

Python [13], and Gradualtalk [38]—have been successful in this narrow goal.

However, advanced type systems can express more powerful properties and check more

significant invariants than merely the absence of dynamic type errors. Refinement and

dependent types, as well as sophisticated encodings in the type systems of languages such

as Haskell and ML [39, 40], allow programmers to capture more precise correctness criteria

for their programs such as those for balanced binary trees, sized vectors, and much more.

In this chapter, we combine these two strands of research, producing a system we dub

Refinement Typed Racket, or RTR. RTR follows in the tradition of Dependent ML [41]

and Liquid Haskell [23] by supporting dependent and refinement types over a limited but

extensible expression language. Experience with these languages has already demonstrated

that expressive and rich program properties can be captured by a fully-decidable type

system.

Furthermore, by building on the existing framework of occurrence typing, refinement

types prove to be a natural addition to the implementation, formal model, and soundness

results. As we discuss in chapter 2, occurrence typing is designed to reason about dynamic

type tests and control flow in existing untyped programs, using propositions about the types

of terms and simple rules of logical inference. Extending this logic to encompass refinements

of types as well as propositions drawn from solver-backed theories produces an expressive

35

(: max : (-> ([x : Integer] [y : Integer])
(Refine [z : Integer] (and (>= z x) (>= z y))))

(define (max x y) (if (> x y) x y))

Figure 3.1: max with refinement types

system which scales to real programs. In this chapter, we show examples drawn from the

theory of linear inequalities and the theory of bitvectors.

Figure 3.1 presents a simple demonstration of integrating refinement types with linear

arithmetic. The max function takes two integers and returns the larger, but instead of

describing it as a simple binary operator on values of type Integer, as the current Typed

Racket implementation specifies, we give a more precise type specifically stating that the

result is greater than or equal to both inputs.

The syntax for function types in RTR allows for explicit dependencies between the

domain and codomain by giving names to arguments which are in scope in any logical

refinements. Note that the max function definition does not require any changes to ac-

commodate the stronger type, nor do clients of max need to care that the type provides

more guarantees than before; the conditional in the body of max enables the use of the

refinement type in the result, as in most refinement type systems. Occurrence typing’s

pre-existing ability to reason about conditionals means that abstraction and combination

of conditional tests properly works in RTR without requiring anything more from solvers

for various theories.

The rest of this chapter is structured as follows: in section 3.1 we give additional exam-

ples of taking occurrence typing beyond simple type tests and into the realm of refinement

types; in section 3.2 we give a formal model λRTR which illustrates how to combine occur-

rence typing and refinement types, proving it sound; in section 3.3 we talk about scaling the

ideas found in λRTR into a full language; in section 3.4 we discuss a case study testing an

RTR prototype on more than 56,000 lines of Typed Racket code; in section 3.5 we discuss

our experiences adding refinement types to Typed Racket proper; and in section 3.6 we

discuss related work.

36

3.1 Beyond Occurrence Typing

In chapter 2 we laid out a general technique for supporting occurrence typing; in this

section we begin to examine ways in which occurrence typing can support more expressive

control-flow based reasoning.

3.1.1 Occurrence Typing with Linear Arithmetic

Consider how a standard vector access function vector-ref might be implemented in a

relatively simply-typed language (e.g. standard Typed Racket). In order to ensure we

only access valid indices of the vector, our function must conduct a runtime check before

performing the raw, unsafe memory access at the user-specified index:

(: vector-ref (∀ (A) (-> (Vectorof A) Integer A)))
(define (vector-ref v i)

(if (<= 0 i (sub1 (vector-length v)))
(unsafe-vector-ref v i)
(error 'vector-ref "invalid vector index ~a" i)))

Although the type for vector-ref prevents some runtime errors, invalid indices remain

a potential problem. In order to eliminate these, we can extend our new system to consider

propositions from the theory of linear integer arithmetic (with a simple implementation

of Fourier-Motzkin elimination [42] as a lightweight solver). This allows us to give <= a

dependent function type where the truth-value of the result reports the intuitively implied

linear inequality. We can then design a safe function safe-vector-ref:

(: safe-vector-ref
(∀ {A} (-> ([v : (Vectorof A)]

[i : Integer])
#:pre (v i) (and (<= 0 i)

(< i (vector-length v)))
A)))

(define safe-vector-ref unsafe-vector-ref)

Now the type guarantees only provably valid indices are used. While replacing all

occurrences of vector-ref with safe-vector-ref in a program may seem desirable, such

a change would likely result is programs that no longer type check! One reason for this is

the validity of an index is not always apparent at the actual use site. For example, consider

a standard vector dot product function:

37

(: safe-dot-product
(-> (Vectorof Integer) (Vectorof Integer) Integer))

(define (safe-dot-product A B)
(let loop ([i : Natural 0])
(cond

[(< i (vector-length A)) (+ (* (safe-vector-ref A i)
(safe-vector-ref B i))

(loop (add1 i)))]
[else 0])))

Because there is no explicit knowledge about the length of B, our attempt verify one of the

indices in safe-dot-product will not type check:
Type Checker error in (safe-vector-ref B i)

unable to prove precondition: (and (< i (vector-length B)) (<= 0 i))

In order to type check safe-dot-product, the types for the domain must either be

enriched to include the assumption that the vectors are of equal length, or a dynamic check

must be added which verifies the assumption at runtime. Also note that without carefully

examining the use sites of this function it is difficult to know which solution would be

ideal—demanding clients statically verify the property at every call may be an unreasonable

requirement. Fortunately a middle ground can be achieved by allowing for both:

(: dot-product (-> (Vectorof Integer)
(Vectorof Integer)
Integer))

(define (dot-product A B)
(unless (= (vector-length A) (vector-length B))
(error 'dot-product "invalid vector lengths!"))

(safe-dot-product A B))

Legacy code and clients who cannot easily verify their vectors’ lengths may continue

to call dot-product while clients wishing to statically eliminate this error may call a safe

version which uses a stronger type.

Safe vector access is a simple example of the program invariants expressible with occur-

rence typing extended with the theory of linear integer arithmetic—we have chosen it for

thorough examination because it relates directly to our sizable case study on existing Typed

Racket code. Xi [43], however, demonstrates at length in the presentation of Dependent

ML how the invariants of far richer programs, such as balanced red-black trees and simple

type-preserving evaluators, can be expressed using this same class of refinements.

38

3.1.2 Occurrence Typing with Bitvectors

Linear arithmetic, however, is merely one example of extending RTR with an external

theory. To illustrate, we additionally experimented by adding the theory of bitvectors to

RTR. By leveraging Z3’s bitvector reasoning [44] we were able to type check the helper

function xtime found in many implementations of AES [45] encryption. This function

computes the result of multiplying the elements of the field F28 by x (i.e. polynomials of

the form F2[x]/(x
8 + x4 + x3 + x+ 1), which AES conveniently represents using a byte):

(: xtime (-> Byte Byte))
(define (xtime num)

(let ([n (bitwise-and (* #x02 num) #xff)])
(cond

[(= #x00 (bitwise-and num #x80)) n]
[else (bitwise-xor n #x1b)])))

In this example the type Byte is a shorthand for the type

(Refine [b : BitVector] (<= #x00 b #xff)). To verify this program, we enrich the

types of the relevant bitwise operations (e.g. =, bitwise-and, etc.) to include propositions

and refinements relating the values to bitvector-theoretic statements and add bitvector

literals to the set of terms which may be lifted to the type level. Adding the theory of

bitvectors and verifying this program proved to be a relatively straightforward process; in

section 3.2.4 we discuss in detail our general strategy for adding new theories to RTR.

39

3.2 Formal Model

Our base system λRTR is a natural extension of λOT ; new language forms and judgments

are highlighted.

The typing judgment for λRTR resembles a standard typing judgment except that instead

of assigning types, it assigns type-results to well-typed expressions:

Γ ⊢ e : ⟨τ, p, q, o⟩

This judgment states that in environment Γ

• e has type τ ;

• if e evaluates to a non-false (i.e. treated as true) value, ‘then proposition’ p holds;

• if e evaluates to false, ‘else proposition’ q holds;

• e’s value corresponds to the symbolic object o.

3.2.1 Syntax

The syntax of terms, types, propositions, and other forms are given in figure 3.2.

Expressions. λRTR uses a standard set of expressions with explicit pair operations for

simplicity (so our presentation may omit polymorphism).

Types. The universal ‘top’ type Any is the type which describes all well typed terms.

Int is the type of integers, while True and False are the types of the boolean values true

and false. Pair types are written τ × σ. (
∪∪∪ −→τ) describes a ‘true’ (i.e. untagged) union

of its components. For convenience we write the boolean type (
∪∪∪

True False) as Bool and

the uninhabited ‘bottom’ type (
∪∪∪

) as Empty. Function types consist of a named argument

x, a domain type τ , and range type-result R in which x is bound. {x :τ | p} is a standard

refinement type, describing any value x of type τ for which proposition p holds.

Propositions. At our system’s core is a propositional logic with domain specific fea-

tures. tt and ff are the trivial and absurd propositions, while p ∧ q and p ∨ q represent

the conjunction and disjunction of propositions p and q respectively. Type information is

expressed by propositions of the form o ∈ τ or o /∈ τ , which state that symbolic object o

40

i ::= 1 | 2 Field Indices
c ::= Constants

| int integer value
| true true value
| false false value
| uop primitive ops

e ::= Expressions
| x, y, z variables
| c constant values
| (λ(x :τ) e) abstraction
| (e e) application
| (if e e e) conditional
| (let (x e) e) local binding
| (pair e e) pair
| (proj i e) field access

τ, σ ::= Types
| Any universal type
| Int integer type
| True true types
| False false type
| τ × τ product type
| (
∪∪∪

τ⃗) ad-hoc union type
| (x :τ)→R function type
| {x :τ | p} refinement type

v ::= Values
| c constant values
| (pair v v) pair value
| [ρ, (λ(x :τ) e)] closure

p, q ::= Propositions
| tt trivial prop
| ff absurd prop
| o ∈ τ o is of type τ

| o /∈ τ o is not of type τ

| p∧ p conjunction
| p∨ p disjunction
| o ≡ o object aliasing
| X T theory T prop

o ::= Symbolic Objects
| ⊤o null object
| x variable reference
| (proj i o) field reference
| (pair o o) object pair

R ::= Type-Results
| ⟨τ, p, q, o⟩ type-result
| ∃(x :τ).R existential

Γ ::= −→p Type Env
ρ ::= −−−→x 7→ v Runtime Env

Figure 3.2: λRTR Syntax

41

is or is not of type τ respectively. o1 ≡ o2 describes an ‘alias’ between symbolic objects,

stating that the object o1 points to the same value as o2. Finally, an atomic propositions

of the form X T represents a statement from a theory T for which λRTR has been provided

a sound solver. In this way our logic describes an extensible system that can be enriched

with various theories according to the needs of the application at hand.

Fields. A field allows us to reference a subcomponent of a structural value. For example,

if p is a tree-like structure built using nested pairs, (proj 1 (proj 2 o)) would describe the

value found by accessing the first field of the result of accessing o’s second field. In this model

having accessors for pair fields suffices; in general, accessors/descriptors for both built-in

and user-defined data types are needed in order to type check more complicated real-world

programs. Our vector case study, for example, required an accessor for vector-length.

Symbolic Objects. Instead of allowing our types to depend on arbitrary program

terms (as is done in systems with full dependent types), we define a canonical subset of

terms called symbolic objects which represent the terms which may be lifted to the type

level in our system. These objects act as a conservative ‘whitelist’ of sorts, allowing our

type system to work in a full-scale programming language by only considering obviously

safe terms (i.e. excluding mutated fields, potentially non-deterministic functions, etc.).

Initially these objects are only used to describe values bound to variables, field accesses,

and pairs of objects, while the null symbolic object ⊤o represents terms we do not lift to

the type level. These objects (excluding pairs) are what allows standard Typed Racket to

type check many dynamic programming idioms. When extending RTR to handle additional

theories, the grammar of symbolic objects is extended to include program terms the new

theory must reason about.

Finally, when performing standard capture-avoiding substitution we keep symbolic ob-

jects in the obvious normal form (e.g. (proj 1 (pair x y)) is reduced to x). Propositions

that end up directly referring to ⊤o, such as ⊤o ∈ Int, are treated as equivalent to tt (i.e.

meaningless) and are discarded.

Type-Results. In order to allow our system to easily reason about more than the just

the simple type τ of an expression, we assign a well typed expression a type-result. In addi-

tion to describing an expression’s type, a type-result further informs the system by explicitly

42

∆ : uop → τ

∆(not) = (x :Any)→⟨Bool, x ∈ False, x /∈ False,⊤o⟩
∆(zero?) = (x :Int)→⟨Bool, tt, tt,⊤o⟩
∆(sub1) = (x :Int)→⟨Int, tt, ff,⊤o⟩
∆(add1) = (x :Int)→⟨Int, tt, ff,⊤o⟩
∆(int?) = (x :Any)→⟨Bool, x ∈ Int, x /∈ Int,⊤o⟩
∆(bool?) = (x :Any)→⟨Bool, x ∈ Bool, x /∈ Bool,⊤o⟩
∆(pair?) = (x :Any)→⟨Bool, x ∈ Any× Any, x /∈ Any× Any,⊤o⟩

Figure 3.3: λRTR Primitive Types

capturing two additional properties: (1) what is learned when the expression’s value is used

as the test-expression in a conditional—this is described by the pair of propositions p+|p−

in the type-result—and (2) which symbolic object o the expression’s value corresponds to.

Existentially quantified type-results allow types to depend on terms with no in-scope

symbolic object. Our usage of existential quantification resembles the technique introduced

by Knowles and Flanagan [33] in many ways, except that our usage is restricted to when

substitution is simply not possible (i.e. when the variable’s assigned expression has a null

object).

Environments. For simplicity in this model we use an environment built entirely of

propositions. In a real implementation it is useful to separate the environment into two

portions: a traditional mapping of variables to types along with a set of currently known

propositions. The latter can then be used to refine the former during type checking.

Runtime Environments. Our runtime environments are standard mappings of vari-

ables to closed runtime values, appearing in closures and our big-step reduction semantics.

3.2.2 Typing Rules

The typing judgment is defined in figure 3.4 and an executable PLT Redex [46] model

is included in our accompanying artifact. The individual rules are those previously used

by Typed Racket with only a few minor modifications to incorporate our new forms (i.e.

existential type-results and aliases).

T-Int, T-True, T-False, and T-Prim are used for type checking the respective base

43

Γ ⊢ e : R
T-Int
Γ ⊢ int : ⟨Int, tt, ff,⊤o⟩

T-True
Γ ⊢ true : ⟨True, tt, ff,⊤o⟩

T-False
Γ ⊢ false : ⟨False, ff, tt,⊤o⟩

T-Prim
Γ ⊢ uop : ⟨∆(uop), tt, ff,⊤o⟩

T-Abs
Γ, x ∈ τ ⊢ e : R

Γ ⊢ (λ(x :τ) e) : ⟨(x :τ)→R, tt, ff,⊤o⟩

T-Var
Γ ⊢ x ∈ τ

Γ ⊢ x : ⟨τ, x /∈ False, x ∈ False, x⟩

T-If
Γ ⊢ e1 : ⟨Any, p1+, p1−,⊤o⟩

Γ, p1+ ⊢ e2 : R Γ, p1− ⊢ e3 : R
Γ ⊢ (if e1 e2 e3) : R

T-Subsume
Γ ⊢ e : R′

Γ ⊢ R′ <: R
Γ ⊢ e : R

T-Let
Γ ⊢ e1 : ⟨τ1, p1, q1, o1⟩

px = (x /∈ False∧ p1)∨ (x ∈ False∧ q1)
Γ, x ∈ τ1, x ≡ o1, px ⊢ e : R2

Γ ⊢ (let (x e1) e2) : R2[x
τ1Z=⇒ o1]

T-App
Γ ⊢ e1 : ⟨(x :τ)→R, tt, tt,⊤o⟩

Γ ⊢ e2 : ⟨σ, tt, tt, o2⟩ Γ ⊢ σ <: τ

Γ ⊢ (e1 e2) : R[x
σZ=⇒ o2]

T-Pair
Γ ⊢ e1 : ⟨τ1, tt, tt, o1⟩
Γ ⊢ e2 : ⟨τ2, tt, tt, o2⟩

R = ⟨τ1 × τ2, tt, ff, (pair x1 x2)⟩
Γ ⊢ (pair e1 e2) : R[x1

τ1Z=⇒ o1][x2
τ2Z=⇒ o2]

T-Proj
Γ ⊢ e : ⟨τ1 × τ2, tt, tt, o⟩
R = ⟨τi, tt, tt, (proj i x)⟩
Γ ⊢ (proj i e) : R[x τiZ=⇒ o]

Figure 3.4: λRTR Typing Judgment

44

values, with T-Prim consulting the ∆ metafunction described in figure 3.3 for primitive

operators. Note that the then- and else-propositions are consistent with their being false

or non-false. Additionally, by default none of these terms will appear in types and

propositions, as signified by the null symbolic object ⊤o.

T-Var may assign any type τ to variable x so long as the system can derive Γ ⊢ x ∈ τ .

The then- and else-propositions reflect the self evident fact that if x is found to equal false

then x is of type False, otherwise x is not of type False. The symbolic object informs the

type system that this expression corresponds to the program term x.

T-Abs, the rule for checking lambda abstractions, checks the body of the abstraction in

the extended environment which maps x to τ . We use the standard convention of choosing

fresh names not currently bound when extending Γ with new bindings. The type-result

from checking the body is then used as the range for the function type, and the then- and

else-propositions report the non-falseness of the value.

T-App handles function application, first checking that e1 and e2 are well-typed indi-

vidually and then ensuring the type of e2 is a subtype of the domain of e1. The overall

type-result of the application is the range of the function, R, with the symbolic object of

the operand, o2, lifted and optionally substituted for x. This lifting substitution is defined

as follows:

R[x
τZ=⇒ ⊤o] = ∃(x :τ).R

R[x
τZ=⇒ o] = R[x 7→ o]

In essence, if the operand corresponds to a value our type system can reason directly

about (i.e. its object is non-null), we perform capture avoiding substitution as expected.

Otherwise, an existential quantifier à la Knowles and Flanagan [33] is used to capture the

argument expression’s precise type, even though it’s exact identity is unknown; this enables

the function’s range to depend on its argument regardless of whether the term can soundly

be lifted to the type level.

T-If is used for conditionals, describing the important process by which information

learned from test-expressions is projected into the respective branches. After ensuring e1

is well-typed at some type, we make note of the then- and else-propositions p1+ and p1−.

45

We then extend the environment with the appropriate proposition, dependent upon which

branch we are checking: p1+ is assumed while checking the then-branch and p1− for the

else-branch. The type result of a conditional is simply the type result implied by both

branches.

T-Let first checks whether the expression e1 being bound to x is well typed. When

checking the body, the environment is extended with the type for x, a proposition describing

x’s then- and else- propositions, and an alias stating that x refers to o1 (i.e. the symbolic

object of e1). Since x is unbound outside the body, we perform a lifting substitution of o1

for x on the result as we do with function application.

In order to omit polymorphism we use explicit pair introduction and elimination rules.

T-Cons introduces pairs, first checking the types and symbolic objects for e1 and e2. The

type-result then includes the product of these individual types, propositions reflecting the

non-false nature of the value, and a symbolic pair object (all modulo the two lifting

substitutions). Pair elimination forms are checked with T-Proj, which ensure its argument

is indeed a pair before returning the expected type and a symbolic object describing which

field was accessed.

3.2.3 Subtyping and Proof System

The subtyping and proof system use a combination of familiar rules from type theory and

formal logic.

Subtyping

Figure 3.5 describes the subtyping relation <: for types, symbolic objects, and type-results.

For objects, the null object ⊤o is the top object and objects are sub-objects of any

alias-equivalent object. Pair objects are sub-objects in a pointwise fashion.

All types are subtypes of themselves and of the top type Any. A type is a subtype

of a union if it is a subtype of any element of the union. Unions are only subtypes of a

type if every member of the union is a subtype of that type. Function subtyping has the

standard contra- and co-variance in the domain and range; in order to reason correctly

about dependencies when checking the range, the environment is extended to assign x the

46

Γ ⊢ o <: o

SO-Equiv
Γ ⊢ o1 ≡ o2

Γ ⊢ o1 <: o2

SO-Null
Γ ⊢ o <: ⊤o

SO-Pair
Γ ⊢ o1 <: o3 Γ ⊢ o2 <: o4

Γ ⊢ (pair o1 o2) <: (pair o3 o4)

Γ ⊢ τ <: τ

S-Refl
Γ ⊢ τ <: τ

S-Top
Γ ⊢ τ <: Any

S-Union1
∀τ in τ⃗ . Γ ⊢ τ <: σ

Γ ⊢ (
∪∪∪

τ⃗) <: σ

S-Union2
∃σ in σ⃗. Γ ⊢ τ <: σ

Γ ⊢ τ <: (
∪∪∪

σ⃗))

S-Pair
Γ ⊢ τ1 <: τ2
Γ ⊢ σ1 <: σ2

Γ ⊢ τ1 × σ1 <: τ2 × σ2

S-Fun
x /∈ fvs(Γ) Γ ⊢ τ2 <: τ1

Γ, x ∈ τ2 ⊢ R1 <: R2

Γ ⊢ (x :τ1)→R1 <: (x :τ2)→R2

S-Weaken
Γ ⊢ τ <: σ

Γ ⊢ {x :τ | p} <: σ

S-Refine1
x /∈ fvs(Γ)

Γ, x ∈ τ, p ⊢ x ∈ σ

Γ ⊢ {x :τ | p} <: σ

S-Refine2
x /∈ fvs(Γ)

Γ ⊢ τ <: σ Γ, x ∈ τ ⊢ p

Γ ⊢ τ <: {x :σ | p}

Γ ⊢ R <: R

SR-Result
Γ ⊢ τ1 <: τ2 Γ, p1+ ⊢ p2+
Γ ⊢ o1 <: o2 Γ, p1− ⊢ p2−

Γ ⊢ ⟨τ1, p1+, p1−, o1⟩ <: ⟨τ2, p2+, p2−, o2⟩

SR-Exists
x /∈ fvs(Γ)

Γ, x ∈ τ ⊢ R1 <: R2

Γ ⊢ ∃(x :τ).R <: R2

Figure 3.5: λRTR Subtyping

47

Γ ⊢ p

L-Atom
Γ, p ⊢ p

L-Trivial
Γ ⊢ tt

L-Absurd
Γ ⊢ ff

Γ ⊢ p

L-AndI
Γ ⊢ p1 Γ ⊢ p2

Γ ⊢ p1 ∧ p2

L-AndE1
Γ ⊢ p1 ∧ p2

Γ ⊢ p1

L-AndE2
Γ ⊢ p1 ∧ p2

Γ ⊢ p2

L-OrI
Γ ⊢ p1 or Γ ⊢ p2

Γ ⊢ p1 ∨ p2

L-OrE
Γ ⊢ p1 ∨ p2

Γ, p1 ⊢ p Γ, p2 ⊢ p

Γ ⊢ p

L-Sub
Γ ⊢ o ∈ σ
Γ ⊢ σ <: τ

Γ ⊢ o ∈ τ

L-Not
Γ, o ∈ τ ⊢ ff

Γ ⊢ o /∈ τ

L-Bot
Γ ⊢ o ∈ Empty

Γ ⊢ p

L-Refl
Γ ⊢ o ≡ o

L-Sym
Γ ⊢ o2 ≡ o1

Γ ⊢ o1 ≡ o2

L-Update+
Γ ⊢ o ∈ τ

Γ ⊢ (proj i⃗ o) ∈ σ

Γ ⊢ o ∈ update+Γ (τ, i⃗, σ)

L-Update–
Γ ⊢ o ∈ τ

Γ ⊢ (proj i⃗ o) /∈ σ

Γ ⊢ o ∈ update−Γ (τ, i⃗, σ)

L-Transport
Γ ⊢ p(o1) Γ ⊢ o1 ≡ o2

Γ ⊢ p(o2)

L-Theory
[[Γ]]T ⊢T X T

Γ ⊢ X T

L-TypeFork
Γ ⊢ (pair o1 o2) ∈ τ1 × τ2

Γ ⊢ o1 ∈ τ1 ∧ o2 ∈ τ2

L-ObjFork
Γ ⊢ (pair o1 o2) ≡ (pair o3 o4)

Γ ⊢ o1 ≡ o3 ∧ o2 ≡ o4

L-RefI
Γ ⊢ o ∈ τ

Γ ⊢ p[x 7→ o]

Γ ⊢ o ∈ {x :τ | p}

L-RefE
Γ ⊢ o ∈ {x :τ | p}

Γ ⊢ o ∈ τ ∧ p[x 7→ o]

Figure 3.6: λRTR-specific Logic Rules

more specific domain type. Pair subtyping is standard.

For refinement types we have three rules: S-Weaken states if τ is a subtype of σ in Γ

then so is any refinement of τ ; S-Refine1 and S-Refine2 allow subtyping inquiries about

refinements to be translated into their equivalent logical inquiries.

The subtyping relation for type-results relies on subtyping for the type and object, and

logical implication for the then- and else-propositions. Since existentially quantified type-

results are only used as a tool for type checking, there is only one explicit subtyping rule

for them: SR-Exists. This rule resembles the standard existential instantiation rule from

first order logic, stating an existentially quantified type-result is a subtype of another type

result if the subtyping relation holds in the appropriately extended environment.

48

Proof System

Figure 3.6 describes the type-specific portion of the propositional logic for λRTR. We omit

the introduction and elimination rules for forms from propositional logic, since they are

identical to those used by λTR [9] (i.e. resembling those found in any natural deduction

system).

L-Sub says an object o is of type τ when it is a known subtype of τ . L-Not conversely

lets us prove object o is not of type τ when assuming the opposite implies a contradiction.

L-Bot serves as an ‘ex falso quodlibet’ of sorts, allowing us to draw any conclusion since

Empty is uninhabited.

Object aliasing allows us to reason about the statically known equivalences classes of

symbolic objects. L-Refl and L-Sym provide reflexivity and symmetry for aliasing, while

L-Transport allows us replace alias-equivalent objects in any derivable proposition (giving

us transitivity). L-ObjFork and L-TypeFork provide a means for reducing claims about

object pairs to be claims about their fields.

L-Update+ and L-Update– play a key role in our system, allowing positive and neg-

ative type statements to refine the known types of objects. Roughly speaking, if we know

an object o is of type τ , updating some field (proj in (... (proj i0 o))) within the object

(abbreviated (proj i⃗ o)) with additional information computes the following: if we know

(proj i⃗ o) ∈ σ—that the field is of type σ—we update that field’s type τ ′ to be approxi-

mately τ ′ ∩ σ (i.e. a conservative ‘intersection’ of the two types); conversely, updating a

field’s type τ ′ with the knowledge that the field is not σ updates the field to be approxi-

mately τ ′ − σ (i.e. the ‘difference’ between the two). A full definition of update is given in

figure 3.7.

L-RefI and L-RefE construct and eliminate refinement types in the expected ways,

essentially saying that the proposition o ∈ {x : τ | p} is equivalent to the compound

proposition o ∈ τ ∧ p[x 7→ o].

Finally, a proposition X T from theory T is derived using L-Theory. This rule consults

a solver for theory T with the relevant knowledge from Γ.

49

update : ± Γ τ i⃗ τ → τ

update±Γ (τ1 × τ2, i⃗ ::1, σ) = update±Γ (τ1, i⃗, σ)× τ2
update±Γ (τ1 × τ2, i⃗ ::2, σ) = τ1 × update±Γ (τ2, i⃗, σ)
update+Γ (τ, ϵ, σ) = restrictΓ(τ, σ)
update−Γ (τ, ϵ, σ) = removeΓ(τ, σ)
update±Γ ((

∪∪∪
τ⃗), i⃗, σ) = (

∪∪∪ −−−−−−−−−−−→
update±Γ (τ, i⃗, σ))

restrict : Γ τ τ → τ
restrictΓ(τ, σ) = Empty if ̸ ∃v.Γ ⊢ v : τ and Γ ⊢ v : σ

restrictΓ((
∪∪∪

τ⃗), σ) = (
∪∪∪ −−−−−−−−−→

restrictΓ(τ, σ))
restrictΓ({x :τ | p}, σ)= {x : restrictΓ(τ, σ) | p}
restrictΓ(τ, σ) = τ if Γ ⊢ τ <: σ
restrictΓ(τ, σ) = σ otherwise

remove : Γ τ τ → τ
removeΓ(τ, σ) = Empty if Γ ⊢ τ <: σ

removeΓ((
∪∪∪

τ⃗), σ) = (
∪∪∪ −−−−−−−−−→

removeΓ(τ, σ))
removeΓ({x :τ | p}, σ)= {x : removeΓ(τ, σ) | p}
removeΓ(τ, σ) = τ otherwise

Figure 3.7: λRTR type-update metafunction

50

3.2.4 Integrating Additional Theories

Our system is designed in an extensible fashion, allowing an arbitrary external theory to

be added so long as a theory-specific solver is provided. To illustrate, we discuss the linear

arithmetic extension we implemented in a Typed Racket prototype in order to perform our

vector-related case study.

To add this theory, we first must identify the canonical set of program terms which

appear in the theory’s sentences. For our case study this included integer arithmetic ex-

pressions of the form a0x0 + a1x1 + ...+ anxn (i.e. linear combinations over Z) and a field

which describes a vector’s length. We can extend the grammar of fields and symbolic objects

to naturally include these terms:

i ::= ... | len

o ::= ... | n | n · o | o+ o

Now our type system and logic can reason directly about the terms our theory discusses.

We then identify the theory-relevant predicates and extend our grammar of propositions

to include them:

χLI ::= o < o | o ≤ o

Finally, the types of some language primitives must be enriched so these newly added

forms are emitted during type checking. For example, we must modify the typing judgment

for integer literals to include the precise symbolic object:

T-Int

Γ ⊢ n : ⟨Int, tt, ff, n⟩

Similarly, primitive functions which perform arithmetic computation, arithmetic com-

parison, and report a vector’s length must be updated to return the appropriate propositions

and symbolic objects (similar to how int? and (proj i e) are handled in our presentation

of λRTR).

51

ρ ⊢ e ⇓ v

B-Val
ρ ⊢ v ⇓ v

B-Var
ρ(x) = v

ρ ⊢ x ⇓ v

B-Let
ρ ⊢ e1 ⇓ v1

ρ[x := v1] ⊢ e2 ⇓ v

ρ ⊢ (let (x e1) e2) ⇓ v

B-Abs
ρ ⊢ (λ(x :τ) e) ⇓ [ρ, (λ(x :τ) e)]

B-Proj
ρ ⊢ e ⇓ (pair v1 v2)

ρ ⊢ (proj i e) ⇓ vi

B-Pair
ρ ⊢ e1 ⇓ v1 ρ ⊢ e2 ⇓ v2

ρ ⊢ (pair e1 e2) ⇓ (pair v1 v2)

B-Beta
ρ ⊢ e1 ⇓ [ρc, (λ(x :τ) e)]

ρ ⊢ e2 ⇓ v2
ρc[x := v2] ⊢ e ⇓ v

ρ ⊢ (e1 e2) ⇓ v

B-Prim
ρ ⊢ e1 ⇓ uop
ρ ⊢ e2 ⇓ v2

δ(uop, v2) = v

ρ ⊢ (e1 e2) ⇓ v

B-IfTrue
ρ ⊢ e1 ⇓ v1
v1 ̸= false
ρ ⊢ e2 ⇓ v

ρ ⊢ (if e1 e2 e3) ⇓ v

B-IfFalse
ρ ⊢ e1 ⇓ false

ρ ⊢ e3 ⇓ v

ρ ⊢ (if e1 e2 e3) ⇓ v

Figure 3.8: λRTR Big-step Reduction Relation

With these additions in place, a simple function which converts linear integer proposi-

tions into solver-compatible assertions allows our system to begin type checking programs

with these theory-specific types.

3.2.5 Semantics and Soundness

λRTR uses the big-step reduction semantics described in figure 3.8, which notably treats all

non-false values as ‘true’ for the purposes of conditional test-expressions. The evaluation

judgment ρ ⊢ e ⇓ v states that in runtime-environment ρ, expression e evaluates to the

value v. A model-theoretic satisfaction relation is used to prove type soundness, just as in

prior work on occurrence typing [9].

Models

Because our formalism is described as a type-theory aware logic, it is convenient to examine

its soundness using a model-theoretic approach commonly used in proof theory. For λRTR

a model is any runtime-value environment ρ and is said to satisfy a proposition p (written

ρ ⊨ p) when its assignment of values to the free variables of p make the proposition a

52

δ : uop v → v

δ(not, v) =

{
true if v = false
false otherwise

δ(zero?, int) =

{
true if int = 0

false otherwise
δ(sub1, int) = int − 1
δ(add1, int) = int + 1

δ(int?, v) =

{
true if v is an integer
false otherwise

δ(bool?, v) =

{
true if v is a boolean
false otherwise

δ(pair?, v) =

{
true if v is a pair
false otherwise

Figure 3.9: λRTR Primitive Semantics

ρ ⊨ p

M-Top
ρ ⊨ tt

M-Or
ρ ⊨ p1 or ρ ⊨ p2

ρ ⊨ p1 ∨ p2

M-And
ρ ⊨ p1 ρ ⊨ p2

ρ ⊨ p1 ∧ p2

M-Alias
ρ(o1) = ρ(o2)

ρ ⊨ o1 ≡ o2

M-Refine
ρ ⊨ o ∈ τ ρ ⊨ p[x 7→ o]

ρ ⊨ o ∈ {x :τ | p}

M-RefineNot1
ρ ⊨ o /∈ τ

ρ ⊨ o /∈ {x :τ | p}

M-RefineNot2
ρ ⊨ ¬p[x 7→ o]

ρ ⊨ o /∈ {x :τ | p}

M-Type
⊢ ρ(o) : τ

ρ ⊨ o ∈ τ

M-TypeNot
⊢ ρ(o) : σ ̸ ∃v. ⊢ v : τ and ⊢ v : σ

ρ ⊨ o /∈ τ

M-Theory
[[ρ]]T ⊨ X T

ρ ⊨ X T

Figure 3.10: λRTR Models Relation

53

tautology. The details of satisfaction are defined in figure 3.10. The satisfaction relation

extends to environments in a pointwise manner.

In order to complete our definition of satisfaction, we require a typing rule for closures:

T-Closure

∃Γ. ρ ⊨ Γ Γ ⊢ (λ(x :τ) e) : R

⊢ [ρ, (λ(x :τ) e)] : R

The satisfaction rules are mostly straightforward. tt is always satisfied, while the logical

connectives ∨ and ∧ are satisfied in the standard ways. Aliases are satisfied when the objects

are equivalent values in ρ.

The satisfaction rules M-Refine, M-RefineNot1, and M-RefineNot2 allow refine-

ment types to be satisfied by satisfying the type and proposition separately. M-Theory

consults a decider for the specific theory in order to satisfy sentences in its domain.

From M-Type we see propositions stating an object o is of type τ are satisfied when

the value of o in ρ is a subtype of τ . Similarly M-TypeNot tells us if an object o’s value

in ρ has a type which does not overlap with τ , then the proposition o /∈ τ is satisfied.

Soundness

Our first lemma states that our proof theory respects models.

Lemma 3. If ρ ⊨ Γ and Γ ⊢ p then ρ ⊨ p.

Proof. By structural induction on Γ ⊢ p.

With our proof theory and models in sync and our operational semantics defined, we

can state and prove the next key lemma for type soundness which deals with evaluation.

Lemma 4. If Γ ⊢ e : ⟨τ, p+, p−, o⟩, ρ ⊨ Γ and ρ ⊢ e ⇓ v then all of the following hold:

1. all non-⊤o structural parts of o are equal in ρ to the corresponding parts of v,

2. v ̸= false and ρ ⊨ p+, or v = false and ρ ⊨ p−, and

3. Γ ⊢ v : ⟨τ, tt, tt,⊤o⟩

54

Proof. By induction on the derivation of ρ ⊢ e ⇓ v.

Now we can state our soundness theorem for λRTR.

Theorem 2. (Type Soundness for λRTR). If ⊢ e : τ and ⊢ e ⇓ v then ⊢ v : τ .

Proof. Corollary of lemma 4.

Although this model-theoretic proof technique works quite naturally, it includes the

standard drawbacks of big-step soundness proofs, saying nothing about diverging or stuck

terms. We could address this by adding an error value of type Empty that is propagated

upward during evaluation and modify our soundness claim to show error is not derived from

evaluating well-typed terms.

3.3 Scaling to a Real Implementation

Although λRTR describes the essence of our approach, there are additional details to consider

when reasoning about a realistic programming language.

3.3.1 Efficient, Algorithmic Subtyping

In order to highlight the essential features of λRTR we chose a more declarative description

of the type system. To make this process efficient and algorithmic several additional steps

can be taken.

Hybrid environments. Instead of working with only a set of propositions while type

checking, it is helpful to use an environment with two distinct parts: one which resembles a

standard type environment—mapping objects to the currently known positive and negative

type information—and another which contains only the set of currently known compound

propositions (since all atomic type-propositions can be efficiently stored in the former part).

With these pieces in place, it is easy to iteratively refine the standard type environment

with the update metafunction while traversing the abstract syntax tree instead of saving all

logical reasoning for checking non-trivial terms.

Representative objects. Another valuable simplification which greatly reduced type

checking times was the use of representative members from alias-equivalent classes of objects.

55

By eagerly substituting and using a single representative member in the environment, large

complex propositions which conservatively but inefficiently tracked dependencies—such as

those arising from local-bindings—can be omitted entirely, resulting in major performance

improvements for real world Typed Racket programs.

Propogating existentials. Our typing judgments use subsumption to omit the less

interesting details of type checking. Making this system algorithmic would not only require

the standard inlining of subtyping throughout many of the judgments, but would also

require that existential bindings on the type-results of subterms be propagated upward by

the current term’s type-result. This ensures all identifiers in the raw results of type checking

are still bound and frees us from simplifying every intermediate type-result (as our model

with subsumption often requires). This technique is thoroughly described in Knowels and

Flanagan’s [33] algorithmic type system, which served as an important motivation for this

aspect of our approach.

3.3.2 Mutation

We soundly support mutation in our type system in a conservative fashion. First, a prelim-

inary pass identifies which variables and fields may be mutated during program execution.

The type checker then proceeds to type check the program, omitting symbolic objects for

mutable variables and fields. This way, the initial type of a newly introduced variable will

be recorded but no potentially unsound assumptions will be made from runtime tests in

the code.

An illustrative example of this approach in action was found during our vector access

case study and analysis of the Racket math library. It contained a module with a vari-

able cache-size of type Integer. The type system ensured any updates to the value of

cache-size were indeed of type Integer, but tests on the relative size of the cache—

such as (> cache-size n)—failed to produce any logical information about the size of

cache-size. This failure made it impossible to verify accesses whose correctness relied on

the result of this test, since a concurrent thread could easily modify the cache and its size

between our testing and performing the operation, invalidating any supposed guarantees.

Indeed, without much effort we were able to cause a runtime error in the math library by

56

exploiting this fact before patching the offending code.

3.3.3 Type Inference and Polymorphism

Typed Racket (and RTR) relies on local type inference [24] to instantiate type variables

for polymorphic functions whenever possible. Since type inference is such an essential part

of type checking real programs, we were unable to check any interesting examples until we

had accommodated refinement types.

The constraint generation algorithm in local type inference, written Γ ⊢V
X̄

S <: T ⇒ C,

takes as input an environment Γ, a set of type variables V , a set of unknown type variables

X̄, and two types S and T , and produces a constraint set C. Since the implementation of

the algorithm already correctly handled when S is a subtype of T , we merely needed to add

the natural cases which allow constraint generation to properly recurse into refined types:

CG-Ref

Γ, x ∈ τ, p1 ⊢ p2

Γ ⊢V
X̄ τ <: σ ⇒ C

Γ ⊢V
X̄ {x :τ | p1} <: {x :σ | p2} ⇒ C

CG-RefLower

Γ ⊢V
X̄ τ <: σ ⇒ C

Γ ⊢V
X̄ {x :τ | p} <: σ ⇒ C

CG-RefUpper

Γ, x ∈ τ ⊢ p

Γ ⊢V
X̄ τ <: σ ⇒ C

Γ ⊢V
X̄ τ <: {x :σ | p} ⇒ C

This naturally requires maintaining the full environment of propositions throughout

the constraint generation process. Although we did not perform a detailed analysis, the

annotation burden for polymorphic functions seems unaffected by our changes.

3.3.4 Complex Macros

Racket programmers use a series of for-macros for many iteration patterns [47]. This

simple dot-product example iterates i from 0 to (sub1 (vector-length A)) to perform

the relevant computations:

57

(for/sum ([i (in-range (vector-length A))])
(* (vector-ref A i)

(vector-ref B i)))

Although initially verifying these vector accesses appears somewhat straightforward,

Typed Racket’s type checker runs after macro expansion on code resembling the following:

(letrec ([start 0]
[end (vector-length A)]
[step 1]
[initial 0]
[loop (λ (pos acc)

(cond
[(< pos end)
(define i pos)
(loop (+ step pos)

(+ acc (* (vector-ref A i)
(vector-ref B i))))]

[else acc]))])
(loop start initial))

At this point the obvious nature of the original program may be obfuscated in the sea

of primitives that emerge, and the system is left to infer types for the newly introduced

identifiers and lambda abstractions.

After expansion of the for/sum macro, RTR is left to infer types for both the domain

and range of the inner loop function (note that its arguments were not even annotatable

identifiers in the original program). Initially, our local type inference chooses type Int for

the position argument pos. This might be perfectly acceptable in Typed Racket, since

Integer is a valid argument type for vector-ref. However, when attempting to verify

the vector access, Integer is too permissive: it does not express the loop-invariant that

pos is always non-negative.

In an effort to effectively reason about these macros we experimented with adding an

additional heuristic to our inference for anonymous lambda applications: if a variable is,

directly or indirectly, used as a vector index within the function, we try the type Natural

instead of Integer. This type, combined with the upper-bounds check within the loop,

is enough to verify the access in (vector-ref A i) and (vector-ref B i) (assuming

they are of equal length). However, the heuristic quickly fails in the reverse iteration case,

(in-range (vector-length A) 0 -1) (i.e. where i steps from (sub1 (vector-length A))

58

to 0) since for the last iteration pos is -1 and not a Natural.

More advanced techniques for inferring invariants—such as those used by Liquid Types[20]—

will be needed if idiomatic patterns such as Racket’s for are to seamlessly integrate with

refinement types.

3.4 Case Study: Safe Vector Access

In order to evaluate our RTR prototype’s effectiveness on real programs we examined all

unique vector accesses1 in three large libraries written in Typed Racket, totalling more than

56,000 lines of code:

• The math library, a Racket standard library covering operations ranging from num-

ber theory to linear algebra. It contains 22,503 lines of code and 301 unique vector

operations.

• The plot library, also a part of Racket’s standard library, which supports both 2-

and 3-dimensional plotting. It contains 14,987 lines of code and 655 unique vector

operations.

• The pict3d library,2 which defines a performant 3D engine with a purely functional

interface, has 19,345 lines of code and 129 unique vector operations.

These libraries were chosen because of their size and frequent use of vector operations.

During our analysis we tested whether each vector read and write could be replaced with

its equivalent safe-vector- counterpart and still type check.

To reason statically about vector bounds and linear integer arithmetic we first enriched

Typed Racket’s base type environment, modifying the type of 36 functions. This included

enriching the types of 7 vector operations, 16 arithmetic operations, 12 arithmetic fixnum

operations (i.e. operations that work only on fixed-width integers), and the typing of

Racket’s equal?.
1Since we type check programs after macro expansion, vector accesses were assessed at this time as well,

and accesses in macros were only counted once.
2https://github.com/jeapostrophe/pict3d

59

plot pict3d math

20

40

60

80

100

6%

33%

13%

34%
74%

13%
25%%

of
ve
ct
or

op
s
ve
rifi

ab
le

Verified after code modifications
Verified with type annotations added
Automatically verified

Figure 3.11: safe-vec-ref case study

We initially verified over 50% of accesses without the aid of additional annotations to the

source code. As figure 3.11 illustrates, our success rate for entirely automatic verification

of vector indices was 74% for plot, 13% for pict3d, and 25% for math. We attribute

plot’s unusually high automatic success rate relative to the other libraries to a few heavily

repeated patterns which are guaranteed to produce safe indexing: pattern matching on

vectors and loops using a vector’s length as an explicit bound were extremely common.

For the remaining vector accesses we performed a preliminary review of the plot and

pict3d libraries and an in depth examination of the math library.

3.4.1 Enriching the Math Library

For the math library we examined each individual access to determine how many of the

failing cases our system might handle with reasonable effort. We identified five general

categories that describe these initially unverified vector operations:

Annotations Added. 34% of the failed accesses were unverified until additional (or

more specific) type annotations were added to the original program. In this recursive loop

60

snippet taken from our case study, for example, the Nat annotation for the index i is not

specific enough to verify the vector reference:

(let loop ([i : Natural (vector-length ds)]
[res : Natural 1])

(cond
[(zero? i) res]
[else
(loop (- i 1)

(* res (safe-vector-ref ds i)))]))

Using (Refine [i : Nat] (≤ i (len ds))) for the type of i, however, allows RTR to

verify the vector access immediately. As we discussed in section 3.3.4, a more advanced

inference algorithm could potentially help by automatically inferring these types. On the

other hand, as code documentation these added annotations often made programs easier to

understand and helped us navigate our way through the large, unfamiliar code base.

Code Modified. 13% of the unverified accesses were verifiable after small local modi-

fications were made to the body of the program. In some cases, these modifications moved

the code away from particularly complex macros; other programs presented opportunities

for a few well-placed dynamic checks to prove the safety of a series of vector operations. An

example of the latter can be seen in the function vector-swap!:

(: vec-swap! (∀ {A} (-> (Vectorof A) Integer Integer Void)))
(define (vector-swap! vs i j)

(unless (= i j)
(cond

[(and (< -1 i (vector-length vs)) ;; added
(< -1 j (vector-length vs))) ;; added

(define i-val (safe-vector-ref vs i))
(define j-val (safe-vector-ref vs j))
(safe-vector-set! vs i j-val)
(safe-vector-set! vs j i-val)]

[else (error "bad index(s)!")])))

This function swaps the values at two indices within a vector. Our initial investigation

concluded adding constraints to the type was unreasonable for this particular function

(i.e. clients could not easily satisfy the more specific types), however we noticed adding

two simple tests on the indices in question allowed us to safely verify four separate vector

operations without perturbing any client code. This approach seemed like an advantageous

tradeoff in this and other situations and worked well in our experience.

61

Beyond our scope. 22% were unverifiable because, in their current form, their in-

variants were too complex to describe (i.e. they were outside the scope of our type system

and/or linear integer theory). One simple example of this involved determining the maxi-

mum dimension dims for a list of arrays:

(define dims (apply max (map vector-length dss)))

Because of the complex higher order nature of these operations, our simple syntactic

analysis and linear integer theory was unable to reason about how the integer dims related

to the vectors in the list dss.

Unimplemented features 6% of the unverified accesses involved Racket features we

had neglected to support during implementation (e.g. dependent record fields), but which

seemed otherwise amenable to our verification techniques.

Unsafe code. As previously mentioned in section 3.3.2, we discovered 2 vector opera-

tions which made unsafe assumptions about a mutable cache whose size could shrink and

cause errors at runtime. Both of these correctly did not typecheck using our system and

were subsequently patched.

Total. In all, 72% of the vector accesses in the math library were verifiable using these

approaches without drastically altering any internal algorithms or data representations.3

3.5 Adding Refinements to Typed Racket

Since the Racket v6.11 release, refinement types have been available in Typed Racket

proper.4 The process of adding the extension primarily followed the design and lessons

learned working with RTR. First, we added a new type scheme (Refine [x : t] p)

which allows the type t to be refined by the proposition p (where x is in scope for p) via

the following grammar for propositions:

3Our modified math library can be found in our artifact.
4Available at https://racket-lang.org/

62

p ::= Top | Bot | (: o t) | (! o t) | (and p ...) | (or p ...)

| (when p p) | (unless p p) | (if p p p) | (c o o)

c ::= < | <= | = | >= | >

n ::= 0 | 1 | -1 | 2 | -2 | ...

o ::= n | s | (+ o ...) | (- o ...) | (* n o)

s ::= i | (f s)

i ::= x | y | z | ...

f ::= car | cdr | vector-length

While our formalism in section 3.2 talked about supporting arbitrary theories, we chose

to initially support type-related propositions and the theory of linear integer arithmetic. The

former theory Typed Racket was already well equipped to reason about as it is fundamental

to how Typed Racket works; for the latter we use a simple implementation of fourier-motzkin

elimination to decide linear inequalities. An more advanced external solver could be used

to decide more complex related theories (e.g., non-linear integer arithmetic) but we decided

at least initially against making Typed Racket dependent on an external solver for this

addition.

As for dependent function types, while Typed Racket did technically already have them

to a degree, they did not allow for dependencies between arguments. For this and other

subtle implementation-specific reasons, we decided to add a separate internal representation

for dependent function types which features a single arrow which allows for argument de-

pendency and preconditions. For example, here is a “safe vector reference” function which

uses a refinement on the second argument:

(All (A) (-> ([v : (Vectorof A)]
[n : (v) (Refine [i : Natural]

(< i (vector-length v)))])
A))

and here is an equivalent function type which instead uses a precondition:

63

(All (A) (-> ([v : (Vectorof A)]
[n : Natural])

#:pre (v n) (< n (vector-length v))
A))

Note that while many function types which feature a refinement on an argument may

be expressible via a precondition, not all are amicable to framing in this way. E.g., if

an argument is a collection of integers whose values are determined by another argument,

that dependency would need to appear in the collection’s type directly and could not be

expressed as a precondition.

3.5.1 Compiling Dependent Types into Contracts

Because Racket has an advanced contract system which supports dependent contracts [48],

we are able to directly compile refinements and dependent function types into contracts

when necessary. These contracts are applied when a value with a refined type or dependent

function type are imported into an untyped module, allowing the invariants to be checked

at runtime. To illustrate, consider the two variants of types for safe vector reference we gave

in the previous section. The first variant of the type—which uses an explicit refinement on

the second argument—would be compiled into the following dependent contract:

(parametric->/c (A)
(->i ([v (vectorof A)]

[i (v) (λ (x) (and (exact-integer? x)
(<= 0 x (sub1 (vector-length v)))))])

[_ () A]))

And the second variant—which uses a precondition—would be compiled into the follow-

ing dependent contract:

(parametric->/c (A)
(->i ([v (vectorof A)]

[i exact-integer?])
#:pre (v i) (<= 0 i (sub1 (vector-length v)))
[_ () A]))

64

3.5.2 Pay-as-you-go costs for developers

One concern in adding refinements to Typed Racket was creating type checking overhead

for all programmers for a feature many will not use. To mitigate this issue, we introduced

a language-level keyword that “turns on” the full spectrum of refinement reasoning on a

module-by-module basis:

#lang typed/racket #:with-refinements

(require racket/unsafe/ops)
(provide safe-vector-ref)

(: safe-vector-ref
(All (A) (-> ([v : (Vectorof A)]

[n : Natural])
#:pre (v n) (< n (vector-length v))
A)))

(define safe-vector-ref unsafe-vector-ref)

When this module-level #:with-refinements keyword is provided, the type checker

assigns integer literals and many primitive operations more specific refinement types. With

this technique for toggling more complex reasoning in the type checker we were able to add

refinements and explicit dependent function types without noticeably affecting type checker

performance for programs which do not explicitly use these features.

3.5.3 Dealing with Existentials

While our formal model for an occurrence typing calculus used existential quantifiers to refer

to terms whose original identifiers were no longer in scope, in the implementation we found

it more convenient to simply apply Skolemization and generate fresh “local” identifiers when

necessary. To illustrate, consider the following modified rule for checking let-expressions

where the expression whose value is bound to the local variable always has the symbolic

object ⊤o:

65

T-Let-Skolem

Γ ⊢ e1 : ⟨τ1, p1, q1,⊤o⟩

px = (x /∈ False∧ p1)∨ (x ∈ False∧ q1) Γ, x ∈ τ1, px ⊢ e : R2

x′ /∈ (fvs(Γ) ∪ fvs(τ1) ∪ fvs(p1) ∪ fvs(q1))

Γ ⊢ (let (x e1) e2) : R2[x 7→ x′]

This rule is almost identical to T-Let from figure 3.4 except that x is replaced by the

“fresh” local identifier x′ instead of bound by an existential quantifier. This skolemization

technique naturally accomplishes the same functionality without having to introduce an

additional form to the implementation (i.e., existential quantification). Furthermore, it is

sound as long as any fresh local identifiers which appear in the codomain of function type

are either erased from the type or are “freshened” with each function application. In our

implementation we chose erasure for simplicity.

3.6 Related Work

There is a history of using refinements and dependent types to enrich already existing

type systems. Dependent ML [41] adds a practical set of dependent types to standard ML

to allow for richer specifications and compiler optimizations through simple refinements,

using a small custom solver to check constraints. Liquid Haskell [23] extends Haskell’s

type system with a more general set of refinement types supported by an SMT solver and

predicate abstraction. We similarly strive to provide an expressive, practical extension to

an existing type system by adding dependent refinements. Our approach, however, seeks

to enrich a type system designed specifically for dynamically typed languages and therefore

is built on a different set of foundational features (e.g. subtyping, ‘true’ union types, type

predicates, etc.).

Some approaches, aiming for more expressive type specifications, have shown how enrich-

ing an ML-like typesystem with dependent types and access to theorem proving (automated

and manual) provides both expressive and flexible programming tools. ATS, the successor

of DML, supports both dependent and linear types as well as a form of interactive theo-

rem proving for more complex obligations [49]. F⋆ [22, 50] adds full dependent types and

66

refinement types (along with other features) to an Fω-like core while allowing manual and

SMT solver-backed discharging of proof obligations. Although our system shares the goal of

allowing users to further enrich their typed programs beyond the expressiveness of the core

system, we have chosen a simpler, less expressive approach aimed at allowing dynamically

typed programs to gradually adopt a simpler set of dependent types.

Chugh et al. [31] explore how extensive use of refinement types and an SMT solver

enable type checking for rich dynamically typed languages such as JavaScript [4]. This

approach feels similar to ours in terms of features and expressiveness. As seen in our

respective metatheories, however, their system requires a much more complicated design

and a complex stratified soundness proof; this fact has made it “[difficult to] add extra

(basic) typing features to the language” [7]. In contrast, our system uses a well-understood

core and does not require interaction with an external SMT solver. This allows us to use

many common type-theoretic algorithms and techniques—as witnessed by Typed Racket’s

continued adoption of new features.

Vekris et al. [7] explore how refinements can help reason about complex JavaScript pro-

grams utilizing a novel two phase approach. The first phase elaborates the source language

into a ML-like target that is checked using standard techniques, at which point the second

phase attempts to verify all ill-typed branches are in fact infeasible using refinements in the

spirit of Knowles and Flanagan [51] and Rondon et al. [20]. Our single-phase approach,

however, does not require elaboration into an ML-like language and allows our system to

work more directly with a larger set of types.

Sage’s use of a dynamic and static types is similar to our approach for type checking

programs. However, their usage of first-class types and arbitrary refinements means their

core system is expressive yet undecidable [32]. Our system utilizes a more conservative,

decidable core in which only a small set of immutable terms are lifted into types. Because

of this, having impure functions and data in the language does not require changes to the

type system. Also, our approach only reasons about non-type related theories when they

are explicitly added.

Our usage of existential quantification to enable dependent yet abstract reasoning for

values no longer in scope strongly resembles the approach described by Knowels and Flana-

67

gan [33]. Our design, however, lifts fewer terms into types in general and substitutes terms

directly into types when possible. Additionally, our design includes features specifically

aimed at dynamic languages instead of refining a more standard type theory.

Ou et al. [34] aim to make the process of working with dependent types more palatable

by allowing fine-grained control over the trade-offs between dependent and simple types.

This certainly is similar to our system in spirit, but there are several important differences.

They choose to automatically insert coercions when dependent fragments and simple types

interact, while we do not explicitly distinguish between the two and require explicit code to

cast values. Additionally, while they convert their programs from a surface language into an

entirely dependently typed language, our programs are translated into dynamically typed

Racket code, which is void of any artifacts of our type system. This places us in a more

suitable position for supporting sound interoperability between untyped and dependently

typed programs.

Manifest contracts [52] are an approach that uses dependent contracts both as a method

for ensuring runtime soundness and as a way to provide static typing information. Unlike

our system, this method only reasons about explicit casts (i.e. program structure does not

inform the type system), and there is no description of how a solver would be utilized to

dispatch proof goals.

68

CHAPTER 4

SEMANTIC SUBTYPING

In this chapter we introduce semantic subtyping: a technique for reasoning soundly and

completely about the full spectrum of set-theoretic types. Because the implementation

details for such an approach are non-obvious and have rarely been discussed, in this chapter

we give a detailed account for how to implement such a system. Later (in chapter 5)

we describe a language and give algorithm descriptions that rely on the implementation

approaches we describe here.

4.1 Set-theoretic Types

Set-theoretic types are a flexible and natural way for describing sets of values, featuring

intuitive “logical combinators” in addition to traditional types for creating detailed specifi-

cations. As seen in figure 4.1, languages with set-theoretic types feature (at least some of)

the following logical type constructors described below:

• τ ∪ σ is the union of types τ and σ, describing values that are of type τ or of type σ;

• τ ∩ σ is the intersection of types τ and σ, describing values that are of both type τ

and σ;

• ¬τ is the complement/negation of type τ , describing values that are not of type τ ;

• Any is the type describing all possible values; and

Base Types
ι ::= Int | Str | True | False

Types
τ, σ ::= ι | τ × τ | τ → τ | τ ∪ τ | τ ∩ τ | ¬τ | Any | Empty
Abbreviations
Any× ≡ Any× Any | Any→ ≡ Empty → Any | Anyι ≡ ¬(Any× ∪ Any→)

Figure 4.1: Set-theoretic Types

69

• Empty is the type describing no values (i.e. ¬Any).

Additionally, we may specify “specific top type” which denotes all values of that partic-

ular kind:

• Any× is the type that denotes all pairs,

• Any→ is the type that denotes all functions, and

• Anyι is the type that denotes all base values (e.g., integers, strings, and booleans).

Set-theoretic types frequently appear in type systems which reason about dynamically

typed languages (e.g. TypeScript[3], Flow[25], Typed Racket[14], Typed Clojure[10]), but

some statically typed languages have opted to use them as well due to their expressiveness,

flexibility, and convenience (e.g. CDuce[53], Pony[54]).

4.1.1 Subtyping

With set-theoretic types, the programmer (and type system) must be able to reason about

how various types relate. E.g., even if we know τ is not the same type as σ, is it the case

that a value of type τ will necessarrily also be a value of type σ? In other words, does

τ <: σ hold (i.e. is τ a subtype of σ)? For example, consider the subtyping question:

(Int∪ Str)× Str <: (Int× Str)∪ (Str× Str)

Clearly the two types are not syntactically the same... but we can also see that any

pair whose first element is either an integer or a string and whose second element is a

string (i.e. the type on the left-hand side) is indeed either a pair with an integer and

a string or a pair with a string and a string (i.e. the type on the right-hand side). As

a programmer then we might reasonably expect that anywhere a (Int × Str) ∪ (Str ×

Str) is expected, we could provide a value of type (Int ∪ Str) × Str and things should

work just fine. Unfortunately, most systems that feature set-theoretic types use sound but

incomplete reasoning to determine subtyping. This is because most type systems reason

about subtyping via standard syntactic inference rules:

70

τ <: τ

τ <: σ1
τ <: σ1 ∪ σ2

τ <: σ2
τ <: σ1 ∪ σ2

τ1 <: σ τ2 <: σ

τ1 ∪ τ2 <: σ

τ1 <: σ1 τ2 <: σ2
τ1 × τ2 <: σ1 × σ2

These rules allow us to conclude the statement below the line if we can show that

the statement(s) above the line hold. Upsides to using a system built from rules like this

include (1) the rules can often directly be translated into efficient code and (2) we can

generally examine each rule individually and decide if the antecedants necessarily imply the

consequent (i.e. determine if the rule valid). The downside is that systems built directly

from such rules are almost always incomplete in some way. E.g. with the above rules, we

cannot conclude (Int ∪ Str)× Str is a subtype of (Int× Str) ∪ (Str× Str) even though

it is true. One way to ensure we arrive at a complete treatment of subtyping for the entire

spectrum of set-theoretic types is to adopt a semantic (instead of a syntactic) notion of

subtyping.1

4.1.2 Semantic Subtyping

In the semantic approach to subtyping types will simply denote sets of values in the language

in the expected ways:

• True denotes singleton set {true};

• False denotes singleton set {false} ;

• Int denotes the set of integers;

• Str denotes the set of strings;

• τ × σ denotes the set of pairs whose first element is a value in τ and whose second

element is a value in σ (i.e. the cartesian product of τ and σ);

• τ → σ denotes the set of functions which can be applied to a value in τ and will

return a value from σ (if they return);
1At the time of writing this tutorial, CDuce[53] may be the only example of an in-use language with a

type system which features the full spectrum of set-theoretic types and complete subtyping. This is not
surprising since its developers are also the researchers that have pioneered the approaches we will discuss.

71

τ <: σ iff [[τ]] ⊆ [[σ]]
iff [[τ]] \ [[σ]] = ∅
iff [[τ]] ∩ [[σ]] = ∅
iff [[τ]] ∩ [[¬σ]] = ∅
iff [[τ ∩¬σ]] = ∅

Figure 4.2: Subtyping/Inhabitation Equivalence

• τ ∪ σ denotes the union of the sets denoted by τ and σ;

• τ ∩ σ denotes the intersection of the sets denoted by τ and σ;

• ¬τ denotes the complement of the set denoted by τ ;

• Any denotes the set of all values; and

• Empty denotes the empty set.

Perhaps surprisingly, with our types merely denoting sets of values subtyping can be

determined by deciding type inhabitation. As figure 4.2 illustrates, “is a particular type

inhabited” is really the only question we have to be able to answer since asking

τ <: σ is the same as asking if τ ∩ ¬σ is uninhabited (i.e. does it denote the empty

set?). And while this notion of treating types as sets of values may seem intuitive, the

formal justification is quite complex. Systems which wish to reason about types as sets

of values and who feature function types can quickly run into a problematic circularity

in the metatheory and cardinality issues. Fortunately, these issues have been thoroughly

addressed in prior work[28] and we will therefore lean on this fact and focus our efforts on

just how one might go about implementing such a system.

4.1.3 Deciding Inhabitation, Normal Forms

To efficiently decide type inhabitation for set-theoretic types we leverage some of the same

strategies used to decide the satisfiability of boolean formulas:

• types are kept in disjunctive normal form (DNF), and

• special data structures are used to efficiently represent DNF types.

72

Types in Disjunctive Normal Form

In addition to using DNF, it will be helpful to impose some additional structure on the

normal form of our types. First let us note that any DNF boolean formula F :

F = (x3 ∧ ¬x7 ∧ x13 ∧ ...)

∨ (x11 ∧ x4 ∧ ¬x1 ∧ ¬x21 ∧ ...)

∨ (¬x3 ∧ ¬x4 ∧ x1 ∧ ...)

can be reorganized slightly to group the positive and negative atoms in each conjunction:

F = ((x3 ∧ x13 ∧ ...) ∧ (¬x7 ∧ ...))

∨ ((x11 ∧ x4 ∧ ...) ∧ (¬x1 ∧ ¬x21 ∧ ...))

∨ ((x1 ∧ ...) ∧ (¬x3 ∧ ¬x4 ∧ ...))

We then observe that because F is in DNF, it can easily be described by a set of pairs

dnf(F) = {(P0, N0), . . . , (Pn, Nn)}, with one pair (P,N) for each conjunctive clause in the

overall disjunction, where P is the set of positive atoms in the clause and N is the set of

negated atoms in the clause:

F =
∪

(P,N)∈dnf(F)

((∩
x∈P

x

)
∧

(∩
x∈N

¬x

))

Because set-theoretic types have the same logical connectives as boolean formulas, any

type τ can also be converted into a DNF dnf(τ) = {(P0, N0), . . . , (Pn, Nn)} where for each

(P,N), P contains the positive atoms and N contains the negated atoms, where an atom

(a) is either a base type (ι), a product type (τ1 × τ2), or function type (τ1 → τ2):

τ =
∪

(P,N)∈dnf(τ)

((∩
a∈P

a
)

∧

(∩
a∈N

¬a
))

Partitioning Types

In addition to being able to convert any type into DNF, for any type τ there exists three

specialized types τ ι, τ×, and τ→ which contain only atoms of the same kind such that:

73

For any type τ there exists specialized DNF types τ ι, τ×, and τ→ which can be
represented as sets of pairs (P,N)—where P and N are sets of atoms of a single kind
(i.e. base, product, or arrow)—such that each of the following equivalences hold:

τ = (Anyι ∩ τ ι)∪ (Any× ∩ τ×)∪ (Any→ ∩ τ→)

τ ι =
∪

(P,N)∈dnf(τ ι)

((∩
ι∈P

ι

)
∧

(∩
ι∈N

¬ι

))

τ× =
∪

(P,N)∈dnf(τ×)

 ∩
(τ1×τ2)∈P

τ1 × τ2

 ∧

 ∩
(τ1×τ2)∈N

¬(τ1 × τ2)


τ→ =

∪
(P,N)∈dnf(τ→)

 ∩
(τ1→τ2)∈P

τ1 → τ2

 ∧

 ∩
(τ1→τ2)∈N

¬(τ1 → τ2)



Figure 4.3: Canonical form for representing types

τ = (Anyι ∩ τ ι)∪ (Any× ∩ τ×)∪ (Any→ ∩ τ→)

By representing a type in this way, we can efficiently divide types into non-overlapping

segments which can each have their own DNF representation.

i.e., τ ι is a type whose atoms are all base types:

τ ι =
∪

(P,N)∈dnf(τ ι)

((∩
ι∈P

ι

)
∩

(∩
ι∈N

¬ι

))

τ× is a DNF type whose atoms are all arrow types:

τ× =
∪

(P,N)∈dnf(τ×)

 ∩
(τ1×τ2)∈P

τ1 × τ2

 ∩

 ∩
(τ1×τ2)∈N

¬(τ1 × τ2)


and τ→ is a DNF type whose atoms are all function types:

τ→ =
∪

(P,N)∈dnf(τ→)

 ∩
(τ1→τ2)∈P

τ1 → τ2

 ∩

 ∩
(τ1→τ2)∈N

¬(τ1 → τ2)


To illustrate what this partitioning looks like in practice, here are a few very simple

types and their equivalent “partitioned” representation:

74

Empty ≡ (Anyι ∩ Empty)∪ (Any× ∩ Empty)∪ (Any→ ∩ Empty)))

Any ≡ (Anyι ∩ Any)∪ (Any× ∩ Any)∪ (Any→ ∩ Any)))

Int ≡ (Anyι ∩ Int)∪ (Any× ∩ Empty)∪ (Any→ ∩ Empty)

Int× Str ≡ (Anyι ∩ Empty)∪ (Any× ∩ (Int× Str))∪ (Any→ ∩ Empty)))

Int → Str ≡ (Anyι ∩ Empty)∪ (Any× ∩ Empty)∪ (Any→ ∩ (Int → Str))))

Int∪ (Int× Str) ≡ (Anyι ∩ Int)∪ (Any× ∩ (Int× Str))∪ (Any→ ∩ Empty)))

This technique for partitioning types into separate non-overlapping DNFs—which will

inform our strategy for actually representing types as data structures—will make type in-

habitation inquiries easier to implement since we’re specializing our representation to de-

scribe only the interesting, non-trivial clauses in a type. We summarize this discussion’s

key takeaway in figure 4.3 for reference.

4.2 Type Representation

In section 4.1 we determined that

• many type-related inquiries for set-theoretic types can be reduced to deciding type

inhabitation (see section 4.1.2), and that because of this

• a partitioned DNF representation (summarized in figure 4.3) may be useful.

In this section we focus on the latter point—type representation—because it will impact

how our algorithms decide type inhabitation. We will introduce several data structures,

defining for each the binary operators union (∪), intersection (∩), and difference (\) and

the unary operator complement (”¬”); the context of a given operator will determine which

metafunction is being referenced.

4.2.1 Types as Data Structures

In figure 4.3 we noted a type can be conveniently deconstructed into three partitions, al-

lowing us to reason separately about the base type (τ ι), product type (τ×), and function

type (τ→) portion of a type:

75

τ = (Anyι ∩ τ ι)∪ (Any× ∩ τ×)∪ (Any→ ∩ τ→)

We will use a data structure to represent our types that exactly mirror this structure.

As illustrated in figure 4.4, our internal representation of a type is a 3-tuple:

Types (internal representation)
t ::= ⟨⟨β, b×, b→⟩⟩

Figure 4.4: Internal type representation

The subcomponents of this representation correspond to the three specialized segments

of a DNF type described in figure 4.3 as follows:

• β (the first field) contains base type information, corresponding to τ ι;

• b× (the second field) contains product type information, corresponding to τ×; and

• b→ (the third field) contains function type information, corresponding to τ→.

The various top types used in figure 4.3 are implicit in the representation, i.e. we know

what kind of type-information each field is responsible for so we need not explicitly keep

around Anyι, Any×, and Any→ in our partitioned representation. The grammar and meaning

for β is given in section 4.2.2 and for b× and b→ is given in section 4.2.3.

Top and Bottom Type Representation

The representation of the “top type” Any—the type that denotes all values—is written ⊤

and defined in figure 4.5. It places the respective top β, b× , and b→ in each field, mirroring

the previous “partitioned” version of Any we showed earlier:

Any ≡ (Anyι ∩ Any)∪ (Any× ∩ Any)∪ (Any→ ∩ Any)

The representation of the “bottom type” Empty—the type that denotes no values—is

written ⊥ and also defined in figure 4.5. It similarly places the respective bottom β, b× ,

and b→ in each field, mirroring the previous “partitioned” version of Empty seen previously:

76

Empty ≡ (Anyι ∩ Empty)∪ (Any× ∩ Empty)∪ (Any→ ∩ Empty)

In sections 4.2.2 and 4.2.3 we describe why those are the top and bottom representations

for the base and product/arrow subcomponents respectively.

Finally, the representation of the specific top types Anyι, Any×, and Any→ as data struc-

tures ⊤ι, ⊤×, and ⊤→ (again see figure 4.5) involves placing the appropriate bottom type

in each of the fields except for the one currently being represented (that field gets the

appropriate top type).

⊤ ≡ ⟨⟨⟨⟨−, ∅⟩⟩, 1, 1⟩⟩ top type
⊥ ≡ ⟨⟨⟨⟨+, ∅⟩⟩, 0, 0⟩⟩ botom type
⊤ι ≡ ⟨⟨⟨⟨−, ∅⟩⟩, 0, 0⟩⟩ top base type
⊤× ≡ ⟨⟨⟨⟨+, ∅⟩⟩, 1, 0⟩⟩ top product type
⊤→ ≡ ⟨⟨⟨⟨+, ∅⟩⟩, 0, 1⟩⟩ top function type

Figure 4.5: Top and bottom type representations

Type Operations

As is seen in figure 4.6, binary operations on types benefit from our partitioned design:

each operation is defined pointwise in the natural way across each disjoint partition. We

encourage the reader to take a moment to convince themselves this is indeed correct, perhaps

by considering intersecting two DNF types and observing what happens to intersections of

non-overlapping clauses.

Type complement—also defined in figure 4.6—is simply defined in terms of type differ-

ence, subtracting the negated type from the top type.

4.2.2 Base DNF Representation

We now examine how a DNF type with only base type atoms can be efficiently represented

(i.e. the base portion τ ι of a type described in figure 4.3 and the β field in our representation

of types described in figure 4.4).

77

_ ∪_ : t t → t
⟨⟨β1, b×1 , b→1 ⟩⟩ ∪ ⟨⟨β2, b×2 , b→2 ⟩⟩ = ⟨⟨β1 ∪ β2, b×1 ∪ b×2 , b→1 ∪ b→2 ⟩⟩

_ ∩_ : t t → t
⟨⟨β1, b×1 , b→1 ⟩⟩ ∩ ⟨⟨β2, b×2 , b→2 ⟩⟩ = ⟨⟨β1 ∩ β2, b×1 ∩ b×2 , b→1 ∩ b→2 ⟩⟩

_ _ : t t → t
⟨⟨β1, b×1 , b→1 ⟩⟩ \ ⟨⟨β2, b×2 , b→2 ⟩⟩ = ⟨⟨β1 \ β2, b×1 \ b×2 , b→1 \ b→2 ⟩⟩

¬ : t → t
¬t = ⊤ \ t

Figure 4.6: Internal type operations

Although any type can be represented by some DNF type, in the case of base types

things can be simplified even further! Any DNF type τ ι whose atoms are all base types is

equivalent to either

• a union of base types, e.g. ι1 ∪ ι2 ∪ ...

• a negated union of base types, e.g. ¬(ι1 ∪ ι2 ∪ ...)

To see why this is the case, it may be helpful to recall that (1) each base type is disjoint

(i.e. no values inhabit more than one base type), (2) this is obviously true for Any, Empty,

and any a single base type ι or negated base type ¬ι, and (3) examine the details of the

base type operations presented in figure 4.8 and note how one of these two representations

is always naturally maintained.

Because any DNF of base types can be represented by a set of base types (i.e. the

elements in the union) and a polarity (i.e. is the union negated or not), we represent the

base portion of a type β using a tuple with these two pieces of information (figure 4.7).

The first field is the polarity flag (using + for a union or − for a negated union) and

the second field is the set of base types B in the union. The top base type (i.e. the type

which denotes all base type values) is a negated empty set ⟨⟨−, ∅⟩⟩ (indicating that it is not

the case that this type contains no base values) and the bottom base type (the type which

denotes no base type values) is a positive empty set ⟨⟨+, ∅⟩⟩ (indicating that it is the case

78

Base type representation
β ::= ⟨⟨±, B⟩⟩
Base set polarity
± ::= + | −
Base set
B ::= ∅ | {ι} ∪ B

Figure 4.7: Internal base type representation

_ ∪_ : β β → β

⟨⟨+, B1⟩⟩ ∪ ⟨⟨+, B2⟩⟩ = ⟨⟨+, B1 ∪ B2⟩⟩
⟨⟨−, B1⟩⟩ ∪ ⟨⟨−, B2⟩⟩ = ⟨⟨−, B1 ∩ B2⟩⟩
⟨⟨+, B1⟩⟩ ∪ ⟨⟨−, B2⟩⟩ = ⟨⟨−, B2 \ B1⟩⟩
⟨⟨−, B1⟩⟩ ∪ ⟨⟨+, B2⟩⟩ = ⟨⟨−, B1 \ B2⟩⟩

_ ∩_ : β β → β

⟨⟨+, B1⟩⟩ ∩ ⟨⟨+, B2⟩⟩ = ⟨⟨+, B1 ∩ B2⟩⟩
⟨⟨−, B1⟩⟩ ∩ ⟨⟨−, B2⟩⟩ = ⟨⟨−, B1 ∪ B2⟩⟩
⟨⟨+, B1⟩⟩ ∩ ⟨⟨−, B2⟩⟩ = ⟨⟨+, B1 \ B2⟩⟩
⟨⟨−, B1⟩⟩ ∩ ⟨⟨+, B2⟩⟩ = ⟨⟨+, B2 \ B1⟩⟩

_ _ : β β → β

⟨⟨+, B1⟩⟩ \ ⟨⟨+, B2⟩⟩ = ⟨⟨+, B1 \ B2⟩⟩
⟨⟨−, B1⟩⟩ \ ⟨⟨−, B2⟩⟩ = ⟨⟨+, B2 \ B1⟩⟩
⟨⟨+, B1⟩⟩ \ ⟨⟨−, B2⟩⟩ = ⟨⟨+, B1 ∩ B2⟩⟩
⟨⟨−, B1⟩⟩ \ ⟨⟨+, B2⟩⟩ = ⟨⟨−, B1 ∪ B2⟩⟩

Figure 4.8: Internal base DNF operations

that this type contains no base values).

Base DNF Operations

Operations on these base type representations boil down to selecting the appropriate set-

theoretic operation to combine the sets based on the polarities (figure 4.8).

Base type negation is not shown (because it is not used anywhere in this model), but

would simply require “flipping” the polarity flag (i.e. the first field in the tuple).

79

4.2.3 Product and Function DNFs

In order to efficiently represent a DNF type with only product or function type atoms (i.e.

the τ× and τ→ portions of a type described in figure 4.3 and the b× and b→ fields in our

type representation described in figure 4.4) we will use a binary decision diagram (BDD).

First we include a brief review of how BDDs work, then we discuss how they can be used

effectively to represent our product/function DNF types.

Binary Decision Diagrams

A binary decision diagram (BDD) is a tree-like data structure which provides a convenient

way to represent sets or relations. For example, consider the truth table for the boolean

formula (¬x ∧ ¬y ∧ ¬z) ∨ (x ∧ y) ∨ (y ∧ z):

x y z (¬x ∧ ¬y ∧ ¬z) ∨ (x ∧ y) ∨ (y ∧ z)

1 1 1 1

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 1

This formula can also be represented with the following BDD:

x

y

z

10

z

01

y

z

00

z

11

80

And as it turns out, we can simplify the tree slightly by collapsing a few nodes without

losing any information:

x

y

z

10

z

01

y

01

In these BDDs, each non-leaf node contains a boolean variable. A node’s left subtree

describes the “residual formula” for when that variable is true and its right subtree describes

the “residual formula” for when that variable is false. We invite the reader to compare the

truth table and corresponding BDDs until they are convinced they indeed represent the

same boolean formula. It may be useful to observe that the leaves in the unsimplified BDD

correspond to the right-most column in the truth table.

Types as BDDs?

BDDs can also naturally encode set-theoretic types (in our case, DNF product or function

types). Each node has a function/product type associated with it; henceforth we will call

this associated type the atom of the node. A node’s left sub-tree describes the “residual

type” for when the atom is included in the overall type. A node’s right sub-tree describes the

“residual type” for when the atom’s negation is included in the overall type. For example,

here we have encoded the types Int× Int (left) and (Int× Int)∪ Str× Str (right):

Int× Int

01

Int× Int

Str× Str

01

1

Essentially, each path in the tree represents a conjunction in the overall DNF, so the

overall type is the union of all the possibly inhabited paths (i.e. paths that end in 1). In

other words, for an arbitrary (type) BDD b:

81

b =

τ

brbl

we would interpret the meaning of b (written [[b]]) as follows:

[[b]] = (τ ∩ [[bl]])∪ (¬τ ∩ [[br]])

where 1 is interpreted as Any and 0 as Empty. There is, however, a well-known problem

with BDDs we will want to avoid: repeatedly unioning trees can lead to significant (i.e. ex-

ponential) increases in size. This is particularly frustrating because—as we have previously

noted—our primary concern algorithmically is deciding type inhabitation and taking the

union of two types will have no interesting impact with respect to inhabitation (i.e., the

union of τ1 and τ2 is empty only when both τ1 and τ2 are empty).

Types as Lazy BDDs!

Because there is no interesting impact on inhabitation when computing unions, we can use

“lazy” BDDs to represent our function/product DNF types. In a lazy BDD, unions are only

fully expand when computing type intersection or difference (i.e. operations that can have

an interesting impact on inhabitation). Nodes in lazy BDDs have—in addition to the left

and right subtrees described before—a “middle” subtree which assumes nothing about its

node’s atom. In other words, for an arbitrary lazy (type) BDD b:

b =

τ

brbmbl

we would interpret the meaning of b (written [[b]]) as follows:

[[b]] = (τ ∩ [[bl]])∪ [[bm]]∪ (¬τ ∩ [[br]])

again where 1 is interpreted as Any and 0 as Empty. Henceforth when we use the term

“BDD” we will be in fact referring to these lazy binary decision diagrams, which are the

only kind of BDDs our implementation features.

82

Lazy Binary Decision Diagram (BDD)
b ::= 1 | 0 | ⟨⟨a, b, b, b⟩⟩

BDD Atom
a ::= t× t | t → t

Product BDD
b× ::= 1 | 0 | ⟨⟨t× t, b×, b×, b×⟩⟩
Function BDD
b→ ::= 1 | 0 | ⟨⟨t → t, b→, b→, b→⟩⟩

Figure 4.9: Lazy BDDs for type representation

Figure 4.9 describes in detail our representation for the DNF function/product portions

of a type as BDDs. Note that

• b describes a BDD of either functions or products and is useful for describing functions

that are parametric w.r.t. which kind of atom they contain;

• 1 and 0 are the leaves in our BDDs, interpreted as Any and Empty respectively;

• an atom (a) is either a product or a function type—a given BDD will only contain

atoms of one kind or the other; and

• b× and b→ simply allow us to be more specific and describe what kind of atoms a

particular BDD contains.

Although not explicit in the grammar, these trees are constructed using a total order-

ing on atoms (note that this implies types, BDDs, etc all must also have a total ordering

defined since these data structures are mutually dependent). Without loss of generality

we will assume a simple lexicographic ordering, although any ordering should suffice. The

ordering—written a1 < a2 and the like—will be called upon frequently in function defini-

tions for BDDs in the next section. Essentially the ordering allows us to have consistent

representations for particular BDDs.

Finally, we use a “smart constructor”—defined in figure 4.10—to perform some obvious

simplifications when constructing BDD nodes. We use an implicit syntax for the smart

constructor (i.e. it looks identical to constructing a normal node), so whenever we construct

a node (except of course on the right-hand side of the definition in figure 4.10 itself) we are

83

⟨⟨_, _, _, _⟩⟩ : a b b b → b
⟨⟨a, bl, 1, br⟩⟩ = 1
⟨⟨a, b, bm, b⟩⟩ = b ∪ bm

⟨⟨a, bl, bm, br⟩⟩ = ⟨⟨a, bl, bm, br⟩⟩

Figure 4.10: BDD node smart constructor

in fact using this smart constructor to simplify away some cases before simply constructing

a new BDD node.

(Lazy) BDD Operations

The operations on BDDs can be understood by again considering how we interpret BDDs:

[[1]] = Any

[[0]] = Empty

[[⟨⟨a, bl, bm, br⟩⟩]] = (a∩ [[bl]])∪ [[bm]]∪ (¬a∩ [[br]])

Also, recall that BDD binary operations will only ever be used on two BDDs whose

atoms are all of the same kind (either all product or all function arrows). With that in

mind, we invite the reader to peruse figures 4.11 and 4.12 for the detailed descriptions of

BDD union, intersection, difference, and negation. We will not enumerate justification for

every line, but invite the reader to examine some of the details to gain intuition for the

operations and how they relate to the underlying logical combinators. Suffice it to say here

that each definition begins with a series of trivial cases before describing how to handle

non-trivial BDD node arguments more generally in a manner that is semantically correct

and maintains the ordering of atoms in the resulting BDD.

4.2.4 Parsing and Example Types

Figure 4.13 defines a function that converts the more readable surface-level types defined

in figure 4.1 into the internal representation we have just finished describing. Examining

the results of parsing functions can be helpful in better understanding the representation:

84

_ _ : b b → b
b1 \ b2 = 0 if b1 = b2
b1 \ 1 = 0
1 \ b2 = ¬b2
b1 \ 0 = b1
0 \ b2 = 0

b1 \ b2 =


⟨⟨a1, (bl1 ∪ bm1) \ b2, 0, (br1 ∪ bm1) \ b2⟩⟩ if a1 < a2
⟨⟨a2, b1 \ (bl2 ∪ bm2), 0, b1 \ (br2 ∪ bm2)⟩⟩ if a1 > a2
⟨⟨a1, bl1 \ b2, bm1 \ b2, br1 \ b2⟩⟩ if a1 = a2

where ⟨⟨a1, bl1, bm1, br1⟩⟩ = b1
where ⟨⟨a2, bl2, bm2, br2⟩⟩ = b2

¬ : b → b
¬1 = 0
¬0 = 1
¬⟨⟨a, b1, b2, 0⟩⟩ = ⟨⟨a, 0, ¬(b2 ∪ b1), ¬b2⟩⟩
¬⟨⟨a, 0, b2, b3⟩⟩ = ⟨⟨a, ¬b2, ¬(b2 ∪ b3), 0⟩⟩
¬⟨⟨a, b1, 0, b3⟩⟩ = ⟨⟨a, ¬b1, ¬(b1 ∪ b3), ¬b3⟩⟩
¬⟨⟨a, b1, b2, b3⟩⟩ = ⟨⟨a, ¬(b1 ∪ b2), 0, ¬(b3 ∪ b2)⟩⟩

Figure 4.11: BDD difference and negation

parse(Int) ≡ ⟨⟨⟨⟨+, {Int}⟩⟩, 0, 0⟩⟩

parse(¬Str) ≡ ⟨⟨⟨⟨−, {Str}⟩⟩, 0, 0⟩⟩

parse(Int∪ Str) ≡ ⟨⟨⟨⟨+, {Int, Str}⟩⟩, 0, 0⟩⟩

parse(Int× Str) ≡ ⟨⟨⟨⟨+, ∅⟩⟩, ⟨⟨⟨⟨+, {Int}⟩⟩, 0, 0⟩⟩× ⟨⟨⟨⟨+, {Int}⟩⟩, 0, 0⟩⟩, 0⟩⟩

parse(Str → Str) ≡ ⟨⟨⟨⟨+, ∅⟩⟩, 0, ⟨⟨⟨⟨+, {Str}⟩⟩, 0, 0⟩⟩ → ⟨⟨⟨⟨+, {Str}⟩⟩, 0, 0⟩⟩⟩⟩

4.3 Type Inhabitation

Because we are working with set-theoretic types, we are free to define subtyping purely

in terms of type inhabitation (see the initial justification for this in figure 4.2), which is

precisely what we do in figure 4.3. In the remainder of this section we examine how to

decide type inhabitation using the data structures introduced in section 4.2.

85

_ ∪_ : b b → b
b1 ∪ b2 = b if b1 = b2
b1 ∪ 1 = 1
1 ∪ b2 = 1
b1 ∪ 0 = b1
0 ∪ b2 = b2

b1 ∪ b2 =


⟨⟨a1, bl1, bm1 ∪ b2, br1⟩⟩ if a1 < a2
⟨⟨a2, bl2, bm2 ∪ b1, br2⟩⟩ if a1 > a2
⟨⟨a1, bl1 ∪ bl2, bm1 ∪ bm2, br1 ∪ br2⟩⟩ if a1 = a2

where ⟨⟨a1, bl1, bm1, br1⟩⟩ = b1
where ⟨⟨a2, bl2, bm2, br2⟩⟩ = b2

_ ∩_ : b b → b
b1 ∩ b2 = b if b1 = b2
b1 ∩ 1 = b1
1 ∩ b2 = b2
b1 ∩ 0 = 0
0 ∩ b2 = 0

b1 ∩ b2 =


⟨⟨a1, bl1 ∩ b2, bm1 ∩ b2, br1 ∩ b2⟩⟩ if a1 < a2
⟨⟨a2, b1 ∩ bl2, b1 ∩ bm2, b1 ∩ br2⟩⟩ if a1 > a2
⟨⟨a1, (bl1 ∪ bm1) ∩ (bl2 ∪ bm2), 0, (br1 ∪ bm1) ∩ (br2 ∪ bm2)⟩⟩ if a1 = a2

where ⟨⟨a1, bl1, bm1, br1⟩⟩ = b1
where ⟨⟨a2, bl2, bm2, br2⟩⟩ = b2

Figure 4.12: BDD union and intersection

4.3.1 Deciding Type Inhabitation

A DNF type is uninhabited exactly when each clause in the overall disjunction is uninhab-

ited. With our DNF types partitioned into base, product, and function parts (see figure

4.3):

τ = (Anyι ∩ τ ι)∪ (Any× ∩ τ×)∪ (Any→ ∩ τ→)

we simply need ways to check if the base component (τ ι), product component (τ×), and

function component (τ→) are each empty. As figure 4.15 suggests, the representation of

the base type portion is simple enough that we can pattern match on it directly to check if

it is empty (recall that ⟨⟨+, ∅⟩⟩ is the bottom/empty β).

For deciding if the product and function components—which are represented with lazy

86

parse : τ → t
parse(ι) = ⟨⟨⟨⟨+, {ι}⟩⟩, 0, 0⟩⟩
parse(τ × σ) = ⟨⟨⟨⟨+, ∅⟩⟩, ⟨⟨t× s, 1, 0, 0⟩⟩, 0⟩⟩

where t = parse(τ), s = parse(σ)
parse(τ → σ) = ⟨⟨⟨⟨+, ∅⟩⟩, 0, ⟨⟨t → s, 1, 0, 0⟩⟩⟩⟩

where t = parse(τ), s = parse(σ)
parse(τ ∪ σ) = parse(τ) ∪ parse(σ)
parse(τ ∩ σ) = parse(τ) ∩ parse(σ)
parse(¬τ) = ¬parse(τ)
parse(Any) = ⊤
parse(Empty) = ⊥

Figure 4.13: Type parsing

<: : t t → bool
t <: s = empty(s \ t)

Figure 4.14: Semantic subtyping, defined in terms of type emptiness

BDDs (see previous discussion in section 4.2.3)—are empty, we rely on helper functions

empty× and empty→ which are defined later in this section. In these sections, we will use

non-terminals P and N to represent a collection of atoms (see figure 4.16) with the intuition

that when we are using P , it is a set of “positive” type information, and when we are using

N it is a set of “negative” type information (even though no explicit negations are present).

Product Type Inhabitation

To decide if the product portion of a type is uninhabited, we recall (from section 4.1.3) that

it is a union of conjunctive clauses, each of which can be described with a pair of two sets

(P,N), where P contains the positive product types and N the negated product types:

empty : t → bool
empty(⟨⟨⟨⟨+, ∅⟩⟩, b×, b→⟩⟩) = empty×(b×,⊤,⊤, ∅) and empty→(b→,⊥, ∅, ∅)
empty(_) = false

Figure 4.15: Type emptiness predicate

87

Atom sets
P,N = ∅ | {a} ∪ P

Figure 4.16: Sets of atoms

τ× =
∪

(P,N)∈dnf(τ×)

 ∩
(τ1×τ2)∈P

τ1 × τ2

 ∩

 ∩
(τ1×τ2)∈N

¬(τ1 × τ2)


For τ× to be uninhabited, each (P,N) clause must be uninhabited. Checking that a

given (P,N) clause is uninhabited occurs in two steps:

1. accumulate the positive type information in P into a single product s1 × s2 (i.e. fold

over the product types in P , accumulating their pairwise intersection into a single

product type), and

2. check that for each N ′ ⊆ N the following holds:

σ1 <:
∪

(τ1×τ2)∈N ′

τ1

 or

σ2 <:
∪

(τ1×τ2)∈N\N ′

τ2



The first step is justified because pairs are covariant in their fields, i.e. if something is of

type σ1×σ2 and of type σ′
1×σ′

2 then it is also of type (σ1∩σ′
1)×(σ2∩σ′

2). The second step

is more complicated. To understand, let us first note that a product type is uninhabited

if either subcomponent is uninhabited. Next, observe that if we know something is of

type Any × Any (i.e., it is a product of some sort) and also that it is of type ¬(τ1 × τ2),

then it is either of type ¬τ1 × Any or of type Any × ¬τ2; this is essentially the same as

applying DeMorgan’s law to a negated conjunction in logic: one of the conjuncts must be

false for their conjunction to be false. And so for a (P,N) clause to be uninhabited where

(τ1×τ2) ∈ N , it must be uninhabited for both possibilities implied by that negated product.

By exploring each subset N ′ ⊆ N and verifying that either in N ′ the left-hand side of the

product is empty (i.e. the union of the negated types for the left-hand side are a supertype

of σ1) or the in N \ N ′ the right-hand side is empty (i.e. the union of the negated types

88

empty× : b× s s N → bool
empty×(0, s1, s2, N) = true
empty×(1, s1, s2, N) = empty(s1) or empty(s2) or θ×(s1, s2, N)

empty×(⟨⟨t1 × t2, b×l , b×m, b×r ⟩⟩, s1, s2, N) = empty×(b×l , s1 ∩ t1, s2 ∩ t2, N)
and empty×(b×m, s1, s2, N)
and empty×(b×r , s1, s2, {t1 × t2} ∪N)

θ× : s s N → bool
θ×(s1, s2, ∅) = false

θ×(s1, s2, {t1 × t2} ∪N) = (s1 <: t1 or θ×(s1 \ t1, s2, N))
and (s2 <: t2 or θ×(s1, s2 \ t2, N))

Figure 4.17: Product BDD inhabitation functions

for the right-hand side is a supertype of σ2), we are exploring all possible combinations of

negated first and negated second fields from the negated products in N and thus ensuring

all possible combinations are uninhabited.

We describe an algorithm to perform these computations in figure 4.17. The function

empty× walks over each path in the product BDD accumulating the positive field informa-

tion in s1 and s2 and the negative information in the set N . Then at each non-trivial leaf

in the BDD, we call the helper function θ× which searches the space of possible negation

combinations ensuring that for each possibility the product ends up being uninhabited.

Note that θ× is designed with a “short-circuiting” behavior, i.e. as we are exploring

each possible combination of negations, if a negated field we are considering would negate

the corresponding positive field (i.e. s1 <: t1 or s2 <: t2) then we can stop searching for

emptiness on that side, otherwise we subtract that negated type from the corresponding

field and we keep searching the remaining possible negations checking for emptiness. If we

reach the base case when N is the empty set, then we have failed to show the product is

empty and we return false. Note that empty× checks for emptiness before calling θ× to

avoid unnecessary searching. If it did not, θ×’s base case would need to check s1 and s2 for

emptiness as well.

89

Function Type Inhabitation

Just like with products, to show that the function portion of a type is uninhabited we show

that each (P,N) clause in the DNF—

τ→ =
∪

(P,N)∈dnf(τ→)

 ∩
(τ1→τ2)∈P

τ1 → τ2

 ∩

 ∩
(τ1→τ2)∈N

¬(τ1 → τ2)


—represents an uninhabited function type. To do this, we show that for each clause

(P,N) there exists a (t1 → t2) ∈ N such thatt1 <:
∪

(s1→s2)∈P
s1


(i.e. t1 is in the domain of the function represented by this (P,N) clause) and that for

each possible combination of arrows P ′ ⊆ P ,t1 <:
∪

(s1→s2)∈P\P ′

s1

 or

 ∩
(s1→s2)∈P ′

s2 <: t2


You can roughly think of this as verifying that for each possible set of arrows P ′ which

must handle a value of type t1 (i.e. the left-hand check fails), those arrows together would

map the value to t2 (the right-hand check), which would be a contradiction since we know

this function is not of type t1 → t2.

We implement this algorithm with the function empty→ defined in figure 4.18. It walks

each path in a function BDD accumulating the domain along the way and collecting the

negated function types in the variable N . At the non-trivial leaves of the BDD, it calls θ→

with each function type (t1 → t2) ∈ N until it finds a contradiction (i.e. an arrow that

satisfies the above described equation) or runs out of negated function types.

θ→ is the function which explores each set of arrows P ′ ⊆ P checking that one of the two

clauses in the above noted disjunction is true. Note that in the initial call from empty→ we

negate the original t2: this is because although we are interested in checking for s2 <: t2 as

we accumulate the codomains in s2, the equivalent “contrapositive” statement ¬t2 <: ¬s2

is more convenient to check as we iterate through the function types in P .

90

empty→ : b→ s P N → bool
empty→(0, s, P,N) = true
empty→(1, s, P,N) = if ∃(t1 → t2) ∈ N. (t1 <: s and θ→(t1,¬t2, P))

then true
else false

empty→(⟨⟨s1 → s2, b→l , b→m , b→r ⟩⟩, s, P,N) = empty→(b→l , s, {s1 → s2} ∪ P,N)
and empty→(b→m , s, P,N)
and empty→(b→m , s, P, {s1 → s2} ∪N)

θ→ : t t P → bool
θ→(t1, t2, ∅) = empty(t1) or empty(t2)

θ→(t1, t2, {s1 → s2} ∪ P) = (t1 <: s1 or θ→(t1 \ s1, t2, P))
and (t2 <: ¬s2 or θ→(t1, t2 ∩ s2, P))

Figure 4.18: Functions for checking if a function BDD is uninhabited

In the base case of θ→ when P has been exhausted, the function checks that either

the arrows not in P ′ could have handled the value of (the original) type t1 (i.e. is t1 now

empty), otherwise it checks if the value we mapped the input to must be a subtype of (the

original) type t2 (i.e. is t2 now empty).

In the case where P has not been exhausted, we examine the first arrow (s1 → s2) in

P and check two cases: one for when that arrow is not in P ′ (i.e. when it is in P \ P ′)

and one for when it is in P ′. The first clause in the conjunction of the non-empty P case

is for when s1 → s2 is not in P ′. It first checks if the set of arrows we’re not considering

(i.e. P \ P ′) would handle a value of type t1 (i.e. t1 <: s1), and if not it remembers that

(s1 → s2) is not in P ′ by subtracting s1 from t1 for the recursive call which keeps searching.

The second clause in the conjunction is for when s1 → s2 is in P ′. As we noted, instead

of checking s2 <: t2 (resembling the original mathematical description above), it turns out

to be more convenient to check the contrapositive statement t2 <: ¬s2 (recall that t2 was

actually negated originally when θ→ was called). First we check if having (s1 → s2) in P ′

means we would indeed map a value of type t1 to a value of type t2 (i.e. the t2 <: ¬s2

check). If so we are done, otherwise we recur while remembering that (s1 → s2) is in P ′ by

adding s2 to t2 (i.e. “subtracting” negated s2 from the negated t2 we are accumulating by

using intersection).

91

4.4 Other Type-level Metafunctions

In addition to being able to decide type inhabitation, we need to be able to semantically

calculate precise types for the following situations:

1. projection from a product,

2. a function’s domain, and

3. the result of function application.

4.4.1 Product Projection

In a language with syntactic types, calculating the type of the first or second projection

of a pair simply involves matching on the product type and extracting the first or second

field’s type. In a language with semantic types, however, we cannot simply pattern match

because we could be dealing with an arbitrarily complex pair type constructed using many

set-theoretic type connectives. Instead, we must reason semantically about the types of the

fields.

To begin, first note that if a type is a subtype of Any× (i.e. it is indeed a pair), we can

focus on the product portion of the type:

τ× =
∪

(P,N)∈dnf(τ×)

 ∩
(τ1×τ2)∈P

τ1 × τ2

 ∩

 ∩
(τ1×τ2)∈N

¬(τ1 × τ2)


Projecting the field i from τ× (where i ∈ {1, 2}) involves unioning each positive type

for field i in the DNF intersected with each possible combination of negations for that field:

∪
(P,N)∈dnf(τ×)

 ∩
(τ1×τ2)∈P

τi

∩
∪

N ′⊆N

 ∩
(τ1×τ2)∈N ′

¬τi


This follows the same line of reasoning we used for deciding product type inhabitation

in section 4.3.1), i.e. although we can intersect all of the positive information due to

the covariance of product fields, the negative product information must be considered by

considering all possible combinations of negations.

92

Actually that equation is sound but a little too coarse: it only considers the type of

field i and thus may include some impossible cases where the other field would have been

uninhabited (and thus the whole product in that case would be uninhabited). In other

words, if j is an index and j ̸= i (i.e. j is the index of the other field), then as we’re

calculating the projection of i, we’ll want to “skip” any N ′ cases where the following is true:

∩
(τ1×τ2)∈P

τj <:
∪

(τ1×τ2)∈N\N ′

τj

i.e. cases where the other field is uninhabited. If we incorporate that subtlety, our inner

loop will end up containing a conditional statement:

∪
(P,N)∈dnf(τ×)


 ∩

(τ1×τ2)∈P

τi

∩
∪

N ′⊆N


if

∩
(τ1×τ2)∈P τj <:

∪
(τ1×τ2)∈N\N ′ τj

then Empty

else
∩

(τ1×τ2)∈N ′ ¬τi




Implementing Product Projection

As was suggested by our use of index variables i and j in the previous section’s discussion,

we implement product projection as a single function indexed by some i ∈ {1, 2} to return

the appropriate type in non-empty clauses. Because projection can fail, we have the function

proj? as the “public interface” to projection. proj? performs important preliminary checks

(i.e. is this type actually a product type?) before extracting the product portion of the

type and passing it to the “internal” function proj where the real work begins.

proj walks the BDD, accumulating for each path (i.e. each clause in the DNF) the

positive type information for each field in variables s1 and s2 respectively. Along the way,

if either s1 or s2 are empty we can ignore that path. Otherwise at non-trivial leaves we call

the helper function ϕ× which traverses the possible combinations of negations, calculating

and unioning the type of field i for each possibility.

93

proj? : i t → t or false
proji(t) = false if t ̸<: ⊤×

proji(⟨⟨_, b×, _⟩⟩) = ϕ×
i (b×,⊤,⊤)

proj : i b× s s N → t
proji(0, s1, s2, N) = ⊥

proji(b×, s1, s2, N) = ⊥ if empty(s1) or empty(s2)
proji(1, s1, s2, N) = ϕ×

i (s1, s2, N)

proji(⟨⟨t1 × t2, b×l , b×m, b×r ⟩⟩, s1, s2, N) = tl ∪ tm ∪ tr
where tl = proji(b×l , s1 ∩ t1, s2 ∩ t2, N)

tm = proji(b×m, s1, s2, N)
tr = proji(b×r , s1, s2, {t1 × t2} ∪N)

ϕ× : i s s N → t
ϕ×
i (s1, s2, N) = ⊥ if empty(s1) or empty(s2)
ϕ×
i (s1, s2, ∅) = si

ϕ×
i (s1, s2, {t1 × t2} ∪N) = ϕ×

i (s1 \ t1, s2, N) ∪ ϕ×
i (s1, s2 \ t2, N)

Figure 4.19: Functions for projecting from a product type

4.4.2 Function Domain

Similar to product projection, deciding the domain of a function in a language with set-

theoretic types cannot be done using simple pattern matching; we must reason about the

domain of a function type potentially constructed with intersections and/or unions. To do

this, first note that for an intersection of arrows, the domain is equivalent to the union of

each of the domains (i.e. the function can accept any value any of the various arrows can

collectively accept):

domain((σ1 → τ1)∩ . . .∩ (σn → τn)) = σ1 ∪ . . .∪ σn

Second, note that for a union of arrows, the domain is equivalent to the intersection of

each of the domains (i.e. the function can only accept values that each of the arrows can

accept since we’re not sure which arrow actually describes the value):

domain((σ1 → τ1)∪ . . .∪ (σn → τn)) = σ1 ∩ . . .∩ σn

With those two points in mind, we can deduce the domain of an arbitrary function type

94

dom? : t → t or false
dom?(t) = false if t <: ⊥

dom?(⟨⟨_, _, b→⟩⟩) = dom(⊥,b→)

dom : t b→ → t
dom(t, 1) = t
dom(t, 0) = ⊤

dom(t, ⟨⟨s1 → s2, b→l , b→m , b→r ⟩⟩) = tl ∪ tm ∪ tr
where tl = dom(t ∪ s1,b→l)

tm = dom(t,b→m)
tr = dom(t,b→r)

Figure 4.20: Domain calculation for function types

τ→ =
∪

(P,N)∈dnf(τ→)

 ∩
(τ1→τ2)∈P

τ1 → τ2

 ∩

 ∩
(τ1→τ2)∈N

¬(τ1 → τ2)


is the following intersection of unions:

∩
(P,N)∈dnf(τ→)

 ∪
(τ1→τ2)∈P

τ1



Implementing Function Domain

We perform those domain calculations with the functions defined in figure 4.20. dom? first

checks if the type is indeed a function (i.e. is it a subtype of Any→), if so it then calls dom

with the function portion of the type (b→) to begin traversing the BDD calculating the

intersection of the union of the respective domains.

4.4.3 Function Application

When applying an arbitrary function to a value, we must be able to determine the type of

the result. If the application is simple, e.g. a function of type Int → Str applied to an

argument of type Int, calculating the result (Str) is trivial. However, when we are dealing

with an arbitrarily complicated function type which could contain set-theoretic connectives,

deciding the return type is a little more complicated. As we did in the previous section, let

95

us again reason separately about how we might apply intersections and unions of function

types to guide our intuition.

In order to apply a union of arrow types (σ1 → τ1) ∪ . . . ∪ (σn → τn), the argument

type σ of course would have to be in the domain of each arrow, i.e. σ <: σ1 ∩ . . .∩ σn (see

the discussion in the previous section). The result type of the application would then be

the union of the ranges:

apply((σ1 → τ1)∪ . . .∪ (σn → τn), σ) = τ1 ∪ . . .∪ τn

where σ <: σ1 ∩ . . .∩ σn

This corresponds to the logical observation that if we know that either P implies Q or

R implies S, and we know that both P and R hold, then we can conclude that either Q

or S holds. Now consider the problem of applying an intersection of arrow types. If for

some intersection of arrows, there is a subset (σ1 → τ1)∩ . . .∩ (σn → τn) which all can be

applied to the argument type σ (i.e., if σ <: σ1∩ . . .∩σn) then we get the following as the

result:

apply((σ1 → τ1)∩ . . .∩ (σn → τn), σ) = τ1 ∩ . . .∩ τn

where σ <: σ1 ∩ . . .∩ σn

This more or less corresponds to the logical observation that if we know that both P

implies Q and R implies S, and we know that both P and R hold, then we can conclude

that both Q and S hold. Finally, sometimes for a given intersection of arrows there may

not be a single arrow that can handle a particular argument type, but some collection of

those arrows certainly could together. E.g., consider an argument type σ, an intersection of

arrows (σ1 → τ1)∩ . . .∩ (σn → τn), and the assumption that only collectively these arrows

can cover the argument type (i.e., σ <: σ1 ∪ . . . ∪ σn). In this case, the resulting type of

an application would look like the following:

96

apply((σ1 → τ1)∩ . . .∩ (σn → τn), σ) = τ1 ∪ . . .∪ τn

where σ <: σ1 ∪ . . .∪ σn

This can be seen as corresponding to the logical observation that if we know that both

P implies Q and R implies S, and we know that either P or R holds, then we can conclude

that either Q or S hold.

By combining all of these lines of reasoning we can deduce that when considering an

arbitrary function type

τ→ =
∪

(P,N)∈dnf(τ→)

 ∩
(τ1→τ2)∈P

τ1 → τ2

 ∧

 ∩
(τ1→τ2)∈N

¬(τ1 → τ2)


being applied to an argument of type σ, we first verify that σ is in the domain of τ→ (i.e.

using dom? for example) and then calculate the result type of the application as follows:

∪
(P,N)∈dnf(τ→)


∪

P ′⊆P


if σ <:

(∪
(τ1→τ2)∈P\P ′ τ1

)
then Empty

else
∩

(τ1→τ2)∈P ′ τ2




Basically, we traverse each clause in the DNF of the function type (i.e. each pair (P,N))

unioning the results. In each clause (P,N), we consider each possible set of arrows P ′ in P

and only consider those which would necessarily have to handle a value of type σ (i.e. when

it is not the case that the arrows in P \ P ′ could handle the argument). For those sets P ′

that would necessarily handle the input, we intersect their arrows’ codomains (otherwise we

ignore the set by returning Empty for that clause). This reasoning resembles that which was

required to decide function type inhabitation (see section 4.3.1), i.e. both are considering

which combinations of arrows necessarily need to be considered to perform the relevant

calculation.

Implementing Function Application

Figure 4.21 describes the functions which calculate the result type for function application.

apply? first ensures that the alleged function type is indeed a function with the appropriate

97

apply? : t t → t or false
apply?(τf , τa) = false if τa ̸<: dom?(τf)

apply?(⟨⟨_, _, b→⟩⟩, τa) = apply(τ, 1,b→)

apply : t t b→ → t or false
apply(ta, t,0) = ⊥

apply(ta, t,b→) = ⊥ if empty(ta) or empty(t)
apply(ta, t,1) = t

apply(ta, t, ⟨⟨s1 → s2, b×l , b×m, b×r ⟩⟩) = tl1 ∪ tl2 ∪ tm ∪ tr
where tl1 = apply(ta, t ∩ s2,b×l)

tl2 = apply(ta \ s1, t,b×l)
tm = apply(ta, t,b×m)
tr = apply(ta, t,b×r)

Figure 4.21: Function application result type calculations

domain before calling apply to calculate the result type of the application. apply then

traverses the BDD combining recursive results via union. As it traverses down a BDD

node’s left edge (i.e. when a function type is a member of a set P) it makes two recursive

calls: one for when that arrow is in P ′ (where we intersect the arrow’s range s2 with the

result type accumulator t) and one for when it is not in P ′ (where we subtract s1 from the

argument type parameter ta to track if the arrows in P \P ′ can handle the argument type).

At non-trivial leaves where ta is not empty (i.e. when we’re considering a set of arrows

P� which necessarily would need to handle the argument) we return the accumulated range

type (t) for that set of arrows. Note that we can “short-circuit” the calculation when either

of the accumulators (t or ta) are empty, which can be important for large function types

since it frequently greatly reduces the search space.

4.5 Strategies for Testing

For testing an implementation of the data structures and algorithms described in this tu-

torial there are some convenient properties we can leverage:

1. any type generated by the grammar of types in figure 4.1 is a valid type;

2. since these types logically correspond to sets, we can create tests based on the many

98

well-known properties about sets to help ensure our types behave correctly; and

3. we have “naive”, inefficient mathematical descriptions of many of the algorithms in

addition to more efficient algorithms which purport to perform the same calculation.

With these properties in mind, in addition to creating simple hand-written “unit tests”,

we can easily use a tool such as QuickCheck [55] to generate random types and verify our

implementation behaves properly. Additionally, we can write two implementations of each

algorithm that has both a naive (i.e. more mathematical) and efficient description and feed

them random input while checking that their outputs are always equivalent. This approach

helped us discover several subtle bugs in our initial implementation at various points that

simpler hand-written unit tests had not yet exposed and helped us be confident that there

were not typos in the key mathematical equations we were basing our reasoning on.

4.6 Related Work

In this section we discuss other works which may be useful when implementing a system with

semantic subtyping, systems which have unique implementations of semantic subtyping for

first-order languages, features which have been explored in the context of semantic subtyping

but go beyond the simple language we describe in thsi chapter, and approaches in syntactic

subtyping which increase the completeness of subtyping with set-theoretic types.

4.6.1 Other Tutorials and Overviews

This chapter was partially written to help the authors better understand the implementation

details of semantic subtyping and partially because of the relative paucity of “boots on

the ground” accounts of working with such systems. CDuce—as far as we are aware—is

the only programming language to date to feature sound and complete subtyping for the

spectrum of types given in figure 4.1[53]. As impressive as that system is, its implementation

is a nontrivial library of highly optimized OCaml code and thus perhaps not the best

instructional resource for recreating the features or understanding why they work. Alain

Frisch’s dissertation[56] is said to include detailed accounts of many of the lessons learned

while working on CDuce, however this work is written in French and the authors of this work

99

ne comprend pas le français. Luckily for us, Giuseppe Castagna has carefully extracted a

significant amount of the implementation knowledge from these experiences and included it

in an extremely helpful unpublished manuscript[57]. As we mentioned previously, the vast

majority of the implementation techniques we discuss in this chapter came from our reading

that manuscript and attempting to put the ideas into practice. We felt documenting our

understanding and including extremely specific implementation details might be another

useful point of reference for future researchers or enthusiasts wishing to implement such a

system.

4.6.2 First-order or incomplete semantic subtyping

There has been a history of semantic subtyping work prior to the 2008 article by Frisch et al.

[28] which has involved languages with semantic subtyping without first-class functions and

the like. We will not review all of those works here (see the related works section in Frisch

et al.’s journal article for a thorough summary); instead we will mention a few subsequent

works whose implementation details are of possible interest.

Bierman et al. [21] show how semantic subtyping for a first-order language with re-

finement types can be achieved by deciding subtyping via an external SMT solver. In this

approach, deciding whether τ is a subtype of σ involves deciding whether the first-order

formula interpretation of τ implies the first-order formula interpretation of σ.

The Whiley programming language [16] features intersection, union, and negation types

in a flow sensitive type system and boasts sound and complete reasoning about these con-

nectives. Function types, however, are not included in the system and thus many functional

idioms are impossible to express in this context. Nevertheless, it may be edifying to peruse

implementation insights and developments in that space. Recently, for example, the de-

velopers have explored how declarative rewriting can, for the most part, capture the type

semantics of the original system[58]. They admit it is not immediately clear, however, if

this declarative rewriting approach could be extended to reason about function types.

100

4.6.3 Semantic subtyping with additional features

In this chapter we have discussed the most basic features necessary for implementing se-

mantic subtyping for a functional language. Many additional features, however, have also

been studied in this space.

The work by Frisch et al. [28] includes recursive types, which is easy to miss on a

first glance since they define types coinductively rather than including an explicit recursive

type constructor. Implementation wise, recursive types can be added by simply introduc-

ing cycles in the type data structures themselves and then keeping track of which types

have already been “seen” while performing emptiness checks. If a previously seen type is

encountered then the check simply halts and true is returned.

The remaining features we mention we have not implemented ourselves but are certainly

worth noting: mutable state [59] and polymorphism[60, 61] have both been described in

the literature and are supported today in the CDuce language; polymorphic variants (a la

OCaml) have also been successfully combined with set-theoretic types and semantic sub-

typing to create a more expressive and intuitive system for programmers[27]; Castagna and

Lanvin have explored how gradual typing might be combined with union and intersection

types for a functional language[62]; Ancona et al. describe an approach for adapting se-

mantic subtyping to work in languages with non-strict evaluation strategies[63]; and the

π-calculus has also been studied in the context of semantic subtyping[64].

4.6.4 Expressive Syntactic Subtyping

There have been some advances in syntactic subtyping that help bring syntactic systems

with set-theoretic types closer to what semantic subtyping offers in terms of subtyping ex-

pressiveness. In particular, Muehlboeck and Tate [65] describe an approach for empowering

“textbook” algorithmic subtyping implementations with rich extensions called “integrated

subtyping”. This approach allows for certain subtyping properties–such as the distributiv-

ity of intersection over unions—to be clearly expressed and incorporated into the subtyping

algorithm. While this approach may be a tractable path down the completeness spectrum

for many languages, it is unclear how it would handle and/or scale with more advanced

101

features such as negation types (which can play a key role in a language intent on reasoning

set-theoretically). If we were to scale this approach to a level of completeness comparable

with semantic subtyping, the lessons learned from implementing semantic subtyping may

be necessary to keep the system efficient and tractable.

102

CHAPTER 5

A SET-THEORETIC FOUNDATION FOR OCCURRENCE TYPING

In section 2.2.8 we described the various techniques which have been used to support oc-

currence typing, which included simple syntactic reasoning, dependent types, and untagged

union normalization. In this chapter, we describe a new approach—which we call function

application inversion—based on the following observation: set-theoretic types are expres-

sive enough to describe type predicates. For example, note that a standard type predicate

can be completely described using set-theoretic type connectives:

(τ → True)∩ (¬τ → False) (5.1)

However, instead of merely pattern matching on types with the above schema, we explore

a generic technique (function application inversion) for determining what type the input to

a function must have been based on its observed output.

The remainder of this chapter is as follows: in section 5.1 we describe function appli-

cation inversion intuitively and then mathematically, proving that it is both sound and

complete; in section 5.2 introduce a calculus (λSO) which demonstrates how this technique,

when coupled with with the full spectrum of set-theoretic types and semantic subtyping,

can serve as a reasonable foundation for occurrence typing and is capable of type checking

all of the occurrence typing examples listed in section 2.1; in section 5.3 we further examine

this novel approach by discussing how a system like λSO handles the complex interfaces and

idioms needed for typing Racket’s numeric tower; in section 5.4 we discuss expressiveness

tradeoffs between λOT and λSO like approaches to occurrence typing; finally in section 5.5

we discuss relevant related work.

5.1 Logical Inversion

Before outlining our general method for reasoning about predicate-like functions, it will be

useful to review the fundamentally related “principle of inversion” from logic. Consider a

103

propositional logic with the following introduction rule for ∧ (i.e. conjunction):

Γ ⊢ p1 Γ ⊢ p2

Γ ⊢ p1 ∧ p2

∧–Intro

It stands to reason that if we can derive Γ ⊢ p1 ∧ p2 and if ∧–Intro is the only way

to introduce a ∧-proposition, then clearly there must exist derivations for Γ ⊢ p1 and

Γ ⊢ p2 (how else could we have used ∧–Intro to construct the conjunction?). In other

words, given that we have a full accounting for how ∧ is introduced, we can use “backwards

reasoning”—i.e. determining what must have been true to arrive at a certain proof—to

derive the following valid inference rule:

Γ ⊢ p1 ∧ p2 i ∈ {1, 2}

Γ ⊢ pi

∧–Elim

More generally speaking, given a set of rules {R1, ...,Rn} such that a certain formula φ

can only be introduced by those rules

Γ ⊢ C1
1 · · · Γ ⊢ Cj

1

Γ ⊢ φ

R1

· · ·

Γ ⊢ C1
n · · · Γ ⊢ Ck

n

Γ ⊢ φ

Rn

(where Ca
b is the ath premise for rule Rb) then we can admit this “meta-inference rule”:

Γ ⊢ φ Γ, C1
1 , . . . , C

j
1 ⊢ p . . . Γ, C1

n, . . . , Ck
n ⊢ p

Γ ⊢ p

This strategy of backward reasoning—which highlights the natural link between intro-

duction and elimination rules—is known as the inversion principle. It was first introduced

by Paul Lorenzen in 1950 [66] and has been used in a variety of ways since that time [67].

In the next section we introduce yet another use for this principle which seeks to reason

backwards from a specific result type of a function application to determine what must have

been true of the input to that function.

104

5.1.1 Function Application Inversion

As it turns out, we can effectively solve the problem of identifying “predicate-like” function

types by being able to answer the following inversion-like question:

If applying a function of type τf to an argument produces a value of type σout,

what type σin must the argument have been?
(5.2)

In fact, we want to calculate the smallest such σin, since this question can always be

trivially answered by returning the less-than-helpful type domain(τf) for σin. Equipped

with such a function—which we will write inv(τf , σout) = σin—we could determine what

type a function is a predicate for (if any) by calculating inv(τf ,¬False)1 and inv(τf , False).

When considering how to calculate the inversion of a function application, first recall

generally that to use the inversion principle we must know the set of rules {R1, ...,Rn}

which could possibly produce the result we are interested in reasoning backwards from. In

this case, the function type τf itself contains the rules that soundly describe how values of

type domain(τf) can produce values of type σout. In other words, all of the arrows in the

DNF of τf can be thought of as the various introduction forms which describe how input

values in domain(τf) can produce output values.

One concern when thinking of function types as sets of rules may be that for a given

function value f of type τf , there may exist a more precise function type τ ′f which gives a

more detailed accounting for where values of type domain(τf) are mapped (i.e., τ ′f <: τf).

Does this mean that reasoning based on the rules in τf will be flawed? Fortunately not.

Our reasoning based on τf will still be valid (as it is still a proper type for f), but it may

be the case that reasoning based on τ ′f would produce more precise predictions. For this

reason it is always helpful to have precise function types when reasoning about what can

be learned from the result of a function’s application.

Another way of thinking about the question posed in (5.2) is to see function application
1We use ¬False instead of True because in the language we’re imagining any non-false value is consid-

ered “truthy”.

105

Function τf inv(τf ,¬False) inv(τf , False)

boolean? Bool → True
∩ ¬Bool → False

Bool ¬Bool

file-stream-port? Port → Bool
∩ ¬Port → False

Port Any

path-string?
¬(Path∪ Str) → False
∩ Path → True
∩ Str → Bool

Path∪ Str ¬Path

Figure 5.1: Function Application Inversion Examples

inversion as recovering implicit type-flow information from predicate-like function types

of varying complexity, as demonstrated by the examples in figure 5.1. Inversion on the

type of boolean? reaffirms it is a predicate on boolean values. Inversion on the type of

file-stream-port? shows it returns true only for a subset of ports (not all ports are file

streams). More complicated still, inversion on path-string?’s type shows it returns true

for all Paths but only for a subset of strings (some strings do not correspond to valid OS

file paths).

Given this intuition for how function application should behave, we proceed to describe

how it can be calculated.

5.1.2 Algorithm Intuition

First, we recall—as shown in section 4.1.3—that any function type τf can be viewed as a

union of intersections of arrows (i.e., it can be placed in DNF). Next, we must examine how

each “rule” (i.e. each arrow (τ1 → τ2) in the DNF of τf) could contribute to producing

a value of type σout. First, note that for a given intersection, if multiple arrows’ domains

handle a particular argument, then the result will be the intersection of those arrows’

codomains:

Γ ⊢ f : (τ1 → σ1)∩ . . .∩ (τn → σn) Γ ⊢ x : τ1 ∩ . . .∩ τn

Γ ⊢ (f x) : σ1 ∩ . . .∩ σn

In order to determine the inversion of a function application we essentially examine each

106

possible combination of arrows (τ1 → σ1)∩. . .∩(τn → σn) in τf , noting which combinations

could possibly produce a value of type σout if each arrow applied to an argument (i.e. where

σ1 ∩ . . . ∩ σn ∩ σout ̸<: Empty) and which could not possibly produce a value of type σout

if each arrow applied to an argument (i.e. where σ1 ∩ . . . ∩ σn ∩ σout <: Empty); we then

subtract the domains of the latter group from the former. Stated differently, we start with

the function’s overall domain and subtract all input types which cannot possibly produce

values of type σout. (Note that a slightly more efficient implementation would start with the

particular argument type in question instead of the domain of the function when possible;

this would allow us to ignore combinations of arrows which are provably irrelevant, trimming

the search space and improving performance for large function types.)

5.1.3 Algorithm

With some intuition in place—i.e. that we are looking to subtract those input types which

could not possibly produce values of type σout from the function’s domain—we now look at

how to perform this computation. Again, recall from section 4.1.3 that our function type

τf can be structured as follows:

τf = (Anyι ∩ τ ιf)∪ (Any× ∩ τ×f)∪ (Any→ ∩ τ→f)

We are only concerned with the function portion of the type τ→f since for τf to be a

function type, τ ιf and τ×f must be equivalent to the empty type.

Since τ→f is in DNF, we subtract from the domain of τf for each intersection of arrows

P and for each possible non-empty subset of arrows P ′ ⊆ P the intersection of the arrows’

domains whose associated intersection of codomains does not overlap with σout. This gives

us the following algorithm for computing function application inversion:

107

inv : τ τ → τ

inv(τf , σout) = domain(τf) \ τa

where τa =
∪

(P,N)∈dnf(τ→f)


∪

∅⊊P ′⊆P


if

(∩
(τi→σi)∈P ′ σi

)
∩ σout <: Empty

then
∩

(τi→σi)∈P ′ τi

else Empty




Figure 5.2: Function Application Inversion Algorithm

Note that this algorithm assumes τf <: Any→ (i.e. that the given function type is

indeed a function type); a more general version would obviously need to first check this

assumption. In the following section (5.1.4) we discuss the formal correctness properties

for this algorithm; section 5.1.5 defines an efficient implementation of function application

inversion (inv?) based on the implementation techniques discussed throughout chapter 4.

5.1.4 Soundness and Completeness

To prove our algorithm for function application inversion from figure 5.2 is correct, we define

a mathematical relation INV which describes precisely what we intend function application

inversion to mean:

Definition 1 (Function Application Inversion Relation). The function application inversion

relation INV is a ternary relation on types, defined as the set of 3-tuples ⟨τf , σout, σin⟩ such

that for any values vf , va, and v, if

• vf is of type τf ,

• τf <: Any→,

• va is of type domain(τf),

• (vf va) reduces to v, and

• v is of type σout,

108

then va is of type σin.

We can now state our soundness property for function application inversion, i.e. that

all answers reported by the algorithm are valid predictions about the argument:

Theorem 3 (Function Application Inversion Soundness). For any types τf , σout, and σin,

if τf <: Any→ and inversion(τf , σout) = σin, then ⟨τf , σout, σin⟩ ∈ INV.

Proof. By nested inductions on the DNF of τf .

The other property we are interested in is completeness, which in this context can be

understood to mean that the type produced by function application inversion is the smallest

such type and thus the most specific prediction about the argument possible:

Theorem 4 (Function Application Inversion Completeness). For any types τf , σout, and

σin, if ⟨τf , σout, σin⟩ ∈ INV, then inversion(τf , σout) <: σin.

Proof. By nested inductions on the DNF of τf .

These theorems have accompanying mechanized proofs, the Coq source code for which

is found in appendix A.

5.1.5 Efficient Implementation

In figure 5.2 we describe how to calculate function application inversion. Here—in figure

5.3—we define a function inv? to be an efficient implementation of function application

inversion, after the manner of functions defined throughout chapter 4 based on the type

representation presented in figure 4.9.

First, inv? checks if its “function argument” tf is indeed a function (returning false if not)

before calling inv with the specified output type so, function domain td,2 function portion

of the type b→, and an initially empty accumulator for the set of positive arrow types seen

along a particular path in b→.

inv then simply traverses the BDD b→ which effectively considers each intersection of

arrows in the type’s DNF: for absurd paths in the BDD we return the uninhabited type;
2As noted previously, passing the argument type instead of the domain here results in a more precise

result and reduces the search space.

109

inv? : t s → t or false
inv?(tf , so) = false if tf ̸<: ⊤→

inv?(⟨⟨_, _, b→⟩⟩, so) = invso
td(b

→, ∅)
where td = dom(⊥,b→)

inv : s t b× P → t
invso

td(0, P) = ⊥
invso

td(1, P) = td \ γ(td, so, P)

invso
td(⟨⟨t1 → t2, b→l , b→m , b→r ⟩⟩, P) = tl ∪ tm ∪ tr

where tl = invso
td(b

→
l , {t1 → t2} ∪ P)

tm = invso
td(b

→
m , P)

tr = invso
td(b

→
r , P)

γ : t t P → t
γ(td, tc, ∅) = td if tc <: ⊥
γ(td, tc, ∅) = ⊥

γ(td, tc, {t1 → t2} ∪ P) = s1 ∪ s2
where t′d = t1 ∩ td

t′c = t2 ∩ tc

s1 =


⊥ if t′d <: ⊥
t′d if t′c <: ⊥
γ(t′d, t′c, P) otherwise

s2 = γ(td, tc, P)

Figure 5.3: Efficient algorithm for function application inversion.

110

for non-trivial paths we subtract from the function’s domain the result of calling the helper

γ with the gathered set of arrows P along this particular path; and at non-leaf nodes we

recurse into each subtree to consider each possible path and we union the results.

Auxiliary function γ takes the set of arrow types (the third argument) and traverses each

possible subset of arrows, tracking the intersection of the domains in the first accumulator

argument td and the intersection of the desired output type (i.e. the initial second argument

value) with the codomains in the second accumulator argument tc (progressively computing

the intersections in figure 5.2). The computation for a particular combination of arrows is

halted and the appropriate result is returned if either accumulator becomes empty along

the way (i.e. the initial check for if tc is empty and the checks for ⊥ when defining s1).

5.1.6 Conservative Function Application Inversion

One interesting question is whether function application inversion could be used without

semantic subtyping (i.e. if we have set-theoretic types but incomplete subtyping). Let us,

for example, consider a language which reasons soundly but incompletely about its types and

which features unions and simple intersections (i.e., an interface I = {τ1 → σ1, . . . , τn →

σn}) for describing function types. In this language, let us say that when a function with

interface I is applied to an argument of type τ , the return type will be some σi where

(τi → σi) ∈ I and τ <: τi. What would a less complete/conservative function application

inversion function cinv look like in this context?

In order to perform function application inversion in such a context, we would need two

sound (possibly incomplete) operations on types:

• overlap : τ τ → bool, a binary relation on types which returns true if there might exist

some value which has both those types and false if there is certainly no such value;

and

• diff : τ τ → τ , a binary operator on types which computes the difference between two

types (i.e. subtracting the second argument from the first).

Note that in some sense these functions are essentially helping us deal with the lack of

intersection and negation types. With two such functions, we could essentially use the same

111

cinv : I τ → τ
cinv(I, σout) = diff(domain(I), τa)

where τa =
∪

(τi→σi)∈I

 if overlap(σi, σout) = false
then τi
else Empty



Figure 5.4: Conservative Function Application Inversion Algorithm

algorithm from figure 5.2 except simplified to suit our needs: instead of considering each

possible combinations of arrows as we did in the semantic context, we can simply consider

each arrow individually as does our hypothetical language during function application.

The cinv algorithm in figure 5.4 really is just a conservative approximation of the original

algorithm: we subtract potentially less type information from the domain type than the

original algorithm does since we’re considering a subset of original algorithm’s cases and

our overlap and diff may themselves be conservative approximations. Whether or not this

conservative algorithm would be expressive enough in practice is difficult to tell, but it

seems there is at least one obstacle worth noting: a system would need negation types to

effectively describe type predicates in a function interface and few systems at the time of

writing this document include them. If negation types were present then cinv would be

able to identify standard predicate types.

5.2 Formal Language Model

In this section we introduce a calculus (λSO) which demonstrates how set-theoretic types,

semantic subtyping, and function application inversion can serve as an expressive, pow-

erful foundation for occurrence typing. λSO essentially combines the logical foundations

of λOT from section 2.2—i.e. using a logical environment and propositions to inform the

type system in a control flow sensitive way—with the full spectrum of set-theoretic types,

semantic subtyping (discussed in chapter 4), and function application inversion (discussed

in section 5.1.1). λSO avoids much of the underlying complexity inherited by systems based

on occurrence typing [10, 68] by leveraging semantic subtyping to completely reason about

the intersection and negation of types.

112

v ::= Values
| c constant value
| (λ{I}(x) e) function value

e ::= Expressions
| x, y, z variables
| v values
| (e e) application
| (if e e e) conditional

τ, σ ::= Types
| Any universal type
| Empty uninhabited type
| Int integer type
| Str string type
| True true types
| False false type
| τ → τ arrow type
| τ ∪ τ type union
| τ ∩ τ type intersection
| ¬τ type negation

I ::= −−−−→τ → σ Function Interfaces

c ::= Constants
| int integer value
| true true value
| false false value
| str string value
| uop primitive ops

π ::= Paths
| v value path
| x variable path

p, q ::= Propositions
| tt trivial prop
| ff absurd prop
| π ∈ τ π is of type τ

| p∧ p conjunction
| p∨ p disjunction

o ::= Symbolic Objects
| ⊤o null object
| π path object

R ::= ⟨τ, p, q, o⟩ Type-Results
Γ ::= −→p Type Env

Figure 5.5: λSO Syntax

Like previous occurrence typing calculi, the λSO typing judgment assigns type-results to

well-typed expressions instead of merely types:

Γ ⊢ e : ⟨τ, p, q, o⟩

This judgment states that in environment Γ

• e has type τ ;

• if e evaluates to a non-false (i.e. treated as true) value, “then-proposition” p holds;

• if e evaluates to false, “else-proposition” q holds;

• e’s value corresponds to the symbolic object o.

5.2.1 λSO Syntax

The syntax of terms, types, propositions, and other forms are given in figure 5.5.

113

Constants (c) are integers, strings, booleans, or unary primitive operations. The

individual primitive operators are enumerated later in the specification of the semantics

(figure 5.9).

Expressions (e) and values (v) describe a simple lambda calculus, consisting of

constants, variables, functions, function application, and conditionals. λ-abstractions are

annotated with an “interface” I which consists a series of function arrows that describe the

function’s behavior. A function’s type is the intersection of the arrows in its interface.

Types (τ, σ) include the full spectrum of set-theoretic types described previously in

figure 4.1 (sans pairs for simplicity). Again, since we are interpreting types semantically,

they can simply be thought of as denoting the sets of values described in section 4.1.2.

Paths (π) describe the pure terms we want our logic to be able to make type-related

statements about, i.e. the terms whose type we want to refine based on the control flow

of our program. λSO—unlike similar previous occurrence typing calculi—includes values as

valid paths. As we discuss later in section 5.2.4, this choice was made to prove soundness

via the standard small-step approach.

Propositions (p, q) and Environments (Γ) are at the core of how we describe the

types of program terms. An environment Γ is simply a set of logical propositions. A

proposition p can be a standard propositional atom (i.e. the trivial and absurd propositions

tt and ff), a conjunction or disjunction, or a type-related proposition π ∈ τ which states

that path π as type τ . Note that whereas previous calculi [9, 10, 68] used two propositional

forms to describe the types of terms—one stating a path has some type and one stating

a path does not have some type—λSO requires only one kind of type proposition since

negative type information can be encoded directly in the type itself. I.e., π /∈ τ can instead

be written as π ∈ ¬τ .

Symbolic Objects (o) allow us to state that an expression either corresponds to a

particular path (i.e. a value who’s type we wish to keep track of) or it does not and thus

corresponds to the trivial symbolic object ⊤o.

A type-result (R)—as suggested at the beginning of this section—is a 4-tuple ⟨τ, p, q, o⟩

which lets the typing judgment state more information about well typed terms: they de-

scribe not only a terms type τ , but also their positive and negative propositions p and q

114

Γ ⊢ e : R
T-Const

Γ ⊢ c : ∆R(c)

T-Var
Γ ⊢ x ∈ τ

Γ ⊢ x : ⟨τ, x ∈ ¬False, x ∈ False, x⟩

T-Abs
∀(σ → σ′) ∈ I. Γ, x ∈ σ ⊢ e : σ′

τ =

 ∩
(σ→σ′)∈I

(σ → σ′)

∩¬τ ′

x /∈ fvs(Γ) τ ̸<: Empty

Γ ⊢ (λ{I}(x) e) : ⟨τ, tt, ff, (λ{I}(x) e)⟩

T-App
Γ ⊢ e1 : τ1 Γ ⊢ e2 : ⟨τ2, tt, tt, o2⟩

τ1 <: τ2 → τ (σ+, σ−) = pred(τ1, τ2)
Γ ⊢ (e1 e2) : ⟨τ, is(o2, σ+), is(o2, σ−),⊤o⟩

T-If
Γ ⊢ e1 : ⟨τ1, p1, q1, o1⟩ p1, Γ ⊢ e2 : R q1, Γ ⊢ e3 : R

Γ ⊢ (if e1 e2 e3) : R

T-Sub
Γ ⊢ e : R′ Γ ⊢ R′ <: R

Γ ⊢ e : R

Figure 5.6: λSO Typing Judgment

and symbolic object o.

5.2.2 λSO Type System

The type system for λSO is described in figure 5.6.

T-Const type checks constants, consulting the ∆R metafunction described in figure 5.7.

In addition to assigning a type, this metafunction returns then- and else-propositions that

are consistent with whether the constant is false. All constants have themselves as their

symbolic object.

T-Var may assign any type τ to variable x so long as the x ∈ τ is provable in Γ. The

then- and else-propositions reflect the self evident fact that if x evaluates to a non-false

value then x is not of type False, otherwise it is of type False. The symbolic object informs

the type system that this expression corresponds to the path x.

T-Abs, the rule for checking lambda abstractions, checks the body of the abstraction

once for each arrow type (σ → σ′) in I. In each case, the environment is extended by

assigning x the domain type σ and the body is checked to be well-typed at the codomain

type σ′. The overall type of the abstraction τ is then the intersection of all of the arrows in

I along with any desired negated type information τ ′, so long as τ is still an inhabited type;

115

this ability to add arbitrary negative type information to a lambda is standard practice

in semantic subtyping calculi [28], as it ensures that all values are either in a type or its

negation. We use the standard convention of choosing fresh names not currently bound

when extending Γ with new bindings. The overall type-result for the lambda includes its

type τ , then- and else-propositions stating the value is non-false, and the lambda value

itself as the symbolic object. (Note that only well-typed lambdas are lifted into the space

of symbolic objects during type checking, so we need not type check the bodies of lambda

value paths—inspecting their interface will suffice.)

T-App handles function application, first checking that e1 and e2 are well-typed individ-

ually at some types τ1 and τ2. Then, it checks if τ1 is a subtype of some function type τ2 → τ

(i.e., a function whose domain covers the type of e2); the codomain (τ) of this function type

will be the overall type of the application expression. The pred metafunction—described in

figure 5.7—is used to determine what (if anything) is learned about the argument based on

whether the result is non-false (σ+) or false (σ−). pred relies on the inv metafunction

described in section 5.1.1 which performs function application inversion to determine this

information. The then- and else-propositions describe in terms of the argument’s symbolic

object o2 what is learned from the result (if anything), leveraging the is metafunction (also

defined in figure 5.7) to deal sensibly with when o2 = ⊤o. The symbolic object for the

application is simply ⊤o since we choose not to reason about complex expressions such as

the result of arbitrary function applications.

T-If is used for conditionals, describing the important process by which information

learned from evaluating test-expressions is projected into the respective branches. After

ensuring e1 is well-typed at some type, we make note of the then- and else-propositions

p1 and q1. We then extend the environment with the appropriate proposition, dependent

upon which branch we are checking: p1 is assumed for checking the then-branch and q1 for

the else-branch. The type-result of a conditional is simply the type-result implied by both

branches (which can be determined by subsuming their results via type-result subtyping).

T-Sub allows us to naturally abstract or refine a type-result R via subtyping and based

on information in Γ; the details of the type-result subtyping relation are found in figure 5.8.

Well Formedness. For any judgment Γ ⊢ e : R, we require that the free variables in e

116

pred : τ τ → τ

pred(τf , τa) = (σ+ ∩ τa, σ− ∩ τa)
where σ+ = inv(τf ,¬False)

σ− = inv(τf , False)

is : o τ → p

is(π, τ) π ∈ τ

is(⊤o, τ) =

{
ff if τ <: Empty

tt otherwise
∆R : R → τ
∆R(false) = ⟨False, ff, tt,false⟩
∆R(c) = ⟨∆τ (c), tt, ff, c⟩ if c ̸= false
∆τ : c → τ
∆τ (int) = Int
∆τ (str) = Str
∆τ (true) = True
∆τ (false) = False
∆τ (add1) = Int → Int
∆τ (sub1) = Int → Int
∆τ (strlen) = Str → Int
∆τ (not) = (False → True)∩ (¬False → False)
∆τ (int?) = (Int → True)∩ (¬Int → False)
∆τ (str?) = (Str → True)∩ (¬Str → False)
∆τ (zero?) = Int → Bool

Figure 5.7: λSO Type Metafunctions

and R be a subset of those found in Γ.

The logic for λSO (see figure 5.8) is a straightforward propositional logic with a few

(highlighted) rules for reasoning about the types of terms. We will only describe the

type-related rules since the others are entirely standard.

P-Sub allows us to use subtyping in the expected way when proving some path π has

a particular type. I.e., since Γ ⊢ π ∈ τ and τ is a subtype of σ, then π also is a σ.

P-Empty is similar to the principle of explosion (ex falso quodlibet), allowing us to

prove anything if some path is of the uninhabited type.

P-Combine says that if we can prove a path π has both type τ and σ, then it must

have type τ ∩σ. This essentially lets us lift logical “and” into the type space. Furthermore,

with proper intersections and negations, this simple rule replaces the several metafunctions

used in previous work [9].

P-Val allows us to prove a value v has a type τ if the type system claims it does. In

practice the only values we consider here are ones which have already been found to be

117

Γ ⊢ p

P-Atom

Γ, p ⊢ p

P-Trivial

Γ ⊢ tt

P-Sub
Γ ⊢ π ∈ τ τ <: σ

Γ ⊢ π ∈ σ

P-Empty
Γ ⊢ π ∈ Empty

Γ ⊢ p

P-Combine
Γ ⊢ π ∈ τ Γ ⊢ π ∈ σ

Γ ⊢ π ∈ τ ∩ σ

P-Val
⊢ v : τ

Γ ⊢ v ∈ τ

P-ExFalso
Γ ⊢ ff

Γ ⊢ p

P-AndE
Γ ⊢ p1 ∧ p2 i ∈ {1, 2}

Γ ⊢ pi

P-AndI
Γ ⊢ p Γ ⊢ q

Γ ⊢ p∧ q

P-OrE
Γ ⊢ p1 ∨ p2 Γ, p1 ⊢ q Γ, p2 ⊢ q

Γ ⊢ q

P-OrI
Γ ⊢ p or Γ ⊢ q

Γ ⊢ p∨ q

τ <: τ o <: o
τ <: σ iff [[τ]] ⊆ [[σ]] o1 <: o2 iff o1 = o2 or o2 = ⊤o

Γ ⊢ R <: R
τ1 <: τ2 o1 <: o2

is(o1, τ1 ∩¬False), p1,Γ ⊢ p2
is(o1, τ1 ∩ False), q1,Γ ⊢ q2

Γ ⊢ ⟨τ1, p1, q1, o1⟩ <: ⟨τ2, p2, q2, o2⟩

Figure 5.8: λSO Logic and Subtyping

118

well-typed, and thus the checks are either trivial (for constants) or surface level (i.e. we can

just inspect the interface of a well-typed lambda to determine its type).

Subtyping in λSO utilizes the standard semantic approach: τ is a subtype of σ if and

only if the set of values τ denotes is a subset of the values σ denotes. Readers can find

intuition and implementation details for this approach in the contents of chapter 4; previous

work by Frisch et al. [28] lays out rigorous mathematical justifications. Suffice it here to

recall that we can decide subtyping in a sound and complete manner for the entire spectrum

of set-theoretic types. Object subtyping has ⊤o as the top object and is also reflexive.

The type-result subtyping allows us to adjust the type and symbolic object an expression

has via subtyping and further allows us to refine the then- and else-propositions with the

propositions in Γ and the knowledge that o1 is of type τ1.

5.2.3 λSO Semantics

The dynamic semantics of λSO are presented in figure 5.9 as a series of standard syntactic

small-step reduction rules. e −→ e′ says that e steps to e′ in a single reduction. Notably

any non-false value is treated as “true” in conditional test expressions, SS-Beta uses

standard capture-avoiding substitution to implement function application, and the partial

metafunction δ (also defined in figure 5.9) is used by SS-UOp to describe how the language’s

unary primitives operate. We write e −→∗ e′ to mean the reflexive, transitive closure of the

single-step relation, meaning e steps to e′ in zero or more steps.

5.2.4 λSO Soundness

We prove soundness for λSO via the standard progress and preservation lemmas [69].

The statement of progress is straightforward: any well-typed term is either a value or

can take a single step of evaluation.

Theorem 5 (λSO Progress). If ⊢ e : R then either

• ∃v. e = v, or

• ∃e′. e −→ e′.

119

e −→ e

SS-App1
e1 −→ e′1

(e1 e2) −→ (e′1 e2)

SS-App2
e2 −→ e′2

(e1 e2) −→ (e1 e′2)

SS-UOp
v′ = δ(uop, v)

(uop v) −→ v′

SS-Beta

((λ{I}(x) e) v) −→ e[x 7→ v]

SS-If
e1 −→ e′1

(if e1 e2 e3) −→ (if e′1 e2 e3)

SS-If-False

(if false e2 e3) −→ e3

SS-If-NonFalse
v ̸= false

(if v e2 e3) −→ e2

δ : uop v → v

δ(add1, int) = int + 1
δ(sub1, int) = int − 1
δ(strlen, str) = |str|

δ(not, v) =

{
true if v = false
false otherwise

δ(int?, v) =

{
true if ∃int. v = int
false otherwise

δ(str?, v) =

{
true if ∃str. v = str
false otherwise

δ(zero?, int) =

{
true if int = 0

false otherwise

Figure 5.9: λSO Small-step Reduction Semantics

120

Proof. By induction on the typing derivation for e.

Our substitution lemma is a little more complicated. We first describe what it says and

then discuss why this particular framing is needed: it states that if an expression e is well

typed at R in a context Γ′, and if that context is implied by the context Γ, z ∈ τ1 (where z

does not occur free in Γ), then in context Γ the expression e with z consistently replaced by

v will type check at R′ which is just as or more precise than R when all its free occurrences

of z are replaced by v.

Lemma 5 (λSO Substitution). Assuming

• Γ′ ⊢ e : R,

• ⊢ v : τ1,

• z /∈ fvs(Γ), and

• Γ, z ∈ τ1 ⊢ Γ′,

then there exists an R′ such that

• Γ ⊢ e[z 7→ v] : R′ and

• Γ ⊢ R′ <: R[z 7→ v].

Proof. By induction on the typing derivation for e.

The reason for this particular phrasing stems from the fact that both our environments

and type-results contain logical propositions which can discuss any in-scope identifiers.

So with the environments, we are essentially saying that whatever Γ′ says about z, these

statements are true exactly when they are true for v since v is of type τ1 (and recall that we

can easily decide whether a well-typed value is in a particular type) and whatever Γ′ says

about terms that do not contain z is implied by Γ. Therefore the substitution R[z 7→ v]

is essentially converting all statements made by the type system which mention z into the

appropriate atomic proposition—tt or ff—based on whether or not they hold for v. This

corresponds exactly to what is happening when we type check a term prior to performing

121

the substitution mapping z to v: the type system can only prove claims about the expression

which are provable in the environment without z or with the knowledge that z is of type

τ1, and so by replacing z by v the derivation on e[z 7→ v] remains valid in Γ with respect to

that R′.

With substitution handled, preservation becomes straightforward, stating that evalua-

tion preserves type, proposition, and object information.

Theorem 6 (λSO Preservation). If ⊢ e : R and e −→ e′ then there exists a R′ such that

⊢ e′ : R′ and ⊢ R′ <: R.

Proof. By induction on the typing derivation for e.

If we allowed evaluation in arbitrary contexts further work would be required. I.e.,

because we are only considering the empty context at the top level, R and R′ contain no

free variables, and thus the claims they make in the propositions and symbolic object are

trivial.

Proof techniques comparison: λSO vs λOT

Previous proofs for occurrence typing calculi such as λOT [9] have used a unique model

theoretic proof technique. In this approach runtime environments serve as the model in

which satisfaction of a particular proposition or logical environment can be decided. The

soundness theorem then states that values produced by the big-step evaluation semantics

will have the correct type and any propositional claims made by the type system will be

satisfied by the runtime environment. Although this technique is convenient and works well

with the model-theoretic nature of the type system itself, it features the standard drawbacks

of big-step soundness proofs by saying nothing of diverging or stuck terms. However, because

type-results can contain free variables—in particular they may mention those which are

eliminated by certain reduction steps—the more common small-step proof technique seemed

ill fitted to reason about the soundness of such calculi. I.e., some reductions in these calculi

would produce expressions which no longer contained terms the previous type-result made

claims about. For these reasons, the less precise model theoretic big-step technique was

favored.

122

In proving soundness for λSO, however, we discovered a compromise of sorts between

these two proof techniques. Instead of using a big-step semantics and a model theoretic

notion of satisfaction to decide soundness—where all free variables are replaced at once

by their associated values from the runtime environment and the truth of all propositions

becomes trivially decidable—we use a small-step semantics and replace the free variables (in

both the program and in type system’s claims) incrementally as we perform reduction steps.

Essentially, by allowing propositions to talk about values in addition to variables, we end up

more-or-less incrementally deciding whether or not the propositions in the type-result would

be satisfied by evaluation one substitution at a time. This allows us to effectively reason

about a calculus whose design is somewhat inspired by model theory with the standard

tools from semantics engineering, thereby allowing us to make more precise claims about

the soundness of the language.

5.2.5 Additional Language Features

Our presentation of λSO focused on the smallest set of features necessary to demonstrate how

semantic subtyping and function application inversion could support occurrence typing. In

particular, we omitted features like local binding and pairs, which were present in previous

occurrence typing calculi. To support these features, in addition to extending the grammar

of values and expressions in the natural ways, typing rules roughly equivalent to T-Let,

T-Cons, T-First, and T-Second from Kent et al. [68] would need to be added along

with paths describing product projections (e.g. a path (proj i π) describing the ith field of

path π). Furthermore, since combining type information for a particular path is performed

entirely within the semantics of the types themselves (i.e. there is no need for a metafunction

similar to update from λOT which syntactically combines type information, since we simply

intersect the types with P-Combine from figure 5.8) we would need to add a few logical

rules such as the following to convert propositions into a normal form so they mention the

same paths whenever possible:

123

P-Fst

Γ ⊢ (proj 1 π) ∈ τ

Γ ⊢ π ∈ τ × Any

P-Snd

Γ ⊢ (proj 2 π) ∈ τ

Γ ⊢ π ∈ Any× τ

I.e., when we have a proposition about the projection of a path’s field we can convert

that into a proposition about the underlying path by pushing the type into the appropriate

product field.

5.3 Semantic Numeric Tower

The motivation for exploring function application inversion stemmed from the observation

that set-theoretic types appear well-suited for precisely describing standard type predicates.

However, standard type predicates are not the only kind of functions which can inform a type

checker in a flow sensitive way. For example, Typed Racket has made significant progress in

uniquely leveraging occurrence typing and set-theoretic types to precisely describe Racket’s

rich numeric tower[70]. In Racket, many numeric types contain many different distinct

kinds of numeric values, e.g. a Number can be an integer, an exact rational, and inexact

IEEE floating point number, etc. Figure 5.10 gives a rough outline for how this numeric

tower of types is constructed:

Figure 5.10: Numeric Tower Overview for Number (left) and Integer (right)

124

Essentially, the set of numeric values in Racket is partitioned into disjoint sets de-

scribed by “numeric base types”: Zero which covers the set {0}, One which covers {1},

ByteLargerThanOne which covers {2, . . . , 255}, etc. Then, unions of these base types are

defined to describe natural sets of numbers one might want to reason about: PosByte is

the union of One and ByteLargerThanOne, Byte is the union of Zero and PosByte, etc. The

entire tower is given in appendix B for reference.

This tower of types lets Typed Racket precisely describe the behavior of many primitive

numeric operations. For example, here is one of the types for the < operator:

< ∈ (x :Zero y :Real → ⟨Bool, y ∈ PosReal, y ∈ NonnegReal,⊤o⟩)

This type says that whenever the first argument to less-than is 0 the result witnesses

whether or not the second argument is positive. The full type for < is an intersection of many

such arrows, describing what can be learned when comparing various subsets of the real

numbers. With these sorts of precise types and occurrence typing, numeric programs can

more accurately describe their semantics at the type level. For example, while many typed

languages describe the absolute value function as a unary operator on a particular numeric

type, in Typed Racket we can give a type which includes the expected sign information:

(: absolute-value (-> Real Nonnegative-Real))
(define (absolute-value x)
(if (< 0 x)

x
(- 0 x)))

Here, the type system learns from the test expression (< 0 x) that x is positive in the

then-branch and nonpositive in the else-branch, which allows the type checker to guarantee

that each branch produces a nonnegative real number.

5.3.1 Semantic Types for Comparison Operators

Now we examine how function application inversion can also express the aforementioned

unique numeric occurrence typing found in Typed Racket. Recall that in Typed Racket

this is achievable because an intersection of arrows can include cases for specific argument

combinations of interest, to which it assigns latent propositions stating what would be

125

(x : Integer)(y : One) → ⟨Bool, x ∈ NonposInteger, x ∈ PosInteger,⊤o⟩
∩ (x : Real)(y : Zero) → ⟨Bool, x ∈ NegReal, x ∈ NonnegReal,⊤o⟩
∩ (x : Zero)(y : Real) → ⟨Bool, x ∈ PosReal, x ∈ NonposReal,⊤o⟩
∩ (x : Real)(y : RealZero) → ⟨Bool, x ∈ NegReal, tt,⊤o⟩
∩ (x : RealZero)(y : Real) → ⟨Bool, x ∈ PosReal, tt,⊤o⟩
∩ (x : Byte)(y : PosByte) → ⟨Bool, tt, x ∈ PosByte,⊤o⟩
∩ (x : Byte)(y : Byte) → ⟨Bool, y ∈ PosByte, tt,⊤o⟩
∩ ...

Figure 5.11: (Partial) Syntactic Type of < (7 of 88 arrows shown)

learned about the arguments depending on whether the result was false. In figure 5.11

we list 7 of the 88 arrows Typed Racket uses to describe the binary cases for the < operator

to get a better sense of what this looks like.

With function application inversion, however, we do not have latent propositions to

describe what can be learned in certain cases. Instead we need to directly encode the

functional details we want the type system to know about. We do this—as we did with

simple type predicates—by clearly indicating which values will be mapped to which result.

E.g., for (< x y), if x is negative and y is nonnegative, then we know the result will

be true. Or if we know either is +nan.0 (i.e. the IEEE floating point “not a number”

value), then the result will be false. When we do this for all the relevant combinations of

arguments we get a function type with 23 arrows shown in figure 5.12.

The semantic type for < in figure 5.12—when used in the expressive context of semantic

subtyping and function application inversion—is just as expressive as the Typed Racket

version with 88 arrows. I.e., given any combination of arguments with numeric tower types

the semantic approach always produces a prediction about those arguments that is just as

or more precise than the prediction given by the syntactic type Typed Racket uses.

126

NaN× Real → False
1

∩ Real× NaN → False
1

∩ (NonposReal∩¬NaN)× (PosReal∩¬NaN) → True
2

∩ PosReal× NonposReal → False
2

∩ (NegReal∩¬NaN)× RealZeroNoNaN → True
2

∩ RealZero× NegReal → False
2

∩ NegInfinity× (Real∩¬NaN∩¬NegInfinity) → True
3

∩ Real× NegInfinity → False
3

∩ (Real∩¬NaN∩¬PosInfinity)× PosInfinity → True
3

∩ PosInfinity× Real → False
3

∩ NegIntegerNotFixnum× (Integer∩¬NegIntegerNotFixnum) → True
4

∩ (Integer∩¬NegIntegerNotFixnum)× NegIntegerNotFixnum → False
4

∩ RealZero× RealZero → False
4

∩ One× One → False
4

∩ One× (PosInteger∩¬One) → True
4

∩ (PosInteger∩¬One)× One → False
4

∩ Byte× (PosInteger∩¬Byte) → True
4

∩ (PosInteger∩¬Byte)× Byte → False
4

∩ Index× (PosInteger∩¬Index) → True
4

∩ (PosInteger∩¬Index)× Index → False
4

∩ Fixnum× PosIntegerNotFixnum → True
4

∩ PosIntegerNotFixnum× Fixnum → False
4

∩ Real× Real → Bool
5

Key NaN 1 sign 2 ± infinity 3 finite bounds 4 cumulative type 5

Figure 5.12: Semantic Type of <

127

5.3.2 Semantic Types for Other Numeric Operators

In addition to examining how a system like λSO could handle non-standard predicates such

as numeric comparisons, we also examined how the types of some simple mathematical

operators would be expressed in a context with semantic subtyping. For example, the

Racket add1 function simply adds 1 to the value of its argument, but the kind of numeric

value that is returned will depend on the input. Figure 5.13 gives the syntactic (i.e. Typed

Racket) type for add1. It contains 23 individual arrows describing where various numeric

values are mapped. Figure 5.14 contains the semantic type for add1, which consists of 14

arrows. In appendix B we give the full syntactic and semantic types for the + operator,

which is interesting to compare but whose size make them ill-suited to include here.

128

Zero → One

∩ One → PosByte

∩ Byte → PosIndex

∩ Index → PosFixnum

∩ NegFixnum → NonposFixnum

∩ NonposFixnum → Fixnum

∩ NonnegInteger → PosInteger

∩ NegInteger → NonposInteger

∩ Integer → Integer

∩ NonnegRational → PosRational

∩ Rational → Rational

∩ NonnegFloat → PosFloat

∩ Float → Float

∩ NonnegSingleFloat → PosSingleFloat

∩ SingleFloat → SingleFloat

∩ NonnegInexactReal → PosInexactReal

∩ InexactReal → InexactReal

∩ NonnegReal → PosReal

∩ Real → Real

∩ FloatComplex → FloatComplex

∩ SingleFloatComplex → SingleFloatComplex

∩ InexactComplex → InexactComplex

∩ Number → Number

Figure 5.13: Syntactic Type of add1

129

Zero → One
1

∩ One → Byte
1

∩ Byte → Index
1

∩ Index → Fixnum
1

∩ NonposFixnum → Fixnum
1

∩ NegInteger → NonposInteger
2

∩ NonnegReal → PosReal
2

∩ Integer → Integer
3

∩ Rational → Rational
3

∩ Float → Float
3

∩ SingleFloat → SingleFloat
3

∩ FloatComplex → FloatComplex
3

∩ SingleFloatComplex → SingleFloatComplex
3

∩ Number → Number
4

Key finite integer range 1 sign 2 compound 3 cumulative type 4

Figure 5.14: Semantic Type of add1

5.3.3 Semantic/Syntactic Function Type Comparison

After confirming semantic subtyping and function application inversion were expressive

enough to handle the unique idioms that have emerged in Typed Racket’s numeric tower,

we began investigating how the sizes of numeric function types compared more generally in

these two settings. We examined 17 numeric operators in total: 6 unary numeric functions,

9 binary numeric functions, and 3 numeric comparison functions. In each case, the semantic

version was able to produce equivalent or more precise result types for applicable numeric

tower input types and required significantly fewer arrows. We summarize these results in

figure 5.15.

The reason for this disparity in the number of arrows largely stems from the fact that

Typed Racket (the “syntactic” system) uses a simple linear algorithm for computing the

130

result type of function application: when given argument types, Typed Racket scans the

list of arrows in order until an arrow whose domain covers the arguments is found and

that arrow’s codomain is used. The semantic approach, on the other hand, considers the

given argument types and all possible combinations of arrows which might cover them.

This means fewer, more precise arrows are needed to fully specify the behavior, but the

computation can have exponential complexity. In our small scale testing the overhead did

not seem prohibitive, but a larger scale study in an actual type checker for a reasonable

language would be required to see if the numeric tower’s types are reasonably handled in a

semantic fashion in practice.

131

Arrow Count Ratio

Function Syntactic Semantic Sem. #
Sem.# + Syn.#

add11 23 14 0.61

sub11 23 13 0.57

abs1 17 6 0.35

sqr1 17 12 0.71

sqrt1 24 11 0.46

expt2 37 23 0.62

modulo2 13 9 0.69

quotient2 24 10 0.42

+2 85 26 0.31

-2 65 24 0.37

*2 58 22 0.38

/2 46 20 0.44

max2 82 20 0.24

min2 89 20 0.23

<3 88 23 0.26

<=3 89 22 0.25

=3 57 22 0.39

Key unary function1 binary function2 binary comparison function3

Figure 5.15: Size of certain Racket math operations (syntactically vs semantically)

5.3.4 Challenges and Future Work

While these initial results are promising—we can express both simple and non-standard type

predicates through semantic subtyping and function application inversion—there remains

work to be done if we want to claim this technique is capable of being a true “replacement”

for a system as large and complex as Typed Racket. In particular, exploring how these

132

features perform in the wild (i.e. are type checking times tolerable) and how they work

with other important features such as polymorphism remains future work.

For an initial glimpse into how types such as those found in Typed Racket’s numeric

tower might work in a full-scale system with semantic subtyping, we encoded the Typed

Racket numeric tower’s types in CDuce[53]—a language with both semantic subtyping and

polymorphism—to see if things would “just work”. Unfortunately with the size of the

function types we were interested in (i.e. the semantic function types in figure 5.15 which

feature almost 30 arrows in some cases) CDuce was unable to perform type inference for even

a single polymorphic function application in a reasonable amount of type (we stopped the

experiment after 15 minutes). We contacted the creators of CDuce and they confirmed the

example we presented was problematic and likely due to an “explosion in the normalization

process”[71]. It is unclear whether further engineering would make these large numeric

types more compatible with CDuce’s type inference algorithm or if further fundamental

research on this problem is required. We have included our encoding of the numeric tower’s

types into CDuce in appendix C.

5.4 Expressiveness

With λOT and λSO presenting fundamentally different foundations for the same general ap-

proach to occurrence typing, it is worth examining how these differences affect the expres-

siveness of the type system. On the one hand, λSO—which features semantic subtyping—is

better able to completely reason about set-theoretic types and how they relate to one

another. This means that idioms which rely on advanced set-theoretic features—such as

intersection and negation types—can more easily be described in a system like λSO (e.g., see

hash-ref from section 1.2). λOT on the other hand—with its dependent function types—

is better suited to express relationships between different syntactic portions of a program.

For example, λOT can—because of its dependent function types—have abstractions whose

results tell us something about non-argument in-scope identifiers:

133

(let ([is-y-an-number? (λ (x) (number? y))])
(if (is-y-a-number? #f)

(add1 y)
0))

In this example, the function is-y-a-number? ignores its argument and tells us if y is

a number. I.e., it would be assigned the following type by λOT ’s type system:

(x :Any)→⟨Bool, y ∈ Num, y /∈ Num,⊤o⟩

Because of this, the overall program would type check in λOT but not in λSO. This

is because function application inversion (which λSO relies on) can only uncover type in-

formation about the actual arguments to a function. We might think such programs are

few and far between: surely no programmer would manually write such a block of code,

right? Perhaps not. There is, however, a long standing tradition of writing extraordinarily

complex macros in languages such as Scheme and Racket. Some of these macros generate

code which has the appearance of rubbish upon first glance, but whose semantics exactly

capture the needs of the syntactic abstraction. Some of these macros—such as the widely

used for-loops in Racket—can generate seemingly odd abstractions and conditional tests

which resemble the is-y-a-number? example. To illustrate, consider the following Typed

Racket program:

(: vector-ormap (All (X) (-> (-> X Boolean)
(Vectorof X)
Boolean)))

(define (vector-ormap f xs)
(for/or ([x (in-vector xs)])
(f x)))

vector-ormap simply iterates over all the elements of xs, returning the disjunction of

the predicate f applied to each element. In other words, it is roughly equivalent to the

following expression:

(and (> (vector-length xs) 0)
(or (f (vector-ref xs 0))

...
(f (vector-ref xs (sub1 (vector-length xs))))))

134

As we noted, however, the various for-loops in Racket are not primitives in the language:

they are macros. The body of vector-ormap expands into roughly the following program:

((letrec ([for-loop
(λ (acc pos)
(cond

[(>= pos (vector-length xs)) acc]
[else
(define x (vector-ref xs pos))
(define f-of-x (f x))
(if (not ((λ args f-of-x) x))

(for-loop f-of-x (add1 pos))
f-of-x)]))])

for-loop)
#f 0)

Typed Racket (as of version 7.2) looks at this program and “guesses”—through some

undocumented adhoc type inference heuristics which have evolved since its inception—that

the recursive for-loop function should have type (-> False Integer Boolean). This

happens to work for Typed Racket in this case (i.e. the program type checks) in part because

Typed Racket can tell that the result of the application ((λ args f-of-x) x) actually

gives us the value of f-of-x (i.e. the lambda’s type depends on an identifier that is not

one of its arguments).3

If, however, we limit Typed Racket so dependent function types can only mention their

arguments in their codomain, we get the following error:

Type Checker: type mismatch

expected: False

given: Boolean

in: f-of-x

This initially seems to suggest that there are macros in use today which function ap-

plication inversion would fail to type check, since their correctness appears to depend on

functions whose codomains mention non-arguments. However, we cannot ignore the role

Typed Racket’s adhoc type inference plays in this failure. It seems, for example, that if

Typed Racket’s inference determined that the first argument to for-loop could be any
3Generally speaking, however, these type inference heuristics are a well-known pain point, being insuffi-

cient for type checking many usages of for-macros in the wild and being difficult to predict for programmers.

135

Boolean and not just False, this program would type check in a type system where

function types cannot describe how non-arguments affect their behavior (i.e. like λSO).

Indeed, if we merely annotate the initial first argument to the recursive function to be

(ann #f Boolean) the program does type check even with the aforementioned limitation

on dependent functions. This indicates that a Typed Racket-like system built on semantic

subtyping and function application inversion would be able to handle such programs given

that its type inference was stronger or it featured a different set of inference heuristics.

Regarding stronger inference, work has already been done showing how full-program type

inference and polymorphism for semantic subtyping can be achieved[60, 61]. So, while we

certainly can come up with programs which λOT can type check and λSO cannot, in practice

it appears most idioms are well-suited for type checking via λSO’s type system.

5.5 Related Work

Much of what should be said about work related to λSO has already been discussed in section

2.2.8 in our overview of occurrence typing and in section 4.6 in our discussion of work related

to semantic subtyping. Essentially, while λSO borrows the logical techniques from prior

occurrence typing work [9] and the rich power of semantic subtyping [28], it introduces

a truly novel approach for identifying predicate-like functions. Instead of examining a

programs syntax, having dependent types, or trying to reason about all possible programs

union types may be flattened into, λSO uses the unique function application inversion

algorithm introduced in section 5.1 to support occurrence typing. The resulting system

seems roughly equivalent in expressiveness to previous work in occurrence typing as it is

able to type check the various examples appearing in previous work[14, 70]. And while some

occurrence typing languages will be able to express more complex program dependencies in

types due to their inclusion of dependent types[9, 30, 31, 4, 23, 22, 32, 20, 33, 34, 35], λSO

seems well suited to handle the majority of idioms occurring in practice due to its building

on the rich foundation of semantic subtyping[28].

136

Appendices

137

APPENDIX A

FUNCTION APPLICATION INVERSION PROOFS

This appendix contains the mechanized proofs for the theorems in section 5.1.4. The proofs

basically assume the following:

• there exists a type and programming language framework in which the entire spectrum

of set-theoretic types are available and we can soundly and completely decide their

subtyping and inhabitation;

• types can be interpreted as sets of values and we can identify when a value is in the

set corresponding to some type;

• any function type can be treated as if being in DNF without loss of generality; and

• for any function type there is a function value which inhabits that type.

The first four items roughly correspond to results from foundational work in semantic

subtyping [28] and the last item is based on the assumption that if a type in this language

is inhabited then we can find some element of that type and the fact that the underlying

language supports nontermination. We conduct our proofs using as few definitions and as

little boiler-plate as possible given these assumptions (i.e. we do not include a language

definition, a type system, reduction rules, etc).

Function application inversion soundness (see Theorems i_inv_sound and d_inv_sound)

and completeness (see Theorems i_inv_minimal and d_inv_minimal) are then proved in

that order, with each first proving the property for an intersection of arrows (the Inductive

interface datatype) and then for a union of such intersections (the Inductive dnf

datatype).

The proofs were compiled with Coq version 8.8.2. The library CpdtTactics is the

only library which is required but not included in Coq’s standard library; it is required for

the helpful crush tactic and can be found online accompanying Adam Chlipala’s textbook

Certified Programming with Dependent Types [72].

138

Require Import Coq.Sets.Ensembles.
Require Import Coq.Sets.Classical_sets.
Require Import Coq.Sets.Image.
Require Import CpdtTactics.

Set Implicit Arguments.

(* *)
(* A few useful tactics *)
(* *)

Ltac ifcase :=
match goal with
| [|- context[if ?X then _ else _]] => destruct X
end.

Ltac ifcaseH :=
match goal with
| [H : context[if ?X then _ else _] |- _] => destruct X
end.

Ltac matchcase :=
match goal with
| [|- context[match ?term with

| _ => _
end]] => destruct term

end.

Ltac matchcaseH :=
match goal with
| [H: context[match ?term with

| _ => _
end] |- _] => destruct term

end.

Ltac applyH :=
match goal with
| [H : _ -> _ |- _] => progress (apply H)
end.

Ltac applyHinH :=
match goal with
| [H1 : _ -> _ , H2 : _ |- _] => apply H1 in H2
end.

(* *)
(* Value/Type Definitions *)
(* *)

Axiom V : Type.
Notation Ty := (Ensemble V).

Notation "'0'" := (Empty_set V).
Notation "'1'" := (Full_set V).
Notation "T1 '∩' T2" :=
(Intersection V T1 T2) (at level 52, right associativity).

Notation "T1 '∪' T2" :=

139

(Union V T1 T2) (at level 53, right associativity).
Notation "T1 '\' T2" :=
(Setminus V T1 T2) (at level 54, right associativity).

Notation "'¬' T" :=
(1 \ T) (at level 51, right associativity).

Notation "T1 '≠' T2" :=
(T1 = T2 -> False) (at level 55, right associativity).

Axiom empty_dec : forall (t: Ty), {t = 0} + {t ≠ 0}.
Notation "x '∈' T" :=
(In V T x) (at level 55, right associativity).

Notation "x '∉' T" :=
(~ In V T x) (at level 55, right associativity).

Axiom in_dec : forall (v:V) (t: Ty), {v ∈ t} + {v ∉ t}.
Notation "T1 '<:' T2" :=
(Included V T1 T2) (at level 55, right associativity).

Hint Unfold Included Setminus.
Hint Constructors Union Intersection Inhabited.

(* *)
(* Basic Type Lemmas/Tactics *)
(* *)

Lemma nonempty_inhab : forall t,
t ≠ 0 -> exists x, x ∈ t.

Proof.
intros t Hneq.
apply not_empty_Inhabited in Hneq.
destruct Hneq as [x H].
exists x; auto.

Qed.

Lemma empty_uninhab : forall t,
t = 0 -> forall x, x ∉ t.

Proof.
intros t Hneq x Hnot.
rewrite Hneq in Hnot. inversion Hnot.

Qed.

Lemma no_empty_val : forall v P,
v ∈ 0 -> P.

Proof.
intros v P Hmt. inversion Hmt.

Qed.

Lemma union_empty_l : forall t,
0 ∪ t = t.

Proof. crush. Qed.

Lemma union_empty_r : forall t,
t ∪ 0 = t.

Proof.
intros. rewrite Union_commutative.
crush.

Qed.

140

Lemma intersection_empty_l : forall t,
0 ∩ t = 0.

Proof. crush. Qed.

Lemma intersection_empty_r : forall t,
t ∩ 0 = 0.

Proof. crush. Qed.

Lemma intersection_assoc : forall T1 T2 T3,
T1 ∩ (T2 ∩ T3) = (T1 ∩ T2) ∩ T3.

Proof.
intros.
apply Extensionality_Ensembles; constructor; intros x Hx.
destruct Hx as [x Hx1 Hx2]. destruct Hx2 as [x Hx2 Hx3].
crush.
destruct Hx as [x Hx1 Hx2]. destruct Hx1 as [x Hx1 Hx3].
crush.

Qed.

Lemma intersection_comm : forall T1 T2,
T1 ∩ T2 = T2 ∩ T1.

Proof.
intros T1 T2.
apply Extensionality_Ensembles; constructor; intros x Hx;

inversion Hx; crush.
Qed.

Lemma demorgan : forall x T1 T2,
x ∉ (T1 ∪ T2) ->
x ∉ T1 /\ x ∉ T2.

Proof. crush. Qed.

Hint Rewrite
union_empty_l
union_empty_r
intersection_empty_l
intersection_empty_r.

Hint Extern 1 =>
match goal with
| [H : ?x ∈ 0 |- ?P] =>
apply (no_empty_val P H)

| [H : ?x ∈ ?T, H' : ?T = 0 |- ?P] =>
rewrite H' in H; apply (no_empty_val P H)

| [H : ?x ∈ ?T, H' : ?T = 0 |- ?P] =>
symmetry in H'; rewrite H' in H; apply (no_empty_val P H)

end.

Hint Extern 1 (_ ∈ _) =>
match goal with
| [H : ?x ∈ (?T1 ∩ ?T2) |- ?x ∈ ?T1]
=> destruct H; assumption

| [H : ?x ∈ (?T1 ∩ ?T2) |- ?x ∈ ?T2]
=> destruct H; assumption

| [H1 : ?x ∈ ?T1, H2 : ?x ∈ ?T2 |- ?x ∈ (?T1 ∩ ?T2)]
=> constructor; assumption

| [H1 : ?x ∈ ?T1 |- ?x ∈ (?T1 ∪ _)]

141

=> left; exact H1
| [H2 : ?x ∈ ?T2 |- ?x ∈ (_ ∪ ?T2)]
=> left; exact H2

end.

Ltac inv_in_intersection :=
match goal with
| [H : _ ∈ (_ ∩ _) |- _] => destruct H
end.

Ltac inv_in_union :=
match goal with
| [H : _ ∈ (_ ∪ _) |- _] => destruct H
end.

Ltac inv_exists :=
match goal with
| [H : exists x, _ |- _] => destruct H
end.

(* *)
(* Function Related Definitions *)
(* *)

(* the result of function application *)
Inductive res : Type :=
| Err : res (* invalid argument/type error *)
| Bot : res (* non-termination *)
| Res : V -> res. (* a value result *)
Hint Constructors res.

(* We use a shallow embedding in Gallina's functions
to model the target language functions. *)

Definition fn := (V -> res).

(* An `interface` is the set of arrows that describe a
function (i.e. an intersection of 1 or more arrows). We
use a pair for each arrow, where the fst is the domain
and the snd is the codomain. *)

Inductive interface : Type :=
| IBase: (Ty * Ty) -> interface
| ICons : (Ty * Ty) -> interface -> interface.
Hint Constructors interface.

(* The domain for an interface is the union of each
individual arrow's domain. *)

Fixpoint i_dom (i : interface) : Ty :=
match i with
| IBase (T1,_) => T1
| ICons (T1,_) i' => T1 ∪ (i_dom i')
end.

Hint Unfold i_dom.

142

(* Calculates the result type of calling a function which
has the arrow type `a` on value `v`. *)

Fixpoint a_result (a : (Ty * Ty)) (v : V) : option Ty :=
if in_dec v (fst a)
then Some (snd a)
else None.

Hint Unfold a_result.

(* Function Arrow *)
(* I.e., what it means for a function `f` to conform to the

description given by arrow `a`. *)
Definition FnA (f : fn) (a : (Ty * Ty)) : Prop :=
forall x T,
a_result a x = Some T ->
(f x = Bot \/ exists y, f x = Res y /\ y ∈ T).

Hint Unfold FnA.

(* Calculates the result type of calling a function which
has the interface type `i` on value `v`. *)

Fixpoint i_result (i : interface) (v : V) : option Ty :=
match i with
| IBase a => a_result a v
| ICons a i' => match a_result a v, i_result i' v with

| None, None => None
| Some T, None => Some T
| None, Some T => Some T
| Some T, Some T' => Some (T ∩ T')
end

end.
Hint Unfold i_result.

(* Function Interface *)
(* I.e., what it means for a function `f` to conform to the

description given by interface `i`. *)
Definition FnI (f : fn) (i : interface) : Prop :=
forall x T,

i_result i x = Some T ->
f x = Bot \/ (exists y, (f x = Res y /\ y ∈ T)).

Hint Unfold FnI.

(* *)
(* Function Related Lemmas/Tactics *)
(* *)

Lemma FnI_base : forall f a,
FnI f (IBase a) ->
FnA f a.

Proof.
unfold FnI. unfold FnA.
intros f [T1 T2] H x T Har.
simpl in *.
specialize H with x T2.
ifcaseH; inversion Har; subst; auto.

Qed.

143

Ltac same_Res :=
match goal with
| [H1 : ?f ?v = Res ?x , H2 : ?f ?v = Res ?y |- _] =>

rewrite H1 in H2; inversion H2; subst; clear H2
end.

Lemma FnI_first : forall f a i,
FnI f (ICons a i) ->
FnA f a.

Proof.
unfold FnI. unfold FnA.
intros f [T1 T2] i H x T Har.
specialize (H x).
unfold a_result in *. simpl in *.
ifcaseH; matchcaseH; crush.
specialize (H (T ∩ e)); crush.
inv_in_intersection; crush; eauto.

Qed.

Lemma FnI_rest : forall f a i,
FnI f (ICons a i) ->
FnI f i.

Proof.
intros f [T1 T2] i Hfi.
unfold FnI in *.
intros x T Hres.
specialize (Hfi x).
simpl in *.
ifcaseH; matchcaseH; inversion Hres; subst; eauto.
specialize (Hfi (T2 ∩ T));

intuition; crush; inv_in_intersection; eauto.
Qed.

Lemma FnI_cons : forall f a i,
FnA f a ->
FnI f i ->
FnI f (ICons a i).

Proof.
intros f [T1 T2] i Ha Hi.
unfold FnI in *. unfold FnA in *.
intros x T Hres.
specialize (Ha x). specialize (Hi x).
simpl in *.
destruct (in_dec x T1) as [Hx1 | Hx1].
remember (i_result i x) as Hxr.
destruct Hxr as [T'|]; inversion Hres; subst.
destruct (Ha T2 eq_refl). left; assumption.
destruct (Hi T' eq_refl). left; assumption.
repeat inv_exists. crush.
same_Res.
right.
match goal with
| [H : f x = Res ?y |- _] => exists y
end; crush.
destruct (Ha T eq_refl); crush; eauto.
remember (i_result i x) as Hxr.
destruct Hxr as [T'|]; inversion Hres; subst.
apply Hi; auto.

144

Qed.

Ltac inv_FnI :=
match goal with
| [H : FnI _ _ |- _] => inversion H; subst
end.

(* *)
(* Function Inversion Algorithm *)
(* *)

(* Consider function `f` of type `a`. This function
calculates what type an argument `x` must _not_
have had if `(f x) ↝ v` and `v ∈ outT` *)

Fixpoint a_neg (a : (Ty * Ty)) (outT : Ty) : Ty :=
if empty_dec ((snd a) ∩ outT)
then (fst a)
else 0.

(* Consider function `f` of type `i`. This function
calculates what type an argument `x` must _not_
have had if `(f x) ↝ v` and `v ∈ outT` *)

Fixpoint i_neg (i : interface) (outT : Ty) : Ty :=
match i with
| IBase a => a_neg a outT
| ICons (S1,S2) i' =>

let T1 := a_neg (S1,S2) outT in
let T2 := i_neg i' outT in
let T3 := S1 ∩ (i_neg i' (S2 ∩ outT)) in
T1 ∪ T2 ∪ T3

end.

(* Consider function `f` of type `i`. This function
calculates what type an argument `x` must _have_
had if `(f x) ↝ v` and `v ∈ outT` *)

Definition i_inv (i : interface) (outT : Ty) : Ty :=
(i_dom i) \ (i_neg i outT).

(* *)
(* Function Inversion Lemmas/Tactics *)
(* *)

Lemma FnA_res_ty : forall T1 T2 f x y,
x ∈ T1 ->
f x = Res y ->
FnA f (T1,T2) ->
y ∈ T2.

Proof.
intros T1 T2 f x y Hx Hfx Hfa.
assert (f x = Bot \/ (exists y, (f x = Res y /\ y ∈ T2)))

as Hex.
eapply Hfa; crush.
ifcase; crush.
crush.

Qed.

145

Hint Extern 1 (_ ∈ _) =>
match goal with
| [Hx : ?x ∈ ?T1,

Hfy : ?f ?x = Res ?y,
HFnA : FnA ?f (?T1,?T2)

|- ?y ∈ ?T2]
=> apply (FnA_res_ty x Hx Hfy HFnA)

| [Hx : ?x ∈ ?T1,
Hfy : ?f ?x = Res ?y,

HFnA : FnI ?f (IBase (?T1,?T2))
|- ?y ∈ ?T2]

=> apply (FnA_res_ty x Hx Hfy (FnI_first HFnA))
| [Hx : ?x ∈ ?T1,

Hfy : ?f ?x = Res ?y,
HFnA : FnI ?f (ICons (?T1,?T2) _)

|- ?y ∈ ?T2]
=> apply (FnA_res_ty x Hx Hfy (FnI_first HFnA))
end.

Lemma i_neg_sub : forall i T1 T2,
T2 <: T1 ->
(i_neg i T1) <: (i_neg i T2).

Proof with auto.
intros i. induction i as [[T1 T2] | [T1 T2] i' IH].
{

intros T T' Hsub x Hx. simpl in *.
destruct (empty_dec (T2 ∩ T'))
as [Hmt' | Hnmt']...

destruct (empty_dec (T2 ∩ T))
as [Hmt | Hnmt]...

destruct (empty_dec (T2 ∩ T))
as [Hmt | Hnmt]...

apply nonempty_inhab in Hnmt'.
destruct Hnmt' as [v Hv].
assert (v ∈ T2 ∩ T)...

}
{

intros T T' Hsub x Hx.
simpl in *.
destruct (empty_dec (T2 ∩ T)) as [Hmt | Hnmt].
{
destruct (empty_dec (T2 ∩ T')) as [Hmt' | Hnmt'].
{

destruct Hx as [x Hx | x Hx]...
destruct Hx as [x Hx | x Hx]...
right; left; eapply IH; eauto.

}
{

apply nonempty_inhab in Hnmt'.
destruct Hnmt' as [v Hv].
assert (v ∈ T2 ∩ T)...

}
}
{
destruct (empty_dec (T2 ∩ T')) as [Hmt' | Hnmt'].
{

right.
destruct Hx as [x Hx | x Hx]...

146

destruct Hx as [x Hx | x Hx]...
{
left; eapply IH; eauto.

}
{
destruct Hx...
right; split...
apply (IH (T2 ∩ T) (T2 ∩ T'))...

}
}
{

destruct Hx as [x Hx | x Hx]...
destruct Hx as [x Hx | x Hx]...
right. left. eapply IH; eauto.
right. right; split...
destruct Hx as [x Hx' Hx'']...
apply (IH (T2 ∩ T) (T2 ∩ T'))...

}
}

}
Qed.

Ltac apply_fun :=
match goal with
| [H1 : ?x ∈ ?T1,

Hf : FnI ?f (IBase (?T1,?T2)),
Hres : ?f ?x = Res ?y

|- _] =>
assert (y ∈ T2)
by (exact (FnA_res_ty x H1 Hres (FnI_base Hf)))

| [H1 : ?x ∈ ?T1,
Hf : FnA ?f (?T1,?T2),

Hres : ?f ?x = Res ?y
|- _] =>
assert (y ∈ T2)
by (exact (FnA_res_ty x H1 Hres (FnI_base Hf)))

end.

Lemma in_i_neg : forall i v v' f T,
FnI f i ->
v ∈ (i_neg i T) ->
f v = Res v' ->
v' ∉ T.

Proof with auto.
intros i.
induction i as [[T1 T2] | [T1 T2] i' IH];

intros v v' f T Hfi Hv Hfv Hcontra.
(* IBase (Arrow T1 T2) *)
{

simpl in *.
ifcaseH; crush.
apply_fun...
assert (v' ∈ (T2 ∩ T)) as impossible...

}
(* ICons (Arrow T1 T2) i' *)
{

simpl in *.
assert (FnA f (T1,T2)) as Hfa by (eapply FnI_first; eauto).
assert (FnI f i') as Hfi' by (eapply FnI_rest; eauto).

147

destruct (empty_dec (T2 ∩ T)) as [Hmt | Hnmt]...
{
inv_in_union.
{

apply_fun...
assert (v' ∈ (T2 ∩ T)) as impossible...

}
{

inv_in_union.
{
eapply IH; eauto.

}
{
inv_in_intersection.
apply_fun...
assert (v' ∈ (T2 ∩ T)) as impossible...

}
}

}
{
rewrite union_empty_l in *.
destruct Hv as [v Hv | v Hv].
{

eapply IH; eauto.
}
{

destruct Hv as [v Hv1 Hv2].
eapply IH; eauto.

}
}

}
Qed.

Lemma not_in_i_neg : forall i v v' f T,
FnI f i ->
f v = Res v' ->
v' ∈ T ->
v ∉ (i_neg i T).

Proof.
intros i v v' f T Hfi Hfv Hv' Hcontra.
eapply in_i_neg; eauto.

Qed.

(* *)
(* Inversion Definition *)
(* *)

Definition Inv (i : interface) (outT inT: Ty) : Prop :=
forall (f:fn),

FnI f i ->
forall (v v':V),
v ∈ (i_dom i) ->
f v = Res v' ->
v' ∈ outT ->
v ∈ inT.

148

(* *)
(* i_inv soundness *)
(* *)

(* Interface Inversion Soundness
i.e. the input type we predict is correct *)

Theorem i_inv_sound : forall i outT,
Inv i outT (i_inv i outT).

Proof with crush.
intros i outT f Hint v v' Hv Hf Hv'.
unfold i_inv in *.
constructor; auto.
intros Hcontra.
eapply in_i_neg; eauto.

Qed.

(* *)
(* Axioms for proving minimality *)
(* *)
(* i.e. basically we assume if a codomain is *)
(* inhabited, then there exists a function which *)
(* will map inputs to those codomain values. *)
(* *)

Definition MapsTo (f : fn) (i : interface) : Prop :=
forall v T,

i_result i v = Some T ->
T ≠ 0 ->
exists v', f v = Res v' /\ v' ∈ T.

Definition MapsToTarget (f : fn) (i : interface) (tgt : Ty) : Prop :=
forall v T,

i_result i v = Some T ->
(T ∩ tgt) ≠ 0 ->
exists v', f v = Res v'

/\ v' ∈ (T ∩ tgt).

Axiom exists_fn : forall i,
exists f, FnI f i /\ MapsTo f i.

Axiom exists_target_fn : forall i outT,
exists f, FnI f i /\ MapsToTarget f i outT.

(* *)
(* Lemmas related to i_result *)
(* *)

Lemma i_result_None : forall i x outT,
x ∈ (i_dom i) ->
i_result i x = None ->
x ∈ (i_neg i outT).

Proof with auto.
intros i; induction i as [[T1 T2] | [T1 T2] i' IH].
{

intros x outT Hdom Hires.

149

simpl in *.
destruct (in_dec x T1) as [Hx | Hx]; crush.

}
{

intros x outT Hx Hires.
simpl in *.
destruct (in_dec x T1) as [Hx1 | Hx1].
{
destruct (empty_dec (T2 ∩ outT)) as [Hmt | Hnmt].
{

left. assumption.
}
{

right.
remember (i_result i' x) as ires'.
destruct ires' as [T' |].
inversion Hires. inversion Hires.

}
}
{
destruct Hx as [x Hx | x Hx]; try solve[contradiction].
right. left.
apply IH... matchcaseH; crush.

}
}

Qed.

Lemma i_result_Some : forall i x T outT,
i_result i x = Some T ->
(T ∩ outT) = 0 ->
x ∈ (i_neg i outT).

Proof with auto.
intros i x; induction i as [[T1 T2] | [T1 T2] i' IH].
{

intros T outT Hires Hmt.
simpl in *.
destruct (in_dec x T1) as [Hx1 | Hx1]; crush.
destruct (empty_dec (T ∩ outT)) as [Hmt' | Hmt']...
ifcase... contradiction. contradiction.

}
{

intros T outT Hires Hmt.
simpl in *.
destruct (in_dec x T1) as [Hx1 | Hx1].
{
destruct (empty_dec (T2 ∩ outT)) as [Hmt2 | Hnmt2].
{

left...
}
{

right.
destruct (i_result i' x) as [S |]; try solve[crush].
specialize (IH S).
inversion Hires; subst. clear Hires.
right. split...
eapply IH...
rewrite intersection_assoc.
rewrite (intersection_comm S T2)...

150

}
}
{
destruct (i_result i' x) as [S |]; try solve[crush].
inversion Hires; subst.
specialize (IH T outT eq_refl Hmt)...

}
}

Qed.

(* Interface Inversion Minimality
i.e. the input type we predict is minimal *)

Lemma i_inv_exists_fn : forall i outT x,
x ∈ (i_inv i outT) ->
exists f y, FnI f i /\ f x = Res y /\ y ∈ outT.

Proof with auto.
intros i outT x Hx.
unfold i_inv in Hx.
destruct Hx as [HxIs HxNot].
remember (i_result i x) as xres.
destruct xres as [S |].
{

symmetry in Heqxres.
destruct (empty_dec (S ∩ outT)) as [Hmt | Hnmt].
{
assert (x ∈ (i_neg i outT)) as impossible.
{

eapply i_result_Some; eauto.
}
contradiction.

}
{
destruct (exists_target_fn i outT)

as [f [Hfi Hmaps]].
unfold MapsToTarget in Hmaps.
destruct (Hmaps x S Heqxres Hnmt) as [y [Hfx Hy]].
exists f. exists y...

}
}
{

assert (x ∈ (i_neg i outT)) as impossible.
{
eapply i_result_None; eauto.

}
contradiction.

}
Qed.

(* *)
(* i_inv minimality *)
(* *)

Theorem i_inv_minimal : forall i outT inT,
Inv i outT inT ->
(i_inv i outT) <: inT.

Proof with auto.
intros i outT inT Hinv x Hx.

151

unfold Inv in Hinv.
destruct (i_inv_exists_fn Hx) as [f [y [Hf [Hres Hy]]]].
specialize (Hinv f Hf x y). eapply Hinv; eauto.
destruct Hx...

Qed.

(* *)
(* DNF Function Definitions *)
(* *)

(* A `dnf` is a union of interfaces, at least one of which
describes a function (i.e. an DNF with 1 or more
clauses). *)

Inductive dnf : Type :=
| DBase : interface -> dnf
| DCons : interface -> dnf -> dnf.
Hint Constructors dnf.

(* The domain for a dnf is the intersection of each
individual interface's domain. *)

Fixpoint d_dom (d : dnf) : Ty :=
match d with
| DBase i => (i_dom i)
| DCons i d' => (i_dom i) ∩ (d_dom d')
end.

Hint Unfold d_dom.

(* Disjunction of Function Arrows *)
(* I.e., what it means for a function `f` to conform to the

description given by arrow `a`. *)
Fixpoint FnD (f : fn) (d : dnf) : Prop :=
match d with
| DBase i => FnI f i
| DCons i d' => FnI f i \/ FnD f d'
end.

Hint Unfold FnD.

(* *)
(* DNF Lemmas *)
(* *)

Lemma FnD_base : forall f i,
FnD f (DBase i) ->
FnI f i.

Proof.
intros f i H.
crush.

Qed.

Lemma FnD_Cons_i : forall i d f,
FnI f i ->
FnD f (DCons i d).

Proof. crush. Qed.

152

Lemma FnD_Cons_d : forall i d f,
FnD f d ->
FnD f (DCons i d).

Proof. crush. Qed.

(* *)
(* DNF Function Inversion Algorithm *)
(* *)

Fixpoint d_inv_aux (d : dnf) (outT : Ty) : Ty :=
match d with
| DBase i => i_inv i outT
| DCons i d' => (i_inv i outT) ∪ (d_inv_aux d' outT)
end.

(* Calculates the result type of calling a function which
has the interface type `i` on value `v`. *)

Definition d_inv (d : dnf) (outT : Ty) : Ty :=
(d_dom d) ∩ (d_inv_aux d outT).
Hint Unfold d_inv d_inv_aux.

(* *)
(* DNF Inversion Definition *)
(* *)

Definition InvD (d : dnf) (outT inT: Ty) : Prop :=
forall (f:fn),

FnD f d ->
forall (v v':V),
v ∈ (d_dom d) ->
f v = Res v' ->
v' ∈ outT ->
v ∈ inT.

Hint Unfold InvD.

(* *)
(* Soundness *)
(* *)

(* Interface Inversion Soundness
i.e. the input type we predict is correct *)

Theorem d_inv_sound : forall d outT,
InvD d outT (d_inv d outT).

Proof with auto.
intros d.
induction d as [i | i d' IH].
{

unfold InvD.
intros outT f Hfd v v' Hv Hf Hv'. simpl in *.
split...
eapply i_inv_sound; eauto.

}
{

unfold InvD.
intros outT f Hfd v v' Hv Hfv Hv'.

153

simpl in *.
destruct Hfd as [Hfi | Hfd].
{
split...
left; eapply i_inv_sound; eauto.

}
{
split...
assert (v ∈ (d_inv d' outT)) by (eapply IH; eauto).
right... unfold d_inv in *...

}
}

Qed.

(* *)
(* Lemma for Minimality *)
(* *)

Lemma d_inv_exists_fn : forall d outT x,
x ∈ (d_inv d outT) ->
exists f y, FnD f d /\ f x = Res y /\ y ∈ outT.

Proof with auto.
intros d.
induction d as [i | i d' IH];

intros outT x Hx.
{

unfold d_inv in Hx.
simpl in *. eapply i_inv_exists_fn...

}
{

unfold d_inv in Hx.
simpl in *.
destruct Hx as [x Hx1 Hx2].
destruct Hx2 as [x Hx2 | x Hx2].
{
assert (x ∈ (i_inv i outT)) as Hx by auto.
destruct (i_inv_exists_fn Hx) as [f [y [H]]].
exists f. exists y...

}
{
unfold d_inv in Hx1.
assert (x ∈ (d_inv d' outT)) as Hx.
unfold d_inv...
destruct (IH outT x Hx) as [f [y [H1 [H2 H3]]]].
exists f. exists y...

}
}

Qed.

(* *)
(* Minimality *)
(* *)

Theorem d_inv_minimal : forall d outT inT,
InvD d outT inT ->
(d_inv d outT) <: inT.

Proof with auto.

154

intros d outT inT Hinv x Hx.
destruct (d_inv_exists_fn Hx) as [f [y [H1 [H2 H3]]]].
unfold d_inv in *. destruct Hx as [x Hx1 Hx2].
unfold InvD in Hinv.
specialize (Hinv f H1 x y Hx1 H2 H3)...

Qed.

155

APPENDIX B

NUMERIC TOWER TYPES

To demonstrate that function application inversion can scale to handle the Typed Racket

numeric tower (see section 5.3), we use a model of the numeric tower which is described

precisely in this appendix. It more-or-less identical to the types Typed Racket uses (as of

version 7.2) to model the numeric tower (the differences are not interesting, e.g. we use

abbreviated camel-case instead of hyphens, etc). In this model, the set of numeric values in

Racket are partitioned into disjoint sets described by the following “numeric base types”:

Zero One ByteLargerThanOne

PosIndexNotByte PosFixnumNotIndex NegFixnum

PosIntegerNotFixnum NegIntegerNotFixnum PosRationalNotInteger

NegRationalNotInteger FloatNaN FloatPosZero

FloatNegZero PosFloatNumber PosFloatInfinity

NegFloatNumber NegFloatInfinity SingleFloatNaN

SingleFloatPosZero SingleFloatNegZero PosSingleFloatNumber

PosSingleFloatInfinity NegSingleFloatNumber NegSingleFloatInfinity

ExactImaginary ExactComplex FloatImaginary

SingleFloatImaginary FloatComplex SingleFloatComplex

E.g., the type Zero covers the set {0}, One covers {1}, ByteLargerThanOne covers

{2, . . . , 255}, etc. From here, unions of types are defined to describe the natural sub-

sets of the numeric tower. In the following tables, the left column names a numeric union

which is defined to be the union of all of the types in the right column of the same row.

156

Named Union Union Members

NaN SingleFloatNaN FloatNaN

PosByte One ByteLargerThanOne

Byte Zero PosByte

PosIndex
One ByteLargerThanOne

PosIndexNotByte

Index Zero PosIndex

PosFixnum PosFixnumNotIndex PosIndex

NonnegFixnum PosFixnum Zero

NonposFixnum NegFixnum Zero

Fixnum
NegFixnum Zero

PosFixnum

IntegerNotFixnum NegIntegerNotFixnum PosIntegerNotFixnum

FixnumNotIndex NegFixnum PosFixnumNotIndex

PosInteger PosIntegerNotFixnum PosFixnum

NonnegInteger Zero PosInteger

NegInteger NegFixnum NegIntegerNotFixnum

NonposInteger NegInteger Zero

Integer
NegInteger Zero

PosInteger

PosRational PosRationalNotInteger PosInteger

NonnegRational Zero PosRational

NegRational NegRationalNotInteger NegInteger

NonposRational NegRational Zero

RationalNotInteger NegRationalNotInteger PosRationalNotInteger

157

Named Union Union Members

Rational
NegRational Zero

PosRational

FloatZero
FloatPosZero FloatNegZero

FloatNaN

PosFloat
PosFloatNumber PosFloatInfinity

FloatNaN

NonnegFloat PosFloat FloatZero

NegFloat
NegFloatNumber NegFloatInfinity

FloatNaN

NonposFloat NegFloat FloatZero

Float

NegFloatNumber NegFloatInfinity

FloatNegZero FloatPosZero

PosFloatNumber PosFloatInfinity

FloatNaN

SingleFloatZero
SingleFloatPosZero SingleFloatNegZero

SingleFloatNaN

InexactRealNaN FloatNaN SingleFloatNaN

InexactRealPosZero SingleFloatPosZero FloatPosZero

InexactRealNegZero SingleFloatNegZero FloatNegZero

InexactRealZero
InexactRealPosZero InexactRealNegZero

InexactRealNaN

PosSingleFloat
PosSingleFloatNumber PosSingleFloatInfinity

SingleFloatNaN

PosInexactReal PosSingleFloat PosFloat

NonnegSingleFloat PosSingleFloat SingleFloatZero

NonnegInexactReal PosInexactReal InexactRealZero

158

Named Union Union Members

NegSingleFloat
NegSingleFloatNumber NegSingleFloatInfinity

SingleFloatNaN

NegInexactReal NegSingleFloat NegFloat

NonposSingleFloat NegSingleFloat SingleFloatZero

NonposInexactReal NegInexactReal InexactRealZero

SingleFloat

NegSingleFloat SingleFloatNegZero

SingleFloatPosZero PosSingleFloat

SingleFloatNaN

InexactReal SingleFloat Float

PosInfinity PosFloatInfinity PosSingleFloatInfinity

NegInfinity NegFloatInfinity NegSingleFloatInfinity

RealZero Zero InexactRealZero

RealZeroNoNaN
Zero InexactRealPosZero

InexactRealNegZero

PosReal PosRational PosInexactReal

NonnegReal NonnegRational NonnegInexactReal

NegReal NegRational NegInexactReal

NonposReal NonposRational NonposInexactReal

Real Rational InexactReal

ExactNumber
ExactImaginary ExactComplex

Rational

InexactImaginary FloatImaginary SingleFloatImaginary

Imaginary ExactImaginary InexactImaginary

InexactComplex FloatComplex SingleFloatComplex

Number
Real Imaginary

ExactComplex InexactComplex

159

Next for comparison in figures B.1 through B.4 we give the full Typed Racket type for

+ (the binary cases) which has 85 arrows, followed by the semantic type (i.e. for a language

like λSO) in figure B.5 which has 26 arrows.

160

PosByte× PosByte → PosIndex

∩ Byte× Byte → Index

∩ PosByte× PosByte → PosIndex

∩ PosIndex× Index → PosFixnum

∩ Index× PosIndex → PosFixnum

∩ Index× Index → NonnegFixnum

∩ NegFixnum× One → NonposFixnum

∩ One× NegFixnum → NonposFixnum

∩ NonposFixnum× NonnegFixnum → Fixnum

∩ NonnegFixnum× NonposFixnum → Fixnum

∩ PosInteger× NonnegInteger → PosInteger

∩ NonnegInteger× PosInteger → PosInteger

∩ NegInteger× NonposInteger → NegInteger

∩ NonposInteger× NegInteger → NegInteger

∩ NonnegInteger× NonnegInteger → NonnegInteger

∩ NonposInteger× NonposInteger → NonposInteger

∩ Integer× Integer → Integer

∩ PosRational× NonnegRational → PosRational

∩ NonnegRational× PosRational → PosRational

∩ NegRational× NonposRational → NegRational

∩ NonposRational× NegRational → NegRational

∩ NonnegRational× NonnegRational → NonnegRational

∩ NonposRational× NonposRational → NonposRational

∩ Rational× Rational → Rational

Figure B.1: Syntactic Type of + (1 of 4)

161

∩ PosFloat× NonnegReal → PosFloat
∩ NonnegReal× PosFloat → PosFloat
∩ PosReal× NonnegFloat → PosFloat
∩ NonnegFloat× PosReal → PosFloat
∩ NegFloat× NonposReal → NegFloat
∩ NonposReal× NegFloat → NegFloat
∩ NegReal× NonposFloat → NegFloat
∩ NonposFloat× NegReal → NegFloat
∩ NonnegFloat× NonnegReal → NonnegFloat
∩ NonnegReal× NonnegFloat → NonnegFloat
∩ NonposFloat× NonposReal → NonposFloat
∩ NonposReal× NonposFloat → NonposFloat
∩ Float× Real → Float
∩ Real× Float → Float
∩ Float× Float → Float
∩ PosSingleFloat× (NonnegRational∪ NonnegSingleFloat) → PosSingleFloat
∩ (NonnegRational∪ NonnegSingleFloat)× PosSingleFloat → PosSingleFloat
∩ (PosRational∪ PosSingleFloat)× NonnegSingleFloat → PosSingleFloat
∩ NonnegSingleFloat× (PosRational∪ PosSingleFloat) → PosSingleFloat
∩ NegSingleFloat× (NonposRational∪ NonposSingleFloat) → NegSingleFloat
∩ (NonposRational∪ NonposSingleFloat)× NegSingleFloat → NegSingleFloat
∩ (NegRational∪ NegSingleFloat)× NonposSingleFloat → NegSingleFloat
∩ NonposSingleFloat× (NegRational∪ NegSingleFloat) → NegSingleFloat
∩ NonnegSingleFloat× (NonnegRational∪ NonnegSingleFloat)

→ NonnegSingleFloat
∩ (NonnegRational∪ NonnegSingleFloat)× NonnegSingleFloat

→ NonnegSingleFloat

Figure B.2: Syntactic Type of + (2 of 4)

162

∩ NonposSingleFloat× (NonposRational∪ NonposSingleFloat)
→ NonposSingleFloat

∩ (NonposRational∪ NonposSingleFloat)× NonposSingleFloat
→ NonposSingleFloat

∩ SingleFloat× (Rational∪ SingleFloat) → SingleFloat
∩ (Rational∪ SingleFloat)× SingleFloat → SingleFloat
∩ SingleFloat× SingleFloat → SingleFloat
∩ PosInexactReal× NonnegReal → PosInexactReal
∩ NonnegReal× PosInexactReal → PosInexactReal
∩ PosReal× NonnegInexactReal → PosInexactReal
∩ NonnegInexactReal× PosReal → PosInexactReal
∩ NegInexactReal× NonposReal → NegInexactReal
∩ NonposReal× NegInexactReal → NegInexactReal
∩ NegReal× NonposInexactReal → NegInexactReal
∩ NonposInexactReal× NegReal → NegInexactReal
∩ NonnegInexactReal× NonnegReal → NonnegInexactReal
∩ NonnegReal× NonnegInexactReal → NonnegInexactReal
∩ NonposInexactReal× NonposReal → NonposInexactReal
∩ NonposReal× NonposInexactReal → NonposInexactReal
∩ InexactReal× Real → InexactReal
∩ Real× InexactReal → InexactReal
∩ PosReal× NonnegReal → PosReal
∩ NonnegReal× PosReal → PosReal
∩ NegReal× NonposReal → NegReal
∩ NonposReal× NegReal → NegReal

Figure B.3: Syntactic Type of + (3 of 4)

163

∩ NonnegReal× NonnegReal → NonnegReal
∩ NonposReal× NonposReal → NonposReal
∩ Real× Real → Real
∩ ExactNumber× ExactNumber → ExactNumber
∩ FloatComplex× Number → FloatComplex
∩ Number× FloatComplex → FloatComplex
∩ Float× InexactComplex → FloatComplex
∩ InexactComplex× Float → FloatComplex
∩ SingleFloatComplex× (Rational∪ SingleFloat∪ SingleFloatComplex)

→ SingleFloatComplex
∩ (Rational∪ SingleFloat∪ SingleFloatComplex)× SingleFloatComplex

→ SingleFloatComplex
∩ InexactComplex× (Rational∪ InexactReal∪ InexactComplex)

→ InexactComplex
∩ (Rational∪ InexactReal∪ InexactComplex)× InexactComplex

→ InexactComplex
∩ Number× Number → Number

Figure B.4: Syntactic Type of + (4 of 4)

164

Byte× Byte → Index
1

∩ Index× Index → NonnegFixnum
1

∩ NegFixnum× One → NonposFixnum
1

∩ One× NegFixnum → NonposFixnum
1

∩ NonposFixnum× NonnegFixnum → Fixnum
1

∩ NonnegFixnum× NonposFixnum → Fixnum
1

∩ PosReal× NonnegReal → PosReal
2

∩ NonnegReal× PosReal → PosReal
2

∩ NegReal× NonposReal → NegReal
2

∩ NonposReal× NegReal → NegReal
2

∩ NonnegReal× NonnegReal → NonnegReal
2

∩ NonposReal× NonposReal → NonposReal
2

∩ Integer× Integer → Integer
3

∩ Float× Real → Float
3

∩ Real× Float → Float
3

∩ SingleFloat× (Rational∪ SingleFloat) → SingleFloat
3

∩ (Rational∪ SingleFloat)× SingleFloat → SingleFloat
3

∩ Real× Real → Real
3

∩ ExactNumber× ExactNumber → ExactNumber
3

∩ FloatComplex× Number → FloatComplex
3

∩ Number× FloatComplex → FloatComplex
3

∩ Float× InexactComplex → FloatComplex
3

∩ InexactComplex× Float → FloatComplex
3

∩ SingleFloatComplex× (Rational∪ SingleFloat∪ SingleFloatComplex)

→ SingleFloatComplex
3

∩ (Rational∪ SingleFloat∪ SingleFloatComplex)× SingleFloatComplex

→ SingleFloatComplex
3

∩ Number× Number → Number
4

Key finite integer range 1 sign 2 compound category 3 cumulative type 4

Figure B.5: Semantic Type of +

165

APPENDIX C

CDUCE NUMERIC TOWER

(* This file defines type synonymns meant to mimic the *)
(* Racket numeric tower. These are roughly the same base types *)
(* and unions Typed Racket uses today. However, Typed Racket *)
(* does not attempt to reason _completely_ about the types in *)
(* general (e.g., function application for an intersection of *)
(* arrows simply picks the first applicable arrow instead of *)
(* reasoning about all applicable arrows). *)

(* base numeric types *)
type zero = `Zero
type one = `One
type byteLargerThanOne = `ByteLargerThanOne
type posIndexNotByte = `PosIndexNotByte
type posFixnumNotIndex = `PosFixnumNotIndex
type negFixnum = `NegFixnum
type posIntegerNotFixnum = `PosIntegerNotFixnum
type negIntegerNotFixnum = `NegIntegerNotFixnum
type posRationalNotInteger = `PosRationalNotInteger
type negRationalNotInteger = `NegRationalNotInteger
type floatNaN = `FloatNaN
type floatPosZero = `FloatPosZero
type floatNegZero = `FloatNegZero
type posFloatNumber = `PosFloatNumber
type posFloatInfinity = `PosFloatInfinity
type negFloatNumber = `NegFloatNumber
type negFloatInfinity = `NegFloatInfinity
type singleFloatNaN = `SingleFloatNaN
type singleFloatPosZero = `SingleFloatPosZero
type singleFloatNegZero = `SingleFloatNegZero
type posSingleFloatNumber = `PosSingleFloatNumber
type posSingleFloatInfinity = `PosSingleFloatInfinity
type negSingleFloatNumber = `NegSingleFloatNumber
type negSingleFloatInfinity = `NegSingleFloatInfinity
type exactImaginary = `ExactImaginary
type exactComplex = `ExactComplex
type floatImaginary = `FloatImaginary
type singleFloatImaginary = `SingleFloatImaginary
type floatComplex = `FloatComplex
type singleFloatComplex = `SingleFloatComplex

(* compound numeric types *)
type posByte = (one | byteLargerThanOne)
type byte = (zero | posByte)
type posIndex = (one | byteLargerThanOne | posIndexNotByte)
type index = (zero | posIndex)
type posFixnum = (posFixnumNotIndex | posIndex)
type nonnegFixnum = (posFixnum | zero)
type nonposFixnum = (negFixnum | zero)
type fixnum = (negFixnum | zero | posFixnum)
type posInteger = (posIntegerNotFixnum | posFixnum)

166

type nonnegInteger = (zero | posInteger)
type negInteger = (negFixnum | negIntegerNotFixnum)
type nonposInteger = (negInteger | zero)
type integer = (negInteger | zero | posInteger)
type posRational = (posRationalNotInteger | posInteger)
type nonnegRational = (zero | posRational)
type negRational = (negRationalNotInteger | negInteger)
type nonposRational = (negRational | zero)
type rational = (negRational | zero | posRational)
type floatZero = (floatPosZero | floatNegZero | floatNaN)
type posFloat = (posFloatNumber | posFloatInfinity | floatNaN)
type nonnegFloat = (posFloat | floatZero)
type negFloat = (negFloatNumber | negFloatInfinity | floatNaN)
type nonposFloat = (negFloat | floatZero)
type float = (negFloatNumber | negFloatInfinity | floatNegZero

| floatPosZero | posFloatNumber | posFloatInfinity
| floatNaN)

type singleFloatZero = (singleFloatPosZero | singleFloatNegZero
| singleFloatNaN)

type inexactRealNaN = (floatNaN | singleFloatNaN)
type inexactRealPosZero = (singleFloatPosZero | floatPosZero)
type inexactRealNegZero = (singleFloatNegZero | floatNegZero)
type inexactRealZero = (inexactRealPosZero | inexactRealNegZero

| inexactRealNaN)
type posSingleFloat = (posSingleFloatNumber | posSingleFloatInfinity

| singleFloatNaN)
type posInexactReal = (posSingleFloat | posFloat)
type nonnegSingleFloat = (posSingleFloat | singleFloatZero)
type nonnegInexactReal = (posInexactReal | inexactRealZero)
type negSingleFloat = (negSingleFloatNumber | negSingleFloatInfinity

| singleFloatNaN)
type negInexactReal = (negSingleFloat | negFloat)
type nonposSingleFloat = (negSingleFloat | singleFloatZero)
type nonposInexactReal = (negInexactReal | inexactRealZero)
type singleFloat = (negSingleFloat | singleFloatNegZero | singleFloatPosZero

| posSingleFloat | singleFloatNaN)
type inexactReal = (singleFloat | float)
type posInfinity = (posFloatInfinity | posSingleFloatInfinity)
type negInfinity = (negFloatInfinity | negSingleFloatInfinity)
type realZero = (zero | inexactRealZero)
type realZeroNoNaN = (zero | inexactRealPosZero | inexactRealNegZero)
type posReal = (posRational | posInexactReal)
type nonnegReal = (nonnegRational | nonnegInexactReal)
type negReal = (negRational | negInexactReal)
type nonposReal = (nonposRational | nonposInexactReal)
type real = (rational | inexactReal)
type exactNumber = (exactImaginary | exactComplex | rational)
type inexactImaginary = (floatImaginary | singleFloatImaginary)
type imaginary = (exactImaginary | inexactImaginary)
type inexactComplex = (floatComplex | singleFloatComplex)
type number = (real | imaginary | exactComplex | inexactComplex)

(* Typed Racket's type for plus has about 125 arrows in its type. *)
(* However, Typed Racket reasons simply about function application; *)
(* Typed Racket simply picks the first applicable arrow and uses that. *)
(* The type below for plus is a condensed version that is just *)
(* as expressive as Typed Racket (for the 2 argument case) *)
(* when a more complete/precise calculation is used for function *)

167

(* application. *)
let plus ((byte, byte) -> index

; (index, index) -> nonnegFixnum
; (negFixnum, one) -> nonposFixnum
; (one, negFixnum) -> nonposFixnum
; (nonposFixnum, nonnegFixnum) -> fixnum
; (nonnegFixnum, nonposFixnum) -> fixnum
; (integer, integer) -> integer
; (float, real) -> float
; (real, float) -> float
; (singleFloat, rational | singleFloat) -> singleFloat
; (rational | singleFloat, singleFloat) -> singleFloat
; (posReal, nonnegReal) -> posReal
; (nonnegReal, posReal) -> posReal
; (negReal, nonposReal) -> negReal
; (nonposReal, negReal) -> negReal
; (nonnegReal, nonnegReal) -> nonnegReal
; (nonposReal, nonposReal) -> nonposReal
; (real, real) -> real
; (exactNumber, exactNumber) -> exactNumber
; (floatComplex, number) -> floatComplex
; (number, floatComplex) -> floatComplex
; (float, inexactComplex) -> floatComplex
; (inexactComplex, float) -> floatComplex
; (singleFloatComplex, rational | singleFloat | singleFloatComplex)

-> singleFloatComplex
; (rational | singleFloat | singleFloatComplex, singleFloatComplex)

-> singleFloatComplex
; (number, number) -> number
)

| (a, b) -> raise (a,b)
;;

let applyToPair (f : ('a , 'b) -> 'c) (p : ('a , 'b)) : 'c = f p;;

(* This line takes an extremely long time to type check (> 15 min): *)
let addPosBytes (b1 : posByte) (b2 : posByte) : posIndex =

applyToPair plus (b1, b2);;

168

REFERENCES

[1] Robert Cartwright. “User-defined data types as an aid to verifying LISP programs”.

In: ICALP. 1976.

[2] Gilad Bracha and David Griswold. “Strongtalk: typechecking Smalltalk in a produc-

tion environment.” In: OOPSLA. 1993.

[3] Microsoft Co. TypeScript Language Specification. http://www.typescriptlang.org. 2014.

[4] Ravi Chugh, David Herman, and Ranjit Jhala. “Dependent Types for JavaScript”. In:

OOPSLA. 2012.

[5] Benjamin S. Lerner et al. “TeJaS: Retrofitting Type Systems for JavaScript”. In:

Proceedings of the 9th Symposium on Dynamic Languages. DLS. 2013.

[6] Aseem Rastogi et al. “Safe & Efficient Gradual Typing for TypeScript”. In: Pro-

ceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages. POPL ’15. Mumbai, India: ACM, 2015, pp. 167–180. isbn:

978-1-4503-3300-9.

[7] Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. “Trust, but Verify: Two-Phase

Typing for Dynamic Languages”. In: ECOOP. 2015.

[8] Avik Chaudhuri et al. “Fast and Precise Type Checking for JavaScript”. In: Proc.

ACM Program. Lang. 1.OOPSLA (Oct. 2017), 48:1–48:30.

[9] Sam Tobin-Hochstadt and Matthias Felleisen. “Logical Types for Untyped Languages”.

In: Proc. ACM Intl. Conf. on Functional Programming. ICFP. 2010.

[10] Ambrose Bonnaire-Sergeant, Rowan Davies, and Sam Tobin-Hochstadt. “Practical

Optional Types for Clojure”. In: ESOP 2016. 2016.

[11] André Murbach Maidl, Fabio Mascarenhas, and Roberto Ierusalimschy. “Typed Lua:

An Optional Type System for Lua”. In: Proceedings of the ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI) (June 2014).

169

[12] Facebook Inc. Hack. http://hacklang.org. 2014.

[13] Michael M. Vitousek et al. “Design and Evaluation of Gradual Typing for Python”.

In: DLS. 2014.

[14] Sam Tobin-Hochstadt and Matthias Felleisen. “The Design and Implementation of

Typed Scheme”. In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages. POPL ’08. San Francisco, California,

USA: ACM, 2008, pp. 395–406. isbn: 978-1-59593-689-9.

[15] Ceylon Project. The Ceylon Language. https://ceylon-lang.org/documentation/1.3/spec/.

Visited on 2019-02-14.

[16] David J. Pearce. “Sound and Complete Flow Typing with Unions, Intersections and

Negations”. In: VMCAI. 2013.

[17] JetBrains. Kotlin. http://kotlinlang.org/docs/reference/. Visited on 2019-02-14.

[18] Apache Software Foundation. Groovy. http://groovy-lang.org. Visited on 2019-02-14.

[19] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. “The essence of JavaScript”.

In: ECOOP. 2010.

[20] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. “Liquid Types”. In: Proc. ACM

Conf. on Programming Language Design and Implementation. PLDI. 2008.

[21] Gavin M. Bierman et al. “Semantic Subtyping with an SMT Solver”. In: Proceedings of

the 15th ACM SIGPLAN International Conference on Functional Programming. ICFP

’10. Baltimore, Maryland, USA: ACM, 2010, pp. 105–116. isbn: 978-1-60558-794-3.

[22] Nikhil Swamy et al. “Secure Distributed Programming with Value-dependent Types”.

In: Proc. ACM Intl. Conf. on Functional Programming. ICFP. 2011.

[23] Niki Vazou et al. “Refinement Types for Haskell”. In: Proc. ACM Intl. Conf. on

Functional Programming. ICFP. 2014.

[24] Benjamin C. Pierce and David N. Turner. “Local Type Inference”. In: ACM Trans.

Program. Lang. Syst. (2000).

[25] Facebook Inc. Flow: A static type checker for JavaScript. http://flowtype.org. 2014.

170

[26] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. “Typing Local Control

and State Using Flow Analysis”. In: Proceedings of the 20th European Conference on

Programming Languages and Systems: Part of the Joint European Conferences on

Theory and Practice of Software. ESOP. 2011.

[27] Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyễn. “Set-Theoretic Types

for Polymorphic Variants”. In: ICFP. 2016.

[28] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. “Semantic Subtyping:

Dealing Set-theoretically with Function, Union, Intersection, and Negation Types”.

In: J. ACM 55.4 (Sept. 2008), 19:1–19:64.

[29] Simon Peyton Jones et al. “Simple Unification-based Type Inference for GADTs”. In:

Proceedings of the Eleventh ACM SIGPLAN International Conference on Functional

Programming. ICFP ’06. Portland, Oregon, USA: ACM, 2006, pp. 50–61. isbn: 1-

59593-309-3.

[30] Ambrose Bonnaire-Sergeant, Rowan Davies, and Sam Tobin-Hochstadt. “Practical

Optional Types for Clojure”. In: Thiemann P. (eds) Programming Languages and

Systems. ESOP ’06. Springer, 2006, pp. 68–94.

[31] Ravi Chugh, Patrick M. Rondon, and Ranjit Jhala. “Nested Refinements: A Logic for

Duck Typing”. In: Proc. ACM Sym. on Principles of Programming Languages. POPL.

2012.

[32] Jessica Gronski et al. “Sage: Hybrid Checking for Flexible Specifications”. In: Proc.

Wksp. on Scheme and Functional Programming. 2006.

[33] Kenneth Knowles and Cormac Flanagan. “Compositional Reasoning and Decidable

Checking for Dependent Contract Types”. In: PLPV. 2009.

[34] Xinming Ou et al. “Dynamic Typing with Dependent Types”. In: IFIP Intl. Conf. on

Theoretical Computer Science (2004).

[35] Benjamin Cosman and Ranjit Jhala. “Local Refinement Typing”. In: Proc. ACM Pro-

gram. Lang. 1.ICFP (Aug. 2017), 26:1–26:27.

171

[36] Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. “Refinement Types for Type-

Script”. In: Proceedings of the 37th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation. PLDI ’16. Santa Barbara, CA, USA: ACM, 2016,

pp. 310–325. isbn: 978-1-4503-4261-2.

[37] Sam Tobin-Hochstadt and Matthias Felleisen. “Interlanguage Migration: From Scripts

to Programs”. In: DLS. 2006.

[38] Esteban Allende et al. “Gradual Typing for Smalltalk”. In: Science of Computer Pro-

gramming (2014).

[39] Matthew Fluet and Riccardo Pucella. “Practical Datatype Specializations with Phan-

tom Types and Recursion Schemes”. In: Electronic Notes in Theoretical Computer

Science (2006).

[40] Stephanie Weirich. “Depending on Types”. In: Proc. ACM Intl. Conf. on Functional

Programming. ICFP. 2014.

[41] Hongwei Xi and Frank Pfenning. “Eliminating Array Bound Checking Through De-

pendent Types”. In: Proc. ACM Conf. on Programming Language Design and Imple-

mentation. PLDI. 1998.

[42] George B. Dantzig and B. Curtis Eaves. “Fourier-Motzkin Elimination and Its Dual”.

In: J. Combinatorial Theory Series A (1973).

[43] Hongwei Xi. “Dependent ML: An Approach to Practical Programming with Depen-

dent Types”. In: J. Functional Programming (2007).

[44] Leonardo De Moura and Nikolaj Bjorner. “Z3: An Efficient SMT Solver”. In: TACAS.

2008.

[45] Frederic P. Miller, Agnes F. Vandome, and John McBrewster. Advanced Encryption

Standard. 2009.

[46] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engineering

with PLT Redex. MIT Press, 2009.

[47] Matthew Flatt and PLT. Reference: Racket. Tech. rep. PLT-TR-2010-1. https://racket-

lang.org/tr1. PLT Design Inc., 2010.

172

[48] Christos Dimoulas et al. “Correct Blame for Contracts: No More Scapegoating”. In:

Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages. POPL ’11. Austin, Texas, USA: ACM, 2011, pp. 215–226.

isbn: 978-1-4503-0490-0.

[49] Chiyan Chen and Hongwei Xi. “Combining Programming with Theorem Proving”. In:

Proc. ACM Intl. Conf. on Functional Programming. ICFP. 2005.

[50] Nikhil Swamy et al. “Dependent Types and Multi-monadic Effects in F*”. In: Proc.

ACM Sym. on Principles of Programming Languages. POPL. 2016.

[51] Kenneth Knowles and Cormac Flanagan. “Hybrid Type Checking”. In: ACM Trans.

Program. Lang. Syst. (2010).

[52] Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich. “Contracts Made

Manifest”. In: Proc. ACM Sym. on Principles of Programming Languages. POPL.

2010.

[53] Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. “CDuce: An XML-centric

General-purpose Language”. In: Proceedings of the Eighth ACM SIGPLAN Interna-

tional Conference on Functional Programming. ICFP ’03. Uppsala, Sweden: ACM,

2003, pp. 51–63. isbn: 1-58113-756-7.

[54] The Pony Developers. Pony. https://www.ponylang.io/. Visited on 2019-02-18.

[55] Koen Claessen and John Hughes. “QuickCheck: A Lightweight Tool for Random Test-

ing of Haskell Programs”. In: Proceedings of the Fifth ACM SIGPLAN International

Conference on Functional Programming. ICFP ’00. New York, NY, USA: ACM, 2000,

pp. 268–279. isbn: 1-58113-202-6.

[56] Alain Frisch. Théorie, conception et réalisation d’un langage adapté à XML. Ph.D

thesis (in French). 2004.

[57] Giuseppe Castagna. “Covariance and Controvariance: a fresh look at an old issue (a

primer in advanced type systems for learning functional programmers)”. In: CoRR

abs/1809.01427 (2018). arXiv: 1809.01427.

173

https://arxiv.org/abs/1809.01427

[58] David J. Pearce. “Rewriting for Sound and Complete Union, Intersection and Negation

Types”. In: Proceedings of the 16th ACM SIGPLAN International Conference on

Generative Programming: Concepts and Experiences. GPCE 2017. Vancouver, BC,

Canada: ACM, 2017, pp. 117–130. isbn: 978-1-4503-5524-7.

[59] Giuseppe Castagna and Alain Frisch. “A Gentle Introduction to Semantic Subtyping”.

In: Proceedings of the 7th ACM SIGPLAN International Conference on Principles

and Practice of Declarative Programming. PPDP ’05. Lisbon, Portugal: ACM, 2005,

pp. 198–199. isbn: 1-59593-090-6.

[60] Giuseppe Castagna et al. “Polymorphic Functions with Set-theoretic Types: Part

1: Syntax, Semantics, and Evaluation”. In: Proceedings of the 41st ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages. POPL ’14. San Diego,

California, USA: ACM, 2014, pp. 5–17. isbn: 978-1-4503-2544-8.

[61] Giuseppe Castagna et al. “Polymorphic Functions with Set-Theoretic Types: Part

2: Local Type Inference and Type Reconstruction”. In: Proceedings of the 42Nd An-

nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

POPL ’15. Mumbai, India: ACM, 2015, pp. 289–302. isbn: 978-1-4503-3300-9.

[62] Giuseppe Castagna and Victor Lanvin. “Gradual Typing with Union and Intersection

Types”. In: Proc. ACM Program. Lang. 1.ICFP (Aug. 2017), 41:1–41:28.

[63] Davide Ancona et al. “Semantic subtyping for non-strict languages”. In: 24th Inter-

national Conference on Types for Proofs and Programs (TYPES 2018). 2018.

[64] G. Castagna, R. De Nicola, and D. Varacca. “Semantic subtyping for the π-calculus”.

In: Theoretical Computer Science 398.1-3 (2008). Essays in honour of Mario Coppo,

Mariangiola Dezani-Ciancaglini and Simona Ronchi della Rocca, pp. 217–242.

[65] Fabian Muehlboeck and Ross Tate. “Empowering Union and Intersection Types with

Integrated Subtyping”. In: Proc. ACM Program. Lang. 2.OOPSLA (Oct. 2018), 112:1–

112:29.

[66] Paul Lorenzen. “Konstruktive Begründung der mathematik”. In: Mathematische Zeitschrift

53 (1950).

174

[67] Enrico Moriconi and Laura Tesconi. “On Inversion Principles”. In: History and Phi-

losophy of Logic 29 (May 2008), pp. 103–113.

[68] Andrew M. Kent, David Kempe, and Sam Tobin-Hochstadt. “Occurrence Typing

Modulo Theories”. In: Proc. ACM Conf. on Programming Language Design and Im-

plementation. PLDI. 2016.

[69] Andrew K. Wright and Matthias Felleisen. “A Syntactic Approach to Type Sound-

ness”. In: Information and Computation 115.1 (Nov. 1994), pp. 38–94.

[70] Vincent St-Amour et al. “Typing the Numeric Tower”. In: Proceedings of the 14th

International Conference on Practical Aspects of Declarative Languages. PADL’12.

Philadelphia, PA: Springer-Verlag, 2012, pp. 289–303. isbn: 978-3-642-27693-4.

[71] Giuseppe Castagna. Private communication. 2018-09-06.

[72] Adam Chlipala. Certified Programming with Dependent Types: A Pragmatic Introduc-

tion to the Coq Proof Assistant. The MIT Press, 2013. isbn: 0262026651, 9780262026659.

175

Andrew M. Kent
Researcher · Software Engineer · Programming Language Specialist

pnwamk@gmail.com | pnwamk.github.io | pnwamk

Education

Indiana University Bloomington, Indiana
Ph.D. in Computer Science May 2014 - Oct. 2019

• Dissertation topic: Advanced Logical Type Systems for Untyped Languages.
• Advised by Sam Tobin-Hochstadt.

Indiana University Bloomington, Indiana
M.S. in Computer Science May 2014 - May 2017
Brigham Young University Provo, Utah
B.S. in Computer Science Aug. 2010 - Aug. 2013

• Graduated magna cum laude.

Technical Skills

Programming Racket, Haskell, C/C++, Java, Scala, Python, unix tools, LATEX, etc
Verification Coq

Experience

Galois, Inc. Portland, Oregon
Research Engineer Apr. 2019 - Present

• Investigate and develop of research software and technologies leveraging programming language and
verification techniques.

Indiana University Bloomington, Indiana
Graduate Research Assistant May 2014 - Mar. 2019

• Developed novel technique for adding refinement types to a type system for untyped languages (i.e.
Typed Racket) which is included in releases of the Racket programming language since v6.11.

• Modeled and mechanically verified a novel technique for combining semantic subtyping with a type
system for untyped languages.

• Advised by Sam Tobin-Hochstadt.

Instructor (CSCI-B 490/629 Dependent Types) Spring 2018
• Taught introductory dependent types course based on Friedman and Christiansen’s “The Little Typer”.

Microsoft Research Ltd. Cambridge, UK
Research Intern May 2017 - Jul. 2017

• Developed and prototyped unique solutions to trusted computing problems in the cloud leveraging
TPM and SGX/Enclave technologies. (U.S. patent application 20190163898.)

• Advised by Sylvan Clebsch.

Brigham Young University Provo, Utah
Graduate Research Assistant Aug. 2013 - Apr. 2014

• Investigated the formalization of security protocol analysis techniques (Strand Spaces) utilizing the
Coq proof assistant.

• Advised by Dr. Jay McCarthy.

Microsoft Corporation Redmond, Washington
Software Development Engineer Intern May 2012 - Aug. 2012

• Explored optimizations and improvements for Microsoft OneNote during a summer internship.

Brigham Young University Provo, Utah
Undergraduate Research Assistant May 2011 - Sep. 2011

• Developed method for automatically generating historical social networks from source documents.
• Advised by Dr. William Berret and Dr. Tom Sederberg.

October 8, 2019 Andrew M. Kent Curriculum Vitae

United States Marine Corps Camp Pendleton, California
Signals Intelligence Analyst Nov. 2005 - Aug. 2010

• Provided SIGINT analysis and reporting in support of military operations during deployments in 2008
and 2009; led and trained team of five SIGINT analysts during 2009 deployment.

• Received honorable discharge at the rank of Sergeant.

Publications

Migratory Typing: Ten Years Later SNAPL
S. Tobin-Hochstadt, M. Felleisen, R. B. Findler, M. Flatt, B.
Greenman, A. M. Kent, V. St-Amour, , T. S. Strickland, A.
Takikawa. Proc. 2nd Summit on Advances in Programming Languages.

2017

Occurrence Typing Modulo Theories PLDI
A. M. Kent, D. Kempe, S. Tobin-Hochstadt. Proc. 37th ACM Conf. on
Programming Language Design and Implementation.

2016

Design and Evaluation of Gradual Typing for Python DLS
M.M. Vitousek, A. M. Kent, J.G. Siek, J. Baker. Proc. 10th ACM
Symposium on Dynamic Languages.

2014

Linking the Past: Discovering Historical Social Networks
from Documents and Linking to a Genealogical Database HIP

D.J. Kennard, A. M. Kent, W.A. Barret. Proc. 1st Workshop on
Historical Document Imaging and Processing.

2011

Open Source and Community Involvement

Typed Racket github.com/racket/typed-
racket

Core Contributor Dec. 2014 - Mar. 2019
• Performed significant refactorings to improve performance and code maintainability.
• Added refinement types (v6.11) and other features/enhancements to the type system.
• Increased coverage of manual and random test suites.
• Helped adopt (Rust-inspired) RFC process to better coordinate contributions to the type system.

Racket github.com/racket/racket
Contributor Oct. 2016 - Mar. 2019

• Contributed occasional bug fixes, features, and improvements to the core Racket language.

Interfaith Winter Shelter Volunteer Bloomington, Indiana
Volunteer Jan. 2016 - Mar. 2018

• Semi-regular night-shift volunteer at shelter for the homeless during winter months.

Honors, Awards, Etc

2017 People’s Choice Runner-up, MSR Cambridge Hackathon Cambridge, UK
2013 Fellowship, NASA Space Grant Consortium Provo, Utah

2007 1st in class, Intermediate Comm. Signals Analysis Course,
Naval Center for Information Warfare Training

Pensacola,
Florida

2006 TS/SCI Clearance, expired approximately 2011

2002 Eagle Scout, Boy Scouts of America Camas,
Washington

October 8, 2019 Andrew M. Kent Curriculum Vitae

	Title Page
	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	1 Introduction and Background
	1.1 Refinement Types
	1.2 Set-theoretic types
	1.3 Thesis Statement and Outline

	2 Occurrence Typing
	2.1 Occurrence Typing Examples
	2.2 OT: A Calculus for Occurrence Typing
	2.2.1 OT Syntax
	2.2.2 OT Type System
	2.2.3 OT Subtyping
	2.2.4 OT Logic and Type Metafunctions
	2.2.5 OT Semantics
	2.2.6 OT Soundness
	2.2.7 Scaling Up OT
	2.2.8 Related Work in Occurrence Typing

	3 Occurrence Typing with Refinement Types
	3.1 Beyond Occurrence Typing
	3.1.1 Occurrence Typing with Linear Arithmetic
	3.1.2 Occurrence Typing with Bitvectors

	3.2 Formal Model
	3.2.1 Syntax
	3.2.2 Typing Rules
	3.2.3 Subtyping and Proof System
	3.2.4 Integrating Additional Theories
	3.2.5 Semantics and Soundness

	3.3 Scaling to a Real Implementation
	3.3.1 Efficient, Algorithmic Subtyping
	3.3.2 Mutation
	3.3.3 Type Inference and Polymorphism
	3.3.4 Complex Macros

	3.4 Case Study: Safe Vector Access
	3.4.1 Enriching the Math Library

	3.5 Adding Refinements to Typed Racket
	3.5.1 Compiling Dependent Types into Contracts
	3.5.2 Pay-as-you-go costs for developers
	3.5.3 Dealing with Existentials

	3.6 Related Work

	4 Semantic Subtyping
	4.1 Set-theoretic Types
	4.1.1 Subtyping
	4.1.2 Semantic Subtyping
	4.1.3 Deciding Inhabitation, Normal Forms

	4.2 Type Representation
	4.2.1 Types as Data Structures
	4.2.2 Base DNF Representation
	4.2.3 Product and Function DNFs
	4.2.4 Parsing and Example Types

	4.3 Type Inhabitation
	4.3.1 Deciding Type Inhabitation

	4.4 Other Type-level Metafunctions
	4.4.1 Product Projection
	4.4.2 Function Domain
	4.4.3 Function Application

	4.5 Strategies for Testing
	4.6 Related Work
	4.6.1 Other Tutorials and Overviews
	4.6.2 First-order or incomplete semantic subtyping
	4.6.3 Semantic subtyping with additional features
	4.6.4 Expressive Syntactic Subtyping

	5 A Set-theoretic Foundation for Occurrence Typing
	5.1 Logical Inversion
	5.1.1 Function Application Inversion
	5.1.2 Algorithm Intuition
	5.1.3 Algorithm
	5.1.4 Soundness and Completeness
	5.1.5 Efficient Implementation
	5.1.6 Conservative Function Application Inversion

	5.2 Formal Language Model
	5.2.1 SO Syntax
	5.2.2 SO Type System
	5.2.3 SO Semantics
	5.2.4 SO Soundness
	5.2.5 Additional Language Features

	5.3 Semantic Numeric Tower
	5.3.1 Semantic Types for Comparison Operators
	5.3.2 Semantic Types for Other Numeric Operators
	5.3.3 Semantic/Syntactic Function Type Comparison
	5.3.4 Challenges and Future Work

	5.4 Expressiveness
	5.5 Related Work

	A Function Application Inversion Proofs
	B Numeric Tower Types
	C CDuce Numeric Tower
	References
	Curriculum Vitae

