ADVANCED LOGICAL TYPE SYSTEMS FOR UNTYPED LANGUAGES

Andrew M. Kent

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements
for the degree
Doctor of Philosophy
in the Department of Computer Science,
Indiana University

October 2019

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

Doctoral Committee

Sam Tobin-Hochstadt, Ph.D.

Jeremy Siek, Ph.D.

Ryan Newton, Ph.D.

Larry Moss, Ph.D.

Date of Defense: 9/6,/2019

ii

Copyright © 2019
Andrew M. Kent

iii

To Caroline, for both putting up with all of this and helping me stay sane throughout.

Words could never fully capture how grateful I am to have her in my life.

iv

ACKNOWLEDGEMENTS

None of this would have been possible without the community of academics and friends
I was lucky enough to have been surrounded by during these past years. From patiently
helping me understand concepts to listening to me stumble through descriptions of half-
baked ideas, I cannot thank enough my advisor and the professors and peers that donated

a portion of their time to help me along this journey.

Andrew M. Kent
ADVANCED LOGICAL TYPE SYSTEMS FOR UNTYPED LANGUAGES

Type systems with occurrence typing—the ability to refine the type of terms in a control
flow sensitive way—mnow exist for nearly every untyped programming language that has gained
popularity. While these systems have been successful in type checking many prevalent idioms,
most have focused on relatively simple verification goals and coarse interface specifications. We
demonstrate that such systems are naturally suited for combination with more advanced type
theoretic concepts—specifically refinement types and semantic subtyping—with both formal

mathematical models and experiences reports from implementing such systems at scale.

Sam Tobin-Hochstadt, Ph.D.

Jeremy Siek, Ph.D.

Ryan Newton, Ph.D.

Larry Moss, Ph.D.

vi

TABLE OF CONTENTS

Acknowledgements 0t e e e e e e e e e e e e e e e e e v
Abstract o o o e e e e e e e e e e e e e vi
List of Figures ot i i it e e e e e e e e e e e e e e xi
Chapter 1: Introduction and Background 1
1.1 Refinement Types L 2
1.2 Set-theoretic types 3
1.3 Thesis Statement and Outline 6
Chapter 2: Occurrence Typing it vttt v v v v, 8
2.1 Occurrence Typing Examples 9
2.2 Xor: A Calculus for Occurrence Typing 14
2.2.1 dop Syntax 14

2.2.2 Ador Type System 16

2.2.3 Ador Subtyping 19

2.2.4 Mdor Logic and Type Metafunctions 19

2.2.5 Ador Semantics e 23

2.2.6 Ador Soundnesso e e 25

227 Scaling Up Ao - -« v« v o o o 26

2.2.8 Related Work in Occurrence Typing 30

vii

Chapter 3: Occurrence Typing with Refinement Types. 35

3.1 Beyond Occurrence Typing 37
3.1.1 Occurrence Typing with Linear Arithmetic 37
3.1.2 Occurrence Typing with Bitvectors 39

3.2 Formal Model 40
3.2.1 Syntax e 40
3.22 TypingRules 43
3.2.3 Subtyping and Proof System 46
3.2.4 Integrating Additional Theories 51
3.2.5 Semantics and Soundnesso 52

3.3 Scaling to a Real Implementation 55
3.3.1 Efficient, Algorithmic Subtyping 55
3.3.2 Mutation L 56
3.3.3 Type Inference and Polymorphism o7
3.3.4 Complex Macros o e 57

3.4 Case Study: Safe Vector Access 59
3.4.1 Enriching the Math Library 60

3.5 Adding Refinements to Typed Racket 62
3.5.1 Compiling Dependent Types into Contracts 64
3.5.2 Pay-as-you-go costs for developers 65
3.5.3 Dealing with Existentials 65

3.6 Related Work 66

Chapter 4: Semantic Subtyping 000, 69

4.1 Set-theoretic Types 69

4.1.1 Subtyping 70

4.1.2 Semantic Subtyping 71
4.1.3 Deciding Inhabitation, Normal Forms 72

4.2 Type Representation Lo 75
4.2.1 Types as Data Structures 75
4.2.2 Base DNF Representation 77
4.2.3 Product and Function DNFs 80
4.2.4 Parsing and Example Types 84

4.3 Type Inhabitation 85
4.3.1 Deciding Type Inhabitation 86

4.4 Other Type-level Metafunctions 92
4.4.1 Product Projection 92
4.4.2 Function Domain L Lo 94
4.4.3 Function Application 95

4.5 Strategies for Testingo L 98
4.6 Related Work 99
4.6.1 Other Tutorials and Overviews 99
4.6.2 First-order or incomplete semantic subtyping 100
4.6.3 Semantic subtyping with additional features 101
4.6.4 Expressive Syntactic Subtyping o000 101
Chapter 5: A Set-theoretic Foundation for Occurrence Typing 103
5.1 Logical Inversion 103
5.1.1 Function Application Inversion 105
5.1.2 Algorithm Intuition 106

ix

513 AlGOTIthIN .« o o v e 107

5.1.4 Soundness and Completeness 108

5.1.5 Efficient Implementation, 109

5.1.6 Conservative Function Application Inversion 111

5.2 Formal Language Model oL 112
52.1 Ago Syntax e 113

5.2.2 Agso Type System 115

5.2.3 Ago Semantics 119

5.24 Ago Soundness e 119

5.2.5 Additional Language Features 123

5.3 Semantic Numeric Tower L 124
5.3.1 Semantic Types for Comparison Operators 125

5.3.2 Semantic Types for Other Numeric Operators 128

5.3.3 Semantic/Syntactic Function Type Comparison 130

5.3.4 Challenges and Future Work 132

5.4 EXPressivenesso e 133
5.5 Related Work L 136
Appendix A: Function Application Inversion Proofs 138
Appendix B: Numeric Tower Typeso 156
Appendix C: CDuce Numeric Tower 0. 166
References o o i i i e e e e e e e e e 169

Curriculum Vitae

LIST OF FIGURES

2.1 dor Syntax 15
2.2 dor Typing Judgment L 17
2.3 Mdor Constant Type-Results 17
2.4 Ddor Subtyping 20
2.5 Aor Type-related Logic Rules and Metafunctions 21
2.6 Aor Big-step Reduction Relation 24
2.7 Aor Primitive Types 24
2.8 Mdor Models Relation 25
3.1 max with refinement types L 36
3.2 ARTR Syntax e 41
3.3 Agrp Primitive Types 43
3.4 Agprr Typing Judgment L 44
3.5 Agprr Subtyping 47
3.6 Agrp-specific Logic Rules 48
3.7 Agrrr type-update metafunction. 50
3.8 Agrrg Big-step Reduction Relation 52
3.9 Agprgr Primitive Semantics 53
3.10 Aprr Models Relation 53

Xi

3.11

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

5.1

safe-vec-refcasestudy 60

Set-theoretic Types e 69
Subtyping/Inhabitation Equivalence 72
Canonical form for representing types 74
Internal type representationo oL 76
Top and bottom type representations L. 77
Internal type operations Lo 78
Internal base type representation 79
Internal base DNF operations 79
Lazy BDDs for type representation, 83
BDD node smart constructor Lo o oL 84
BDD difference and negation Lo Lo 85
BDD union and intersectiono Lo Lo 86
Type parsing L 87
Semantic subtyping, defined in terms of type emptiness 87
Type emptiness predicate 87
Setsof atoms L 88
Product BDD inhabitation functionso 0L 89
Functions for checking if a function BDD is uninhabited 91
Functions for projecting from a product type 94
Domain calculation for function types 95
Function application result type calculations 98
Function Application Inversion Examples 106

xii

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.14

5.15

B.1

B.2

B.3

B4

B.5

Function Application Inversion Algorithm 108

Efficient algorithm for function application inversion. 110
Conservative Function Application Inversion Algorithm 112
ASO SYyNtax e 113
Aso Typing Judgment 115
Aso Type Metafunctions L 117
Aso Logic and Subtyping L 118
Aso Small-step Reduction Semantics 120
Numeric Tower Overview for Number (left) and Integer (right) 124
(Partial) Syntactic Type of < (7 of 8 arrows shown) 126
Semantic Typeof <. 127
Syntactic Type of addl L 129
Semantic Type of addl 130
Size of certain Racket math operations (syntactically vs semantically) . . . 132
Syntactic Type of + (L of 4) 161
Syntactic Type of + (2 0f 4) 162
Syntactic Type of + (30f 4) 163
Syntactic Type of + (4 of 4) 164
Semantic Typeof +. 165

xiii

CHAPTER 1
INTRODUCTION AND BACKGROUND

For almost every untyped programming language that has gained popularity, a type system
has sprung up in its wake. This is true for early systems such as Lisp[1] and Smalltalk[2], but
is now widely appreciated in the context of JavaScript[3, 4, 5, 6, 7, 8], Racket[9], Clojure[10],
Lua [11], PHP [12], Python [13], and more. In each of these systems, type system designers
face a central challenge: accommodating the idioms of the existing untyped language in a
sound, statically-typed fashion.

Consider the following function move (adapted from the TypeScript online documenta-

tion) which is capable of moving Birds and Fish:

function move(pet : Bird|Fish) {
if (isFish(pet)) pet.swim();
else pet.fly();

}

Here we see two features found in TypeScript and most other type systems designed for
existing untyped languages: basic set-theoretic types (i.e. ad-hoc unions), and occurrence
typing. Union types such as Bird|Fish denote all values that are either a value of the
first or second type (i.e. either a Bird or a Fish) and are essential for precisely describing
the ubiquitous set-based reasoning used in untyped languages. To discriminate between the
different possibilities of such a union, programmers use some form of type-based predicates.
In this example, the user has written a predicate function 1sFish, which not only determines
whether the input is a Fish, but is known to the type system to do so. In other words,
because of the conditional test isFish(pet), the type system knows the occurrence of pet
in the first branch (i.e. the “then-branch”) has type Fish (making pet.swim() well typed)
and the occurrence in the second branch (i.e. the “else-branch”) has type Bird (making
pet.fly() well typed). This ability for the type checker to check different occurrences of

the same variable at different types based on control flow-sensitive reasoning is known as

occurrence typing[14].*

Because of their ability to cope with common idiomatic patterns from untyped pro-
gramming, basic set-theoretic types (i.e. unions) and occurrence typing? are now featured
in numerous languages, ranging from the logical types found in Typed Racket[9] to sim-
ple syntactic patterns[17, 18, 15] to flow-analysis driven approaches[19, 8] to TypeScript’s

expressive but unchecked (and thus unsound) type predicates.

1.1 Refinement Types

Although type systems with occurrence typing are capable of supporting many untyped
language-specific idioms, the majority have focused on relatively simple type system fea-
tures, i.e. those which can rule out dynamic type errors such as including a string in an
arithmetic computation. While these guarantees are certainly a welcome improvement, we
argue that such type systems—which already perform logical reasoning in a control flow-
sensitive way—are well suited for verifying more precise program properties. In particular,
using flow-sensitive reasoning along with refinement types has emerged as a popular way to
provide more robust guarantees for programs while leveraging well understood off-the-shelf
tools such as satisfiability modulo theories (SMT) solvers [20, 21, 22, 23].

Recall that a refinement type {v : ¢t | P} describes all values v of type ¢ for which
the logical predicate P holds. For a simple example, let us consider the following Haskell

function which guards division with an explicit zero test:

divide :: Int -> Int -> Int

divide n m = if m ==
then error "cannot divide by zero"
else n "div' m

Because the type Int includes 0, Haskell’s type system is unable to statically guarantee
0 is never passed as an argument. We must instead settle for a run-time check which may

fail during program execution:

!This same idea is sometimes also referred to as flow-sensitive typing [15, 16] or smart casts [17].
2Occurrence typing can be seen as an elimination form for ad-hoc union types.

> divide 42 0

**x Exception: cannot divide by zero

By using a more advanced type system which can refine Haskell’s types with logical
predicates—e.g. Liquid Haskell [23]—we can instead encode and enforce such invariants

while type checking:

{-@ divide :: Int -> {v: Int | v !I=0 } -> Int @-}
divide :: Int -> Int -> Int
divide n m = if m ==
then unreachable "cannot divide by zero"
else n "div' m

We cannot call this version of divide unless the type checker can prove the provided
second argument (i.e. corresponding to parameter m) is non-zero. Furthermore, the usage of
unreachable ensures the then branch will not type check unless it is provably unreachable.
In other words, the type system must learn from the test m == 0 and understand that in
the then-branch any occurrence of m would have type {v: Int | (v !'= 0) A (v ==
0) }, which is impossible, and so that branch is in fact dead code.

With this more specific type signature, callers of divide must provide provably non-zero

terms for the second argument:

average :: [Int] -> Int

average xs = divide (foldl (+) 0 xs) (length xs)
--Error: Type Mismatch

-- Inferred type

-- {v : Int | v >=0 & v == len xs}

-- not a subtype of Required type

- - {v : Int | v I= 0}

In the case of average, there is an implicit requirement that xs be a non-empty list of
Int. Since this invariant is not enforced in any way (i.e. either by a refinement on the xs
argument to average or with a dynamic check), the call to divide in the body of average

fails.

1.2 Set-theoretic types

Although the majority of type systems with occurrence typing feature some set-theoretic

types, most suffer from two notable flaws which hinder their ability to describe some

language-specific idioms. First, they fail to reason completely about their types (e.g. sub-
typing), meaning that programs which may seem obviously correct to a programmer may
fail to type check. And second, they are unable to reason about types as sets of values in
ways besides unions (i.e. they omit intersection and/or negation tyoes); ways that can feel
just as natural to programmers and appear in existing untyped idioms.

We can observe the first problem—that of incomplete reasoning—examining why syn-
tactic subtyping rules (i.e. those used almost universally by type systems) frequently fail
to recognize valid subtyping relations that occur in real programs featuring set-theoretic
types. For example, consider these standard syntactic rules describing reflexivity, union,

and product subtyping:

T <: 01 T <! 09 M <:0 T <:0 T <:01 T2 <:O2

T<:T T<:01Uoy T <:01Uo09 T1TUm <o T1 X To <: 01 X 09

With these rules, it is impossible to prove (¢ UfS) X f <: (o X f)U (B X) even though
both types describe the exact same set of values: pairs with an « or 8 in the first field
and a (8 in the second field. This unfortunately means users of such systems are explicitly
encouraged by the type system to reason set-theoretically and then punished for doing so.

The unfortunate effects of the second problem—Ilacking intersection and/or negation
types—we see when trying to precisely describe the behavior for the commonly used hash-ref

function in Racket:

(define (hash-ref h k [fail (A () (error "key not found"))])
(cond
[(hash-has-key? h k) (unsafe-hash-ref h k)]
[(procedure? fail) (fail)]
[else faill))

Here are some simple REPL examples of hash-ref at work:

> (define ages (hash "Charlotte" 9
"Harrison" 7
"Sydney" 4))

> (hash-ref ages "Sydney") ;; ==> 4

> (hash-ref ages "Dwight" 10) ;,; ==> 10
> (hash-ref ages "Dwight" (A () 10)) ,;,; ==> 10
> (hash-ref ages "Dwight") ;; ERROR! key not found

We redefined hash-ref—a primitive in Racket— to call an invented primitive function
unsafe-hash-ref to more clearly illustrate hash-ref’s semantics. It’s arguments can be

interpreted as follows:
¢ his a hash table,
e k is the key whose associated value should be fetched from h, and

o fail is an optional argument that determines what the result is when no entry for k

is found in h. In particular, if there is no entry for k in h, then:

— if fail is a procedure, the result is the result of calling fail with no arguments,

otherwise

— if fail is not a procedure, the result is simply fail itself.

When ascribing a type to hash-ref, the first two argument types are straightforward:
h should be of type (Hashtable A B) and k should be of type A. If no third argument is
provided, the function will return a B or error. But what about when the third argument
(i.e. fail) is provided? From the definition, we see the behavior of hash-ref can vary
depending on whether fail is a procedure or a non-procedure. If it is a procedure, it must
take no arguments and it will return some value, say of type C, making fail have type
(-> C). If it is any non-procedure—i.e. a value of type C and (- Procedure)—then that
value is simply returned. The following is a polymorphic, overloaded function type that

captures these three possibilities:

(A1l (A B Q)
(case->
[(Hashtable A B) A -> B]
[(Hashtable A B) A (-> C) -> (U B Q)]
[(Hashtable A B) A (n C (- Procedure)) -> (UB C)1))

Because negation types are not present in Typed Racket, however, the following incom-

plete type is used instead:?

3the real type is actually slightly more complex for non-interesting reasons, but we present the key ideas.

(ALl (A B Q)
(case->
[(Hashtable A B) A
[(Hashtable A B) A
[(Hashtable A B) A

-> B]
(-> C) -> (UB Q)]
False -> (U B False)l]))

And while this type is indeed sound, it limits what programmers can provide for the
third argument, interfering with many basic uses (e.g. storing booleans in the hash table
and using a symbol to signal no entry was found).

Both of these issues are illustrative of the challenges that often occur in occurrence typing
systems which do not completely reason about and/or do not feature the complete spectrum
of set-theoretic types. As we will argue in more detail shortly, a type system can overcome
such challenges by considering a semantic interpretation of types, in which the meaning of a
type is the set of values it denotes. In fact, we will show how embracing semantic subtyping

and the full range of set-theoretic types can enrich and simplify occurrence typing systems.

1.3 Thesis Statement and Outline

With occurrence typing defined and some intuition for how it might relate to refinement

and set-theoretic types generally, we can present our thesis statement:

Occurrence typing combines with refinement and set-theoretic types to form more

expressive and more complete type systems.

In particular, by “more expressive and more complete” we mean the resulting systems
are capable of accurately describing more untyped idioms with types and can successfully
check more programs because of this. This thesis is defended in the remainder of this

document as follows:

e chapter 2 lays out a foundational calculus for occurrence typing and gives an overview

of various occurrence typing approaches;

o chapter 3 describes an occurrence typing calculus with refinement types and the results

of scaling the approach to larger systems along with related work;

e chapter 4 gives an overview of set-theoretic types, their semantic interpretation, and

how to actually implement such systems;

o chapter 5 describes an occurrence typing calculus built on set-theoretic types and
semantic subtyping and examines how non-trivial real world systems—such as Typed

Racket’s numeric tower—might benefit from the added expressiveness.

CHAPTER 2
OCCURRENCE TYPING

Stated broadly, occurrence typing is the ability for a type system to check different oc-
currences of the same variable at different types. This is highlighted in the name perhaps
because it is the most “obvious” feature necessary for effectively type checking untyped
programs and it stands in stark contrast to the standard practice (i.e. where a variable
has exactly on type for the entirety of its lexical scope). In practice however, we find that
occurrence typing is necessary but not sufficient for type checking many untyped programs.
To cover many of the idioms used by programmers in the wild, we argue a collection of type

system features similar to the following is desirable:

e occurrence typing;

e type predicates;

o untagged (i.e. true) union types;

e positive and negative reasoning about the results of type predicates;
e idiomatic reasoning about “null-checks”;

 logical reasoning; and

e structural reasoning about certain values.

We give descriptions and justification for these features in the following section, which
reviews examples given by Tobin-Hochstadt and Felleisen [9] as demonstrative examples
of untyped idioms a type checker of untyped languages should handle. Admittedly, some
system designers may choose a slightly different feature set, however the above list seems
both foundational and large enough to be useful in practice, and so we will use it for our
study of occurrence typing generally in this work. The key ideas can be easily adapted to

similar systems.

2.1 Occurrence Typing Examples

Here we review some examples from prior work [9] which help illustrate why the aforemen-
tioned type system features make a reasonable starting point when studying “real-world”
occurrence typing system. Although these examples are drawn from a Lisp/Scheme-like
language (Racket), the same fundamental patterns arise in most untyped languages. If the
reader needs no convincing or is already familiar with the aforementioned features, this
section can be safely skipped. A core calculus for a type checker well-suited for checking
these kinds of programs is given later in this chapter (see section 2.2).

The most basic example of occurrence typing can be seen in example 1. Here, regardless

of what value x has, the expression will return a number:

(if

(number? x)
(addl x)
0)

We believe this expression is well typed for primarily two reasons: (1) the number?
function is known to be a type predicate for numbers (i.e. it accepts any value and
returns true if and only if the input is a number, otherwise it returns false) and (2)
we know that in the “then-branch” the test expression (number? x) was positive (i.e.
produced a non-false value) and so the occurrence of x in (addl x) is indeed a number.

While example 1 shows how simple positive reasoning about type predicates can be of
use, example 2 shows how the negative result of a type predicate (i.e. when it returns

false) and an untagged union can work together to inform the type system:

(: magnitude (-> (U String Number) Number))
(define (magnitude x)
(if (number? x)
(abs x)
(string-length x)))

Because of the type annotation we know that the parameter x has the union type

(U String Number), i.e. it is either a String or Number. The then-branch checks as it

did in example 1, while the “else-branch” type checks because of the negative information
that is gleaned regarding x. In particular, when the predicate returns false, we learn that
X is mot a number. This combined with what we initially we knew about the type of x allows
us to conclude in the else-branch that x must be a String and thus (string-length x)
too is well typed.

Example 3 is similar to examples 1 and 2, except that instead of an explicit predicate,

we perform a null-check of sorts on X by testing directly whether or not it is false:

(let ([x (assoc v 1)1])
(1f x
;; compute with x ...
(error (format "~v not in ~v" v 1))))

In the non-false case (the commented out then-branch), we expect the type system
to conclude that x is indeed the key/value pair for v in the association list 1 (since assoc
returns either that or false).

Now let us consider why logical reasoning is necessary for an effective occurrence
typing system. To type check this next example we must reason correctly about logical

disjunctions and their implications:

(if (or (number? x)
(string? x))
(magnitude x)
0)

In particular, in example 4 we expect the type system to understand that in the then-
branch exactly one of the predicates for x produced true (although precisely which is
uncertain). Because of this, we should be able to pass x to a function which accepts either
type (such as magnitude from example 2). Similarly, the type system should be able to

reason about the logical implications of conjunctions as well:

10

(if (and (number? x) (string? y))
(+ x (string-length y))
0)

In example 5 we use predicate tests over multiple variables and the type system should
learn something about all applicable variables when the conjunction of those tests returns
true. Example 6 is similar to example 5, except with a subtle “programmer error” that

must be highlighted by the type system:

;; X 1s a Number or String

(if (and (number? x) (string? y))
(+ x (string-length y))
(string-length x))

Here the test-expression and then-branch should type check successfully, but the else
branch should fail because it is not clear why the test-expression produced false: it could
be because X is a string instead of a number, or it could simply be that y is not a string.

Example 7 is also similar to example 5 except that the and-macro has been expanded.
The type system should still be able to reason about this control flow to see that the

then-branch of the outer-most if is only executed when X is a Number and y is a String.

(if (if (number? x) (string? y) false)
(+ x (string-length y))
0)

Example 8 demonstrates an important feature: the ability for the user to abstract over

a type predicate (in this case for the type (U String Number)):

(: str-num? (-> Any Boolean : (U String Number)))
(define (str-num? x)
(or (string? x) (number? x)))

This ability is key because predicates for untagged union types—a staple in reasoning

11

about most any untyped language—simply do not exist a priori: they must be constructed
and/or synthesized by composing more primitive pre-existing predicates.
Example 9 is the macro-expansion of example 4, i.e. the or-macro connecting the type

tests for X has been expanded into the equivalent let-expression:

(if (let ([tmp (number? x)1])
(if tmp tmp (string? x)))
(magnitude x)
0)

Similarly here the type checker should still be able to conclude that in the then-branch x
must have type Number or String since the logically equivalent expansion of the or-macro
must have produced true.

Example 10 introduces the need for structural reasoning about a term:!

Example 10

(if (and (pair? p) (number? (fst p)))
(addl (fst p))
7)

In other words, initially p can have any type. If (pair? p) produces true, we know at
a minimum it is of type (Pair Any Any) and that the other expression in the conjunct will
be executed. With p having type (Pair Any Any), we can successfully type check (fst p)
and ask if it is a number. If this conjunction produces true, we know in the then-branch
(fst p) now has type Number, and we can thus check (addl (fst p)) successfully.

Example 11 is like example 10 but shows that not only should the type of expressions
such as (fst p) be able to be updated via occurrence typing, but that those updates should
impact the type of p itself. Le., in this example, testing the types of both fst and snd of

p has the effect up updating the type of p itself.

"We use fst and snd in lieu of the actual (and more opaque) pair accessor names Car and cdr.

12

Example 11

(: norm (-> (Pair Number Number) Number))
(define (norm p)

(sqrt (+ (expt (fst p) 2) (expt (snd p) 2))))

(M ([p : (Pair Any Any)])

(if (and (number? (fst p)) (number? (snd p)))
(norm p)

(error "non-number pair!")))

Example 12 indicates that predicate abstraction should also work for the structural

subcomponents of arguments when desired. I.e., fst-num? is essentially a number predicate

for the fst field of its argument.

Example 12

(: fst-num? (-> (Pair Any Any) Boolean : (Pair Number Any)))
(define (fst-num? p)

(number? (fst p)))

Example 13 creates a setting where all of this logical reasoning should work together in

a complex conditional expression:

Example 13

(cond [(and (number? x) (string? y))
;; clause 1
—
[(number? x)
;; clause 2
-
[else
;; clause 3

1)

In particular, in clause 1, we know that X is a Number and y is a String. In clause 2, X
is known to be a Number and y is known to not be a String (since the previous predicate
regarding x and y produced false). Finally, in clause 3 y is known to be a String (since
we now know X is not a Number).

Finally, example 14 is like example 13 but includes structural reasoning, presenting a

function whose correctness depends on almost all of the aforementioned features working

together within the type checker:

13

Example 14

(A ([input : (U String Number)]
[extra : (Pair Any Any)])
(cond [(and (number? input) (fst-num? extra))
(+ input (fst extra))l
[(fst-num? extra)
(+ (string-length input) (fst extra))l
[else 01))

2.2 Mor: A Calculus for Occurrence Typing

We define a A-calculus—dubbed Aopr—which acts as a foundation upon which we can build
and experiment. Apr is roughly equivalent to the Argr calculus introduced by Tobin-
Hochstadt and Felleisen [9] with a slightly modified syntax. We use this formalism be-
cause it is expressive enough to cope with many real-world idioms that arise in untyped
programming (i.e. those found in section 2.1) and it still accurately describes how some
non-trivial occurrence typing systems in use today—such as Typed Racket and Typed
Clojure—fundamentally operate.

Because the formalisms introduced in sections 3.2 and 5.2 closely resemble the approach
taken by Aor, it will be a useful to first understand how Aor works before examining how

refinements and semantic set-theoretic types might affect such a system.

2.2.1 Mor Syntax

The syntax of expressions, types, propositions, and other forms are given in figure 2.1.
Constants and Expressions in A\pr describe a relatively simple lambda calculus:
it has integers, booleans, and unary primitive operations as its constants; variables and
function application are standard; A-abstractions are annotated with their argument type
for simplicity of type checking; conditionals and local binding forms are standard; pair
construction and projection is explicit, allowing us to omit polymorphism for simplicity.
Indices abstract over valid pair indices, simplifying some rules and metafunctions.
Types deserve some detailed description. The universal “top” type Any is the type

which describes all well typed terms. Int is the type of integers, while True and False are

14

in=1]2 Indices c = Constants
e = Expressions | int integer value
| ¢ constant | true true value

| z,y,2 variables | false false value

| (ee) application | uop primitive ops

| (AM(z:7)e) abstraction o= Paths

| (if eee) conditional | x variable

| (Let(ze)e) local binding | (proj i m) field access

| (palr e e) pair construction 0= Symbolic Objects

] (p FO]) e) pair projection] ™ path object

T, 0 = Types | T° empty object
| Any universal type D, q = Propositions

| Int integer type | Lt trivial prop

| True true types | FF absurd prop

| False false type | pAD conjunction

| X7 product type | pVD disjunction

| (x:7)—R arrow type | meT 7 is of type T
un type union | m& T 7 is not of type T

R ::= (1,p,q,0) Type-Results =7 Type Env

Figure 2.1: Aor Syntax

the types of the boolean values true and false. Pair types are written 7 X o, describing
pairs whose first field is of type 7 and whose second field is of type o. Function types consist
of a named argument x, a domain type 7, and codomain type-result R in which x is bound.
(U 7) describes a “true” (i.e. untagged) union of the components in 7. For convenience
we write the boolean type (|J True False) as Bool and the uninhabited ‘bottom’ type (|J)
as Empty.

Propositions are a key component of A\or, providing for a standard propositional logic
with some type-specific features. tt and [F are the trivial and absurd propositions, while
p A q and p V q represent the conjunction and disjunction of propositions p and q. Type
information is expressed by propositions of the form © € 7 and 7w ¢ 7, which state that the
path 7 is and is not of type 7 respectively.

Paths. Our type system supports occurrence typing by allowing logical propositions
about the types of certain pure terms in our language, which we dub paths. Aor supports
variable and pair-projection paths. One can think of them as representing some known,

pure computational path to a value about which we can make type-related claims.

15

Symbolic Objects. This syntactic abstraction can be thought of as a “maybe path”,
i.e. either some path 7 or T? to indicate no path. T? is used to identity expressions whose
type the logic will not reason about. In Ao we essentially use T° to indicate a term’s value
will not necessarily correspond to a named value (i.e. a variable or variable’s subfield),
but in more complex systems T° could also be used for potentially impure computations
(allowing mutation to be soundly supported without reasoning about effects explicitly, for
example).

Type-Results allow A\or to easily reason about more than the just the type 7 of an
expression. L.e.; in addition to describing an expression’s type, a type-result further informs
the system by explicitly describing (1) what can be inferred in the respective branches
of a conditional if this expression is used as the test-expression—described by the pair of
propositions p (the ‘then proposition’) and ¢ (the ‘else proposition’) in the type result—and
(2) which symbolic object o the expression’s evaluation would corresponds to.

Environments are simply collections of propositions. Note that in an efficient imple-
mentation of such a system it is useful to separate the environment into two portions: a
traditional mapping of variables to types along with a set of currently known propositions.

The latter can then be used to refine the former during type checking.

2.2.2 MXor Type System

Instead of assigning types, Aor’s typing judgment assigns type-results to expressions:

I'te:(r,pq,o0)

This judgment states that in environment I'

e e has type T;
o if e evaluates to a non-false (i.e. treated as true) value, “then proposition” p holds;
o if ¢ evaluates to Talse, “else proposition” ¢ holds;

e ¢e’s value corresponds to the symbolic object o.

16

T-ConsT
I'kec:Ale)
T-ABs T-VAR
I'zrerke:R I'Fzxer
I'F (A(z:7)e): ((z:7) =R, L, EF, T°) I'Fx:(r,z & False,x € False,z)
T-Ir
'k ep: (Any,p1,q1, T°) T-SUBSUME
I'piFe: R I''gpFes:R I'kFe:R 'R <:R
'k (ifej ez e3): R I'Fe:R
T-LET
I'ker:(rm,p1,q1,01) T-App
pe = (r & False Apy) V (x € False A ¢) I'Fep: ((x:7)—=R,LL,LE T

Iz € 11,p: - e: Ro 't ey (7, EL, EL, 02)

F(let (z e1) e2) : Rofx +— 01]

' (e1 e2) : Rz +— 02]

T-PAIR T-ProJ
L'k ey (m, BE EE, TO) I'Fe: (m1 X 79, Lt o) = (proj i x)
'k ey (19, bL EL, T) R = (r;,0 & False,o' € False, o)
F(pair ey ea) : (11 X 79, L, (F, T°) F(proj ie): Rz o]
Figure 2.2: Aor Typing Judgment

A(int) = (Int, b, (F, T°)

A(true) = (True,Ct,(F, T°)

A(false) = (False,(T,Ct, T°)

A(not) = ((x:Any) — (Bool,x € False,x ¢ False, T°),tL,F, T°)

A(zero?) = ((x:Int)— (Bool,Ltt,tt, T°),LL,[F, T°)

A(subl) = ((z:Int)— (Int,Lt,F, TC),LL, (F, T°)

A(addl) = ((z:Int)— (Int,LL,r, TO),LL, (F, T°)

A(int?) = {((x:Any)— (Bool,x € Int,z & Int, T°),CL, (F, T°)

A(bool?) = ((x:Any)— (Bool,x € Bool,z ¢ Bool, T°), L, (F, T°)

A(pair?) = ((z:Any)— (Bool,z € Any X Any,z ¢ Any X Any, T°), Ltt, (F, T°)

Figure 2.3: A\or Constant Type-Results

17

T-CONST is used for type checking the respective constants values, consulting the A
metafunction described in figure 2.3. Note that the then- and else-propositions are consistent
with whether the constant is non-false or false. They all have the symbolic object T°
since we gain nothing from reasoning about the type of language constants (i.e. they are
already assigned their most precise type).

T-VAR may assign any type 7 to variable z so long as the system can derive I' -2 € 7.
The then- and else-propositions reflect the self evident fact that if x evaluates to a non-
false value then z is not of type False, otherwise it is of type False. The symbolic object
informs the type system that this expression corresponds to the path x.

T-ABs, the rule for checking lambda abstractions, checks the body of the abstraction in
the extended environment which maps = to 7. We use the standard convention of choosing
fresh names not currently bound when extending I' with new bindings. The type-result
from checking the body is then used as the range for the function type, and the then- and
else-propositions report the non-falseness of a function value.

T-ApPpP handles function application, first checking that e; and es are well-typed indi-
vidually and then ensuring the type of es is a subtype of the domain of e;. The overall
type-result of the application is R from the type of e;, with the symbolic object of the
operand, og, substituted for the name x (this allows the type result to now specifically talk
about the argument which was provided in this case: 09).

T-IF is used for conditionals, describing the important process by which information
learned from evaluating test-expressions is projected into the respective branches. After
ensuring e is well-typed at some type, we make note of the then- and else-propositions p;
and g;. We then extend the environment with the appropriate proposition, dependent upon
which branch we are checking: p; is assumed while checking the then-branch and ¢; for the
else-branch. The type result of a conditional is simply the type result implied by both
branches (which can be determined by pointwise unioning their respective type-results).

T-LET first checks whether the expression e; whose value will be bound to z is well
typed. When checking the body, the environment is extended with the type for x and a
proposition describing z’s then- and else- propositions (i.e. what we can learn from testing

x). Since z is chosen to be fresh it is unbound outside the body; we then substitute o; for

18

x on the result as we do with function application, since we know what object corresponds
to z and x will not be in scope outside of this expression.

In order to omit polymorphism we use explicit pair introduction and elimination rules.
T-PAIR introduces pairs, first checking the types for e; and e3. The type-result then includes
the product of these individual types, propositions reflecting the non-false nature of the
value, and a trivial symbolic object (note that in principle we could have symbolic objects for
pairs as well). Pair elimination forms are checked with T-PRrROJ, which ensure its argument
is indeed a pair before returning the respective type and a symbolic object describing which
field was accessed.

Object Substitution on type-results is performed pointwise and structurally on the
respective subcomponents. When substituting the object T for a variable x in a path =, if
x € fvs() then 7[x +— T°] = T°. When substituting in a proposition (7 € 7) or (7w & 1), if
m becomes T then the entire proposition becomes Ct.

Well Formedness. For any judgment I' F e : R, we require that the free variables in e

and R be a subset of those found in I'.

2.2.3 Mor Subtyping

Figure 2.4 describes the subtyping relation <: for types and symbolic objects.

For objects, the null object T is the top object and the relation is reflexive.

All types are subtypes of themselves and of the top type Any. A type is a subtype of a
union if it is a subtype of any element of the union. Unions are only subtypes of a type if
every member of the union is a subtype of that type. Function subtyping has the standard
contra- and co-variance in the domain and range. Pair subtyping is standard.

Type-result subtyping is the pointwise subtyping/implication of the respective parts

(with the environment contributing for the propositions).

2.2.4 M)or Logic and Type Metafunctions

The logic for Apr is a standard natural deduction-style propositional logic with a few
additional type-related rules which are described in figure 2.5. We omit introduction and

elimination rules for the atomic propositions and logical connectives as they are entirely

19

SO-REFL SO-NULL

0o <:o0 o <: T°
T T
S-UNION1 S-UNION2
S-REFL S_TOPA vr''in7T. 7 <o Jo'inéd. T <: o
T T T <: Any
(U T) <o T < (U 7))
S-PAIR S-Fun
1 <! Ty o1 <: 09 Ty <: T1 I'FR; <: Ry
71 X 01 <: T9 X 09 (3617'1)—>R1 < ($57'2)—>R2

SR-SuB
T <7 0<:0 F,pr’ F,qu’

L'k (r,p,q,0) < (7',p,¢,0)

Figure 2.4: Aor Subtyping

standard. Like the typing judgment, we require variables mentioned on the right-hand side
of the turnstile to be a subset of those mentioned on the left, i.e. for I' - p to be well-formed,
fvs(p) C fvs(I') must hold.

T-EMPTY is analogous to the traditional principle of “ex falso quodlibet”, i.e. if we can
prove a term has the uninhabited type we can prove anything.

Rules T-UPDATE+ and T-UPDATE- allow us to refine the type of a term by combining
its known type with some other known positive or negative information about that term.
For example, suppose we know a path 7 is of type 7 and that some field further into that

2 is or is not of type 0. We roughly want to update the type along that

path (proj Zw)
potentially deeper path as follows: if we know (proj Z7r) € o—that the field along i within
7 is of type o—we update that field’s type 7’ to be restrict(7’,0) (i.e. the conservative
“intersection” of the two types); conversely, updating a field’s type 7/ with the knowledge
that the field is not o updates the field to be remove(7’, o) (i.e. the conservative “difference”

between the two).

The update metafunction—also described in figure 2.5—essentially describes how to

2Here we abbreviate (proj in (... (proj i1 7))) as (proj i @) where i is the (potentially empty) sequence
of field accesses &y, :: ... 2 21.

20

L-EmpTY L-Sus L-SusBNot
I' -7 € Empty 'Fr€o o<:T F'Fré¢o T <0
I'kFp 'Frer F'né¢r
L-UPDATE+ L-UPDATE-
I'krer I'trer

Lk (projim) €o

Lk (projin)¢o

I' 7 € update™ (7, i o)

'+ 7 € update™ (7, i o)

update-j:Tz_"T—>T

update™ (11 X 7'2, 2lo0) = updatei(ﬁ,f, o) X Ty
update® (1 X 72, n2,0) =1 X updatei(Tg,i,o—)
update™ = restrict(7, o)

update™ (7, € a) remove(T, o)

-

(
(
(1, €,
(7, velno)
update®(({J 7),7, o) (U update® (7,7, 0))

\restrict TT — T‘
restrict(7, 0) = Empty if Av.Fv:7and Fov:o

= (| restrict(r, a;

restrict ((J
restrict(r,) =T ifFr<io
restrict(r, o) =0 otherwise

[remove: T T — 7]
remove(T, o) = Empty if -7 <: 0

7)=(

=T

J remove(r, o b)
otherwise

remove((lJ 7),
remove(T, o)

Figure 2.5: Aor Type-related Logic Rules and Metafunctions

21

syntactically combine type information from two propositions in a conservative syntactic
manner. update itself traverses the necessary fields so the correct part of the type is updated
before calling either restrict (to combine positive type information) or remove (to subtract
negative information from a type). We provide some relatively straightforward derivations
to further clarify the utility of the update-related rules in the logic:®

Given I't = {z € (lJ Int True),z € (|J Int False)}, we can derive I'y - 2 € Int by

using L-UPDATE+ to combine the positive information regarding x:

MkFzxze (U Int True) NkFxe (U Int False)
L-UPDATE+

MExe update+((U Int True), e, (U Int False))
Int = update+((U Int True),e, (U Int False))

I'NFz € Int

Given I'y = {x € Bool,z ¢ False}, we can derive I's F x € True by combining the

known type with the negative information about z with L-UPDATE-:

I's 2 € Bool 'y o ¢ False

L-UPDATE-
I'y - x € update™ (Bool, ¢, False)

True = update™ (Bool, ¢, False)

I'obFx € True

Given I's = {z € Int X (| Int True),(proj 2 x) € Bool}, we can derive I's - x €
Int X True by using L-UPDATE+ to update the second field of the product type which is

known for z:

3For convenience we automatically flatten and remove Empty from union types when calling update; we
could instead add a usage of L-SUB, which would perform the simplification explicitly.

22

I's -z € Int X (U Int True) I's - (proj 2 x) € Bool

L-UPDATE+
['s -z € update™ (Int X (U Int True),2,Bool)

Int X True = update™ (Int x (U Int True), 2, Bool)

I'sx € Int X True

Given I'y = {z € Int X (Bool X False),(proj 1 (proj 2 z)) & False}, we can derive
'y k2 € Int X (True X False) by using L-UPDATE- to update the first field of the second

field of the known type for x:

'y -2 € Int X (Bool X False) Ty (proj 1 (proj 2 x)) & False
L-UPDATE-

I'y - x € update™ (Int X (Bool X False),1:: 2, False)

Int X (True X False) = update™ (Int X (Bool X False),1 :: 2,False)

I'y 2 € Int X (True X False)

2.2.5 Mor Semantics

Aot uses the big-step reduction semantics described in figure 2.6, calling the metafunction
in figure 2.7 for primitive ops. To understand these semantics, first we describe values (v)

and runtime environments (p) for Aor:

v u=cl|(pairvo)|[p, (Mx:71)e)]

p T:=0

Note that higher-order values are represented with closures—this is because it suits
the unique model-theoretic proof technique introduced to prove soundness for this style of
calculus [9].

The evaluation judgment p - e | v states that in runtime-environment p, expression e
evaluates to the value v. Like many untyped languages, Aor treats all non-false values

as “true” for the purposes of conditional test-expressions.

23

B-LET
_ Feilw
PO Me=e =l s o (@) e) 4 (i))
cle x:T)e , (Mz:7)e
r pbx v pb(let(zer)er) v P ’ P !
B-BETA
ot o1 4 [pe, (A(z:7))]
B-PrROJ B-PAIR peslvo
pkel (pair vy vg) pter v pesl vo pelr:i=wvo)Fel v
pE(projie)llv, pk(pairej ez) | (pair vy vy) pk(erex) v
B-PriM B-IFTRUE
pt el uop pterd v B-IFFALSE
ptexl vo v; # false pte || false
d(uop, ve) = v phes v pteslv

pk(e1ex) v

pb(if ej ez es) v

pb(1f ejeges) v

Figure 2.6: Aor Big-step Reduction Relation

o(not, v) = true
false
true
6(zero?, int) =
(int) false
o(subl, int) =int—1
d(addl, int) =iint+1
s(int?,v) =4 crue
false
o(bool?,v) = true
false
. true
é(pair?, =
(p v) false

if v = false
otherwise
if int=20

otherwise

if v is an integer
otherwise

if v is a boolean
otherwise

if v is a pair

otherwise

Figure 2.7: Aor Primitive Types

24

pED
M-Or M-AND
ZAS[;P pEpLor pEpy pEp1t pEp
pEp1Vp2 pE p1 A p2
M-TYPE M-TyYPENOT
Fp(m):T Fpo):o Av.kv:Tand Fv:o
pETET pEoé&T

Figure 2.8: Aor Models Relation

2.2.6 Mor Soundness

Because our formalism is described as a type-theory aware logic, it is convenient to examine
its soundness using a model-theoretic approach similar to those used in the study of proof
theory. For A\or a model is any runtime-value environment p (i.e. a mapping from variables
to values) and is said to satisfy a proposition p (written p E p) when its assignment of values
to the free variables of p make the proposition a tautology. The details of satisfaction are
defined in figure 2.8. The satisfaction relation extends to environments in a pointwise
manner.

In order to complete our definition of satisfaction and prove our soundness theorem, we

also require a typing rule for closures:

T-CLOSURE
. pET ' (A(z:7)e): R

Flp, Max:1)e)]: R

The satisfaction rules are mostly straightforward. tt is always satisfied, while the logical
connectives V and A are satisfied in the standard ways.

From M-TYPE we see propositions stating a path m is of type 7 are satisfied when the
value of 7 in p is a subtype of 7. Similarly M-TYPENOT tells us if a path 7’s value in p

has a type which does not overlap with 7, then the proposition 7 ¢ 7 is satisfied.

Soundness
Our first lemma states that our proof theory respects models.

25

Lemma 1. If pET and I' = p then p E p.
Proof. By structural induction on I' F p. O

With our proof theory and models in sync and our operational semantics defined, we

can state and prove the next key lemma for type soundness which deals with evaluation.
Lemma 2. IfT'Fe: (r,p,q,0), pET and pt e | v then all of the following hold:
1. either o = T°, or for some path w, o = m and p(w) = v,
2. v# false and pE p, or v = false and p F ¢, and
3. I'F o (rtL,tt, T°)
Proof. By induction on the derivation of p e | v. O
Now we can state our soundness theorem for Aor.
Theorem 1. (Type Soundness for Aor). If Fe:7 andbF el v then v : 7.
Proof. Corollary of lemma 2. O

Although this model-theoretic proof technique works quite naturally, it includes the
standard drawbacks of big-step soundness proofs, saying nothing about diverging or stuck
terms. We could address this by adding an error value of type Empty that is propagated
upward during evaluation and modify our soundness claim to show error is not derived from

evaluating well-typed terms.

2.2.7 Scaling Up)\or

The descriptions in previous sections sought to be straightforward and declarative to high-
light the key ideas governing how Aor operates. In the following sections, we review addi-

tional features and implementation strategies which are useful in practice.

26

Mutation

The simplest way to support mutation in Ao is to note which variables are mutated and
then simply allow no propositions to be introduced for those variables aside from those
declaring their initial type when they are bound.

In other words, once we know which variables are immutable and which are mutable,

we simply use two typing rules for variables:

T-IMMUTABLEVAR T-MUTABLEVAR
I'Fzer x is immutable I'tzer z is mutable
C'Fa:(r,z & False,x € False,x) 't 2 (1L kL, T

T-IMMUTABLEVAR is identical to T-VAR since for immutable variables we can always
safely learn facts about them when examining their value. T-MUTABLEVAR on the other
hand is conservative and provides no propositions or symbolic object, since facts learned
from testing a mutable variable’s value may not always hold (i.e. the variable may be
mutated at some future point).

We also will need two rules for local bindings: one for when the locally bound variable

is potentially mutated and one for when it is not:

T-IMMUTABLELET

x is immutable T-MUTABLELET

I'key: (m,p1,q1,01) x is mutable
pr = (x & False A p1) V (x € False A q1) I'+e; : (m, B, EE, T9)
I''z€mn,p:Fe:Ro I'rente:Ro
I'F (let(z e1) e2) : Roz — 01] I'F(let(ze1)e): Ro

Like the variable rules, T-IMMUTABLELET is the same as T-LET, but T-MUTABLELET
omits the propositions for the variable except for the initial type declaration.

A more expressive approach to supporting mutation would be to add an affect system
and allow the refining of mutable variables’ types so long as no effects may change their
value (Flow [8] uses this approach), but we will not discuss that here since it would involve

many changes to the type system.

27

Aliasing

For simplicity in Apor we do not reason about how variable’s values relate to one another.
Doing so, however, can greatly reduce the number of propositions that need to be ac-
counted for when checking the body of local binding forms. For example, in the following
program the inner-most body of the let-expressions has three variables in scope which can

be logically reasoned about: p, X, and y.

(let

(lp -..1)
(Let (

[x (fst p)]
[y (snd p)])
.)

However, the expressions being bound to x and y both have non-trivial symbolic objects
which simply refer to subcomponents of p, i.e. x is literally just an alias for the value at
(proj 1 p) and y for the value at (proj 2 p). If, instead of reasoning about x and y, we note
this aliasing and instead reason about (proj 1 p) and (proj 2 p) whenever x and y occur
in that lexical portion of the program, we can reduce the size of our logical environment
dramatically. When done consistently, this can be viewed as a form of “copy propagation”
which reduces the number of unique variables in a lexical context. Furthermore, tracking
these aliasing relations between local objects and their symbolic objects allows for more
programs to type check, because information learned about the types of any of the three
identifiers can refine the type of the other two.

This explicit aliasing is included in the calculus described in chapter 3, but the technique
can be useful even in the absence of refinement types. (In fact, this feature was added to

Typed Racket long before refinements.)

Checking vs Synthesizing Logical Information

As may come as no surprise, an implementation of a system like Aor is often done as a
bidirectional type checker in the style first formally introduced by Pierce and Turner [24].
I.e., when an expected type for an expression is present, the type checker can propagate
that information downward into the appropriate subcomponents of that expression which

can simplify type checking. When there is no expected type for an expression, however,

28

the type must be synthesized and (in our case) all logical information that may be gleaned
from that expression’s evaluation must be propagated outward by the typing derivation.
For example, suppose the following expression (example 9 from section 2.1) were being type

checked with the expected type Number:

(if (let ([tmp (number? x)1)
(if tmp tmp (string? x)))
(magnitude x)
0)

Because both the then- and else-branches can contribute to the result, both are visited by
the type checker in “check mode” with expected type of the entire expression (Number) and
no “learned propositions” from those expressions (if any existed) need to be considered.
However, the test-expression does not have an expected type, and therefore it must be
checked in “synthesis mode”, reporting both its type and any learned logical propositions.
In particular, this means the expression (if tmp tmp (string? x)) will be checked in
synthesis mode and thus its propositions will be the disjunction of the propositions from
its then- and else-branches, since we must know what can be learned in either case to
understand what can be learned from the entire expression.

While the difference in this case may seem trivial, in large expressions with nested
conditionals—Ilike those arising in the expansion of match statements in Racket—the dif-
ference in the size and complexity of the generated propositions can be vast: each nested
conditional will result in a disjunction of the learned information from each branch which
can lead to fruitless exponential blowup in proposition size. If, however, the nesting of
conditionals has an expected type, the logical information can be ignored entirely since we

only care that each branch is indeed of the expected type.

Context Conjunctive Normal Form

The following steps help keep I' in conjunctive normal form (CNF'), which in our experience
makes logical inquiries during type checking easier to decide. First, continually combine
and remove redundant propositions from the environment, i.e. (proj 1) € 7 can update
m € Any X 0 to be m € 7 X o, at which point (proj 1 m) € 7 is redundant (since it should

be implied by m# € Any X o) and can be removed, etc. Second, perform standard logical

29

transformations so I' is in CNF. Note that atoms in disjunctions with the same subject
often can be combined or “cancel eachother out” by making the union a tautology, and that
statements such as 7 € Any and m € Empty are logically equivalent to tt and fF respectively.
Once in CNF, use the principle of disjunctive syllogism to simplify and reduce disjunctions

by eliminating their provably absurd atoms.

More Subsumption

Subsumption in Aor relies on the simple “sub-result” relation defined in figure 2.4. This
relation can be naturally extended with two obviously sound rules which help simplify type

checking in practice by eliminating propositions the type indicates will not hold:

SR-NONFALSE SR-FALSE
Av.T'Fov:7and '+ v : False T <: False
'k (r,p,q,0) <:(1,p,[F, 0) 't {(r,p,q,0) <: (7,[F,q,o0)

Essentially SR-NONFALSE allows us to discard the else-proposition when we can tell
from the type that the result cannot be false, and SR-FALSE allows us to discard the
then-proposition when the result must be false.

Additionally, in practice subsumption should be used each time the environment is
extended with a logical proposition (i.e. T-IF and T-LET) so the information from that

proposition is included in the overall output type-result.

2.2.8 Related Work in Occurrence Typing

In this section we give an overview of the ways different systems support occurrence typing
and discuss how they relate to A\or.

Syntactic Type Tests

The simplest method for supporting occurrence typing involves syntactically recognizing
type-tests and updating the type environment appropriately for the respective branches.

This approach has the advantages of being both easy to understand and implement and

30

directly pairing with the syntactic type tests many languages feature. To demonstrate, let
us consider several TypeScript? examples which make use of this feature in similar ways.
The simplest and perhaps most common syntactic test we would want an occurrence

typing system to understand is the ubiquitous “null check”:

function louder(s: string | null): string {
if (s) return s.concat("!");
else return "";

This check could also be written as (s !== null); in either case we are expecting the
type system to learn that in the then-branch since s is non-null and therefore a string.
In other cases, it may be that certain functions are known a priori to be type predicates
(e.g., PHP has a slew of these functions). Some occurrence typing systems recognize when
these particular functions appear in a conditional test and will appropriately inform the

type system in either branch:

function louder(s: string | null): string {
if (is_string(s)) return s.concat("!");
else return "";

Finally, some languages have special syntactic constructs which inspects a value’s type.
Occurrence typing systems may syntactically recognize this pattern and determine which

type is being tested for in each instance:

function louder(s: string | null): string {
if (typeof(s) == "string") return s.concat("!");
else return "";

The main limitation of this approach is that it is inherently first order and thus may be
at odds a more functional style of programming. For example, consider the filter function
which takes a predicate p and a list 1 and returns a list containing each element x in 1 for
which (p x) produced a non-false value. The type for filter ideally would reflect the
fact that when given a type predicate, the type of the resulting list is determined by what
type the predicate was for. E.g., if we use number? as the predicate, the result should have

type (Listof Number):

4TypeScript 3.2 with the strictNullChecks option enabled so types are non-nullable by default.

31

> (define 1 (list 1 "2" 3 'four (list 5)))
> (filter number? 1)
(1 3)

However this is only possible when the type of a predicate—not merely its syntactic
occurrence in a program—somehow meaningfully witnesses its “predicate-ness”; this allows
the type of a function which takes higher-order values (like filter) to accurately describe

its behavior.

Languages with Syntactic Type Tests

The syntactic approach has been used extensively in both industrial and academic type
systems over the years.

Untyped languages such as JavaScript seem well-suited for this approach with their C-
like style and idiomatic type-tag tests. The industrial languages TypeScript [3], Flow[25],
and Hack[25] all use this approach as the means of supporting occurrence typing in their
respective systems. Many academic systems for these languages also use this approach:
Safe TypeScript[6] and the “flow-typing” approach introduced by Guha et al. [26], both in
the context of JavaScript.

Statically typed languages which support type-testing are also amenable to this kind of
reasoning. Ceylon[15] and Kotlin[17] are JVM-based statically typed languages which use
occurrence typing to statically reason about their respective JVM instanceof tests, which
among other things allow them to statically rule out the ubiquitous null-pointer errors that
occur in Java-like languages.

Finally, several advanced type systems have built-in syntactic type-case constructs which
the type checker is aware of. The Whiley programming language[16] features untagged
union types and type-case constructs the type system is aware of to support occurrence
typing (called in their work “flow typing”). Several projects based on semantic subtyping
have featured syntactic-based occurrence typing as a means for effectively working with
their untagged unions [21, 27], while others have merely support type-based dispatch while
introducing a fresh name instead of refining the type of an existing name[28]. Generalized

algebraic data types[29] also—perhaps surprisingly—admit a form of occurrence typing

32

since in their presence “pattern matching causes type refinement”.

Dependent Types

Dependent types—types which may depend on non-type program terms—are capable of
supporting occurrence typing as well. However, this approach is not as common as the
syntactic technique and has certain trade-offs. For example, with dependent types the user
is able to create their own abstractions which can act as predicates, however this comes at
the price of having a more complicated type system for the user to reason about and the
language designer to implement.

Our calculus Aor uses a special dependent function type capable of describing what the
result of a function’s application entails; these unique function types also appear in Typed
Racket [9] and Typed Clojure[30]. Other calculi[31]—such as Dependent JavaScript[4]—
instead heavily invests in refinement types to support occurrence typing, allowing for a

predicate type such as the following;:

x: Any — {v:bool | v? (tag(z) = "string"): (tag(x) # "string")}

where the codomain is a boolean with a refinement relating its truth-value to whether
the type tag of the argument equals a particular value (in this case "string").

Finally, dependently typed systems supporting a somewhat automated form of language-
integrated verification—such as Liquid Haskell[23], F*[22], Sage[32], and others|20, 33, 34,
35]—fundamentally support occurrence typing since they utilize the control flow of the pro-
gram when attempting to automatically prove the subtyping constraints for the occurrences

of the same terms at various points in the program.

Untagged Union Normalization

The final approach we discuss allows the programmer to reason via occurrence typing while
indirectly attacking the issue in the type checker. It comes from the insight that any program
with untagged unions can be expanded into an equivalent set of possible programs with no

untagged unions. For instance, we could expand the aforementioned example function

33

louder—whose parameter s had type string | null—into the following two programs

(i.e. one for each possibility in the union type):

function louderl(s: string): string {

if (s) {
return s.concat("'");
} else {
return ""; // dead code
}
}
function louder2(s: null): string {
if (s) {
return s.concat("!"); // dead code
} else {
return "";
}

If all of the branches in this program are either well-typed or proven unreachable, then
the original program (where s had type string | null) contains no type errors. Note
however that there will be an exponentional number of possible programs to type check as
the number of variables with union types increases. This “two-phase” approach to support-
ing occurrence typing has been used thus far to target JavaScript with both simple types

[7] and refinement types[36].

34

CHAPTER 3
OCCURRENCE TYPING WITH REFINEMENT TYPES

Applying a static type discipline to an existing code base written in a dynamically-typed
language such as JavaScript, Python, or Racket requires a type system tailored to the
idioms of the language. When building gradually-typed systems, designers have focused
their attention on type systems with relatively simple goals, e.g. ruling out dynamic type
errors such as including a string in an arithmetic computation. These systems—ranging
from widely-adopted industrial efforts such as TypeScript [3], Hack [12], and Flow [25]
to more academic systems such as Typed Racket [37], Typed Clojure [10], Reticulated
Python [13], and Gradualtalk [38]—have been successful in this narrow goal.

However, advanced type systems can express more powerful properties and check more
significant invariants than merely the absence of dynamic type errors. Refinement and
dependent types, as well as sophisticated encodings in the type systems of languages such
as Haskell and ML [39, 40], allow programmers to capture more precise correctness criteria
for their programs such as those for balanced binary trees, sized vectors, and much more.

In this chapter, we combine these two strands of research, producing a system we dub
Refinement Typed Racket, or RTR. RTR follows in the tradition of Dependent ML [41]
and Liquid Haskell [23] by supporting dependent and refinement types over a limited but
extensible expression language. Experience with these languages has already demonstrated
that expressive and rich program properties can be captured by a fully-decidable type
System.

Furthermore, by building on the existing framework of occurrence typing, refinement
types prove to be a natural addition to the implementation, formal model, and soundness
results. As we discuss in chapter 2, occurrence typing is designed to reason about dynamic
type tests and control flow in existing untyped programs, using propositions about the types
of terms and simple rules of logical inference. Extending this logic to encompass refinements

of types as well as propositions drawn from solver-backed theories produces an expressive

35

(: max : (=> ([x : Integer] [y : Integer])
(Refine [z : Integer] (and (>= z x) (>= 2z vy))))
X

(define (max x y) (if (> x y) x y))

Figure 3.1: max with refinement types

system which scales to real programs. In this chapter, we show examples drawn from the
theory of linear inequalities and the theory of bitvectors.

Figure 3.1 presents a simple demonstration of integrating refinement types with linear
arithmetic. The max function takes two integers and returns the larger, but instead of
describing it as a simple binary operator on values of type Integer, as the current Typed
Racket implementation specifies, we give a more precise type specifically stating that the
result is greater than or equal to both inputs.

The syntax for function types in RTR allows for explicit dependencies between the
domain and codomain by giving names to arguments which are in scope in any logical
refinements. Note that the max function definition does not require any changes to ac-
commodate the stronger type, nor do clients of max need to care that the type provides
more guarantees than before; the conditional in the body of max enables the use of the
refinement type in the result, as in most refinement type systems. Occurrence typing’s
pre-existing ability to reason about conditionals means that abstraction and combination
of conditional tests properly works in RTR without requiring anything more from solvers
for various theories.

The rest of this chapter is structured as follows: in section 3.1 we give additional exam-
ples of taking occurrence typing beyond simple type tests and into the realm of refinement
types; in section 3.2 we give a formal model Agpgr which illustrates how to combine occur-
rence typing and refinement types, proving it sound; in section 3.3 we talk about scaling the
ideas found in AprRr into a full language; in section 3.4 we discuss a case study testing an
RTR prototype on more than 56,000 lines of Typed Racket code; in section 3.5 we discuss
our experiences adding refinement types to Typed Racket proper; and in section 3.6 we

discuss related work.

36

3.1 Beyond Occurrence Typing

In chapter 2 we laid out a general technique for supporting occurrence typing; in this
section we begin to examine ways in which occurrence typing can support more expressive

control-flow based reasoning.

3.1.1 Occurrence Typing with Linear Arithmetic

Consider how a standard vector access function vector-ref might be implemented in a
relatively simply-typed language (e.g. standard Typed Racket). In order to ensure we
only access valid indices of the vector, our function must conduct a runtime check before

performing the raw, unsafe memory access at the user-specified index:

(: vector-ref (V (A) (-> (Vectorof A) Integer A)))
(define (vector-ref v 1)
(if (<= 0 i (subl (vector-length v)))
(unsafe-vector-ref v i)
(error 'vector-ref "invalid vector index ~a" 1)))

Although the type for vector- ref prevents some runtime errors, invalid indices remain
a potential problem. In order to eliminate these, we can extend our new system to consider
propositions from the theory of linear integer arithmetic (with a simple implementation
of Fourier-Motzkin elimination [42] as a lightweight solver). This allows us to give <= a
dependent function type where the truth-value of the result reports the intuitively implied

linear inequality. We can then design a safe function safe-vector-ref:

(: safe-vector-ref
(V {A} (-> ([v : (Vectorof A)]
[i : Integer])
#:pre (v 1) (and (<= 0 1i)
(< 1 (vector-length v)))
A)))
(define safe-vector-ref unsafe-vector-ref)

Now the type guarantees only provably valid indices are used. While replacing all
occurrences of vector-ref with safe-vector-ref in a program may seem desirable, such
a change would likely result is programs that no longer type check! One reason for this is
the validity of an index is not always apparent at the actual use site. For example, consider

a standard vector dot product function:

37

(: safe-dot-product
(-> (Vectorof Integer) (Vectorof Integer) Integer))
(define (safe-dot-product A B)
(let loop ([i : Natural 0])
(cond
[(< i (vector-length A)) (+ (* (safe-vector-ref A i)
(safe-vector-ref B 1))
(loop (addl i)))]
[else 0]1)))

Because there is no explicit knowledge about the length of B, our attempt verify one of the

indices in safe-dot-product will not type check:

Type Checker error in (safe-vector-ref B 1)

unable to prove precondition: (and (< i (vector-length B)) (<= 0 1))

In order to type check safe-dot-product, the types for the domain must either be
enriched to include the assumption that the vectors are of equal length, or a dynamic check
must be added which verifies the assumption at runtime. Also note that without carefully
examining the use sites of this function it is difficult to know which solution would be
ideal—demanding clients statically verify the property at every call may be an unreasonable

requirement. Fortunately a middle ground can be achieved by allowing for both:

(: dot-product (-> (Vectorof Integer)
(Vectorof Integer)
Integer))
(define (dot-product A B)
(unless (= (vector-length A) (vector-length B))
(error 'dot-product "invalid vector lengths!"))
(safe-dot-product A B))

Legacy code and clients who cannot easily verify their vectors’ lengths may continue
to call dot-product while clients wishing to statically eliminate this error may call a safe
version which uses a stronger type.

Safe vector access is a simple example of the program invariants expressible with occur-
rence typing extended with the theory of linear integer arithmetic—we have chosen it for
thorough examination because it relates directly to our sizable case study on existing Typed
Racket code. Xi [43], however, demonstrates at length in the presentation of Dependent
ML how the invariants of far richer programs, such as balanced red-black trees and simple

type-preserving evaluators, can be expressed using this same class of refinements.

38

3.1.2 Occurrence Typing with Bitvectors

Linear arithmetic, however, is merely one example of extending RTR with an external
theory. To illustrate, we additionally experimented by adding the theory of bitvectors to
RTR. By leveraging Z3’s bitvector reasoning [44] we were able to type check the helper
function xtime found in many implementations of AES [45] encryption. This function
computes the result of multiplying the elements of the field Fys by 2 (i.e. polynomials of

the form Fa[x]/(2® + 2* + 2° + 2 + 1), which AES conveniently represents using a byte):

(: xtime (-> Byte Byte))
(define (xtime num)
(Let ([n (bitwise-and (* #x02 num) #xff)])
(cond
[(= #x00 (bitwise-and num #x80)) n]
[else (bitwise-xor n #x1b)1)))

In this example the type Byte is a shorthand for the type
(Refine [b : BitVector] (<= #x00 b #xff)). To verify this program, we enrich the
types of the relevant bitwise operations (e.g. =, bitwise-and, etc.) to include propositions
and refinements relating the values to bitvector-theoretic statements and add bitvector
literals to the set of terms which may be lifted to the type level. Adding the theory of
bitvectors and verifying this program proved to be a relatively straightforward process; in

section 3.2.4 we discuss in detail our general strategy for adding new theories to RTR.

39

3.2 Formal Model

Our base system Agrpr is a natural extension of Apor; new language forms and judgments
are highlighted.
The typing judgment for Arp g resembles a standard typing judgment except that instead

of assigning types, it assigns type-results to well-typed expressions:
I'ke:(1,p,q,o0)

This judgment states that in environment I"

e e has type T;
o if e evaluates to a non-false (i.e. treated as true) value, ‘then proposition’ p holds;
o if e evaluates to false, ‘else proposition’ ¢ holds;

e ¢e’s value corresponds to the symbolic object o.

3.2.1 Syntax

The syntax of terms, types, propositions, and other forms are given in figure 3.2.

Expressions. Aprgr uses a standard set of expressions with explicit pair operations for
simplicity (so our presentation may omit polymorphism).

Types. The universal ‘top’ type Any is the type which describes all well typed terms.
Int is the type of integers, while True and False are the types of the boolean values true
and false. Pair types are written 7 X 0. (|J 7) describes a ‘true’ (i.e. untagged) union
of its components. For convenience we write the boolean type (|J True False) as Bool and
the uninhabited ‘bottom’ type (|J) as Empty. Function types consist of a named argument
x, a domain type 7, and range type-result R in which z is bound. {z:7 | p} is a standard
refinement type, describing any value x of type 7 for which proposition p holds.

Propositions. At our system’s core is a propositional logic with domain specific fea-
tures. Lt and (F are the trivial and absurd propositions, while p A ¢ and p V ¢ represent
the conjunction and disjunction of propositions p and ¢ respectively. Type information is

expressed by propositions of the form o € 7 or 0o € 7, which state that symbolic object o

40

iu=1]2 Field Indices
ci= Constants
| int integer value
| true true value
| false false value
| uop primitive ops
e = Expressions
| x,y, 2 variables
| ¢ constant values
| (AM(z:7)e) abstraction
| (ee) application
| (ifeee) conditional
| (let (z e) e)local binding
| (pairee) pair
| (proj ie) field access
T, 0 1= Types
| Any universal type
] Int integer type
| True true types
| False false type
| 7 X1 product type
| \JU7) ad-hoc union type
| (z:7)— R function type
|

{x:7 | p} refinement type

V= Values
| c constant values
| (pair v v) pair value
o, A@r)e)] closure

D, q = Propositions
| Gt trivial prop
| 6F absurd prop
loerT o is of type T
o T o is not of type 7
|pAp conjunction
|pVp disjunction
lo=o object aliasing
| X T theory 7 prop

0= Symbolic Objects
| T° null object
| © variable reference
| (proj i o) field reference
| (pair o o) object pair

R .= Type-Results
| {T,p,q,0) type-result
| (z:7).R existential

I':= ? Type Env

p = = Runtime Env

Figure 3.2: Aprr Syntax

41

is or is not of type 7 respectively. 01 = 09 describes an ‘alias’ between symbolic objects,
stating that the object 07 points to the same value as 0o. Finally, an atomic propositions
of the form X7 represents a statement from a theory 7 for which Azrr has been provided
a sound solver. In this way our logic describes an extensible system that can be enriched
with various theories according to the needs of the application at hand.

Fields. A field allows us to reference a subcomponent of a structural value. For example,
if p is a tree-like structure built using nested pairs, (proj 1 (proj 2 o)) would describe the
value found by accessing the first field of the result of accessing o’s second field. In this model
having accessors for pair fields suffices; in general, accessors/descriptors for both built-in
and user-defined data types are needed in order to type check more complicated real-world
programs. Our vector case study, for example, required an accessor for vector-1length.

Symbolic Objects. Instead of allowing our types to depend on arbitrary program
terms (as is done in systems with full dependent types), we define a canonical subset of
terms called symbolic objects which represent the terms which may be lifted to the type
level in our system. These objects act as a conservative ‘whitelist’ of sorts, allowing our
type system to work in a full-scale programming language by only considering obviously
safe terms (i.e. excluding mutated fields, potentially non-deterministic functions, etc.).

Initially these objects are only used to describe values bound to variables, field accesses,
and pairs of objects, while the null symbolic object T° represents terms we do not lift to
the type level. These objects (excluding pairs) are what allows standard Typed Racket to
type check many dynamic programming idioms. When extending RTR to handle additional
theories, the grammar of symbolic objects is extended to include program terms the new
theory must reason about.

Finally, when performing standard capture-avoiding substitution we keep symbolic ob-
jects in the obvious normal form (e.g. (proj 1 (pair x y)) is reduced to x). Propositions
that end up directly referring to T, such as T° € Int, are treated as equivalent to Lt (i.e.
meaningless) and are discarded.

Type-Results. In order to allow our system to easily reason about more than the just
the simple type 7 of an expression, we assign a well typed expression a type-result. In addi-

tion to describing an expression’s type, a type-result further informs the system by explicitly

42

A(= (x:Any) — (Bool,z € False,z ¢ False, T°)

A(= (z:Int) — (Bool,Lt, L, T°)

A((x:Int)— (Int,CL, (F, T°)

A(addl) = (z:Int)— (Int,LL,(F, T°)

A(1 (x:Any)— (Bool,z € Int,z ¢ Int, T°)

A((z:Any) — (Bool,z € Bool,x ¢ Bool, T?)

A((x:Any) — (Bool,x € Any X Any,x ¢ Any X Any, T°)

Figure 3.3: Agrrr Primitive Types

capturing two additional properties: (1) what is learned when the expression’s value is used
as the test-expression in a conditional—this is described by the pair of propositions p4|p—
in the type-result—and (2) which symbolic object o the expression’s value corresponds to.

Existentially quantified type-results allow types to depend on terms with no in-scope
symbolic object. Our usage of existential quantification resembles the technique introduced
by Knowles and Flanagan [33] in many ways, except that our usage is restricted to when
substitution is simply not possible (i.e. when the variable’s assigned expression has a null
object).

Environments. For simplicity in this model we use an environment built entirely of
propositions. In a real implementation it is useful to separate the environment into two
portions: a traditional mapping of variables to types along with a set of currently known
propositions. The latter can then be used to refine the former during type checking.

Runtime Environments. Our runtime environments are standard mappings of vari-

ables to closed runtime values, appearing in closures and our big-step reduction semantics.

3.2.2 Typing Rules

The typing judgment is defined in figure 3.4 and an executable PLT Redex [46] model
is included in our accompanying artifact. The individual rules are those previously used
by Typed Racket with only a few minor modifications to incorporate our new forms (i.e.
existential type-results and aliases).

T-INT, T-TRUE, T-FALSE, and T-PRIM are used for type checking the respective base

43

T-INT T-TRUE
Tk int: (Int, b, 0F, T° Tk true: (True, bt 6F, T°)
T-FALSE T-PRriM
'+ false: (False, [T, tt, T°) I'F wop : (A(uop), tt, (F, T°)
T-ABS T-VAR
I''ecertke:R I'Fxer
I'E (Max:71)e): ((x:7) =R, L, F, T°) I'Fa:(r,xz ¢ False,z € False,x)
T-Ir T-SUBSUME
I'teq: (Any,p14,p1—, T9) I'Fe:R
I'piyFea: R I'pi—Fes: R 'R <:R
' (if e ez e3): R I'Fe:R
T-LET
I'teq:(m,p1,q1,01) T-App
pr = (x & False Ap1) V (x € False A q1) I'Fep: ((z:7)—R,LE,LE, T°)
Iz €m,z=o01,p:Fe:Ry 'k ey : (o, Lt b, 02) 'Fo<:71
Tk (let(z e1) e2) : Rofz B 0] T'F (e1 e2) : Rlz & 09]
T-PAIR
['Feqp:(m,tE B, 01) T-PROJ
'k ey : (19, b, EL, 09) I'Fe:(m X 7,tL, L, o)
R = (11 X 19, L, OF, (pair x1 x2)) R = (7, bL, CL, (proj i x))
I'F (pair e; es) : Rlzy B 01][29 E= 09) I'F (projie): Rz s o

Figure 3.4: Arprr Typing Judgment

44

values, with T-PRIM consulting the A metafunction described in figure 3.3 for primitive
operators. Note that the then- and else-propositions are consistent with their being false
or non-false. Additionally, by default none of these terms will appear in types and
propositions, as signified by the null symbolic object T°.

T-VAR may assign any type 7 to variable z so long as the system can derive I' -z € 7.
The then- and else-propositions reflect the self evident fact that if = is found to equal false
then z is of type False, otherwise x is not of type False. The symbolic object informs the
type system that this expression corresponds to the program term x.

T-ABs, the rule for checking lambda abstractions, checks the body of the abstraction in
the extended environment which maps « to 7. We use the standard convention of choosing
fresh names not currently bound when extending I' with new bindings. The type-result
from checking the body is then used as the range for the function type, and the then- and
else-propositions report the non-falseness of the value.

T-APP handles function application, first checking that e; and es are well-typed indi-
vidually and then ensuring the type of es is a subtype of the domain of e;. The overall
type-result of the application is the range of the function, R, with the symbolic object of
the operand, o9, lifted and optionally substituted for x. This lifting substitution is defined

as follows:

In essence, if the operand corresponds to a value our type system can reason directly
about (i.e. its object is non-null), we perform capture avoiding substitution as expected.
Otherwise, an existential quantifier & la Knowles and Flanagan [33] is used to capture the
argument expression’s precise type, even though it’s exact identity is unknown; this enables
the function’s range to depend on its argument regardless of whether the term can soundly
be lifted to the type level.

T-IF is used for conditionals, describing the important process by which information
learned from test-expressions is projected into the respective branches. After ensuring ey

is well-typed at some type, we make note of the then- and else-propositions p14 and p;_.

45

We then extend the environment with the appropriate proposition, dependent upon which
branch we are checking: pi; is assumed while checking the then-branch and p;_ for the
else-branch. The type result of a conditional is simply the type result implied by both
branches.

T-LET first checks whether the expression e; being bound to x is well typed. When
checking the body, the environment is extended with the type for x, a proposition describing
x’s then- and else- propositions, and an alias stating that z refers to o; (i.e. the symbolic
object of e1). Since x is unbound outside the body, we perform a lifting substitution of oy
for & on the result as we do with function application.

In order to omit polymorphism we use explicit pair introduction and elimination rules.
T-CoNs introduces pairs, first checking the types and symbolic objects for e; and es. The
type-result then includes the product of these individual types, propositions reflecting the
non-false nature of the value, and a symbolic pair object (all modulo the two lifting
substitutions). Pair elimination forms are checked with T-PROJ, which ensure its argument
is indeed a pair before returning the expected type and a symbolic object describing which

field was accessed.

3.2.3 Subtyping and Proof System

The subtyping and proof system use a combination of familiar rules from type theory and

formal logic.

Subtyping

Figure 3.5 describes the subtyping relation <: for types, symbolic objects, and type-results.
For objects, the null object T° is the top object and objects are sub-objects of any
alias-equivalent object. Pair objects are sub-objects in a pointwise fashion.
All types are subtypes of themselves and of the top type Any. A type is a subtype
of a union if it is a subtype of any element of the union. Unions are only subtypes of a
type if every member of the union is a subtype of that type. Function subtyping has the
standard contra- and co-variance in the domain and range; in order to reason correctly

about dependencies when checking the range, the environment is extended to assign = the

46

s0-Bauv sopam

I'op =09 ??_'NIE‘LTO I'ko <:o3 I'Foy <:o4
_— o <:
I'Fo <:o9 I'F (pair o1 02) <: (pair o3 o4)

S-REFL S-Top
'Htr<:71 ' 7 <: Any

S-UNION1 S-UNION2
Vrin7.TF7T7<:0 Joind. I'F7<:0

r-(J»<o r-r<(Ja)

S-PAIR S-Fun
I'Em <im x ¢ fus(I") F'Em<in
P|—01<:02 F,$€TQ|—R1<ZR2

I'711 X o1 <:7m X 09 'k (z:m)—Ri <: (z:72) > Ro
'S-WEAKEN. z ¢ fus(T) x ¢ fus(T)

I'Fr<:o Nzernptax€o TI'Fr<io zerkp
'{z:7|p}<io TrH{z:7|p}<io I'-7<:{z:0]p}

SR-REsuLT _

'Frn<im Tp1s F pos x ¢ fus(T)
I'Fop <:og Typio b po_ I'zertkFRI <Ry

I'F (1, p14,p1-,01) <: (T2, D24, P2—,02) I'F3(z:7).R <: Ry

Figure 3.5: Arrr Subtyping

47

I'tp
LA LT L-ABSURD L-ANDI L-AnDE1 L-ANDE2
ATOM - Lm IRIVIAL -y pp Tkpr Thkpy ThEpiAps ThpiAps
IpFp TEE
I'kp I'p1 Aps I'p ' po
L-OrRE L-SuB
L-ORI I'EpiVps I'Fo€o0 L-Nor L-BoT
I'tprorT'Fpy Typibp Ippbp T'Fo<:m T,o€THIF TI'F o€ Empty
I'EpVopo I'kp T'tFoer 'Fog¢r I'kp
L-UPDATE+ L-UPDATE-
o L-Sym I'Foer 'oer
Fl-_EFL F'Foy=o0; Ik (projio) €o T (projio)¢o
0=o0 - =
I'Fop =02 Tt o€ updatef(r,i,0) I' - o € update (7,4, 0)
L-TRANSPORT L-THEORY L-TyPEFORK
I'Fplo) TrFol=o [Tl Fr X7 Tk (pair o1 03) € 71 X 7
Fl—p(OQ) r-x7 I'FopremNos €m
L-REFI
L-OBJFORK Ttoer L-REFE
' (pair o1 02) = (pair oz o4) 't plz — o 'toe{x:7|p}
'Fop=03ANo02 =04 o€ {x:7|p} I'toé€&TAplr o

Figure 3.6: Aprg-specific Logic Rules

more specific domain type. Pair subtyping is standard.
For refinement types we have three rules: S-WEAKEN states if 7 is a subtype of ¢ in T’
then so is any refinement of 7; S-REFINE1 and S-REFINE2 allow subtyping inquiries about
refinements to be translated into their equivalent logical inquiries.
The subtyping relation for type-results relies on subtyping for the type and object, and
logical implication for the then- and else-propositions. Since existentially quantified type-

results are only used as a tool for type checking, there is only one explicit subtyping rule

for them: SR-EX1sTS. This rule resembles the standard existential instantiation rule from

first order logic, stating an existentially quantified type-result is a subtype of another type

result if the subtyping relation holds in the appropriately extended environment.

48

Proof System

Figure 3.6 describes the type-specific portion of the propositional logic for Agprr. We omit
the introduction and elimination rules for forms from propositional logic, since they are
identical to those used by Arg [9] (i.e. resembling those found in any natural deduction
system).

L-SUB says an object o is of type 7 when it is a known subtype of 7. L-NOT conversely
lets us prove object o is not of type 7 when assuming the opposite implies a contradiction.
L-BoT serves as an ‘ex falso quodlibet’ of sorts, allowing us to draw any conclusion since
Empty is uninhabited.

Object aliasing allows us to reason about the statically known equivalences classes of
symbolic objects. L-REFL and L-SyM provide reflexivity and symmetry for aliasing, while
L-TRANSPORT allows us replace alias-equivalent objects in any derivable proposition (giving
us transitivity). L-OBJFORK and L-TYPEFORK provide a means for reducing claims about
object pairs to be claims about their fields.

L-UprDATE+ and L-UPDATE- play a key role in our system, allowing positive and neg-
ative type statements to refine the known types of objects. Roughly speaking, if we know
an object o is of type 7, updating some field (proj i, (... (proj ip 0))) within the object
(abbreviated (proj i o)) with additional information computes the following: if we know
(proj ;o) € o—that the field is of type o—we update that field’s type 7’ to be approxi-
mately 7/ N o (i.e. a conservative ‘intersection’ of the two types); conversely, updating a
field’s type 7" with the knowledge that the field is not o updates the field to be approxi-
mately 7/ — o (i.e. the ‘difference’ between the two). A full definition of update is given in
figure 3.7.

L-REFI and L-REFE construct and eliminate refinement types in the expected ways,
essentially saying that the proposition o € {x : 7 | p} is equivalent to the compound
proposition o € T A p[x — o].

Finally, a proposition X7 from theory 7T is derived using L-THEORY. This rule consults

a solver for theory 7 with the relevant knowledge from T'.

49

update'iFTfT—H'

updateF (r1 X 7'2, wlo) = update?(ﬁ,f,a) X To
updateF (11 X 12,1 .2,0) =7 X updatele(Tg,i,a)
update; (7, €, o) = restrictp (7, 0)
update (7, €, 0) = remover (7, 0)

I ——
updaters (U 7,7, 0) = (U updatefs(r,4,0))

’restrict'FT 7'—)7"
restrictr (7, o) = Empty if AvT'Fov:7andThHov:o
restrictp((J 7) = (U restrictp(r,a;)
restrictp ({z:7 | p} o) = {x:restrictp(7,0) | p}
(7,
(7,

restrictp (7, o) =7 fTkFr<:o
restrictp (7, o) =0 otherwise

’remove'FTT—>T‘
remover (7, o) =Empty ifT'Fr<:co

(7,

remover((J 7), o = (U removep(T,J;)
(
(

remover({z: 7 | p} o) = {x:remover(r,0) | p}
remover (7, o) =7 otherwise

Figure 3.7: Arrr type-update metafunction

50

3.2.4 Integrating Additional Theories

Our system is designed in an extensible fashion, allowing an arbitrary external theory to
be added so long as a theory-specific solver is provided. To illustrate, we discuss the linear
arithmetic extension we implemented in a Typed Racket prototype in order to perform our
vector-related case study.

To add this theory, we first must identify the canonical set of program terms which
appear in the theory’s sentences. For our case study this included integer arithmetic ex-
pressions of the form agzg + a1z1 + ... + apzy, (ie. linear combinations over Z) and a field
which describes a vector’s length. We can extend the grammar of fields and symbolic objects

to naturally include these terms:

iu=..]len

ox=..|n|n-olo+o

Now our type system and logic can reason directly about the terms our theory discusses.
We then identify the theory-relevant predicates and extend our grammar of propositions

to include them:

Y i=o0<o|o<o

Finally, the types of some language primitives must be enriched so these newly added
forms are emitted during type checking. For example, we must modify the typing judgment

for integer literals to include the precise symbolic object:

T-INT

't n: (Int, L, (T, n)

Similarly, primitive functions which perform arithmetic computation, arithmetic com-
parison, and report a vector’s length must be updated to return the appropriate propositions
and symbolic objects (similar to how int? and (proj i e) are handled in our presentation

of ArTR).

51

B-LET
_ [
B-VaL B VAR_ 'f)_ A B-ABs
progy A=V dr=ulfabv G0 oL (e
pFalv pE(let(zer)er) v ' ’ '
B-BETA
pEeil[pe, (AMz:7)e)]
B-PROJ . B-PaIR pEex | v
pkel (pair vy vo) pte v phesl vo pelr:=wvo)Felwv
pE(projie)llv, phk(pairejez) (pair vy vy) pk(erex) v
B-Prim B-IFTRUE
pt e | uop pker v B-IFFALSE
pkes | vg v; # false pte |} false
d(uop, vy) = v phe v pteslv
pE(erea) v pk(iferexes) v phk(ifereres) v

Figure 3.8: Arrr Big-step Reduction Relation

With these additions in place, a simple function which converts linear integer proposi-
tions into solver-compatible assertions allows our system to begin type checking programs

with these theory-specific types.

3.2.5 Semantics and Soundness

ARTR uses the big-step reduction semantics described in figure 3.8, which notably treats all
non-false values as ‘true’ for the purposes of conditional test-expressions. The evaluation
judgment p F e |} v states that in runtime-environment p, expression e evaluates to the
value v. A model-theoretic satisfaction relation is used to prove type soundness, just as in

prior work on occurrence typing [9].

Models

Because our formalism is described as a type-theory aware logic, it is convenient to examine
its soundness using a model-theoretic approach commonly used in proof theory. For Arrr
a model is any runtime-value environment p and is said to satisfy a proposition p (written

p E p) when its assignment of values to the free variables of p make the proposition a

92

true ifv= false
o(not, v) = nY
false otherwise
true ifint=0
o(zero?, int) = nm
false otherwise
o(subl, int) =int—1
0(addl, int) =int+1
5(int?, v) _ true if v is an integer
false otherwise
5(bool?, v) _ true if v is a boolean
false otherwise
5(pair?, v) _ true if vis a pair
false otherwise
Figure 3.9: Agprr Primitive Semantics
pED
M-ORr M-AND M-ALIAS
M-Top _
SE pEpLor pEp2 pEP pEp2 plo1) = p(o2)
pEpLV p2 pEp1Aps pFo1=o0y
M-REFINE M-REFINENOT1 M-REFINENOT2
pEo€ET p E plz— o pEoé& T p E —plz — 0]
pFo€{z:7|p} pEog{z:T|p}t pFog{x:7|p}
M-TYyPE M-TyPENOT M-THEORY
Fplo):7 Fplo):o Av.bv:rand Fo:o [plrEXT
pFEoeET pEoé&r pEXT

Figure 3.10: Agrr Models Relation

93

tautology. The details of satisfaction are defined in figure 3.10. The satisfaction relation
extends to environments in a pointwise manner.

In order to complete our definition of satisfaction, we require a typing rule for closures:

T-CLOSURE
. pET ' (A(z:7)e): R

Flp, A(z:7T)e)] : R

The satisfaction rules are mostly straightforward. tt is always satisfied, while the logical
connectives V and A are satisfied in the standard ways. Aliases are satisfied when the objects
are equivalent values in p.

The satisfaction rules M-REFINE, M-REFINENOT1, and M-REFINENOT2 allow refine-
ment types to be satisfied by satisfying the type and proposition separately. M-THEORY
consults a decider for the specific theory in order to satisfy sentences in its domain.

From M-TYPE we see propositions stating an object o is of type 7 are satisfied when
the value of 0 in p is a subtype of 7. Similarly M-TYPENOT tells us if an object o’s value
in p has a type which does not overlap with 7, then the proposition o ¢ 7 is satisfied.

Soundness

Our first lemma states that our proof theory respects models.
Lemma 3. IfpFET and ' Fp then p E p.
Proof. By structural induction on I' - p. O

With our proof theory and models in sync and our operational semantics defined, we

can state and prove the next key lemma for type soundness which deals with evaluation.
Lemma 4. IfT'Fe: (1,p4,p—,0), pET and pt e | v then all of the following hold:

1. all non-T? structural parts of o are equal in p to the corresponding parts of v,

2. v+# false and pE py, orv=Tfalse and pEp_, and

3. 'k w: (7Lt T°)

o4

Proof. By induction on the derivation of p e | v. O
Now we can state our soundness theorem for Agrpg.

Theorem 2. (Type Soundness for Agrgr). If Fe:7 andbe v thenbv: 7.

Proof. Corollary of lemma 4. O

Although this model-theoretic proof technique works quite naturally, it includes the
standard drawbacks of big-step soundness proofs, saying nothing about diverging or stuck
terms. We could address this by adding an error value of type Empty that is propagated
upward during evaluation and modify our soundness claim to show error is not derived from

evaluating well-typed terms.

3.3 Scaling to a Real Implementation

Although Arrr describes the essence of our approach, there are additional details to consider

when reasoning about a realistic programming language.

3.3.1 Efficient, Algorithmic Subtyping

In order to highlight the essential features of Agrrr we chose a more declarative description
of the type system. To make this process efficient and algorithmic several additional steps
can be taken.

Hybrid environments. Instead of working with only a set of propositions while type
checking, it is helpful to use an environment with two distinct parts: one which resembles a
standard type environment—mapping objects to the currently known positive and negative
type information—and another which contains only the set of currently known compound
propositions (since all atomic type-propositions can be efficiently stored in the former part).
With these pieces in place, it is easy to iteratively refine the standard type environment
with the update metafunction while traversing the abstract syntax tree instead of saving all
logical reasoning for checking non-trivial terms.

Representative objects. Another valuable simplification which greatly reduced type

checking times was the use of representative members from alias-equivalent classes of objects.

95

By eagerly substituting and using a single representative member in the environment, large
complex propositions which conservatively but inefficiently tracked dependencies—such as
those arising from local-bindings—can be omitted entirely, resulting in major performance
improvements for real world Typed Racket programs.

Propogating existentials. Our typing judgments use subsumption to omit the less
interesting details of type checking. Making this system algorithmic would not only require
the standard inlining of subtyping throughout many of the judgments, but would also
require that existential bindings on the type-results of subterms be propagated upward by
the current term’s type-result. This ensures all identifiers in the raw results of type checking
are still bound and frees us from simplifying every intermediate type-result (as our model
with subsumption often requires). This technique is thoroughly described in Knowels and
Flanagan’s [33] algorithmic type system, which served as an important motivation for this

aspect of our approach.

3.3.2 Mutation

We soundly support mutation in our type system in a conservative fashion. First, a prelim-
inary pass identifies which variables and fields may be mutated during program execution.
The type checker then proceeds to type check the program, omitting symbolic objects for
mutable variables and fields. This way, the initial type of a newly introduced variable will
be recorded but no potentially unsound assumptions will be made from runtime tests in
the code.

An illustrative example of this approach in action was found during our vector access
case study and analysis of the Racket math library. It contained a module with a vari-
able cache-size of type Integer. The type system ensured any updates to the value of
cache-size were indeed of type Integer, but tests on the relative size of the cache—
such as (> cache-size n)—failed to produce any logical information about the size of
cache-size. This failure made it impossible to verify accesses whose correctness relied on
the result of this test, since a concurrent thread could easily modify the cache and its size
between our testing and performing the operation, invalidating any supposed guarantees.

Indeed, without much effort we were able to cause a runtime error in the math library by

56

exploiting this fact before patching the offending code.

3.3.3 Type Inference and Polymorphism

Typed Racket (and RTR) relies on local type inference [24] to instantiate type variables
for polymorphic functions whenever possible. Since type inference is such an essential part
of type checking real programs, we were unable to check any interesting examples until we
had accommodated refinement types.

The constraint generation algorithm in local type inference, written I' I—E/—(S<T=C,
takes as input an environment I, a set of type variables V', a set of unknown type variables
X, and two types S and T, and produces a constraint set C'. Since the implementation of
the algorithm already correctly handled when S'is a subtype of T', we merely needed to add

the natural cases which allow constraint generation to properly recurse into refined types:

CG-REF
F7$ S T,P1 F D2

Fl—y—(7'<:0:>0

T I—E/—({z:7|p}<A{z:io|p}=C
CG-REFUPPER

CG-REFLOWER Lrerkp
Fl—y—(7<:U:>C FI—‘)/—{T<:U:>C

Fl—y—({l‘:7|p}<:a:>0 Fl—y—(7<:{x:a\p}:>c

This naturally requires maintaining the full environment of propositions throughout
the constraint generation process. Although we did not perform a detailed analysis, the

annotation burden for polymorphic functions seems unaffected by our changes.

3.3.4 Complex Macros

Racket programmers use a series of for-macros for many iteration patterns [47]. This
simple dot-product example iterates i from 0 to (subl (vector-length A)) to perform

the relevant computations:

o7

(for/sum ([i (in-range (vector-length A))1)
(* (vector-ref A i)
(vector-ref B 1i)))

Although initially verifying these vector accesses appears somewhat straightforward,

Typed Racket’s type checker runs after macro expansion on code resembling the following;:

(letrec ([start 0]
[end (vector-length A)]
[step 1]
[initial 0]
[Loop (A (pos acc)
(cond
[(< pos end)
(define i pos)
(loop (+ step pos)
(+ acc (* (vector-ref A i)
(vector-ref B 1))))]
[else acc]))])
(loop start initial))

At this point the obvious nature of the original program may be obfuscated in the sea
of primitives that emerge, and the system is left to infer types for the newly introduced
identifiers and lambda abstractions.

After expansion of the for/sum macro, RTR is left to infer types for both the domain
and range of the inner loop function (note that its arguments were not even annotatable
identifiers in the original program). Initially, our local type inference chooses type Int for
the position argument pos. This might be perfectly acceptable in Typed Racket, since
Integer is a valid argument type for vector-ref. However, when attempting to verify
the vector access, Integer is too permissive: it does not express the loop-invariant that
pos is always non-negative.

In an effort to effectively reason about these macros we experimented with adding an
additional heuristic to our inference for anonymous lambda applications: if a variable is,
directly or indirectly, used as a vector index within the function, we try the type Natural
instead of Integer. This type, combined with the upper-bounds check within the loop,
is enough to verify the access in (vector-ref A i) and (vector-ref B i) (assuming
they are of equal length). However, the heuristic quickly fails in the reverse iteration case,

(in-range (vector-length A) 0 -1) (i.e. where i steps from (subl (vector-length A))

o8

to 0) since for the last iteration pos is -1 and not a Natural.
More advanced techniques for inferring invariants—such as those used by Liquid Types[20]—
will be needed if idiomatic patterns such as Racket’s for are to seamlessly integrate with

refinement types.

3.4 Case Study: Safe Vector Access

In order to evaluate our RTR prototype’s effectiveness on real programs we examined all
unique vector accesses! in three large libraries written in Typed Racket, totalling more than

56,000 lines of code:

e The math library, a Racket standard library covering operations ranging from num-
ber theory to linear algebra. It contains 22,503 lines of code and 301 unique vector

operations.

e The plot library, also a part of Racket’s standard library, which supports both 2-
and 3-dimensional plotting. It contains 14,987 lines of code and 655 unique vector

operations.

« The pict3d library,? which defines a performant 3D engine with a purely functional

interface, has 19,345 lines of code and 129 unique vector operations.

These libraries were chosen because of their size and frequent use of vector operations.
During our analysis we tested whether each vector read and write could be replaced with
its equivalent safe-vector- counterpart and still type check.

To reason statically about vector bounds and linear integer arithmetic we first enriched
Typed Racket’s base type environment, modifying the type of 36 functions. This included
enriching the types of 7 vector operations, 16 arithmetic operations, 12 arithmetic fixnum
operations (i.e. operations that work only on fixed-width integers), and the typing of

Racket’s equal?.

1Since we type check programs after macro expansion, vector accesses were assessed at this time as well,
and accesses in macros were only counted once.
https://github.com/jeapostrophe/pict3d

99

100]

IS (=2} o
ja) [} [an}

[\~
o

% of vector ops verifiable

plot pict3d math

Verified after code modifications
Verified with type annotations added
B Automatically verified

Figure 3.11: safe-vec-ref case study

We initially verified over 50% of accesses without the aid of additional annotations to the
source code. As figure 3.11 illustrates, our success rate for entirely automatic verification
of vector indices was 74% for plot, 13% for pict3d, and 25% for math. We attribute
plot’s unusually high automatic success rate relative to the other libraries to a few heavily
repeated patterns which are guaranteed to produce safe indexing: pattern matching on
vectors and loops using a vector’s length as an explicit bound were extremely common.

For the remaining vector accesses we performed a preliminary review of the plot and

pict3d libraries and an in depth examination of the math library.

3.4.1 Enriching the Math Library

For the math library we examined each individual access to determine how many of the
failing cases our system might handle with reasonable effort. We identified five general
categories that describe these initially unverified vector operations:

Annotations Added. 34% of the failed accesses were unverified until additional (or

more specific) type annotations were added to the original program. In this recursive loop

60

snippet taken from our case study, for example, the Nat annotation for the index i is not

specific enough to verify the vector reference:

(Let loop ([i : Natural (vector-length ds)]
[res : Natural 1])

(cond
[(zero? i) res]
[else
(loop (- i 1)

(* res (safe-vector-ref ds i)))1))

Using (Refine [i : Nat] (= i (len ds))) for the type of i, however, allows RTR to
verify the vector access immediately. As we discussed in section 3.3.4, a more advanced
inference algorithm could potentially help by automatically inferring these types. On the
other hand, as code documentation these added annotations often made programs easier to
understand and helped us navigate our way through the large, unfamiliar code base.
Code Modified. 13% of the unverified accesses were verifiable after small local modi-
fications were made to the body of the program. In some cases, these modifications moved
the code away from particularly complex macros; other programs presented opportunities
for a few well-placed dynamic checks to prove the safety of a series of vector operations. An

example of the latter can be seen in the function vector-swap!:

(: vec-swap! (V {A} (-> (Vectorof A) Integer Integer Void)))
(define (vector-swap! vs i j)
(unless (= 1 j)
(cond
[(and (< -1 i (vector-length vs)) ;, added
(< -1 j (vector-length vs))) ,;,; added
(define i-val (safe-vector-ref vs i))
(define j-val (safe-vector-ref vs j))
(safe-vector-set! vs i j-val)
(safe-vector-set! vs j i-val)]
[else (error "bad index(s)!")1)))

This function swaps the values at two indices within a vector. Our initial investigation
concluded adding constraints to the type was unreasonable for this particular function
(i.e. clients could not easily satisfy the more specific types), however we noticed adding
two simple tests on the indices in question allowed us to safely verify four separate vector
operations without perturbing any client code. This approach seemed like an advantageous

tradeoff in this and other situations and worked well in our experience.

61

Beyond our scope. 22% were unverifiable because, in their current form, their in-
variants were too complex to describe (i.e. they were outside the scope of our type system
and/or linear integer theory). One simple example of this involved determining the maxi-

mum dimension dims for a list of arrays:

(define dims (apply max (map vector-length dss)))

Because of the complex higher order nature of these operations, our simple syntactic
analysis and linear integer theory was unable to reason about how the integer dims related
to the vectors in the list dss.

Unimplemented features 6% of the unverified accesses involved Racket features we
had neglected to support during implementation (e.g. dependent record fields), but which
seemed otherwise amenable to our verification techniques.

Unsafe code. As previously mentioned in section 3.3.2, we discovered 2 vector opera-
tions which made unsafe assumptions about a mutable cache whose size could shrink and
cause errors at runtime. Both of these correctly did not typecheck using our system and
were subsequently patched.

Total. In all, 72% of the vector accesses in the math library were verifiable using these

approaches without drastically altering any internal algorithms or data representations.?

3.5 Adding Refinements to Typed Racket

Since the Racket v6.11 release, refinement types have been available in Typed Racket
proper.? The process of adding the extension primarily followed the design and lessons
learned working with RTR. First, we added a new type scheme (Refine [x : t] p)
which allows the type t to be refined by the proposition p (where x is in scope for p) via

the following grammar for propositions:

30ur modified math library can be found in our artifact.
4 Available at https://racket-lang.org/

62

p ==Top|Bot|(: ot)|(!ot)|(and p ...)]| (or p ...)

| (when p p) | (unless p p) | (if p p p) | (c 0 0)

¢ n=<|<=|=|>=]>
n ==0]1]|-1]2]-2]...

o ==n|s|(+0 ...)](-0...)](*n o)
s u=1i] (f s)

i s=xlyl|z]|...

f = car|cdr|vector-length

While our formalism in section 3.2 talked about supporting arbitrary theories, we chose
to initially support type-related propositions and the theory of linear integer arithmetic. The
former theory Typed Racket was already well equipped to reason about as it is fundamental
to how Typed Racket works; for the latter we use a simple implementation of fourier-motzkin
elimination to decide linear inequalities. An more advanced external solver could be used
to decide more complex related theories (e.g., non-linear integer arithmetic) but we decided
at least initially against making Typed Racket dependent on an external solver for this
addition.

As for dependent function types, while Typed Racket did technically already have them
to a degree, they did not allow for dependencies between arguments. For this and other
subtle implementation-specific reasons, we decided to add a separate internal representation
for dependent function types which features a single arrow which allows for argument de-
pendency and preconditions. For example, here is a “safe vector reference” function which

uses a refinement on the second argument:

(ATl (A) (== ([v : (Vectorof A)]
[n : (v) (Refine [i : Natural]
(< i (vector-length v)))1)
A))

and here is an equivalent function type which instead uses a precondition:

63

(ALT (A) (== ([v : (Vectorof A)]
[n : Naturall)
#:pre (v n) (< n (vector-length v))
A))

Note that while many function types which feature a refinement on an argument may
be expressible via a precondition, not all are amicable to framing in this way. E.g., if
an argument is a collection of integers whose values are determined by another argument,
that dependency would need to appear in the collection’s type directly and could not be

expressed as a precondition.

3.5.1 Compiling Dependent Types into Contracts

Because Racket has an advanced contract system which supports dependent contracts [48],
we are able to directly compile refinements and dependent function types into contracts
when necessary. These contracts are applied when a value with a refined type or dependent
function type are imported into an untyped module, allowing the invariants to be checked
at runtime. To illustrate, consider the two variants of types for safe vector reference we gave
in the previous section. The first variant of the type—which uses an explicit refinement on

the second argument—would be compiled into the following dependent contract:

(parametric->/c (A)
(->1 ([v (vectorof A)]
[i (v) (A (x) (and (exact-integer? x)
(<= 0 x (subl (vector-length v)))))1)
[_ () Al))

And the second variant—which uses a precondition—would be compiled into the follow-

ing dependent contract:

(parametric->/c (A)
(->1 ([v (vectorof A)]
[i exact-integer?])
#:pre (v 1) (<= 0 i (subl (vector-length v)))
[_ () AD)

64

3.5.2 Pay-as-you-go costs for developers

One concern in adding refinements to Typed Racket was creating type checking overhead
for all programmers for a feature many will not use. To mitigate this issue, we introduced
a language-level keyword that “turns on” the full spectrum of refinement reasoning on a

module-by-module basis:

#lang typed/racket #:with-refinements

(require racket/unsafe/ops)
(provide safe-vector-ref)

(: safe-vector-ref
(ATl (A) (-> ([v : (Vectorof A)]
[n : Natural])
#:pre (v n) (< n (vector-length v))
A)))
(define safe-vector-ref unsafe-vector-ref)

When this module-level #:with-refinements keyword is provided, the type checker
assigns integer literals and many primitive operations more specific refinement types. With
this technique for toggling more complex reasoning in the type checker we were able to add
refinements and explicit dependent function types without noticeably affecting type checker

performance for programs which do not explicitly use these features.

3.5.3 Dealing with Existentials

While our formal model for an occurrence typing calculus used existential quantifiers to refer
to terms whose original identifiers were no longer in scope, in the implementation we found
it more convenient to simply apply Skolemization and generate fresh “local” identifiers when
necessary. To illustrate, consider the following modified rule for checking let-expressions
where the expression whose value is bound to the local variable always has the symbolic

object T¢:

65

T-LET-SKOLEM
'+ €1 <T17p17q17 TO)

pr = (x & False Ap1) V (z € False A q1) I''x € m,p:Fe:Ro

2’ ¢ (fus(T') U fvs(my) U fvs(p1) U fvs(q1))

' (let(z e1) e2) : Ro[z — 2]

This rule is almost identical to T-LET from figure 3.4 except that x is replaced by the
“fresh” local identifier 2’ instead of bound by an existential quantifier. This skolemization
technique naturally accomplishes the same functionality without having to introduce an
additional form to the implementation (i.e., existential quantification). Furthermore, it is
sound as long as any fresh local identifiers which appear in the codomain of function type
are either erased from the type or are “freshened” with each function application. In our

implementation we chose erasure for simplicity.

3.6 Related Work

There is a history of using refinements and dependent types to enrich already existing
type systems. Dependent ML [41] adds a practical set of dependent types to standard ML
to allow for richer specifications and compiler optimizations through simple refinements,
using a small custom solver to check constraints. Liquid Haskell [23] extends Haskell’s
type system with a more general set of refinement types supported by an SMT solver and
predicate abstraction. We similarly strive to provide an expressive, practical extension to
an existing type system by adding dependent refinements. Our approach, however, seeks
to enrich a type system designed specifically for dynamically typed languages and therefore
is built on a different set of foundational features (e.g. subtyping, ‘true’ union types, type
predicates, etc.).

Some approaches, aiming for more expressive type specifications, have shown how enrich-
ing an ML-like typesystem with dependent types and access to theorem proving (automated
and manual) provides both expressive and flexible programming tools. ATS, the successor
of DML, supports both dependent and linear types as well as a form of interactive theo-

rem proving for more complex obligations [49]. F* [22, 50] adds full dependent types and

66

refinement types (along with other features) to an F,-like core while allowing manual and
SMT solver-backed discharging of proof obligations. Although our system shares the goal of
allowing users to further enrich their typed programs beyond the expressiveness of the core
system, we have chosen a simpler, less expressive approach aimed at allowing dynamically
typed programs to gradually adopt a simpler set of dependent types.

Chugh et al. [31] explore how extensive use of refinement types and an SMT solver
enable type checking for rich dynamically typed languages such as JavaScript [4]. This
approach feels similar to ours in terms of features and expressiveness. As seen in our
respective metatheories, however, their system requires a much more complicated design
and a complex stratified soundness proof; this fact has made it “[difficult to] add extra
(basic) typing features to the language” [7]. In contrast, our system uses a well-understood
core and does not require interaction with an external SMT solver. This allows us to use
many common type-theoretic algorithms and techniques—as witnessed by Typed Racket’s
continued adoption of new features.

Vekris et al. [7] explore how refinements can help reason about complex JavaScript pro-
grams utilizing a novel two phase approach. The first phase elaborates the source language
into a ML-like target that is checked using standard techniques, at which point the second
phase attempts to verify all ill-typed branches are in fact infeasible using refinements in the
spirit of Knowles and Flanagan [51] and Rondon et al. [20]. Our single-phase approach,
however, does not require elaboration into an ML-like language and allows our system to
work more directly with a larger set of types.

Sage’s use of a dynamic and static types is similar to our approach for type checking
programs. However, their usage of first-class types and arbitrary refinements means their
core system is expressive yet undecidable [32]. Our system utilizes a more conservative,
decidable core in which only a small set of immutable terms are lifted into types. Because
of this, having impure functions and data in the language does not require changes to the
type system. Also, our approach only reasons about non-type related theories when they
are explicitly added.

Our usage of existential quantification to enable dependent yet abstract reasoning for

values no longer in scope strongly resembles the approach described by Knowels and Flana-

67

gan [33]. Our design, however, lifts fewer terms into types in general and substitutes terms
directly into types when possible. Additionally, our design includes features specifically
aimed at dynamic languages instead of refining a more standard type theory.

Ou et al. [34] aim to make the process of working with dependent types more palatable
by allowing fine-grained control over the trade-offs between dependent and simple types.
This certainly is similar to our system in spirit, but there are several important differences.
They choose to automatically insert coercions when dependent fragments and simple types
interact, while we do not explicitly distinguish between the two and require explicit code to
cast values. Additionally, while they convert their programs from a surface language into an
entirely dependently typed language, our programs are translated into dynamically typed
Racket code, which is void of any artifacts of our type system. This places us in a more
suitable position for supporting sound interoperability between untyped and dependently
typed programs.

Manifest contracts [52] are an approach that uses dependent contracts both as a method
for ensuring runtime soundness and as a way to provide static typing information. Unlike
our system, this method only reasons about explicit casts (i.e. program structure does not
inform the type system), and there is no description of how a solver would be utilized to

dispatch proof goals.

68

CHAPTER 4
SEMANTIC SUBTYPING

In this chapter we introduce semantic subtyping: a technique for reasoning soundly and
completely about the full spectrum of set-theoretic types. Because the implementation
details for such an approach are non-obvious and have rarely been discussed, in this chapter
we give a detailed account for how to implement such a system. Later (in chapter 5)
we describe a language and give algorithm descriptions that rely on the implementation

approaches we describe here.

4.1 Set-theoretic Types

Set-theoretic types are a flexible and natural way for describing sets of values, featuring
intuitive “logical combinators” in addition to traditional types for creating detailed specifi-
cations. As seen in figure 4.1, languages with set-theoretic types feature (at least some of)

the following logical type constructors described below:

7 U o is the union of types 7 and o, describing values that are of type 7 or of type o;

e T Mo is the intersection of types 7 and o, describing values that are of both type 7

and o;
o -7 is the complement /negation of type 7, describing values that are not of type 7;

e Any is the type describing all possible values; and

Base Types
¢ u==1Int|Str|True|False
Types
7,0 u=t|TXT|T—=7|T7UT|TNT| =7 |Any|Empty
Abbreviations
Any* = Any X Any | Any™ = Empty — Any | Any* = —(Any* UAny)

Figure 4.1: Set-theoretic Types

69

o Empty is the type describing no values (i.e. —Any).

Additionally, we may specify “specific top type” which denotes all values of that partic-

ular kind:

o Any* is the type that denotes all pairs,
e Any~ is the type that denotes all functions, and

o Any‘ is the type that denotes all base values (e.g., integers, strings, and booleans).

Set-theoretic types frequently appear in type systems which reason about dynamically
typed languages (e.g. TypeScript[3], Flow[25], Typed Racket[14], Typed Clojure[10]), but
some statically typed languages have opted to use them as well due to their expressiveness,

flexibility, and convenience (e.g. CDuce[53], Pony[54]).

4.1.1 Subtyping

With set-theoretic types, the programmer (and type system) must be able to reason about
how various types relate. E.g., even if we know 7 is not the same type as o, is it the case
that a value of type 7 will necessarrily also be a value of type o7 In other words, does

7 <: o hold (i.e. is 7 a subtype of 0)? For example, consider the subtyping question:

(IntUStr) X Str <: (Int X Str) U (Str X Str)

Clearly the two types are not syntactically the same... but we can also see that any
pair whose first element is either an integer or a string and whose second element is a
string (i.e. the type on the left-hand side) is indeed either a pair with an integer and
a string or a pair with a string and a string (i.e. the type on the right-hand side). As
a programmer then we might reasonably expect that anywhere a (Int X Str) U (Str X
Str) is expected, we could provide a value of type (Int U Str) X Str and things should
work just fine. Unfortunately, most systems that feature set-theoretic types use sound but
incomplete reasoning to determine subtyping. This is because most type systems reason

about subtyping via standard syntactic inference rules:

70

T <! 01 T <! 09 <o m<io 1T1<i01 T2 <. 02

T<:T T<:01Uo0oyg T <:01Uo09 n1TUm <o T1 X To <: 01 X 09

These rules allow us to conclude the statement below the line if we can show that
the statement(s) above the line hold. Upsides to using a system built from rules like this
include (1) the rules can often directly be translated into efficient code and (2) we can
generally examine each rule individually and decide if the antecedants necessarily imply the
consequent (i.e. determine if the rule valid). The downside is that systems built directly
from such rules are almost always incomplete in some way. E.g. with the above rules, we
cannot conclude (Int U Str) X Str is a subtype of (Int X Str) U (Str X Str) even though
it is true. One way to ensure we arrive at a complete treatment of subtyping for the entire
spectrum of set-theoretic types is to adopt a semantic (instead of a syntactic) notion of

subtyping.!

4.1.2 Semantic Subtyping

In the semantic approach to subtyping types will simply denote sets of values in the language

in the expected ways:

o True denotes singleton set {true};
 False denotes singleton set {false} ;
e Int denotes the set of integers;

e Str denotes the set of strings;

e 7 X o denotes the set of pairs whose first element is a value in 7 and whose second

element is a value in o (i.e. the cartesian product of 7 and o);

e 7 — o denotes the set of functions which can be applied to a value in 7 and will

return a value from o (if they return);

! At the time of writing this tutorial, CDuce[53] may be the only example of an in-use language with a
type system which features the full spectrum of set-theoretic types and complete subtyping. This is not
surprising since its developers are also the researchers that have pioneered the approaches we will discuss.

71

T <o iff [r] C[o]
iff eI\ o] =
iff [rlnle] =
iff o Irln[=o] =
iff [rNn-o] =

Figure 4.2: Subtyping/Inhabitation Equivalence

e 7 U o denotes the union of the sets denoted by 7 and o;

e 7 Mo denotes the intersection of the sets denoted by 7 and o;
e 7 denotes the complement of the set denoted by 7;

e Any denotes the set of all values; and

e Empty denotes the empty set.

Perhaps surprisingly, with our types merely denoting sets of values subtyping can be
determined by deciding type inhabitation. As figure 4.2 illustrates, “is a particular type
inhabited” is really the only question we have to be able to answer since asking
T <: o is the same as asking if 7 N —o is uninhabited (i.e. does it denote the empty
set?). And while this notion of treating types as sets of values may seem intuitive, the
formal justification is quite complex. Systems which wish to reason about types as sets
of values and who feature function types can quickly run into a problematic circularity
in the metatheory and cardinality issues. Fortunately, these issues have been thoroughly
addressed in prior work[28] and we will therefore lean on this fact and focus our efforts on

just how one might go about implementing such a system.

4.1.3 Deciding Inhabitation, Normal Forms

To efficiently decide type inhabitation for set-theoretic types we leverage some of the same

strategies used to decide the satisfiability of boolean formulas:
o types are kept in disjunctive normal form (DNF), and

e special data structures are used to efficiently represent DNF types.

72

Types in Disjunctive Normal Form

In addition to using DNF, it will be helpful to impose some additional structure on the

normal form of our types. First let us note that any DNF boolean formula F":

F = (.’Eg/\—'CL'7/\5613/\...)
vV (wn/\x4/\—|$1/\—|x21/\...)
V

(—|l’3 N—xg N1 A)

can be reorganized slightly to group the positive and negative atoms in each conjunction:

F = (($3A$13/\...)/\(—\x7A...))
((3311 N xg N) VAN (—|a:1 VAN S VAN))

V
V ((.%'1/\...)/\(—|.2L'3/\—\.T4/\...))

We then observe that because F' is in DNF, it can easily be described by a set of pairs
dnf(F) = {(Po, No), ..., (P, Nyp)}, with one pair (P, N) for each conjunctive clause in the
overall disjunction, where P is the set of positive atoms in the clause and N is the set of

negated atoms in the clause:

=, (07 ()

Because set-theoretic types have the same logical connectives as boolean formulas, any

type 7 can also be converted into a DNF dnf(7) = {(FPo, No), ..., (Pn, Ny)} where for each
(P,N), P contains the positive atoms and N contains the negated atoms, where an atom

(a) is either a base type (1), a product type (11 X 72), or function type (11 — 72):

=8 (00 (0)

Partitioning Types

In addition to being able to convert any type into DNF, for any type 7 there exists three

specialized types 7, 7%, and 77" which contain only atoms of the same kind such that:

73

For any type 7 there exists specialized DNF types 7¢, 7%, and 7 which can be

represented as sets of pairs (P, N)—where P and N are sets of atoms of a single kind
(i.e. base, product, or arrow)—such that each of the following equivalences hold:

7= (Any* N7 U (Any* N7X) U (Any > N 777)

=809 (0)

> = U ﬂ TLX T | A m —(71 X T2)

(P,N)ednf(rX) (r1XT2)EP (T1XT2)EN
T = U ﬂ S A ﬂ =(11 =)
(P,N)ednf(r—) (r1—m2)€EP (r1—m2)EN

Figure 4.3: Canonical form for representing types

7= (Any' N7 U (Any* N7*) U (Any > N777)

By representing a type in this way, we can efficiently divide types into non-overlapping
segments which can each have their own DNF representation.

i.e., 7" is a type whose atoms are all base types:

=l (09 (0)

77 is a DNF type whose atoms are all arrow types:

T = U ﬁ T X T2 | N ﬂ =(71 X T2)

(P,N)ednf(rX) (11 XT2)EP (1 XT2)EN

and 77 is a DNF type whose atoms are all function types:

T = U ﬂ =71 |N ﬂ =(11 —)

(P,N)Gdnf(T_*) (r1—>m2)€EP (r1—>m)EN

To illustrate what this partitioning looks like in practice, here are a few very simple

types and their equivalent “partitioned” representation:

74

Empty = (Any‘NEmpty) U (Any* N Empty) U (Any™ M Empty)))
Any = (Any* N Any)U (Any* N Any) U (Any™ N Any)))
Int = (Any*NInt)U (Any* NEmpty)U (Any™ M Empty)
Int X Str = (Any* N Empty) U (Any* N (Int X Str)) U (Any™ N Empty)))
Int — Str = (Any’ N Empty) U (Any* N Empty) U (Any™ N (Int — Str))))
IntU (Int X Str) = (Any* N Int)U (Any* N (Int X Str)) U (Any™ N Empty)))

This technique for partitioning types into separate non-overlapping DNFs—which will
inform our strategy for actually representing types as data structures—will make type in-
habitation inquiries easier to implement since we’re specializing our representation to de-
scribe only the interesting, non-trivial clauses in a type. We summarize this discussion’s

key takeaway in figure 4.3 for reference.

4.2 Type Representation
In section 4.1 we determined that

e many type-related inquiries for set-theoretic types can be reduced to deciding type

inhabitation (see section 4.1.2), and that because of this

o a partitioned DNF representation (summarized in figure 4.3) may be useful.

In this section we focus on the latter point—type representation—because it will impact
how our algorithms decide type inhabitation. We will introduce several data structures,
defining for each the binary operators union (U), intersection (N), and difference (\) and
the unary operator complement (”="); the context of a given operator will determine which

metafunction is being referenced.

4.2.1 Types as Data Structures

In figure 4.3 we noted a type can be conveniently deconstructed into three partitions, al-
lowing us to reason separately about the base type (7*), product type (7*), and function

type (777) portion of a type:

75

7= (Any* N7 U (Any* N7*)U (Any 7 N777)

We will use a data structure to represent our types that exactly mirror this structure.

As illustrated in figure 4.4, our internal representation of a type is a 3-tuple:

Types (internal representation)
t == (B, b*, b7")

Figure 4.4: Internal type representation

The subcomponents of this representation correspond to the three specialized segments

of a DNF type described in figure 4.3 as follows:

o [(the first field) contains base type information, corresponding to 7;
o b* (the second field) contains product type information, corresponding to 7%; and

o b™ (the third field) contains function type information, corresponding to 7.

The various top types used in figure 4.3 are implicit in the representation, i.e. we know
what kind of type-information each field is responsible for so we need not explicitly keep
around Any*, Any>*, and Any™ in our partitioned representation. The grammar and meaning

for § is given in section 4.2.2 and for b* and b~ is given in section 4.2.3.

Top and Bottom Type Representation

The representation of the “top type” Any—the type that denotes all values—is written T
and defined in figure 4.5. It places the respective top 3, b* , and b™ in each field, mirroring

the previous “partitioned” version of Any we showed earlier:

Any = (Any* N Any) U (Any* M Any) U (Any ™ N Any)

The representation of the “bottom type” Empty—the type that denotes no values—is
written L and also defined in figure 4.5. It similarly places the respective bottom 3, b* |

and b™ in each field, mirroring the previous “partitioned” version of Empty seen previously:

76

Empty = (Any* N Empty) U (Any™ M Empty) U (Any™ M Empty)

In sections 4.2.2 and 4.2.3 we describe why those are the top and bottom representations
for the base and product/arrow subcomponents respectively.

Finally, the representation of the specific top types Any*, Any*, and Any™ as data struc-
tures T¢ T*, and T (again see figure 4.5) involves placing the appropriate bottom type
in each of the fields except for the one currently being represented (that field gets the

appropriate top type).

T = ((—,0),1,1) top type

L = ({(+,0),0,0) botom type

T = ((—, 0),0,0) top base type
T = ((+, 0),1,0) top product type
T = ((+,0),0,1) top function type

Figure 4.5: Top and bottom type representations

Type Operations

As is seen in figure 4.6, binary operations on types benefit from our partitioned design:
each operation is defined pointwise in the natural way across each disjoint partition. We
encourage the reader to take a moment to convince themselves this is indeed correct, perhaps
by considering intersecting two DNF types and observing what happens to intersections of
non-overlapping clauses.

Type complement—also defined in figure 4.6—is simply defined in terms of type differ-

ence, subtracting the negated type from the top type.

4.2.2 Base DNF Representation

We now examine how a DNF type with only base type atoms can be efficiently represented
(i.e. the base portion 7* of a type described in figure 4.3 and the $ field in our representation

of types described in figure 4.4).

77

‘7U7:tt—>t‘

(B1, by, bT?Y U (B2, b, b3?) = (B1U B2, by UDbY, bi> Ub3")
Nttt

(ﬁl,bf,b?)ﬂ(ﬂg,b;,b?) = (ﬁlﬂﬁg,bfﬂbg,b?ﬂb?)
|\ttt

(517 b?? bl_)) \ (52, b;(v b2_>) = (51 \527 b? \b;7 bl_) \b2_>)
-t =t

~t = T\t

Figure 4.6: Internal type operations

Although any type can be represented by some DNF type, in the case of base types
things can be simplified even further! Any DNF type 7° whose atoms are all base types is

equivalent to either

e a union of base types, e.g. t1 Ut U ...

 a negated union of base types, e.g. —(t1 U U ...)

To see why this is the case, it may be helpful to recall that (1) each base type is disjoint
(i.e. no values inhabit more than one base type), (2) this is obviously true for Any, Empty,
and any a single base type ¢ or negated base type -, and (3) examine the details of the
base type operations presented in figure 4.8 and note how one of these two representations
is always naturally maintained.

Because any DNF of base types can be represented by a set of base types (i.e. the
elements in the union) and a polarity (i.e. is the union negated or not), we represent the
base portion of a type § using a tuple with these two pieces of information (figure 4.7).

The first field is the polarity flag (using + for a union or — for a negated union) and
the second field is the set of base types B in the union. The top base type (i.e. the type
which denotes all base type values) is a negated empty set (—,) (indicating that it is not
the case that this type contains no base values) and the bottom base type (the type which

denotes no base type values) is a positive empty set (+,) (indicating that it is the case

78

Base type representation
B == (£, B)

Base set polarity

+ u=+4]-

Base set

B :=0|{:JuB

Figure 4.7: Internal base type representation

|_U_:BB—B|

(+,B1) U(+,B2) = (+, B1UBy)
(—, Bl) U (—, BQ) = (—, BN Bg)
(+,B1)U(—,B2) = (=, B2\By)
(=, B1) U({+,B2) = (-, B1\B2)
|_N_:BB—B|

(+,Bi)N(+,B2) = (+,BinNBy)
(—, Bl) N (—, Bg) = (—, B, U Bg)
(+,B1)N(—,B2) = (+,B1\By)
(=, Bi)N({+,B2) = (+, B2\ By)
[_:88- 8]

(+, B1) \ (+,B2) = (+, B1\By)
(= Bi)\ (-, B2) = (+, B2\By)
(—i-, Bl) \ (—, Bg) = (+, Bin Bg)
(-, Bi)\(+, Bs) = (-, B1UBy)

Figure 4.8: Internal base DNF operations

that this type contains no base values).

Base DNF Operations

Operations on these base type representations boil down to selecting the appropriate set-
theoretic operation to combine the sets based on the polarities (figure 4.8).
Base type negation is not shown (because it is not used anywhere in this model), but

would simply require “flipping” the polarity flag (i.e. the first field in the tuple).

79

4.2.3 Product and Function DNFs

In order to efficiently represent a DNF type with only product or function type atoms (i.e.
the 7% and 77 portions of a type described in figure 4.3 and the b* and b™ fields in our
type representation described in figure 4.4) we will use a binary decision diagram (BDD).
First we include a brief review of how BDDs work, then we discuss how they can be used

effectively to represent our product/function DNF types.

Binary Decision Diagrams

A binary decision diagram (BDD) is a tree-like data structure which provides a convenient
way to represent sets or relations. For example, consider the truth table for the boolean

formula (mz A -y A=2)V(zAy)V (yAz):

zly|z|(xA-yA-2)V(cAy)V(yAz)
11111 1
11110 1
110]|1 0
1100 0
Oj1]1 1
01110 0
0101 0
0[0(0 1

This formula can also be represented with the following BDD:

AN N N AN

80

And as it turns out, we can simplify the tree slightly by collapsing a few nodes without

losing any information:

/\
PN

/\
AN N

In these BDDs, each non-leaf node contains a boolean variable. A node’s left subtree
describes the “residual formula” for when that variable is true and its right subtree describes
the “residual formula” for when that variable is false. We invite the reader to compare the
truth table and corresponding BDDs until they are convinced they indeed represent the
same boolean formula. It may be useful to observe that the leaves in the unsimplified BDD

correspond to the right-most column in the truth table.

Types as BDDs?

BDDs can also naturally encode set-theoretic types (in our case, DNF product or function
types). Each node has a function/product type associated with it; henceforth we will call
this associated type the atom of the node. A node’s left sub-tree describes the “residual
type” for when the atom is included in the overall type. A node’s right sub-tree describes the
“residual type” for when the atom’s negation is included in the overall type. For example,

here we have encoded the types Int X Int (left) and (Int X Int) U Str X Str (right):

/\

N

N
1] [o]

Essentially, each path in the tree represents a conjunction in the overall DNF, so the
overall type is the union of all the possibly inhabited paths (i.e. paths that end in 1). In

other words, for an arbitrary (type) BDD b:

81

N

we would interpret the meaning of b (written [b]) as follows:

b =

[6] = (= N [be]) U (=7 0 [br])

where 1 is interpreted as Any and 0 as Empty. There is, however, a well-known problem
with BDDs we will want to avoid: repeatedly unioning trees can lead to significant (i.e. ex-
ponential) increases in size. This is particularly frustrating because—as we have previously
noted—our primary concern algorithmically is deciding type inhabitation and taking the
union of two types will have no interesting impact with respect to inhabitation (i.e., the

union of 71 and 7y is empty only when both 71 and 72 are empty).

Types as Lazy BDDs!

Because there is no interesting impact on inhabitation when computing unions, we can use
“lazy” BDDs to represent our function/product DNF types. In a lazy BDD, unions are only
fully expand when computing type intersection or difference (i.e. operations that can have
an interesting impact on inhabitation). Nodes in lazy BDDs have—in addition to the left
and right subtrees described before—a “middle” subtree which assumes nothing about its

node’s atom. In other words, for an arbitrary lazy (type) BDD b:

b: /’\

we would interpret the meaning of b (written [b]) as follows:

[6] = (7 0 [bi]) U [br] W (=7 N [by])

again where 1 is interpreted as Any and 0 as Empty. Henceforth when we use the term
“BDD” we will be in fact referring to these lazy binary decision diagrams, which are the

only kind of BDDs our implementation features.

82

Lazy Binary Decision Diagram (BDD)
b ==1]0](a,b,b,b)

BDD Atom
a t=tXt|[t—t

Product BDD

b* u=1]0](t xXt,b*, b*, b*)

Function BDD

b™ ==1|0|({(t—t b7, b7, b7)

Figure 4.9: Lazy BDDs for type representation

Figure 4.9 describes in detail our representation for the DNF function/product portions

of a type as BDDs. Note that

e b describes a BDD of either functions or products and is useful for describing functions

that are parametric w.r.t. which kind of atom they contain;
e 1 and O are the leaves in our BDDs, interpreted as Any and Empty respectively;

o an atom (a) is either a product or a function type—a given BDD will only contain

atoms of one kind or the other; and

e bX and b~ simply allow us to be more specific and describe what kind of atoms a

particular BDD contains.

Although not explicit in the grammar, these trees are constructed using a total order-
ing on atoms (note that this implies types, BDDs, etc all must also have a total ordering
defined since these data structures are mutually dependent). Without loss of generality
we will assume a simple lexicographic ordering, although any ordering should suffice. The
ordering—written a; < ag and the like—will be called upon frequently in function defini-
tions for BDDs in the next section. Essentially the ordering allows us to have consistent
representations for particular BDDs.

Finally, we use a “smart constructor”—defined in figure 4.10—to perform some obvious
simplifications when constructing BDD nodes. We use an implicit syntax for the smart
constructor (i.e. it looks identical to constructing a normal node), so whenever we construct

a node (except of course on the right-hand side of the definition in figure 4.10 itself) we are

83

(., ., Y:abbb—b]

(aa bl7 :ﬂ-v b?”) = 1
(a,b, by, b) = bUbp
(aa bla bn% br) = (a) bla bma br)

Figure 4.10: BDD node smart constructor

in fact using this smart constructor to simplify away some cases before simply constructing

a new BDD node.

(Lazy) BDD Operations

The operations on BDDs can be understood by again considering how we interpret BDDs:

[1] = Any
[0] = Empty
[{a, by, b, br)] = (an [b]) U [br] U (man [b.])

Also, recall that BDD binary operations will only ever be used on two BDDs whose
atoms are all of the same kind (either all product or all function arrows). With that in
mind, we invite the reader to peruse figures 4.11 and 4.12 for the detailed descriptions of
BDD union, intersection, difference, and negation. We will not enumerate justification for
every line, but invite the reader to examine some of the details to gain intuition for the
operations and how they relate to the underlying logical combinators. Suffice it to say here
that each definition begins with a series of trivial cases before describing how to handle
non-trivial BDD node arguments more generally in a manner that is semantically correct

and maintains the ordering of atoms in the resulting BDD.

4.2.4 Parsing and Example Types

Figure 4.13 defines a function that converts the more readable surface-level types defined
in figure 4.1 into the internal representation we have just finished describing. Examining

the results of parsing functions can be helpful in better understanding the representation:

84

b1 \ b —0 ifby = b

b1\ 1 —0

]l\b2 = —by

by \ 0 — b

0\ by -
(al, (bn mel) \bg, 0, (brl mel) \bz) if a3 <ag

by \ ba =4 (a2, b1 \ (biz Uby2), 0, by \ (b2 Ubpa)) if a3 > ag
(a1, bir \ b2, byma \ b2, by \ ba) if a; =as

where (ai, by, by, br1) = by
where (ag, b2, bz, bra) = b

-1 =0

-0 =1

—|(a, b1, ba, (D) = (a, 0, —|(b2 Ubs), —|b2)

—\<a, 0, bo, b3) = (a, —bo, —\(bQ Ubg), (D)

—|(a, by, 0, b3) = (a, =b1, (b1 Ubs), —bs)
—(a, b1, ba, bg) = (a, =(by Ubg), 0, =(bg Ubsg))

Figure 4.11: BDD difference and negation

parse(Int) = ({(+, {Int}), O, D)
parse(—Str) = ((—, {Str}), 0, 0)

(
(
parse(Int U Str) = ((+, {Int, Str}), 0, 0)
parse(Int x Str) = ((+, 0), ({+, {Int}), 0, 0) x ({(+, {Int}), O, O), O)
(

parse(Str — Str) = ((+, 0), 0, ((+, {Str}), 0, 0) — ((+, {Str}), O, 0))

4.3 Type Inhabitation

Because we are working with set-theoretic types, we are free to define subtyping purely
in terms of type inhabitation (see the initial justification for this in figure 4.2), which is
precisely what we do in figure 4.3. In the remainder of this section we examine how to

decide type inhabitation using the data structures introduced in section 4.2.

85

U:bb—b
biUby =b if by = by

bjul =1
1Uby =
biUl0 =by
OUby =hby
(a1, b1, bm1 Ubg, byy) if a; <ag
by Uby = <327 b2, bma U by, brz) if a1 > ag

(a1, byt Ubja, byt Ubpa, brp Ubp) if a = ag
where (ay, b1, b1, br1) = by
where (ag, b2, b2, br2) = b

N:bb—b]
biNby =b if by = by
biN1L =by
1Nby =by
biN0 =0
0Nby =
(a1, by N'ba, by Nba, by Nba) if a; < ay
b1 Nby =< (ag, by Nbya, by N b2, by N byo) if a; > ag

(a1, (bj1 Ubm1) N (b2 Ubma), 0, (br1 Ubypi) N (brg Ubpa))if a; = ag
where (aq, by, b, br1) = by
where (ag, b2, b2, br2) = b

Figure 4.12: BDD union and intersection

4.3.1 Deciding Type Inhabitation

A DNF type is uninhabited exactly when each clause in the overall disjunction is uninhab-
ited. With our DNF types partitioned into base, product, and function parts (see figure
4.3):

7= (Any' N7) U (Any* NrX)U (Any 7 N777)

we simply need ways to check if the base component (7*), product component (7%), and
function component (77) are each empty. As figure 4.15 suggests, the representation of
the base type portion is simple enough that we can pattern match on it directly to check if
it is empty (recall that (4, 0) is the bottom/empty /).

For deciding if the product and function components—which are represented with lazy

86

parse(t) = ({+, {¢}), 0, 0)

parse(t X o) = ({+, 0), (t x s, 1, 0, 0), 0O)
where t = parse(7), s = parse(o)

parse(t — o) = ((+, 0), 0, (t — s, 1, 0, 0))
where t = parse(7), s = parse(o)

parse(T Uo) = parse(T) U parse(o)
parse(T No) = parse(T) N parse(o)
parse(—T) = —parse(T)
parse(Any) =T

parse(Empty) = L

Figure 4.13: Type parsing

< tt—)bool‘
t <:s=-empty(s\t)

Figure 4.14: Semantic subtyping, defined in terms of type emptiness

BDDs (see previous discussion in section 4.2.3)—are empty, we rely on helper functions
empty* and empty™ which are defined later in this section. In these sections, we will use
non-terminals P and N to represent a collection of atoms (see figure 4.16) with the intuition
that when we are using P, it is a set of “positive” type information, and when we are using

N it is a set of “negative” type information (even though no explicit negations are present).

Product Type Inhabitation

To decide if the product portion of a type is uninhabited, we recall (from section 4.1.3) that
it is a union of conjunctive clauses, each of which can be described with a pair of two sets

(P,N), where P contains the positive product types and N the negated product types:

‘empty it — bool‘
empty({{+, 0), b*, b)) = empty>(b>, T, T,0) and empty™ (b, L,0,0)
empty(_) = false

Figure 4.15: Type emptiness predicate

87

Atom sets
PN =0|{a}juP

Figure 4.16: Sets of atoms

> = U ﬂ I X T | N ﬂ =(71 X T2)

(P,N)ednf(rX) (1 XT2)€EP (1 xm2)EN

For 7% to be uninhabited, each (P, N) clause must be uninhabited. Checking that a

given (P, N) clause is uninhabited occurs in two steps:

1. accumulate the positive type information in P into a single product s; X so (i.e. fold
over the product types in P, accumulating their pairwise intersection into a single

product type), and

2. check that for each N’ C N the following holds:

o1 <: U T1 |Jor | oy <: U T2

(T1XT2)EN’ (11 XT2)EN\N'

The first step is justified because pairs are covariant in their fields, i.e. if something is of
type o1 X o2 and of type o X o), then it is also of type (o1 MNac}) X (c2MN0c}). The second step
is more complicated. To understand, let us first note that a product type is uninhabited
if either subcomponent is uninhabited. Next, observe that if we know something is of
type Any X Any (i.e., it is a product of some sort) and also that it is of type = (71 X),
then it is either of type —7m X Any or of type Any X —7y; this is essentially the same as
applying DeMorgan’s law to a negated conjunction in logic: one of the conjuncts must be
false for their conjunction to be false. And so for a (P, N) clause to be uninhabited where
(11 X 72) € N, it must be uninhabited for both possibilities implied by that negated product.
By exploring each subset N/ C N and verifying that either in N’ the left-hand side of the
product is empty (i.e. the union of the negated types for the left-hand side are a supertype

of o1) or the in N \ N’ the right-hand side is empty (i.e. the union of the negated types

88

empty” : bX s s N — bool
empty*(0,s1,80,N) = true
empty* (1,s1,s2, N) empty(s1) or empty(s2) or 6% (s1,s2, N)
empty* ({t1 X to, blx, bX, bX),s1,82, N) = emptyx(blx,sl Nt1,82 Nta, N)
and empty” (bX,s1,s2, N)
and empty> (bX,s1,s2, {t1 X t2} UN)

‘HX ZSSN—>b001‘

0% (s1,82,0) = false
ex(51,52,{t1 XtQ}UN) = (Sl <: t; or QX(Sl\tl,SQ,N))
and (sg <: tg or % (s1,s2 \ to, NV))

Figure 4.17: Product BDD inhabitation functions

for the right-hand side is a supertype of o2), we are exploring all possible combinations of
negated first and negated second fields from the negated products in N and thus ensuring
all possible combinations are uninhabited.

We describe an algorithm to perform these computations in figure 4.17. The function
empty>* walks over each path in the product BDD accumulating the positive field informa-
tion in s; and sy and the negative information in the set N. Then at each non-trivial leaf
in the BDD, we call the helper function #* which searches the space of possible negation
combinations ensuring that for each possibility the product ends up being uninhabited.

Note that 6% is designed with a “short-circuiting” behavior, i.e. as we are exploring
each possible combination of negations, if a negated field we are considering would negate
the corresponding positive field (i.e. s; <: t; or sy <: t2) then we can stop searching for
emptiness on that side, otherwise we subtract that negated type from the corresponding
field and we keep searching the remaining possible negations checking for emptiness. If we
reach the base case when N is the empty set, then we have failed to show the product is
empty and we return false. Note that empty> checks for emptiness before calling 6% to
avoid unnecessary searching. If it did not, #*’s base case would need to check s; and sy for

emptiness as well.

89

Function Type Inhabitation

Just like with products, to show that the function portion of a type is uninhabited we show

that each (P, N) clause in the DNF—

T = U m T — T2 | N ﬂ =(11 — T2)

(P,N)ednf(t—) (r1—12)EP (r1—m2)eEN

—represents an uninhabited function type. To do this, we show that for each clause

(P, N) there exists a (t; — t2) € N such that

t1 < U S1

(Sl—>52)€P

(i.e. t1 is in the domain of the function represented by this (P, N) clause) and that for

each possible combination of arrows P’ C P,

t1 < U S or ﬂ So <: to

(Sl—)SQ)EP\P/ (Sl—)SQ)EP'

You can roughly think of this as verifying that for each possible set of arrows P’ which
must handle a value of type t; (i.e. the left-hand check fails), those arrows together would
map the value to ty (the right-hand check), which would be a contradiction since we know
this function is not of type t; — to.

We implement this algorithm with the function empty™ defined in figure 4.18. It walks
each path in a function BDD accumulating the domain along the way and collecting the
negated function types in the variable N. At the non-trivial leaves of the BDD, it calls 6=
with each function type (t; — t2) € N until it finds a contradiction (i.e. an arrow that
satisfies the above described equation) or runs out of negated function types.

0~ is the function which explores each set of arrows P’ C P checking that one of the two
clauses in the above noted disjunction is true. Note that in the initial call from empty™ we
negate the original to: this is because although we are interested in checking for so <: to as
we accumulate the codomains in so, the equivalent “contrapositive” statement —to <: —so

is more convenient to check as we iterate through the function types in P.

90

‘empty_’ b7 s PN — bool‘

empty (0,8, P, N) = true
empty 7 (1,s, P, N) = if 3(t; = t2) € N.(t1 <: s and 07 (t1, ~t2, P))
then true
else false
empty 7 ({s1 — s2, b; 7, b;7, b;7),s, P,N) = empty”(b;7,s,{s1 = s2} UP,N)

and empty ™ (b.7,s, P, N)
and empty ™ (b7,s, P,{s1 — s2} UN)

‘9_’ it t P—>bool‘
077 (t1,t2,0) = empty(t1) or empty(t2)
9_)(t1,t2,{81 —)SQ}UP) = (tl <: 81 Or 9_’(t1\s1,t2,P))
and (to <: —sy or 077 (t1,t2 Nsa, P))

Figure 4.18: Functions for checking if a function BDD is uninhabited

In the base case of 7 when P has been exhausted, the function checks that either
the arrows not in P’ could have handled the value of (the original) type t; (i.e. is t1 now
empty), otherwise it checks if the value we mapped the input to must be a subtype of (the
original) type to (i.e. is to now empty).

In the case where P has not been exhausted, we examine the first arrow (s; — s2) in
P and check two cases: one for when that arrow is not in P’ (i.e. when it is in P\ P’)
and one for when it is in P’. The first clause in the conjunction of the non-empty P case
is for when s; — s9 is not in P’. It first checks if the set of arrows we're not considering
(i.e. P\ P') would handle a value of type t; (i.e. t1 <: s1), and if not it remembers that
(s1 — s2) is not in P’ by subtracting s; from t; for the recursive call which keeps searching.
The second clause in the conjunction is for when s; — so is in P’. As we noted, instead
of checking sy <: to (resembling the original mathematical description above), it turns out
to be more convenient to check the contrapositive statement to <: —sy (recall that to was
actually negated originally when 6= was called). First we check if having (s; — s3) in P’
means we would indeed map a value of type t; to a value of type to (i.e. the to <: —sy
check). If so we are done, otherwise we recur while remembering that (s; — s2) is in P’ by
adding sy to t2 (i.e. “subtracting” negated sy from the negated t2 we are accumulating by

using intersection).

91

4.4 Other Type-level Metafunctions

In addition to being able to decide type inhabitation, we need to be able to semantically

calculate precise types for the following situations:
1. projection from a product,
2. a function’s domain, and

3. the result of function application.

4.4.1 Product Projection

In a language with syntactic types, calculating the type of the first or second projection
of a pair simply involves matching on the product type and extracting the first or second
field’s type. In a language with semantic types, however, we cannot simply pattern match
because we could be dealing with an arbitrarily complex pair type constructed using many
set-theoretic type connectives. Instead, we must reason semantically about the types of the
fields.

To begin, first note that if a type is a subtype of Any* (i.e. it is indeed a pair), we can

focus on the product portion of the type:

T = U m T X T2 | N ﬂ —(71 X T2)

(P,N)ednf(rX) (T1XT2)€EP (r1XT2)EN

Projecting the field ¢ from 7% (where i € {1,2}) involves unioning each positive type

for field ¢ in the DNF intersected with each possible combination of negations for that field:

U ([n=jouf n =

(P,N)€ednf(TX) (r1XTm2)EP N'CN \(m1X72)EN’

This follows the same line of reasoning we used for deciding product type inhabitation
in section 4.3.1), i.e. although we can intersect all of the positive information due to
the covariance of product fields, the negative product information must be considered by

considering all possible combinations of negations.

92

Actually that equation is sound but a little too coarse: it only considers the type of
field ¢ and thus may include some impossible cases where the other field would have been
uninhabited (and thus the whole product in that case would be uninhabited). In other
words, if j is an index and j # i (i.e. j is the index of the other field), then as we’re

calculating the projection of 7, we’ll want to “skip” any N’ cases where the following is true:

m Tj < U Tj

(1 XT2)EP (11 XT2)EN\N'

i.e. cases where the other field is uninhabited. If we incorporate that subtlety, our inner

loop will end up containing a conditional statement:

if m(’rl XT2)EP Tj < U(T1 XT9)EN\N’ Tj

U ﬂ T N U then Empty

(P,N)ednf(rX) (11X 12)EP N'CN
else (7, sxrp)en 77

Implementing Product Projection

As was suggested by our use of index variables ¢ and j in the previous section’s discussion,
we implement product projection as a single function indexed by some i € {1,2} to return
the appropriate type in non-empty clauses. Because projection can fail, we have the function
proj’ as the “public interface” to projection. proj’ performs important preliminary checks
(i.e. is this type actually a product type?) before extracting the product portion of the
type and passing it to the “internal” function proj where the real work begins.

proj walks the BDD, accumulating for each path (i.e. each clause in the DNF) the
positive type information for each field in variables s; and s, respectively. Along the way,
if either s or se are empty we can ignore that path. Otherwise at non-trivial leaves we call
the helper function ¢>* which traverses the possible combinations of negations, calculating

and unioning the type of field ¢ for each possibility.

93

proj’ : i t — t or false

proj,(t) = false ift &£: TX
pI’OjZ'(<7, bX’ 7)) = d)zx (bX7T>T)

proj:i bX ss N —t
proji((])vSl,SQ?N)

proj;(b*,s1,s2, N)

proji(:ﬂ->sl7527N)

proji((tl X t2a blxa br>r<7,7 b7?<)781,S27N)

= 1
L if empty(s1) or empty(s2)
¢;° (51,82, N)
= Uty Ut,
where t; = proji(blx,sl Nt1,82 Nt2, N)
tm = proj;(bX,s1,82, N)
t, = pI’OjZ-(bf,Sl,SQ, {tl X tg} U N)

o :iss N —t

(st N) = L if empty(st) or empty(ss)
¢ (s1,82,0) = s
gbix(sl,SQ,{tl X tQ}UN) = gbix(sl \tl,SQ,N) Ugbix(sl,SQ\tg,N)

Figure 4.19: Functions for projecting from a product type

4.4.2 Function Domain

Similar to product projection, deciding the domain of a function in a language with set-
theoretic types cannot be done using simple pattern matching; we must reason about the
domain of a function type potentially constructed with intersections and/or unions. To do
this, first note that for an intersection of arrows, the domain is equivalent to the union of
each of the domains (i.e. the function can accept any value any of the various arrows can

collectively accept):

domain((cr =)N ...N(op, = 1)) =01U...Uoy,

Second, note that for a union of arrows, the domain is equivalent to the intersection of
each of the domains (i.e. the function can only accept values that each of the arrows can

accept since we’re not sure which arrow actually describes the value):

domain((cr > m)U...U(op = 1)) =01N...Noy,

With those two points in mind, we can deduce the domain of an arbitrary function type

94

‘dom? :t—tor false‘

dom?(t) = false if t <: L
dom’({_, _, b)) = dom(L,b?)
ldom:t b~ —t]
dom(t,1) = ¢t
dom(t,0) = T
dom(t, (s1 — s2, b;”, b7, b?)) = tUt,Ut,

where t; = dom(t Usy,b;™)
tm = dom(tv bn_{)
t, = dom(t,b)

Figure 4.20: Domain calculation for function types

T = U ﬂ =N m =(1 —)

(P,N)ednf(r—) (r1—m2)€EP (r1—m2)EN

is the following intersection of unions:

M U =

(P,N)ednf(t—) \(m1—712)EP

Implementing Function Domain

We perform those domain calculations with the functions defined in figure 4.20. dom” first
checks if the type is indeed a function (i.e. is it a subtype of Any™), if so it then calls dom
with the function portion of the type (b™) to begin traversing the BDD calculating the

intersection of the union of the respective domains.

4.4.3 Function Application

When applying an arbitrary function to a value, we must be able to determine the type of
the result. If the application is simple, e.g. a function of type Int — Str applied to an
argument of type Int, calculating the result (Str) is trivial. However, when we are dealing
with an arbitrarily complicated function type which could contain set-theoretic connectives,

deciding the return type is a little more complicated. As we did in the previous section, let

95

us again reason separately about how we might apply intersections and unions of function
types to guide our intuition.

In order to apply a union of arrow types (01 — 71) U...U (0, — 75,), the argument
type o of course would have to be in the domain of each arrow, i.e. ¢ <: o1 N...Noy, (see
the discussion in the previous section). The result type of the application would then be

the union of the ranges:

apply((o1 = 1)U ... U(oy, > 1), 0) =71 U...UT,

where 0 <: o1 N...Noy,

This corresponds to the logical observation that if we know that either P implies @) or
R implies S, and we know that both P and R hold, then we can conclude that either @
or S holds. Now consider the problem of applying an intersection of arrow types. If for
some intersection of arrows, there is a subset (o1 — 71) N...N (o, — 7,,) which all can be
applied to the argument type o (i.e., if ¢ <: 01 MN...Noy,) then we get the following as the

result:

apply((or = 1) N...N(op = T),0) =71 N...NT,

where 0 <: o1 N...Noy,

This more or less corresponds to the logical observation that if we know that both P
implies Q) and R implies S, and we know that both P and R hold, then we can conclude
that both @ and S hold. Finally, sometimes for a given intersection of arrows there may
not be a single arrow that can handle a particular argument type, but some collection of
those arrows certainly could together. E.g., consider an argument type o, an intersection of
arrows (o; — 71)N...N(op, — Tp), and the assumption that only collectively these arrows
can cover the argument type (i.e., 0 <: o1 U...Uo,). In this case, the resulting type of

an application would look like the following:

96

apply((or = 1) N...N(op, >), 0) =71 U...UT,

where 0 <: o1 U...Uo,

This can be seen as corresponding to the logical observation that if we know that both
P implies Q) and R implies S, and we know that either P or R holds, then we can conclude
that either @ or S hold.

By combining all of these lines of reasoning we can deduce that when considering an

arbitrary function type

- U m =7 | A ﬂ =(11 — T)

(P,N)ednf(r—) (r1—12)€EP (r1—m2)eEN

being applied to an argument of type o, we first verify that o is in the domain of 77 (i.e.

using dom? for example) and then calculate the result type of the application as follows:

it o< (U(n—w)ep\pf Tl)

U U then Empty

(P,N)ednf(r—) | P'CP
else (Vir, yr)ep T2

Basically, we traverse each clause in the DNF of the function type (i.e. each pair (P, N))
unioning the results. In each clause (P, N), we consider each possible set of arrows P’ in P
and only consider those which would necessarily have to handle a value of type o (i.e. when
it is not the case that the arrows in P\ P’ could handle the argument). For those sets P’
that would necessarily handle the input, we intersect their arrows’ codomains (otherwise we
ignore the set by returning Empty for that clause). This reasoning resembles that which was
required to decide function type inhabitation (see section 4.3.1), i.e. both are considering
which combinations of arrows necessarily need to be considered to perform the relevant

calculation.

Implementing Function Application

Figure 4.21 describes the functions which calculate the result type for function application.

apply” first ensures that the alleged function type is indeed a function with the appropriate

97

apply? :tt — t or false

, apply’(17,7,) = false if 7, #: dom’(7y)
apply’ ({_, _,b™),7) = apply(r,1,b™)

‘apply ttb™ = tor false‘

apply(tq,t,0) = L
apply(tq,t,b™) = L if empty(t,) or empty(t)
apply(tq,t,1) = t
apply(ta, t, {s1 = s2, b, bX, bX)) = tn Ut Uty Uty

where t;; = apply(tq, t N s2, blx)
tio = apply(tq \ s1,t, b))
tim = apply(ta, t, byy)
tr = apply(ta, t, b))

Figure 4.21: Function application result type calculations

domain before calling apply to calculate the result type of the application. apply then
traverses the BDD combining recursive results via union. As it traverses down a BDD
node’s left edge (i.e. when a function type is a member of a set P) it makes two recursive
calls: one for when that arrow is in P’ (where we intersect the arrow’s range sy with the
result type accumulator t) and one for when it is not in P’ (where we subtract s; from the
argument type parameter t, to track if the arrows in P\ P’ can handle the argument type).
At non-trivial leaves where t, is not empty (i.e. when we're considering a set of arrows
P which necessarily would need to handle the argument) we return the accumulated range
type (t) for that set of arrows. Note that we can “short-circuit” the calculation when either
of the accumulators (t or t,) are empty, which can be important for large function types

since it frequently greatly reduces the search space.

4.5 Strategies for Testing

For testing an implementation of the data structures and algorithms described in this tu-

torial there are some convenient properties we can leverage:

1. any type generated by the grammar of types in figure 4.1 is a valid type;

2. since these types logically correspond to sets, we can create tests based on the many

98

well-known properties about sets to help ensure our types behave correctly; and

3. we have “naive”, inefficient mathematical descriptions of many of the algorithms in

addition to more efficient algorithms which purport to perform the same calculation.

With these properties in mind, in addition to creating simple hand-written “unit tests”,
we can easily use a tool such as QuickCheck [55] to generate random types and verify our
implementation behaves properly. Additionally, we can write two implementations of each
algorithm that has both a naive (i.e. more mathematical) and efficient description and feed
them random input while checking that their outputs are always equivalent. This approach
helped us discover several subtle bugs in our initial implementation at various points that
simpler hand-written unit tests had not yet exposed and helped us be confident that there

were not typos in the key mathematical equations we were basing our reasoning on.

4.6 Related Work

In this section we discuss other works which may be useful when implementing a system with
semantic subtyping, systems which have unique implementations of semantic subtyping for
first-order languages, features which have been explored in the context of semantic subtyping
but go beyond the simple language we describe in thsi chapter, and approaches in syntactic

subtyping which increase the completeness of subtyping with set-theoretic types.

4.6.1 Other Tutorials and Overviews

This chapter was partially written to help the authors better understand the implementation
details of semantic subtyping and partially because of the relative paucity of “boots on
the ground” accounts of working with such systems. CDuce—as far as we are aware—is
the only programming language to date to feature sound and complete subtyping for the
spectrum of types given in figure 4.1[53]. As impressive as that system is, its implementation
is a nontrivial library of highly optimized OCaml code and thus perhaps not the best
instructional resource for recreating the features or understanding why they work. Alain
Frisch’s dissertation[56] is said to include detailed accounts of many of the lessons learned

while working on CDuce, however this work is written in French and the authors of this work

99

ne comprend pas le francais. Luckily for us, Giuseppe Castagna has carefully extracted a
significant amount of the implementation knowledge from these experiences and included it
in an extremely helpful unpublished manuscript[57]. As we mentioned previously, the vast
majority of the implementation techniques we discuss in this chapter came from our reading
that manuscript and attempting to put the ideas into practice. We felt documenting our
understanding and including extremely specific implementation details might be another
useful point of reference for future researchers or enthusiasts wishing to implement such a

system.

4.6.2 First-order or incomplete semantic subtyping

There has been a history of semantic subtyping work prior to the 2008 article by Frisch et al.
[28] which has involved languages with semantic subtyping without first-class functions and
the like. We will not review all of those works here (see the related works section in Frisch
et al’s journal article for a thorough summary); instead we will mention a few subsequent
works whose implementation details are of possible interest.

Bierman et al. [21] show how semantic subtyping for a first-order language with re-
finement types can be achieved by deciding subtyping via an external SMT solver. In this
approach, deciding whether 7 is a subtype of ¢ involves deciding whether the first-order
formula interpretation of 7 implies the first-order formula interpretation of o.

The Whiley programming language [16] features intersection, union, and negation types
in a flow sensitive type system and boasts sound and complete reasoning about these con-
nectives. Function types, however, are not included in the system and thus many functional
idioms are impossible to express in this context. Nevertheless, it may be edifying to peruse
implementation insights and developments in that space. Recently, for example, the de-
velopers have explored how declarative rewriting can, for the most part, capture the type
semantics of the original system[58]. They admit it is not immediately clear, however, if

this declarative rewriting approach could be extended to reason about function types.

100

4.6.3 Semantic subtyping with additional features

In this chapter we have discussed the most basic features necessary for implementing se-
mantic subtyping for a functional language. Many additional features, however, have also
been studied in this space.

The work by Frisch et al. [28] includes recursive types, which is easy to miss on a
first glance since they define types coinductively rather than including an explicit recursive
type constructor. Implementation wise, recursive types can be added by simply introduc-
ing cycles in the type data structures themselves and then keeping track of which types
have already been “seen” while performing emptiness checks. If a previously seen type is
encountered then the check simply halts and true is returned.

The remaining features we mention we have not implemented ourselves but are certainly
worth noting: mutable state [59] and polymorphism[60, 61] have both been described in
the literature and are supported today in the CDuce language; polymorphic variants (a la
OCaml) have also been successfully combined with set-theoretic types and semantic sub-
typing to create a more expressive and intuitive system for programmers[27]; Castagna and
Lanvin have explored how gradual typing might be combined with union and intersection
types for a functional language[62]; Ancona et al. describe an approach for adapting se-
mantic subtyping to work in languages with non-strict evaluation strategies[63]; and the

m-calculus has also been studied in the context of semantic subtyping[64].

4.6.4 Expressive Syntactic Subtyping

There have been some advances in syntactic subtyping that help bring syntactic systems
with set-theoretic types closer to what semantic subtyping offers in terms of subtyping ex-
pressiveness. In particular, Muehlboeck and Tate [65] describe an approach for empowering
“textbook” algorithmic subtyping implementations with rich extensions called “integrated
subtyping”. This approach allows for certain subtyping properties—such as the distributiv-
ity of intersection over unions—to be clearly expressed and incorporated into the subtyping
algorithm. While this approach may be a tractable path down the completeness spectrum

for many languages, it is unclear how it would handle and/or scale with more advanced

101

features such as negation types (which can play a key role in a language intent on reasoning
set-theoretically). If we were to scale this approach to a level of completeness comparable
with semantic subtyping, the lessons learned from implementing semantic subtyping may

be necessary to keep the system efficient and tractable.

102

CHAPTER 5
A SET-THEORETIC FOUNDATION FOR OCCURRENCE TYPING

In section 2.2.8 we described the various techniques which have been used to support oc-
currence typing, which included simple syntactic reasoning, dependent types, and untagged
union normalization. In this chapter, we describe a new approach—which we call function
application inversion—based on the following observation: set-theoretic types are expres-
sive enough to describe type predicates. For example, note that a standard type predicate

can be completely described using set-theoretic type connectives:

(T — True) N (—7 — False) (5.1)

However, instead of merely pattern matching on types with the above schema, we explore
a generic technique (function application inversion) for determining what type the input to
a function must have been based on its observed output.

The remainder of this chapter is as follows: in section 5.1 we describe function appli-
cation inversion intuitively and then mathematically, proving that it is both sound and
complete; in section 5.2 introduce a calculus (Agp) which demonstrates how this technique,
when coupled with with the full spectrum of set-theoretic types and semantic subtyping,
can serve as a reasonable foundation for occurrence typing and is capable of type checking
all of the occurrence typing examples listed in section 2.1; in section 5.3 we further examine
this novel approach by discussing how a system like Agp handles the complex interfaces and
idioms needed for typing Racket’s numeric tower; in section 5.4 we discuss expressiveness
tradeoffs between \or and Ago like approaches to occurrence typing; finally in section 5.5

we discuss relevant related work.

5.1 Logical Inversion

Before outlining our general method for reasoning about predicate-like functions, it will be

useful to review the fundamentally related “principle of inversion” from logic. Consider a

103

propositional logic with the following introduction rule for A (i.e. conjunction):

P |— P1 F |— P2
A—INTRO

I'Fpi Apo

It stands to reason that if we can derive I' F p; A po and if A-INTRO is the only way
to introduce a A-proposition, then clearly there must exist derivations for I' = p; and
I' - py (how else could we have used A—INTRO to construct the conjunction?). In other
words, given that we have a full accounting for how A is introduced, we can use “backwards
reasoning”—i.e. determining what must have been true to arrive at a certain proof—to

derive the following valid inference rule:

T'tpy Aps ’iE{l,Q}

A-ELIM
'+ Di
More generally speaking, given a set of rules {Rq, ..., R,,} such that a certain formula ¢
can only be introduced by those rules
r-ct ... rrd r-c: ... TrcCk
R1 Ry,
Tk e | R)

(where C¢ is the '™ premise for rule R;) then we can admit this “meta-inference rule”:

'ty I,CH....ClFp ... I,Cl,....CFryp

»v~no

I'kp

This strategy of backward reasoning—which highlights the natural link between intro-
duction and elimination rules—is known as the inversion principle. It was first introduced
by Paul Lorenzen in 1950 [66] and has been used in a variety of ways since that time [67].
In the next section we introduce yet another use for this principle which seeks to reason
backwards from a specific result type of a function application to determine what must have

been true of the input to that function.

104

5.1.1 Function Application Inversion

As it turns out, we can effectively solve the problem of identifying “predicate-like” function

types by being able to answer the following inversion-like question:

If applying a function of type Trto an argument produces a value of type oout,

what type o;, must the argument have been?
(5.2)

In fact, we want to calculate the smallest such o;,, since this question can always be
trivially answered by returning the less-than-helpful type domain(rs) for o;,. Equipped
with such a function—which we will write inv(7¢,0out) = 0in—we could determine what
type a function is a predicate for (if any) by calculating inv(7s, —False)! and inv(7y, False).

When considering how to calculate the inversion of a function application, first recall
generally that to use the inversion principle we must know the set of rules {Rq,..., Rp}
which could possibly produce the result we are interested in reasoning backwards from. In
this case, the function type 7y itself contains the rules that soundly describe how values of
type domain(7y) can produce values of type oou. In other words, all of the arrows in the
DNF of 74 can be thought of as the various introduction forms which describe how input
values in domain(7y) can produce output values.

One concern when thinking of function types as sets of rules may be that for a given
function value f of type 77, there may exist a more precise function type 7‘} which gives a
more detailed accounting for where values of type domain(7y) are mapped (i.e., T} < Ty).
Does this mean that reasoning based on the rules in 7 will be flawed? Fortunately not.
Our reasoning based on 7 will still be valid (as it is still a proper type for f), but it may
be the case that reasoning based on T]/c would produce more precise predictions. For this
reason it is always helpful to have precise function types when reasoning about what can
be learned from the result of a function’s application.

Another way of thinking about the question posed in (5.2) is to see function application

'We use —False instead of True because in the language we’re imagining any non-false value is consid-
ered “truthy”.

105

Function Ty ‘ inv(7y, ~False) ‘ inv(7y, False)

Bool — True
boolean? Bool Bool
M —Bool — False 00 —e00
. Port — Bool

file-stream-port? Port Any

N —Port — False

—(Path U Str) — False
path-string? N Path — True Path U Str —Path

N Str — Bool

Figure 5.1: Function Application Inversion Examples

inversion as recovering implicit type-flow information from predicate-like function types
of varying complexity, as demonstrated by the examples in figure 5.1. Inversion on the
type of boolean? reaffirms it is a predicate on boolean values. Inversion on the type of
file-stream-port? shows it returns true only for a subset of ports (not all ports are file
streams). More complicated still, inversion on path-string?’s type shows it returns true
for all Paths but only for a subset of strings (some strings do not correspond to valid OS
file paths).

Given this intuition for how function application should behave, we proceed to describe

how it can be calculated.

5.1.2 Algorithm Intuition

First, we recall—as shown in section 4.1.3—that any function type 7y can be viewed as a
union of intersections of arrows (i.e., it can be placed in DNF). Next, we must examine how
each “rule” (i.e. each arrow (13 — 72) in the DNF of 7¢) could contribute to producing
a value of type ogy. First, note that for a given intersection, if multiple arrows’ domains
handle a particular argument, then the result will be the intersection of those arrows’

codomains:

FEf:(n—o)N...N0 (1, = op) 'tx:mmnN...N7,

F'F(fz):oN...Noy,

In order to determine the inversion of a function application we essentially examine each

106

possible combination of arrows (71 — o1)N...N(7, — 05,) in 7, noting which combinations
could possibly produce a value of type o, if each arrow applied to an argument (i.e. where
o1 N...N o, Nog £: Empty) and which could not possibly produce a value of type oout
if each arrow applied to an argument (i.e. where o3 N ... N oy, N ogye <: Empty); we then
subtract the domains of the latter group from the former. Stated differently, we start with
the function’s overall domain and subtract all input types which cannot possibly produce
values of type ooy (Note that a slightly more efficient implementation would start with the
particular argument type in question instead of the domain of the function when possible;
this would allow us to ignore combinations of arrows which are provably irrelevant, trimming

the search space and improving performance for large function types.)

5.1.3 Algorithm

With some intuition in place—i.e. that we are looking to subtract those input types which
could not possibly produce values of type o,y from the function’s domain—we now look at
how to perform this computation. Again, recall from section 4.1.3 that our function type

7y can be structured as follows:

Tp = (Any* N 7H) U (Any* N7) U (Any ™ N 777)

We are only concerned with the function portion of the type Tf_* since for 7y to be a
function type, T} and 7';(must be equivalent to the empty type.

Since Tf_’ is in DNF, we subtract from the domain of 7; for each intersection of arrows
P and for each possible non-empty subset of arrows P’ C P the intersection of the arrows’
domains whose associated intersection of codomains does not overlap with o,,:. This gives

us the following algorithm for computing function application inversion:

107

MU T T —T

inv(Tf, Oout) = domain(ty) \ 74

if (n(ﬂ'—)Ui)GP’ U’l) N Oout <: Emp‘ty

where 7, = U U then (.o ep i
(P.N)ednf(r7*) | 0cP'CP
‘ else Empty

Figure 5.2: Function Application Inversion Algorithm

Note that this algorithm assumes 7 <: Any™ (i.e. that the given function type is
indeed a function type); a more general version would obviously need to first check this
assumption. In the following section (5.1.4) we discuss the formal correctness properties
for this algorithm; section 5.1.5 defines an efficient implementation of function application
inversion (inv’) based on the implementation techniques discussed throughout chapter 4.

5.1.4 Soundness and Completeness

To prove our algorithm for function application inversion from figure 5.2 is correct, we define
a mathematical relation INV which describes precisely what we intend function application

inversion to mean:

Definition 1 (Function Application Inversion Relation). The function application inversion
relation INV is a ternary relation on types, defined as the set of 3-tuples (T¢, Tout, Oin) such

that for any values vy, vq, and v, if
e vy is of type Ty,
e Tf <: Any 7,
e v, is of type domain(ry),
e (vf vq) reduces to v, and

e v is of type oout,

108

then v, is of type oip,.

We can now state our soundness property for function application inversion, i.e. that

all answers reported by the algorithm are valid predictions about the argument:

Theorem 3 (Function Application Inversion Soundness). For any types T¢, Oout, and oip,

if T <: Any™ and inversion(T¢, Oout) = Oin, then (T¢,0out, Oin) € INV.
Proof. By nested inductions on the DNF of 7. O

The other property we are interested in is completeness, which in this context can be
understood to mean that the type produced by function application inversion is the smallest

such type and thus the most specific prediction about the argument possible:

Theorem 4 (Function Application Inversion Completeness). For any types Tf, Oout, and

Tins if (Tf, Oout, Tin) € INV, then inversion(ts,oout) <: Tin.
Proof. By nested inductions on the DNF' of 7. O

These theorems have accompanying mechanized proofs, the Coq source code for which

is found in appendix A.

5.1.5 Efficient Implementation

In figure 5.2 we describe how to calculate function application inversion. Here—in figure
5.3—we define a function inv’ to be an efficient implementation of function application
inversion, after the manner of functions defined throughout chapter 4 based on the type
representation presented in figure 4.9.

First, inv’ checks if its “function argument” t is indeed a function (returning false if not)
before calling inv with the specified output type s,, function domain t4,? function portion
of the type b™, and an initially empty accumulator for the set of positive arrow types seen
along a particular path in b™.

inv then simply traverses the BDD b™ which effectively considers each intersection of

arrows in the type’s DNF: for absurd paths in the BDD we return the uninhabited type;

2As noted previously, passing the argument type instead of the domain here results in a more precise
result and reduces the search space.

109

‘inv? tts—=tor false‘
inv'(t,s,) = false ifty ¢ T
inv'((_, _,b7),s,) = inye (b, 0)
where ty = dom(L,b™)

‘inv:sthP—m‘

invi°(0, P) = L
invio (1, P) ta \ v(td, So, P)
invio ({t1 — to, b7, b7, b7), P) = tUt, Ut,
where t; = invi® (b7, {t1 — t2} U P)
tm = invie (b7, P)
tr = inv (b7, P)

Y:tt P—t

y(ta te, 0) = tgifte <: L
v(tg, te, 0) = L
’V(td, te, {tl —)tQ}UP) = 81 Us2
where tZl =t Nty
t) =ty N te
s if t!, <: L
S1 = t;i if tlc <: 1
y(tl, t., P) otherwise

S2 = ’y(tda t& P)

Figure 5.3: Efficient algorithm for function application inversion.

110

for non-trivial paths we subtract from the function’s domain the result of calling the helper
~ with the gathered set of arrows P along this particular path; and at non-leaf nodes we
recurse into each subtree to consider each possible path and we union the results.
Auxiliary function 7 takes the set of arrow types (the third argument) and traverses each
possible subset of arrows, tracking the intersection of the domains in the first accumulator
argument ty and the intersection of the desired output type (i.e. the initial second argument
value) with the codomains in the second accumulator argument t. (progressively computing
the intersections in figure 5.2). The computation for a particular combination of arrows is
halted and the appropriate result is returned if either accumulator becomes empty along

the way (i.e. the initial check for if t. is empty and the checks for | when defining s).

5.1.6 Conservative Function Application Inversion

One interesting question is whether function application inversion could be used without
semantic subtyping (i.e. if we have set-theoretic types but incomplete subtyping). Let us,
for example, consider a language which reasons soundly but incompletely about its types and
which features unions and simple intersections (i.e., an interface Z = {r; — o1,...,7, —
opn}) for describing function types. In this language, let us say that when a function with
interface Z is applied to an argument of type 7, the return type will be some o; where
(i = 0i) € T and 7 <: 7;. What would a less complete/conservative function application
inversion function cinv look like in this context?

In order to perform function application inversion in such a context, we would need two

sound (possibly incomplete) operations on types:

e overlap : 7 7 — bool, a binary relation on types which returns true if there might exist
some value which has both those types and false if there is certainly no such value;

and

e diff : 7 7 — 7, a binary operator on types which computes the difference between two

types (i.e. subtracting the second argument from the first).

Note that in some sense these functions are essentially helping us deal with the lack of

intersection and negation types. With two such functions, we could essentially use the same

111

‘cim} LT — T‘
cinv(Z, oout) = diff(domain(Z), 7,)

if overlap(o;, oout) = false
where 7, = U then 7;
(ri—o;)eT \ else Empty

Figure 5.4: Conservative Function Application Inversion Algorithm

algorithm from figure 5.2 except simplified to suit our needs: instead of considering each
possible combinations of arrows as we did in the semantic context, we can simply consider
each arrow individually as does our hypothetical language during function application.
The cinv algorithm in figure 5.4 really is just a conservative approximation of the original
algorithm: we subtract potentially less type information from the domain type than the
original algorithm does since we're considering a subset of original algorithm’s cases and
our overlap and diff may themselves be conservative approximations. Whether or not this
conservative algorithm would be expressive enough in practice is difficult to tell, but it
seems there is at least one obstacle worth noting: a system would need negation types to
effectively describe type predicates in a function interface and few systems at the time of
writing this document include them. If negation types were present then cinv would be

able to identify standard predicate types.

5.2 Formal Language Model

In this section we introduce a calculus (Asp) which demonstrates how set-theoretic types,
semantic subtyping, and function application inversion can serve as an expressive, pow-
erful foundation for occurrence typing. Ago essentially combines the logical foundations
of Aor from section 2.2—i.e. using a logical environment and propositions to inform the
type system in a control flow sensitive way—with the full spectrum of set-theoretic types,
semantic subtyping (discussed in chapter 4), and function application inversion (discussed
in section 5.1.1). Ago avoids much of the underlying complexity inherited by systems based
on occurrence typing [10, 68] by leveraging semantic subtyping to completely reason about

the intersection and negation of types.

112

Vo= Values c = Constants
| ¢ constant value | int integer value
| (MZ}(z)e) function value | true true value

e = Expressions | false false value
| x,y, 2 variables | str string value
| v values | wop primitive ops
| (ee) application o= Paths
| (ifeee) conditional | v value path

T, 0 = Types | « variable path
| Any universal type D,q = Propositions
| Empty uninhabited type | tt trivial prop
| Int integer type | ¢ absurd prop
| Str string type | meT m is of type T
| True true types | pAD conjunction
| False false type |pVp disjunction
| 7— 7 arrow type 0= Symbolic Objects
| TUT type union | T° null object
Edaka type intersection | path object
| =7 type negation R ::= (1,p,q,0) Type-Results

7 ::= 7 — & Function Interfaces I:= Type Env

Figure 5.5: Ago Syntax

Like previous occurrence typing calculi, the Agp typing judgment assigns type-results to

well-typed expressions instead of merely types:
I'te:(rp.q0)
This judgment states that in environment I'

e e has type T;
o if e evaluates to a non-false (i.e. treated as true) value, “then-proposition” p holds;
o if e evaluates to false, “else-proposition” ¢ holds;

e ¢’s value corresponds to the symbolic object o.

5.2.1 MAgo Syntax

The syntax of terms, types, propositions, and other forms are given in figure 5.5.

113

Constants (c) are integers, strings, booleans, or unary primitive operations. The
individual primitive operators are enumerated later in the specification of the semantics
(figure 5.9).

Expressions (e) and values (v) describe a simple lambda calculus, consisting of
constants, variables, functions, function application, and conditionals. A-abstractions are
annotated with an “interface” Z which consists a series of function arrows that describe the
function’s behavior. A function’s type is the intersection of the arrows in its interface.

Types (7,0) include the full spectrum of set-theoretic types described previously in
figure 4.1 (sans pairs for simplicity). Again, since we are interpreting types semantically,
they can simply be thought of as denoting the sets of values described in section 4.1.2.

Paths (7) describe the pure terms we want our logic to be able to make type-related
statements about, i.e. the terms whose type we want to refine based on the control flow
of our program. Agpo—unlike similar previous occurrence typing calculi—includes values as
valid paths. As we discuss later in section 5.2.4, this choice was made to prove soundness
via the standard small-step approach.

Propositions (p,q) and Environments (I') are at the core of how we describe the
types of program terms. An environment I' is simply a set of logical propositions. A
proposition p can be a standard propositional atom (i.e. the trivial and absurd propositions
tt and (f), a conjunction or disjunction, or a type-related proposition 7 € 7 which states
that path 7 as type 7. Note that whereas previous calculi [9, 10, 68] used two propositional
forms to describe the types of terms—one stating a path has some type and one stating
a path does not have some type—Ago requires only one kind of type proposition since
negative type information can be encoded directly in the type itself. Le., 7 € 7 can instead
be written as m € —7.

Symbolic Objects (o) allow us to state that an expression either corresponds to a
particular path (i.e. a value who'’s type we wish to keep track of) or it does not and thus
corresponds to the trivial symbolic object T°.

A type-result (R)—as suggested at the beginning of this section—is a 4-tuple (7, p, g, 0)
which lets the typing judgment state more information about well typed terms: they de-

scribe not only a terms type 7, but also their positive and negative propositions p and ¢

114

T-ConsT T-VAR
'Fxzer
I'Fe:AR(e) I'Fx: (1,2 € —False,x € False,z)
T-ABS
Vio—>o)YeZ. Ix€ote:o
= ﬂ (c =) | Nn=r T-App
(c—a")eT '+ €1 :T1 '+ €2 ! <7‘2, [t[t, ﬂi[t, 02>
x ¢ fus(I) T £: Empty T <:Tp—=T (04, 0-) = pred(7i,72)
' (MZ}(x)e) : (7, L, 0F, (AM{Z}(x)e)) I'F (e1 e2) : (7,is(02, 04),is(02, o), T°)
T-1r T-Sus
I'tey:(71,p1,q1,01) p1, 'Fes: R q,'Fes: R I'e:R 'R <:R
P (if ej ez e3): R I'Fe:R

Figure 5.6: Aso Typing Judgment

and symbolic object o.

5.2.2 MAgo Type System

The type system for Agp is described in figure 5.6.

T-CONST type checks constants, consulting the AR metafunction described in figure 5.7.
In addition to assigning a type, this metafunction returns then- and else-propositions that
are consistent with whether the constant is false. All constants have themselves as their
symbolic object.

T-VAR may assign any type 7 to variable x so long as the = € 7 is provable in I'. The
then- and else-propositions reflect the self evident fact that if x evaluates to a non-false
value then x is not of type False, otherwise it is of type False. The symbolic object informs
the type system that this expression corresponds to the path x.

T-ABs, the rule for checking lambda abstractions, checks the body of the abstraction
once for each arrow type (0 — ¢’) in Z. In each case, the environment is extended by
assigning = the domain type ¢ and the body is checked to be well-typed at the codomain
type o’. The overall type of the abstraction 7 is then the intersection of all of the arrows in

T along with any desired negated type information 7/, so long as 7 is still an inhabited type;

115

this ability to add arbitrary negative type information to a lambda is standard practice
in semantic subtyping calculi [28], as it ensures that all values are either in a type or its
negation. We use the standard convention of choosing fresh names not currently bound
when extending I' with new bindings. The overall type-result for the lambda includes its
type 7, then- and else-propositions stating the value is non-false, and the lambda value
itself as the symbolic object. (Note that only well-typed lambdas are lifted into the space
of symbolic objects during type checking, so we need not type check the bodies of lambda
value paths—inspecting their interface will suffice.)

T-ApPpP handles function application, first checking that e; and es are well-typed individ-
ually at some types 71 and 7. Then, it checks if 77 is a subtype of some function type 7o — 7
(i.e., a function whose domain covers the type of e3); the codomain (7) of this function type
will be the overall type of the application expression. The pred metafunction—described in
figure 5.7—is used to determine what (if anything) is learned about the argument based on
whether the result is non-false (o) or false (o_). pred relies on the inv metafunction
described in section 5.1.1 which performs function application inversion to determine this
information. The then- and else-propositions describe in terms of the argument’s symbolic
object o2 what is learned from the result (if anything), leveraging the is metafunction (also
defined in figure 5.7) to deal sensibly with when oy = T°. The symbolic object for the
application is simply T¢ since we choose not to reason about complex expressions such as
the result of arbitrary function applications.

T-IF is used for conditionals, describing the important process by which information
learned from evaluating test-expressions is projected into the respective branches. After
ensuring ej is well-typed at some type, we make note of the then- and else-propositions
p1 and ¢q;. We then extend the environment with the appropriate proposition, dependent
upon which branch we are checking: p; is assumed for checking the then-branch and ¢; for
the else-branch. The type-result of a conditional is simply the type-result implied by both
branches (which can be determined by subsuming their results via type-result subtyping).

T-SuB allows us to naturally abstract or refine a type-result R via subtyping and based
on information in I'; the details of the type-result subtyping relation are found in figure 5.8.

Well Formedness. For any judgment I' - e : R, we require that the free variables in e

116

‘pred:TT—>T‘

pred(7y,7,) = (04 NTa, 0- N Ty) is(r,7) TET
where o4 = inv(7y, False) S(T0.7) = (¢ if 7 <: Empty
o_ = inv(Ty, False) tt otherwise

AR(false) = (False, T, tt, false)

AR(C) = (A (c), tL, b, ¢) if ¢ # false
AT(mt) = Int

A" (str) = Str

A’ (true) = True

A" (false) =False

AT (addl) = Int — Int

A" (subl) = Int — Int

AT(strlen) =Str— Int

A™(not) = (False — True) N (—False — False)
AT(int?) = (Int — True) N (-Int — False)
AT(str?) = (Str — True) N (Str — False)
AT(zero?) = Int — Bool

Figure 5.7: Ago Type Metafunctions

and R be a subset of those found in I'.

The logic for Ago (see figure 5.8) is a straightforward propositional logic with a few
(‘highlighted) rules for reasoning about the types of terms. We will only describe the
type-related rules since the others are entirely standard.

P-SuB allows us to use subtyping in the expected way when proving some path 7 has
a particular type. lL.e., since I' - € 7 and 7 is a subtype of o, then 7 also is a o.

P-EMPTY is similar to the principle of explosion (ex falso quodlibet), allowing us to
prove anything if some path is of the uninhabited type.

P-COMBINE says that if we can prove a path 7 has both type 7 and o, then it must
have type TN o. This essentially lets us lift logical “and” into the type space. Furthermore,
with proper intersections and negations, this simple rule replaces the several metafunctions
used in previous work [9].

P-VaL allows us to prove a value v has a type 7 if the type system claims it does. In

practice the only values we consider here are ones which have already been found to be

117

I'kp

P-ATOM P-TRIVIAL (£=0UB P-EmMPTY
I'tner T <:o0 TI'Fxw & Empty
I'pFp T'HEL I'Fneo I'kp
P-COMBINE P-VaL P-ExXFALSO P-ANDE
FrFrer 'rr€0c Fo:r THIT I'Fpi Apo ie{1,2}
'-rerneo I'tver TEp ' p;
P-ANDI P-OrRE P-ORrI
I'kp I'q T'FpiVp I',p1Fq I''pokq T'kFp or I'kgq
I'HEpAg T'tgq I'pVvyg
T <o iff [r] C[o] 01 <: 09 iff 0oj=032 or o09=T°
I'FR<:R
M <! Ty 01 <: 09

iS(Ol, 71N —|False),p1,F F po
is(o1, 71 N False),q1, ' F ¢o

I't= (71,1, q1,01) <: (T2,D2,q2,02)

Figure 5.8: Ago Logic and Subtyping

118

well-typed, and thus the checks are either trivial (for constants) or surface level (i.e. we can
just inspect the interface of a well-typed lambda to determine its type).

Subtyping in Agp utilizes the standard semantic approach: 7 is a subtype of ¢ if and
only if the set of values 7 denotes is a subset of the values ¢ denotes. Readers can find
intuition and implementation details for this approach in the contents of chapter 4; previous
work by Frisch et al. [28] lays out rigorous mathematical justifications. Suffice it here to
recall that we can decide subtyping in a sound and complete manner for the entire spectrum
of set-theoretic types. Object subtyping has T as the top object and is also reflexive.

The type-result subtyping allows us to adjust the type and symbolic object an expression
has via subtyping and further allows us to refine the then- and else-propositions with the

propositions in I' and the knowledge that o; is of type 1.

5.2.3 MAso Semantics

The dynamic semantics of Ago are presented in figure 5.9 as a series of standard syntactic
small-step reduction rules. e — €’ says that e steps to ¢’ in a single reduction. Notably
any non-false value is treated as “true” in conditional test expressions, SS-BETA uses
standard capture-avoiding substitution to implement function application, and the partial
metafunction § (also defined in figure 5.9) is used by SS-UOP to describe how the language’s
unary primitives operate. We write e —* ¢’ to mean the reflexive, transitive closure of the

single-step relation, meaning e steps to €’ in zero or more steps.

5.2.4 MAgo Soundness

We prove soundness for Ago via the standard progress and preservation lemmas [69].
The statement of progress is straightforward: any well-typed term is either a value or

can take a single step of evaluation.
Theorem 5 (Ago Progress). If e : R then either
e Jv.e=uw, or

o Jel.e — €.

119

e— e

SS-Aprprl
e1 — 6/1

(e1 e2) — (e} e2)

SS-AppP2
€y —> 6/2

(e1 e2) — (e1 6’2)

SS-UOp

v' = §(uop, v)
(uop v) — v’

SS-BETA

(MZ}(z)e) v) — e[z —]

SS-1Ir

61—>e/1

(if e1 ez e3) — (if €] ez e3)

SS-IF-FALSE

(lf false €9 63) — €3

SS-IF-NONFALSE

v # false

(if veyes) — e

0:uop v —v
(addl, int)
(subl, int)
(strlen, str)
(

J
0
J
o(not, v)
d(int?, v)
o(str?, v)

0(zero?, int)

int+ 1

mt—1

| str]
true
false
true
false
true
false
true
false

if v = false
otherwise

if dint.v = int
otherwise

if dstr.v = str
otherwise

if int=20

otherwise

Figure 5.9: Ago Small-step Reduction Semantics

120

Proof. By induction on the typing derivation for e. O

Our substitution lemma is a little more complicated. We first describe what it says and
then discuss why this particular framing is needed: it states that if an expression e is well
typed at R in a context I, and if that context is implied by the context I', 2 € 71 (where 2
does not occur free in I'), then in context I' the expression e with z consistently replaced by
v will type check at R’ which is just as or more precise than R when all its free occurrences

of z are replaced by v.
Lemma 5 (Aso Substitution). Assuming
e I"Fe:R,
e Fuv:mT,
o z ¢ fus(l'), and
e Nzen IV,
then there exists an R’ such that
e I'te[z—v]: R and
e 'FR <:R[z+—).
Proof. By induction on the typing derivation for e. O

The reason for this particular phrasing stems from the fact that both our environments
and type-results contain logical propositions which can discuss any in-scope identifiers.
So with the environments, we are essentially saying that whatever I says about z, these
statements are true exactly when they are true for v since v is of type 71 (and recall that we
can easily decide whether a well-typed value is in a particular type) and whatever I says
about terms that do not contain z is implied by I'. Therefore the substitution R[z — v]
is essentially converting all statements made by the type system which mention z into the
appropriate atomic proposition—Utt or ff—based on whether or not they hold for v. This

corresponds exactly to what is happening when we type check a term prior to performing

121

the substitution mapping z to v: the type system can only prove claims about the expression
which are provable in the environment without z or with the knowledge that z is of type
71, and so by replacing z by v the derivation on e[z — v] remains valid in I" with respect to
that R/.

With substitution handled, preservation becomes straightforward, stating that evalua-

tion preserves type, proposition, and object information.

Theorem 6 (Aso Preservation). If e : R and e — €' then there exists a R’ such that

Fe':R and FR <:R.
Proof. By induction on the typing derivation for e. O

If we allowed evaluation in arbitrary contexts further work would be required. Il.e.,
because we are only considering the empty context at the top level, R and R’ contain no
free variables, and thus the claims they make in the propositions and symbolic object are

trivial.

Proof techniques comparison: Aso vs Aor

Previous proofs for occurrence typing calculi such as Aoy [9] have used a unique model
theoretic proof technique. In this approach runtime environments serve as the model in
which satisfaction of a particular proposition or logical environment can be decided. The
soundness theorem then states that values produced by the big-step evaluation semantics
will have the correct type and any propositional claims made by the type system will be
satisfied by the runtime environment. Although this technique is convenient and works well
with the model-theoretic nature of the type system itself, it features the standard drawbacks
of big-step soundness proofs by saying nothing of diverging or stuck terms. However, because
type-results can contain free variables—in particular they may mention those which are
eliminated by certain reduction steps—the more common small-step proof technique seemed
ill fitted to reason about the soundness of such calculi. I.e., some reductions in these calculi
would produce expressions which no longer contained terms the previous type-result made
claims about. For these reasons, the less precise model theoretic big-step technique was

favored.

122

In proving soundness for Agp, however, we discovered a compromise of sorts between
these two proof techniques. Instead of using a big-step semantics and a model theoretic
notion of satisfaction to decide soundness—where all free variables are replaced at once
by their associated values from the runtime environment and the truth of all propositions
becomes trivially decidable—we use a small-step semantics and replace the free variables (in
both the program and in type system’s claims) incrementally as we perform reduction steps.
Essentially, by allowing propositions to talk about values in addition to variables, we end up
more-or-less incrementally deciding whether or not the propositions in the type-result would
be satisfied by evaluation one substitution at a time. This allows us to effectively reason
about a calculus whose design is somewhat inspired by model theory with the standard
tools from semantics engineering, thereby allowing us to make more precise claims about

the soundness of the language.

5.2.5 Additional Language Features

Our presentation of Agp focused on the smallest set of features necessary to demonstrate how
semantic subtyping and function application inversion could support occurrence typing. In
particular, we omitted features like local binding and pairs, which were present in previous
occurrence typing calculi. To support these features, in addition to extending the grammar
of values and expressions in the natural ways, typing rules roughly equivalent to T-LET,
T-Cons, T-FIrsT, and T-SECOND from Kent et al. [68] would need to be added along
with paths describing product projections (e.g. a path (proj i) describing the ith field of
path 7). Furthermore, since combining type information for a particular path is performed
entirely within the semantics of the types themselves (i.e. there is no need for a metafunction
similar to update from Aor which syntactically combines type information, since we simply
intersect the types with P-COMBINE from figure 5.8) we would need to add a few logical
rules such as the following to convert propositions into a normal form so they mention the

same paths whenever possible:

123

P-Fst P-S~xD
L' (projlm)er L'k (proj2m) er

I'-7 €71 X Any I'bm€Any X1

I.e., when we have a proposition about the projection of a path’s field we can convert
that into a proposition about the underlying path by pushing the type into the appropriate
product field.

5.3 Semantic Numeric Tower

The motivation for exploring function application inversion stemmed from the observation
that set-theoretic types appear well-suited for precisely describing standard type predicates.
However, standard type predicates are not the only kind of functions which can inform a type
checker in a flow sensitive way. For example, Typed Racket has made significant progress in
uniquely leveraging occurrence typing and set-theoretic types to precisely describe Racket’s
rich numeric tower[70]. In Racket, many numeric types contain many different distinct
kinds of numeric values, e.g. a Number can be an integer, an exact rational, and inexact
IEEE floating point number, etc. Figure 5.10 gives a rough outline for how this numeric

tower of types is constructed:

ExactNumber FloatComplex PosInteger
PosFixnum
) Posindex
__ PosExactRational PosFloat
g Posinteger PosByte
()
= T el | m e e IR (RN A I I B R
g‘é ? Zero Rt_ u‘l’ ------- v._FloatZero jr---==- 8 ----- Zero
o) [L AN R R i T PO —_ 1 |1l . Ssass’
9] = w
N N
% eglnteger
UJ .
NegExactRational NegFloat NegFixnum
Neglnteger

Figure 5.10: Numeric Tower Overview for Number (left) and Integer (right)

124

Essentially, the set of numeric values in Racket is partitioned into disjoint sets de-
scribed by “numeric base types”: Zero which covers the set {0}, One which covers {1},
ByteLargerThanOne which covers {2, ... ,255}, etc. Then, unions of these base types are
defined to describe natural sets of numbers one might want to reason about: PosByte is
the union of One and ByteLargerThanOne, Byte is the union of Zero and PosByte, etc. The
entire tower is given in appendix B for reference.

This tower of types lets Typed Racket precisely describe the behavior of many primitive

numeric operations. For example, here is one of the types for the < operator:

< € (z:Zeroy:Real — (Bool,y € PosReal,y € NonnegReal, T°))

This type says that whenever the first argument to less-than is 0 the result witnesses
whether or not the second argument is positive. The full type for < is an intersection of many
such arrows, describing what can be learned when comparing various subsets of the real
numbers. With these sorts of precise types and occurrence typing, numeric programs can
more accurately describe their semantics at the type level. For example, while many typed
languages describe the absolute value function as a unary operator on a particular numeric

type, in Typed Racket we can give a type which includes the expected sign information:

(: absolute-value (-> Real Nonnegative-Real))
(define (absolute-value x)
(if (< 0 x)

(- 0 x)))

Here, the type system learns from the test expression (< 0 x) that X is positive in the
then-branch and nonpositive in the else-branch, which allows the type checker to guarantee

that each branch produces a nonnegative real number.

5.3.1 Semantic Types for Comparison Operators

Now we examine how function application inversion can also express the aforementioned
unique numeric occurrence typing found in Typed Racket. Recall that in Typed Racket
this is achievable because an intersection of arrows can include cases for specific argument

combinations of interest, to which it assigns latent propositions stating what would be

125

: Integer)(y : One) — (Bool,x € NonposInteger,z € PosInteger, T°)
: Real)(y : Zero) — (Bool,z € NegReal,z € NonnegReal, T?)

: Zero)(y : Real) — (Bool,x € PosReal,z € NonposReal, T?)

: Real)(y : RealZero) — (Bool,x € NegReal, tt, T?)

: RealZero)(y : Real) — (Bool,x € PosReal,tt, T?)

: Byte)(y : PosByte) — (Bool, tL, x € PosByte, T°)

: Byte)(y : Byte) — (Bool,y € PosByte, tt, T?)

8 8 8

8 8 8

N N AN N N N
8

EDJNED BD B B RS B

Figure 5.11: (Partial) Syntactic Type of < (7 of 88 arrows shown)

learned about the arguments depending on whether the result was false. In figure 5.11
we list 7 of the 88 arrows Typed Racket uses to describe the binary cases for the < operator
to get a better sense of what this looks like.

With function application inversion, however, we do not have latent propositions to
describe what can be learned in certain cases. Instead we need to directly encode the
functional details we want the type system to know about. We do this—as we did with
simple type predicates—by clearly indicating which values will be mapped to which result.
E.g., for (< x y), if x is negative and y is nonnegative, then we know the result will
be true. Or if we know either is +nan.0 (i.e. the IEEE floating point “not a number”
value), then the result will be false. When we do this for all the relevant combinations of
arguments we get a function type with 23 arrows shown in figure 5.12.

The semantic type for < in figure 5.12—when used in the expressive context of semantic
subtyping and function application inversion—is just as expressive as the Typed Racket
version with 88 arrows. L.e., given any combination of arguments with numeric tower types
the semantic approach always produces a prediction about those arguments that is just as

or more precise than the prediction given by the syntactic type Typed Racket uses.

126

—

==

2
(NonposReal N —NaN) X (PosReal N —NaN) — True
2
PosReal X NonposReal — False
2
(NegReal N —NaN) X RealZeroNoNaN — True

2
RealZero X NegReal — False

w

| m
w

| |

w

"
iy
B
=
=
N = -
B
"
B

> o2 O O O >HY®Y ODoHY®Y¥XOZY¥XD) O$YDYOY O I-9Y¥’» b » » o D o o oo

ot

Figure 5.12: Semantic Type of <

127

5.3.2 Semantic Types for Other Numeric Operators

In addition to examining how a system like Agp could handle non-standard predicates such
as numeric comparisons, we also examined how the types of some simple mathematical
operators would be expressed in a context with semantic subtyping. For example, the
Racket addl function simply adds 1 to the value of its argument, but the kind of numeric
value that is returned will depend on the input. Figure 5.13 gives the syntactic (i.e. Typed
Racket) type for addl. It contains 23 individual arrows describing where various numeric
values are mapped. Figure 5.14 contains the semantic type for add1l, which consists of 14
arrows. In appendix B we give the full syntactic and semantic types for the + operator,

which is interesting to compare but whose size make them ill-suited to include here.

128

> O2 D2 DS O$D OH$®Y O OO ODXDo O»$DJooY oY » » » o oo oo

Zero — One

One — PosByte

Byte — PosIndex

Index — PosFixnum

NegFixnum — NonposFixnum
NonposFixnum — Fixnum
NonnegInteger — PosInteger
NegInteger — NonposInteger

Integer — Integer

NonnegRational — PosRational
Rational — Rational

NonnegFloat — PosFloat

Float — Float

NonnegSingleFloat — PosSingleFloat
SingleFloat — SingleFloat
NonnegInexactReal — PosInexactReal
InexactReal — InexactReal
NonnegReal — PosReal

Real — Real

FloatComplex — FloatComplex
SingleFloatComplex — SingleFloatComplex
InexactComplex — InexactComplex

Number — Number

Figure 5.13: Syntactic Type of addl

129

I . .
—
=
[y

2
NegInteger — NonposInteger

2
NonnegReal — PosReal
3

> D2 O©D O O O$©D DD DY DD D D O D
w
w
w
w

=

~
o
<

Figure 5.14: Semantic Type of add1l

5.3.3 Semantic/Syntactic Function Type Comparison

After confirming semantic subtyping and function application inversion were expressive
enough to handle the unique idioms that have emerged in Typed Racket’s numeric tower,
we began investigating how the sizes of numeric function types compared more generally in
these two settings. We examined 17 numeric operators in total: 6 unary numeric functions,
9 binary numeric functions, and 3 numeric comparison functions. In each case, the semantic
version was able to produce equivalent or more precise result types for applicable numeric
tower input types and required significantly fewer arrows. We summarize these results in
figure 5.15.

The reason for this disparity in the number of arrows largely stems from the fact that

Typed Racket (the “syntactic” system) uses a simple linear algorithm for computing the

130

result type of function application: when given argument types, Typed Racket scans the
list of arrows in order until an arrow whose domain covers the arguments is found and
that arrow’s codomain is used. The semantic approach, on the other hand, considers the
given argument types and all possible combinations of arrows which might cover them.
This means fewer, more precise arrows are needed to fully specify the behavior, but the
computation can have exponential complexity. In our small scale testing the overhead did
not seem prohibitive, but a larger scale study in an actual type checker for a reasonable
language would be required to see if the numeric tower’s types are reasonably handled in a

semantic fashion in practice.

131

Arrow Count Ratio

Function | Syntactic Semantic %
add1! 23 14 0.61
sub1! 23 13 0.57

abs! 17 6 0.35

sqr! 17 12 0.71
sqrt! 24 11 0.46
expt? 37 23 0.62
modulo? 13 9 0.69
quotient? 24 10 0.42

+2 85 26 0.31

-2 65 24 0.37

*2 58 22 0.38

/3 46 20 0.44

max? 82 20 0.24

min? 89 20 0.23

<3 88 23 0.26

<=3 89 22 0.25

=3 57 22 0.39
Key unary function' binary function? binary comparison function® ‘

Figure 5.15: Size of certain Racket math operations (syntactically vs semantically)

5.3.4 Challenges and Future Work

While these initial results are promising—we can express both simple and non-standard type
predicates through semantic subtyping and function application inversion—there remains
work to be done if we want to claim this technique is capable of being a true “replacement”

for a system as large and complex as Typed Racket. In particular, exploring how these

132

features perform in the wild (i.e. are type checking times tolerable) and how they work
with other important features such as polymorphism remains future work.

For an initial glimpse into how types such as those found in Typed Racket’s numeric
tower might work in a full-scale system with semantic subtyping, we encoded the Typed
Racket numeric tower’s types in CDuce[53]—a language with both semantic subtyping and
polymorphism—to see if things would “just work”. Unfortunately with the size of the
function types we were interested in (i.e. the semantic function types in figure 5.15 which
feature almost 30 arrows in some cases) CDuce was unable to perform type inference for even
a single polymorphic function application in a reasonable amount of type (we stopped the
experiment after 15 minutes). We contacted the creators of CDuce and they confirmed the
example we presented was problematic and likely due to an “explosion in the normalization
process”[71]. It is unclear whether further engineering would make these large numeric
types more compatible with CDuce’s type inference algorithm or if further fundamental
research on this problem is required. We have included our encoding of the numeric tower’s

types into CDuce in appendix C.

5.4 Expressiveness

With Aor and Ago presenting fundamentally different foundations for the same general ap-
proach to occurrence typing, it is worth examining how these differences affect the expres-
siveness of the type system. On the one hand, Ago—which features semantic subtyping—is
better able to completely reason about set-theoretic types and how they relate to one
another. This means that idioms which rely on advanced set-theoretic features—such as
intersection and negation types—can more easily be described in a system like Agp (e.g., see
hash-ref from section 1.2). Aor on the other hand—with its dependent function types—
is better suited to express relationships between different syntactic portions of a program.
For example, A\por can—Dbecause of its dependent function types—have abstractions whose

results tell us something about non-argument in-scope identifiers:

133

(let ([is-y-an-number? (A (x) (number? y))I1)
(if (is-y-a-number? #f)
(addl y)
0))

In this example, the function is-y-a-number? ignores its argument and tells us if y is

a number. l.e., it would be assigned the following type by Aor’s type system:

(x:Any) — (Bool,y € Num,y & Num, T°)

Because of this, the overall program would type check in Aoy but not in Ago. This
is because function application inversion (which Ago relies on) can only uncover type in-
formation about the actual arguments to a function. We might think such programs are
few and far between: surely no programmer would manually write such a block of code,
right? Perhaps not. There is, however, a long standing tradition of writing extraordinarily
complex macros in languages such as Scheme and Racket. Some of these macros generate
code which has the appearance of rubbish upon first glance, but whose semantics exactly
capture the needs of the syntactic abstraction. Some of these macros—such as the widely
used for-loops in Racket—can generate seemingly odd abstractions and conditional tests
which resemble the is-y-a-number? example. To illustrate, consider the following Typed

Racket program:

(: vector-ormap (ALl (X) (-> (-> X Boolean)
(Vectorof X)
Boolean)))
(define (vector-ormap f xs)
(for/or ([x (in-vector xs)])
(f x)))

vector-ormap simply iterates over all the elements of xs, returning the disjunction of
the predicate f applied to each element. In other words, it is roughly equivalent to the

following expression:

(and (> (vector-length xs) 0)
(or (f (vector-ref xs 0))

(f (vector-ref xs (subl (vector-length xs))))))

134

As we noted, however, the various for-loops in Racket are not primitives in the language:

they are macros. The body of vector-ormap expands into roughly the following program:

((letrec ([for-loop
(A (acc pos)
(cond
[(>= pos (vector-length xs)) acc]
[else
(define x (vector-ref xs pos))
(define f-of-x (f x))
(if (not ((A args f-of-x) x))
(for-loop f-of-x (addl pos))
f-of-x)1))1)
for-loop)
#f 0)

Typed Racket (as of version 7.2) looks at this program and “guesses”—through some
undocumented adhoc type inference heuristics which have evolved since its inception—that
the recursive for-1loop function should have type (-> False Integer Boolean). This
happens to work for Typed Racket in this case (i.e. the program type checks) in part because
Typed Racket can tell that the result of the application ((A args f-of-x) x) actually
gives us the value of f-of-x (i.e. the lambda’s type depends on an identifier that is not
one of its arguments).?

If, however, we limit Typed Racket so dependent function types can only mention their

arguments in their codomain, we get the following error:

Type Checker: type mismatch
expected: False
given: Boolean

in: f-of-x

This initially seems to suggest that there are macros in use today which function ap-
plication inversion would fail to type check, since their correctness appears to depend on
functions whose codomains mention non-arguments. However, we cannot ignore the role
Typed Racket’s adhoc type inference plays in this failure. It seems, for example, that if

Typed Racket’s inference determined that the first argument to for-1loop could be any

3Generally speaking, however, these type inference heuristics are a well-known pain point, being insuffi-
cient for type checking many usages of fOr-macros in the wild and being difficult to predict for programmers.

135

Boolean and not just False, this program would type check in a type system where
function types cannot describe how non-arguments affect their behavior (i.e. like Agp).
Indeed, if we merely annotate the initial first argument to the recursive function to be
(ann #f Boolean) the program does type check even with the aforementioned limitation
on dependent functions. This indicates that a Typed Racket-like system built on semantic
subtyping and function application inversion would be able to handle such programs given
that its type inference was stronger or it featured a different set of inference heuristics.
Regarding stronger inference, work has already been done showing how full-program type
inference and polymorphism for semantic subtyping can be achieved[60, 61]. So, while we
certainly can come up with programs which Apr can type check and Agp cannot, in practice

it appears most idioms are well-suited for type checking via Agp’s type system.

5.5 Related Work

Much of what should be said about work related to Agp has already been discussed in section
2.2.8 in our overview of occurrence typing and in section 4.6 in our discussion of work related
to semantic subtyping. Essentially, while Ago borrows the logical techniques from prior
occurrence typing work [9] and the rich power of semantic subtyping [28], it introduces
a truly novel approach for identifying predicate-like functions. Instead of examining a
programs syntax, having dependent types, or trying to reason about all possible programs
union types may be flattened into, Agp uses the unique function application inversion
algorithm introduced in section 5.1 to support occurrence typing. The resulting system
seems roughly equivalent in expressiveness to previous work in occurrence typing as it is
able to type check the various examples appearing in previous work[14, 70]. And while some
occurrence typing languages will be able to express more complex program dependencies in
types due to their inclusion of dependent types[9, 30, 31, 4, 23, 22, 32, 20, 33, 34, 35|, A\so
seems well suited to handle the majority of idioms occurring in practice due to its building

on the rich foundation of semantic subtyping[28].

136

Appendices

137

APPENDIX A
FUNCTION APPLICATION INVERSION PROOFS

This appendix contains the mechanized proofs for the theorems in section 5.1.4. The proofs

basically assume the following;:

o there exists a type and programming language framework in which the entire spectrum
of set-theoretic types are available and we can soundly and completely decide their

subtyping and inhabitation;

e types can be interpreted as sets of values and we can identify when a value is in the

set corresponding to some type;
e any function type can be treated as if being in DNF without loss of generality; and
o for any function type there is a function value which inhabits that type.

The first four items roughly correspond to results from foundational work in semantic
subtyping [28] and the last item is based on the assumption that if a type in this language
is inhabited then we can find some element of that type and the fact that the underlying
language supports nontermination. We conduct our proofs using as few definitions and as
little boiler-plate as possible given these assumptions (i.e. we do not include a language
definition, a type system, reduction rules, etc).

Function application inversion soundness (see Theorems i_inv_sound andd _inv_sound)
and completeness (see Theorems i inv_minimal and d inv_minimal) are then proved in
that order, with each first proving the property for an intersection of arrows (the Inductive
interface datatype) and then for a union of such intersections (the Inductive dnf
datatype).

The proofs were compiled with Coq version 8.8.2. The library CpdtTactics is the
only library which is required but not included in Coq’s standard library; it is required for
the helpful crush tactic and can be found online accompanying Adam Chlipala’s textbook

Certified Programming with Dependent Types [72].

138

Require Import Coq.Sets.Ensembles.
Require Import Coq.Sets.Classical sets.
Require Import Coq.Sets.Image.

Require Import CpdtTactics.

Set Implicit Arguments.

(*************************)

(* A few useful tactics *)
(F F F k ok ok Kk Kk kK kK K Kk K Kk X Kk Kk X X X X X X)

Ltac ifcase :=
match goal with
| [|- context[if ?X then else]] => destruct X
end.

Ltac ifcaseH :=
match goal with
| [H: context[if ?X then else]| |- 1 => destruct X
end.

Ltac matchcase :=
match goal with
| [|- context[match ?term with
| _=> _
end]] => destruct term
end.

Ltac matchcaseH :=
match goal with
| [H: context[match ?term with

| = _
end] |-] => destruct term
end.
Ltac applyH :=
match goal with
| [H: -> |- 1 => progress (apply H)
end.
Ltac applyHinH :=
match goal with
| [HL : -> , H2 : |-] => apply H1l in H2

end.

(*************************)
(* Value/Type Definitions *)

(*************************}

Axiom V : Type.
Notation Ty := (Ensemble V).

Notation "'0'" := (Empty set V).
Notation "'1'" := (Full _set V).
Notation "T1 'n' T2" :=

(Intersection V T1 T2) (at level 52, right associativity).
Notation "T1 'u' T2" :=

139

(Union V T1 T2) (at level 53, right associativity).
Notation "T1 '\' T2" :=
(Setminus V T1 T2) (at level 54, right associativity).
Notation "'=' T" :=
(1 \ T) (at level 51, right associativity).

Notation "T1 '#' T2" :=

(Tl = T2 -> False) (at level 55, right associativity).
Axiom empty dec : forall (t: Ty), {t = 0} + {t # 0}.
Notation "x '€' T" :=

(In VT x) (at level 55, right associativity).
Notation "x '¢' T" :=

(~In VT x) (at level 55, right associativity).
Axiom in dec : forall (v:V) (t: Ty), {v € t} + {v ¢ t}.
Notation "T1 '<:' T2" :=

(Included V T1 T2) (at level 55, right associativity).

Hint Unfold Included Setminus.
Hint Constructors Union Intersection Inhabited.

(% Kk Kk ok ok ok ok ok ko k ko kK K K Kk K K K K K X X X)

(* Basic Type Lemmas/Tactics *)
(*************************}

Lemma nonempty inhab : forall t,
t 20 -> exists x, x € t.
Proof.
intros t Hneq.
apply not _empty Inhabited in Hneq.
destruct Hneq as [x H].
exists x; auto.
Qed.

Lemma empty uninhab : forall t,
t =0 -> forall x, x ¢ t.
Proof.
intros t Hneg x Hnot.
rewrite Hneq in Hnot. inversion Hnot.
Qed.

Lemma no _empty val : forall v P,

v EO ->P.
Proof.
intros v P Hmt. inversion Hmt.

Qed.

Lemma union empty 1 : forall t,
Out-=t.

Proof. crush. Qed.

Lemma union_empty r : forall t,

tuo-=t.
Proof.
intros. rewrite Union commutative.
crush.

Qed.

140

Lemma intersection empty 1 : forall t,
Ont=0.
Proof. crush. Qed.

Lemma intersection empty r : forall t,
tnoO=0.
Proof. crush. Qed.

Lemma intersection assoc : forall T1 T2 T3,
Tl n (T2 nT3) = (Tl n T2) n T3.

Proof.
intros.
apply Extensionality Ensembles; constructor; intros x Hx.
destruct Hx as [x Hx1 Hx2]. destruct Hx2 as [x Hx2 Hx3].
crush.
destruct Hx as [x Hx1 Hx2]. destruct Hx1l as [x Hx1 Hx3].
crush.

Qed.

Lemma intersection comm : forall T1 T2,
Tl nT2 =T2n TI1.
Proof.
intros T1 T2.
apply Extensionality Ensembles; constructor; intros x Hx;
inversion Hx; crush.
Qed.

Lemma demorgan : forall x T1 T2,
x & (TLu T2) ->
X & TL /\ x & T2.

Proof. crush. Qed.

Hint Rewrite
union empty 1
union _empty r
intersection empty 1
intersection empty r.

Hint Extern 1 =>
match goal with
| [H: ?x €0 |- ?P] =>
apply (no_empty val P H)
| [H: ?2x € 2T, H' : 2T =20 |- ?P] =>
rewrite H' in H; apply (no_empty val P H)
| [H: ?x € 2T, H' : ?2T =10 |- ?P] =>
symmetry in H'; rewrite H' in H; apply (no_empty val P H)
end.

Hint Extern 1 (€) =>

match goal with

| [H: ?x € (?T1 n ?T2) |- ?x € ?T1]
=> destruct H; assumption

| [H: ?x € (?T1 n ?T2) |- ?x € 7T2]
=> destruct H; assumption

| [H1 : ?x € ?T1, H2 : ?x € ?T2 |- ?x € (?T1 n ?T2)]
=> constructor; assumption

| [H1 : ?x € ?T1 |- ?x € (?T1 u)]

141

=> left; exact H1l

| [H2 : ?x € ?T2 |- ?x € (_ U ?T2)]
=> left; exact H2

end.

Ltac inv_in intersection :=
match goal with
| [H: € (n) |-] =>destruct H
end.

Ltac inv_in union :=
match goal with
| [H: € (u) |- 1 => destructH
end.

Ltac inv_exists :=
match goal with
| [H : exists x, |- 1 => destruct H
end.

(% Kk Kk ok ok ok ok ok ko k ko kK K K Kk K K K K K X X X)

(* Function Related Definitions *)
(*************************}

(* the result of function application *)
Inductive res : Type :=

| Err : res (* invalid argument/type error *)
| Bot : res (* non-termination *)

| Res : V -> res. (* a value result *)

Hint Constructors res.

(* We use a shallow embedding in Gallina's functions
to model the target language functions. *)
Definition fn := (V -> res).

(* An ‘interface’ is the set of arrows that describe a
function (i.e. an intersection of 1 or more arrows). We
use a pair for each arrow, where the fst is the domain
and the snd is the codomain. *)

Inductive interface : Type :=

| IBase: (Ty * Ty) -> interface

| ICons : (Ty * Ty) -> interface -> interface.

Hint Constructors interface.

(* The domain for an interface is the union of each
individual arrow's domain. *)
Fixpoint i dom (i : interface) : Ty :=
match i with
| IBase (T1,) => T1
| ICons (T1,) i' => Tl u (i_dom i')
end.
Hint Unfold i dom.

142

(* Calculates the result type of calling a function which
has the arrow type ‘a’ on value ‘v'. *)
Fixpoint a result (a : (Ty * Ty)) (v : V) : option Ty :=
if in dec v (fst a)
then Some (snd a)
else None.
Hint Unfold a result.

(* Function Arrow *)
(* I.e., what it means for a function 'f° to conform to the
description given by arrow ‘a’. *)
Definition FnA (f : fn) (a : (Ty * Ty)) : Prop :=
forall x T,
a result a x = Some T ->
(f x = Bot \/ exists y, f x =Resy /\y €T).
Hint Unfold FnA.

(* Calculates the result type of calling a function which
has the interface type “i' on value ‘v'. *)
Fixpoint i result (i : interface) (v : V) : option Ty :=
match i with
| IBase a => a result a v
| ICons a i' => match a result a v, i result i' v with
| None, None => None
| Some T, None => Some T
| None, Some T => Some T
| Some T, Some T' => Some (T n T')
end
end.
Hint Unfold i result.

(* Function Interface *)
(* I.e., what it means for a function “f° to conform to the
description given by interface ‘i'. *)
Definition FnI (f : fn) (i : interface) : Prop :=
forall x T,
i result i x = Some T ->
f x = Bot \/ (exists y, (f x =Resy /\y €T)).
Hint Unfold FnI.

(*************************)

(* Function Related Lemmas/Tactics *)
(* %k ok ok ok ko ok ok kox ok ok okok ok ko ok ok ok ok ko k)

Lemma FnI base : forall f a,
FnI f (IBase a) ->
FnA f a.
Proof.
unfold FnI. unfold FnA.
intros f [T1 T2] H x T Har.
simpl in *.
specialize H with x T2.
ifcaseH; inversion Har; subst; auto.
Qed.

143

Ltac same Res :=
match goal with
| [Hl : ?f ?v = Res ?x , H2 : ?f ?v = Res ?y |-] =>
rewrite H1 in H2; inversion H2; subst; clear H2
end.

Lemma FnI first : forall f a i,
FnI f (ICons a i) ->
FnA f a.
Proof.
unfold FnI. unfold FnA.
intros f [T1 T2] i H x T Har.
specialize (H x).
unfold a result in *. simpl in *.
ifcaseH; matchcaseH; crush.
specialize (H (T n e)); crush.
inv_in_intersection; crush; eauto.
Qed.

Lemma FnI rest : forall f a i,
FnI f (ICons a i) ->
FnI f i.
Proof.
intros f [T1 T2] i Hfi.
unfold FnI in *.
intros x T Hres.
specialize (Hfi x).
simpl in *.
ifcaseH; matchcaseH; inversion Hres; subst; eauto.
specialize (Hfi (T2 n T));
intuition; crush; inv_in intersection; eauto.

Qed.

Lemma FnI cons : forall f a i,
FnA f a ->
FnI f i ->
FnI f (ICons a 1i).

Proof.

intros f [T1 T2] i Ha Hi.

unfold FnI in *. unfold FnA in *.

intros x T Hres.

specialize (Ha x). specialize (Hi x).

simpl in *.

destruct (in_dec x T1) as [Hx1 | Hx1].
remember (i _result i x) as Hxr.

destruct Hxr as [T'|]; inversion Hres; subst.
destruct (Ha T2 eq_refl). left; assumption.
destruct (Hi T' eq_refl). left; assumption.
repeat inv_exists. crush.

same_Res.

right.

match goal with

| [H: fx=Res ?y |-] => exists y

end; crush.

destruct (Ha T eq refl); crush; eauto.
remember (i result i x) as Hxr.

destruct Hxr as [T'|]; inversion Hres; subst.
apply Hi; auto.

144

Qed.

Ltac inv_FnI :=
match goal with
| [H: FnI |-] => inversion H; subst
end.

(% Kk Kk ok ok ok ok ok ok ko k kK K K K K K K K K X X X)

(* Function Inversion Algorithm *)
(*************************}

(* Consider function "f' of type “a’. This function
calculates what type an argument “x' must not
have had if (f x) ~ v and 'v € outT' *)

Fixpoint a neg (a : (Ty * Ty)) (outT : Ty) : Ty :=

if empty dec ((snd a) n outT)
then (fst a)
else 0.

(* Consider function “f° of type 'i'. This function
calculates what type an argument “x' must not
have had if “(f x) ~ v’ and ‘v € outT *)

Fixpoint i neg (i : interface) (outT : Ty) : Ty :=

match i with
| IBase a => a _neg a outT
| ICons (S1,S2) i' =>

let T1 := a _neg (S1,S52) outT in
let T2 := i neg i' outT in
let T3 :=S1 n (i neg i' (S2 n outT)) in
T1uT2uT3
end.

(* Consider function “f' of type "i'. This function
calculates what type an argument “x' must _have
had if (f x) ~ v' and ‘v € outT *)

Definition i _inv (i : interface) (outT : Ty) : Ty :=
(i dom i) \ (i _neg i outT).

(*************************}

(* Function Inversion Lemmas/Tactics *)
k %k Xk >k % >k %k X 3k % % %k X %k % % % X %k % X% %k X % X
()

Lemma FnA res ty : forall T1 T2 f x vy,
X €Tl ->
f x=Resy ->
FnA f (T1,T2) ->
y € T2.
Proof.
intros T1 T2 f x y Hx Hfx Hfa.
assert (f x = Bot \/ (exists y, (f x =Resy /\y € T2)))
as Hex.
eapply Hfa; crush.
ifcase; crush.
crush.
Qed.

145

Hint Extern 1 (€) =>
match goal with
| [Hx : ?x € 7T1,
Hfy : ?f ?x = Res 7y,
HFnA : FnA ?f (?T1,7T2)
[- ?y € ?T2]
=> apply (FnA res ty x Hx Hfy HFnA)
| [Hx : ?x € ?T1,
Hfy : 7?f ?x = Res 7y,
HFnA : FnI ?f (IBase (7T1,7T2))
|- ?y € ?T2]
=> apply (FnA _res ty x Hx Hfy (FnI_first HFnA))
| [Hx : ?x € ?T1,
Hfy : ?f ?x = Res 7y,
HFnA : FnI ?f (ICons (?T1,7?T2))
|- ?y € ?T2]
=> apply (FnA res ty x Hx Hfy (FnI first HFnA))
end.

Lemma i neg sub : forall i T1 T2,
T2 <: T1 ->
(i neg i T1) <: (i neg i T2).
Proof with auto.
intros i. induction i as [[T1 T2] | [T1 T2] i' IH].
{
intros T T' Hsub x Hx. simpl in *.
destruct (empty dec (T2 n T'"))
as [Hmt' | Hnmt']...
destruct (empty dec (T2 n T))
as [Hmt | Hnmt]...
destruct (empty dec (T2 n T))
as [Hmt | Hnmt]...
apply nonempty inhab in Hnmt'.
destruct Hnmt' as [v Hv].
assert (v € T2nT)...

intros T T' Hsub x Hx.
simpl in *.
destruct (empty dec (T2 n T)) as [Hmt | Hnmt].

{
destruct (empty dec (T2 n T')) as [Hmt' | Hnmt'].
{
destruct Hx as [x Hx | x Hx]...
destruct Hx as [x Hx | x Hx]...
right; left; eapply IH; eauto.

apply nonempty inhab in Hnmt'.
destruct Hnmt' as [v Hv].
assert (v € T2nT)...
}
}

{
destruct (empty dec (T2 n T')) as [Hmt' | Hnmt'].

{
right.
destruct Hx as [x Hx | x Hx]...

146

destruct Hx as [x Hx | x Hx]...
{
left; eapply IH; eauto.
}
{
destruct Hx...
right; split...
apply (IH (T2 n T) (T2 nT"))...
}

destruct Hx as [x Hx | x Hx]...
destruct Hx as [x Hx | x Hx]...
right. left. eapply IH; eauto.
right. right; split...

destruct Hx as [x Hx' Hx'']...
apply (IH (T2 n T) (T2 nT"))...

}
}

}
Qed.

Ltac apply fun :=
match goal with
| [H1 : ?x € 7T1,
Hf : FnI ?f (IBase (?T1,7T2)),
Hres : ?f ?x = Res ?y
[- _1 =>
assert (y € T2)
by (exact (FnA res ty x Hl1 Hres (FnI base Hf)))
| [H1 : ?x € 7T1,
Hf : FnA ?f (?T1,7?T2),
Hres : ?f ?x = Res ?y
[- _1 =>
assert (y € T2)
by (exact (FnA res ty x Hl1 Hres (FnI base Hf)))
end.

Lemma in i neg : forall i v v' f T,
FnI f i ->
VE (iLngiT) ->
f v=Resv' ->
v €T.
Proof with auto.

intros i.

induction i as [[T1 T2] | [Tl T2] i' IH];
intros v v' f T Hfi Hv Hfv Hcontra.

(* IBase (Arrow T1 T2) *)

{
simpl in *.
ifcaseH; crush.
apply fun...
assert (v' € (T2 n T)) as impossible...

}

(* ICons (Arrow T1 T2) i' *)

{
simpl in *,
assert (FnA f (T1,T2)) as Hfa by (eapply FnI first; eauto).
assert (FnI f i') as Hfi' by (eapply FnI rest; eauto).

147

destruct (empty dec (T2 n T)) as [Hmt | Hnmt]...
{

inv_in union.

{
apply fun...
assert (v' € (T2 n T)) as impossible...
}
{
inv_in union.
{
eapply IH; eauto.
}
{
inv_in_intersection.
apply fun...
assert (v' € (T2 n T)) as impossible...
}
}
}
{

rewrite union empty 1 in *.
destruct Hv as [v Hv | v Hv].

{
eapply IH; eauto.
}
{
destruct Hv as [v Hvl Hv2].
eapply IH; eauto.
}
}
}
Qed.
Lemma not in i neg : forall i v v' f T,
FnI f i ->
fv=Resv' ->
vi €T ->
vé (inegiT).
Proof.

intros i v v' f T Hfi Hfv Hv' Hcontra.
eapply in i neg; eauto.
Qed.

(*************************}

(* Inversion Definition *)
(*************************}

Definition Inv (i : interface) (outT inT: Ty) : Prop :=
forall (f:fn),

FnI f i ->

forall (v v':V),
v € (i dom i) ->
f v=Res v ->
v' € outT ->
v € inT.

148

(F % kK kR K ok koK K Kk kK Kk kK K Kk kK

(* 1 _inv soundness
(************************

(* Interface Inversion Soundness

i.e. the input type we predict is correct *)
Theorem i_inv_sound : forall i outT,

Inv i outT (i _inv i outT).

Proof with crush.

intros i outT f Hint v v' Hv Hf Hv'.

unfold i inv in *.

constructor; auto.

intros Hcontra.

eapply in i neg; eauto.

Qed.

(F F F F x x x % % % x ¥ x ¥ ¥ ¥ x ¥ ¥ ¥ ¥ ¥ ¥ X
(* Axioms for proving minimality

(*

(* i.e. basically we assume if a codomain is
(* inhabited, then there exists a function which

(* will map inputs to those codomain values.
(************************

Definition MapsTo (f : fn) (i : interface) : Prop :

forall v T,
i result i v =SomeT ->
T#0 ->
exists v', f v =Res v' /\ v' €T.

Definition MapsToTarget (f : fn) (i : interface)
forall v T,
i result i v = Some T ->
(Tntgt) 20 ->
exists v', f v = Res v'
/\ v' € (T n tgt).

Axiom exists fn : forall i,
exists f, FnI f i /\ MapsTo f 1i.

Axiom exists target fn : forall i outT,
exists f, FnI f i /\ MapsToTarget f i outT.

(************************

(* Lemmas related to i result
(************************

Lemma i result None : forall i x outT,
X € (i dom i) ->
i result i x = None ->
X € (1 neg i outT).
Proof with auto.
intros i; induction i as [[T1 T2] | [T1 T2] i’
{

intros x outT Hdom Hires.

149

*)
*)
*)

*)

(tgt

*)
*)
*)

IH].

1 Ty)

: Prop :

}
Qed.

simpl in *,
destruct (in dec x T1) as [Hx | Hx]; crush.

intros x outT Hx Hires.

simpl in *,

destruct (in _dec x T1) as [Hx1 | Hx1].

{
destruct (empty dec (T2 n outT)) as [Hmt | Hnmt].
{

left. assumption.

}
{
right.
remember (i result i' x) as ires'.
destruct ires' as [T' |].
inversion Hires. inversion Hires.
}
}
{
destruct Hx as [x Hx | x Hx]; try solve[contradiction].
right. left.
apply IH... matchcaseH; crush.

}

Lemma i result Some : forall i x T outT,

i result i x = Some T ->
(T n outT) =0 ->
X € (1_neg i outT).

Proof with auto.
intros i x; induction i as [[T1 T2] | [T1 T2] i' IH].

{

intros T outT Hires Hmt.

simpl in *,

destruct (in_dec x T1) as [Hx1 | Hx1]; crush.
destruct (empty dec (T n outT)) as [Hmt' | Hmt']...
ifcase... contradiction. contradiction.

intros T outT Hires Hmt.
simpl in *.
destruct (in_dec x T1) as [Hx1 | Hx1].
{
destruct (empty dec (T2 n outT)) as [Hmt2 | Hnmt2].
{
left. ..
}
{
right.
destruct (i result i' x) as [S |]; try solve[crush].
specialize (IH S).
inversion Hires; subst. clear Hires.
right. split...
eapply IH...
rewrite intersection assoc.
rewrite (intersection comm S T2)...

150

}
{
destruct (i_result i' x) as [S |]; try solve[crush].
inversion Hires; subst.
specialize (IH T outT eq refl Hmt)...
}
}
Qed.

(* Interface Inversion Minimality
i.e. the input type we predict is minimal *)
Lemma i inv exists fn : forall i outT x,
X € (i _inv i outT) ->
exists f y, FnI f i /\ f x = Res y /\ y € outT.
Proof with auto.
intros i outT x Hx.
unfold i_inv in Hx.
destruct Hx as [HxIs HxNot].
remember (i result i x) as xres.
destruct xres as [S |].
{
symmetry in Hegxres.
destruct (empty dec (S n outT)) as [Hmt | Hnmt].
{
assert (x € (i neg i outT)) as impossible.

{

eapply i result Some; eauto.

contradiction.
}
{
destruct (exists target fn i outT)
as [f [Hfi Hmaps]].
unfold MapsToTarget in Hmaps.
destruct (Hmaps x S Hegxres Hnmt) as [y [Hfx Hyl].
exists f. exists y...
}
}
{

assert (x € (i _neg i outT)) as impossible.

{

eapply i result None; eauto.

contradiction.

}
Qed.

(*************************}

(* 1 inv minimality *)
(F %k ko ok ko ok ok ok ox ok ok ok ok ok ok ok ok ok ok ok ko k)

Theorem i inv _minimal : forall i outT inT,
Inv i outT inT ->
(i inv i outT) <: inT.
Proof with auto.
intros i outT inT Hinv x Hx.

151

unfold Inv in Hinv.
destruct (i _inv_exists fn Hx) as [f [y [Hf [Hres Hyllll].
specialize (Hinv f Hf x y). eapply Hinv; eauto.
destruct Hx...
Qed.

(% Kk Kk ok ok ok ok ok ok ko k kK K K K K K K K K X X X)

(* DNF Function Definitions *)
(*************************}

(* A “dnf’ is a union of interfaces, at least one of which
describes a function (i.e. an DNF with 1 or more
clauses). *)

Inductive dnf : Type :=

| DBase : interface -> dnf

| DCons : interface -> dnf -> dnf.

Hint Constructors dnf.

(* The domain for a dnf is the intersection of each
individual interface's domain. *)
Fixpoint d dom (d : dnf) : Ty :=
match d with
| DBase i => (i _dom 1i)
| DCons i d' => (i dom i) n (d dom d')
end.
Hint Unfold d dom.

(* Disjunction of Function Arrows *)
(* I.e., what it means for a function 'f° to conform to the
description given by arrow ‘a’. *)
Fixpoint FnD (f : fn) (d : dnf) : Prop :=
match d with
| DBase i => FnI f i
| DCons i d' => FnI f i \/ FnD f d'
end.
Hint Unfold FnD.

(% kK Kk ok k k k ok ok ok ok kK K Kk Kk K K K K K X X X)

(* DNF Lemmas *)
(*************************}

Lemma FnD_base : forall f i,
FnD f (DBase i) ->
FnI f i.
Proof.
intros f i H.
crush.
Qed.

Lemma FnD Cons i : forall i d f,
FnI f i ->
FnD f (DCons i d).

Proof. crush. Qed.

152

Lemma FnD Cons d : forall i d f,
FnD f d ->
FnD f (DCons i d).

Proof. crush. Qed.

(% kK ok k k ok ok ok ok ko k Kk Kk K K K K K K K K K X X)

(* DNF Function Inversion Algorithm *)
(F F F k ok ok Kk Kk kK kK K Kk K Kk X Kk Kk X X X X X X)

Fixpoint d_inv_aux (d : dnf) (outT : Ty) : Ty :=
match d with
| DBase i => i _inv i outT
| DCons i d' => (i_inv i outT) u (d_inv_aux d' outT)
end.

(* Calculates the result type of calling a function which
has the interface type 'i° on value ‘v'. *)
Definition d _inv (d : dnf) (outT : Ty) : Ty :=
(d_ dom d) n (d_inv_aux d outT).
Hint Unfold d inv d _inv_aux.

(% Kk Kk ok ok ok ok ok ok ok ok kK K K K K K K K K X X X)

(* DNF Inversion Definition *)
(*************************}

Definition InvD (d : dnf) (outT inT: Ty) : Prop :=
forall (f:fn),
FnD f d ->
forall (v v':V),
v € (d dom d) ->
f v=Res v ->
v' € outT ->
v € inT.
Hint Unfold InvD.

(% Kk Kk ok k k k ok ok ko k Kk Kk K K K K K K K K X X X)

(* Soundness *)
(*************************}

(* Interface Inversion Soundness
i.e. the input type we predict is correct *)
Theorem d_inv _sound : forall d outT,
InvD d outT (d_inv d outT).
Proof with auto.
intros d.
induction d as [i | i d' IH].
{
unfold InvD.
intros outT f Hfd v v' Hv Hf Hv'. simpl in *.
split...
eapply i inv sound; eauto.

e

unfold InvD.
intros outT f Hfd v v' Hv Hfv Hv'.

153

simpl in *,
destruct Hfd as [Hfi | Hfd].

{
split...
left; eapply i _inv_sound; eauto.
}
{
split...
assert (v € (d_inv d' outT)) by (eapply IH; eauto).
right... unfold d _inv in *...
}
}
Qed.

(*************************}

(* Lemma for Minimality *)
(*************************)

Lemma d _inv exists fn : forall d outT x,
X € (d_inv d outT) ->
exists f y, FnD f d /\ f x = Res y /\ y € outT.
Proof with auto.
intros d.
induction d as [i | i d' IH];
intros outT x Hx.
{
unfold d inv in Hx.
simpl in *. eapply i inv_exists fn...

unfold d inv in Hx.
simpl in *.
destruct Hx as [x Hx1 Hx2].
destruct Hx2 as [x Hx2 | x Hx2].
{
assert (x € (i_inv i outT)) as Hx by auto.
destruct (i _inv exists fn Hx) as [f [y [H]]].
exists f. exists y...
}
{
unfold d inv in Hx1.
assert (x € (d_inv d' outT)) as Hx.
unfold d inv...
destruct (IH outT x Hx) as [f [y [H1 [H2 H3]1]].
exists f. exists y...
}

}
Qed.

(*************************)
(* Minimality *)

(*************************}

Theorem d_inv_minimal : forall d outT inT,
InvD d outT inT ->
(d_inv d outT) <: inT.

Proof with auto.

154

intros d outT inT Hinv x HXx.
destruct (d _inv _exists fn Hx) as [f [y [H1 [H2 H3]]1].
unfold d inv in *. destruct Hx as [x Hx1 Hx2].
unfold InvD in Hinv.
specialize (Hinv f H1 x y Hx1 H2 H3)...
Qed.

155

APPENDIX B
NUMERIC TOWER TYPES

To demonstrate that function application inversion can scale to handle the Typed Racket
numeric tower (see section 5.3), we use a model of the numeric tower which is described
precisely in this appendix. It more-or-less identical to the types Typed Racket uses (as of
version 7.2) to model the numeric tower (the differences are not interesting, e.g. we use
abbreviated camel-case instead of hyphens, etc). In this model, the set of numeric values in

Racket are partitioned into disjoint sets described by the following “numeric base types”:

Zero One BytelLargerThanOne
PosIndexNotByte PosFixnumNotIndex NegFixnum
PosIntegerNotFixnum NegIntegerNotFixnum PosRationalNotInteger
NegRationalNotInteger FloatNaN FloatPosZero
FloatNegZero PosFloatNumber PosFloatInfinity
NegFloatNumber NegFloatInfinity SingleFloatNaN
SingleFloatPosZero SingleFloatNegZero PosSingleFloatNumber

PosSingleFloatInfinity NegSingleFloatNumber NegSingleFloatInfinity
ExactImaginary ExactComplex FloatImaginary

SingleFloatImaginary FloatComplex SingleFloatComplex

E.g., the type Zero covers the set {0}, One covers {1}, BytelLargerThanOne covers
{2,...,255}, etc. From here, unions of types are defined to describe the natural sub-
sets of the numeric tower. In the following tables, the left column names a numeric union

which is defined to be the union of all of the types in the right column of the same row.

156

Named Union

Union Members

NaN SingleFloatNaN FloatNaN
PosByte One BytelLargerThanOne
Byte Zero PosByte
One BytelLargerThanOne
PosIndex
PosIndexNotByte
Index Zero PosIndex
PosFixnum PosFixnumNotIndex PosIndex
NonnegFixnum PosFixnum Zero
NonposFixnum NegFixnum Zero
NegFixnum Zero
Fixnum
PosFixnum
IntegerNotFixnum NegIntegerNotFixnum PosIntegerNotFixnum
FixnumNotIndex NegFixnum PosFixnumNotIndex
PosInteger PosIntegerNotFixnum PosFixnum
NonnegInteger Zero PosInteger
NegInteger NegFixnum NegIntegerNotFixnum
NonposInteger NegInteger Zero
NegInteger Zero
Integer
PosInteger
PosRational PosRationalNotInteger PosInteger
NonnegRational Zero PosRational
NegRational NegRationalNotInteger NegInteger
NonposRational NegRational Zero
RationalNotInteger NegRationalNotInteger PosRationalNotInteger

157

Named Union

Union Members

NegRational Zero

Rational
PosRational
FloatPosZero FloatNegZero
FloatZero
FloatNaN
PosFloatNumber PosFloatInfinity
PosFloat
FloatNaN
NonnegFloat PosFloat FloatZero
NegFloatNumber NegFloatInfinity
NegFloat
FloatNaN
NonposFloat NegFloat FloatZero
NegFloatNumber NegFloatInfinity
FloatNegZero FloatPosZero
Float
PosFloatNumber PosFloatInfinity
FloatNaN
SingleFloatPosZero SingleFloatNegZero
SingleFloatZero
SingleFloatNaN
InexactRealNaN FloatNaN SingleFloatNaN
InexactRealPosZero SingleFloatPosZero FloatPosZero
InexactRealNegZero SingleFloatNegZero FloatNegZero
InexactRealPosZero InexactRealNegZero
InexactRealZero
InexactRealNaN
PosSingleFloatNumber PosSingleFloatInfinity
PosSingleFloat
SingleFloatNaN
PosInexactReal PosSingleFloat PosFloat
NonnegSingleFloat PosSingleFloat SingleFloatZero
NonnegInexactReal PosInexactReal InexactRealZero

158

Named Union

Union Members

NegSingleFloatNumber NegSingleFloatInfinity

NegSingleFloat
SingleFloatNaN
NegInexactReal NegSingleFloat NegFloat
NonposSingleFloat NegSingleFloat SingleFloatZero
NonposInexactReal NegInexactReal InexactRealZero
NegSingleFloat SingleFloatNegZero
SingleFloat SingleFloatPosZero PosSingleFloat
SingleFloatNaN
InexactReal SingleFloat Float
PosInfinity PosFloatInfinity PosSingleFloatInfinity
NegInfinity NegFloatInfinity NegSingleFloatInfinity
RealZero Zero InexactRealZero
Zero InexactRealPosZero
RealZeroNoNaN
InexactRealNegZero
PosReal PosRational PosInexactReal
NonnegReal NonnegRational NonnegInexactReal
NegReal NegRational NegInexactReal
NonposReal NonposRational NonposInexactReal
Real Rational InexactReal
ExactImaginary ExactComplex
ExactNumber
Rational
InexactImaginary FloatImaginary SingleFloatImaginary
Imaginary ExactImaginary InexactImaginary
InexactComplex FloatComplex SingleFloatComplex
Real Imaginary
Number

ExactComplex InexactComplex

159

Next for comparison in figures B.1 through B.4 we give the full Typed Racket type for
+ (the binary cases) which has 85 arrows, followed by the semantic type (i.e. for a language

like Asp) in figure B.5 which has 26 arrows.

160

> DS OS> O$ OY$Y OZX OZ DX DZo)ZYy) v Yy »y » DV oS DY D$D2DO9D O OO

PosByte X PosByte — PosIndex

Byte X Byte — Index

PosByte X PosByte — PosIndex

PosIndex X Index — PosFixnum

Index X PosIndex — PosFixnum

Index X Index — NonnegFixnum

NegFixnum X One — NonposFixnum

One X NegFixnum — NonposFixnum

NonposFixnum X NonnegFixnum — Fixnum
NonnegFixnum X NonposFixnum — Fixnum
PosInteger X NonnegInteger — PosInteger
NonnegInteger X PosInteger — PosInteger
NegInteger X NonposInteger — NegInteger
NonposInteger X NegInteger — NegInteger
NonnegInteger X NonnegInteger — NonnegInteger
NonposInteger X NonposInteger — NonposInteger
Integer X Integer — Integer

PosRational X NonnegRational — PosRational
NonnegRational X PosRational — PosRational
NegRational X NonposRational — NegRational
NonposRational X NegRational — NegRational
NonnegRational X NonnegRational — NonnegRational
NonposRational X NonposRational — NonposRational

Rational X Rational — Rational

Figure B.1: Syntactic Type of + (1 of 4)

161

DD D B D BED ENED BNED B B B D D D D B B B B B D D R B

D)

PosFloat X NonnegReal — PosFloat

NonnegReal X PosFloat — PosFloat

PosReal X NonnegFloat — PosFloat

NonnegFloat X PosReal — PosFloat

NegFloat X NonposReal — NegFloat

NonposReal X NegFloat — NegFloat

NegReal X NonposFloat — NegFloat

NonposFloat X NegReal — NegFloat

NonnegFloat X NonnegReal — NonnegFloat

NonnegReal X NonnegFloat — NonnegFloat

NonposFloat X NonposReal — NonposFloat

NonposReal X NonposFloat — NonposFloat

Float X Real — Float

Real X Float — Float

Float X Float — Float

PosSingleFloat X (NonnegRational U NonnegSingleFloat) — PosSingleFloat
(NonnegRational U NonnegSingleFloat) X PosSingleFloat — PosSingleFloat
(PosRational U PosSingleFloat) X NonnegSingleFloat — PosSingleFloat
NonnegSingleFloat X (PosRational U PosSingleFloat) — PosSingleFloat
NegSingleFloat X (NonposRational U NonposSingleFloat) — NegSingleFloat
(NonposRational U NonposSingleFloat) X NegSingleFloat — NegSingleFloat
(NegRational U NegSingleFloat) X NonposSingleFloat — NegSingleFloat
NonposSingleFloat X (NegRational U NegSingleFloat) — NegSingleFloat
NonnegSingleFloat X (NonnegRational U NonnegSingleFloat)

— NonnegSingleFloat

(NonnegRational U NonnegSingleFloat) X NonnegSingleFloat

— NonnegSingleFloat

Figure B.2: Syntactic Type of + (2 of 4)

162

D

DI D D D B0 B B B B JD D D RS B B B D D D R |

NonposSingleFloat X (NonposRational U NonposSingleFloat)
— NonposSingleFloat

(NonposRational U NonposSingleFloat) X NonposSingleFloat
— NonposSingleFloat

SingleFloat X (Rational U SingleFloat) — SingleFloat
(Rational U SingleFloat) X SingleFloat — SingleFloat
SingleFloat X SingleFloat — SingleFloat
PosInexactReal X NonnegReal — PosInexactReal
NonnegReal X PosInexactReal — PosInexactReal
PosReal X NonnegInexactReal — PosInexactReal
NonnegInexactReal X PosReal — PosInexactReal
NegInexactReal X NonposReal — NegInexactReal
NonposReal X NegInexactReal — NegInexactReal
NegReal X NonposInexactReal — NegInexactReal
NonposInexactReal X NegReal — NegInexactReal
NonnegInexactReal X NonnegReal — NonnegInexactReal
NonnegReal X NonnegInexactReal — NonnegInexactReal
NonposInexactReal X NonposReal — NonposInexactReal
NonposReal X NonposInexactReal — NonposInexactReal
InexactReal X Real — InexactReal

Real X InexactReal — InexactReal

PosReal X NonnegReal — PosReal

NonnegReal X PosReal — PosReal

NegReal X NonposReal — NegReal

NonposReal X NegReal — NegReal

Figure B.3: Syntactic Type of + (3 of 4)

163

DO DODODDODDODDDOD

D

NonnegReal X NonnegReal — NonnegReal

NonposReal X NonposReal — NonposReal

Real X Real — Real

ExactNumber X ExactNumber — ExactNumber

FloatComplex X Number — FloatComplex

Number X FloatComplex — FloatComplex

Float X InexactComplex — FloatComplex

InexactComplex X Float — FloatComplex

SingleFloatComplex X (Rational U SingleFloat U SingleFloatComplex)
— SingleFloatComplex

(Rational U SingleFloat U SingleFloatComplex) X SingleFloatComplex
— SingleFloatComplex

InexactComplex X (Rational U InexactReal U InexactComplex)

— InexactComplex

(Rational U InexactReal U InexactComplex) X InexactComplex

— InexactComplex

Number X Number — Number

Figure B.4: Syntactic Type of + (4 of 4)

164

—_

‘Index X Index — NonnegFixnun

[y

[y

1

[e=ry

PosReal X NonnegReal — PosReal
NonnegReal X PosReal — PosReal ?
NegReal X NonposReal — NegReal ?
NonposReal X NegReal — NegReal ?
NonnegReal X NonnegReal — NonnegReal ?
NonposReal X NonposReal — NonposReal ?

D ERND R BED D B B B B D B B D B D B D D D D B D B)
II|
w

w

w

“

| w
w

D

4

D

=
(0]
<

Figure B.5: Semantic Type of +

165

APPENDIX C
CDUCE NUMERIC TOWER

(* This file defines type synonymns meant to mimic the *)

(* Racket numeric tower. These are roughly the same base types *)
(* and unions Typed Racket uses today. However, Typed Racket *)
(* does not attempt to reason completely about the types in *)
(* general (e.g., function application for an intersection of *)
(* arrows simply picks the first applicable arrow instead of *)
(* reasoning about all applicable arrows). *)

(* base numeric types *)

type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type

zero = Zero

one = One

byteLargerThanOne = "ByteLargerThanOne
posIndexNotByte = "PosIndexNotByte

posFixnumNotIndex = "PosFixnumNotIndex
negFixnum = "NegFixnum

posIntegerNotFixnum = “PosIntegerNotFixnum
negIntegerNotFixnum = “NegIntegerNotFixnum

posRationalNotInteger
negRationalNotInteger
floatNaN = "FloatNaN

"PosRationalNotInteger
"NegRationalNotInteger

floatPosZero = "FloatPosZero
floatNegZero = "FloatNegZero
posFloatNumber = “PosFloatNumber
posFloatInfinity = "PosFloatInfinity
negFloatNumber = “NegFloatNumber

negFloatInfinity = “NegFloatInfinity
singleFloatNaN = "SingleFloatNaN
singleFloatPosZero = "SingleFloatPosZero
singleFloatNegZero = "SingleFloatNegZero
posSingleFloatNumber = “PosSingleFloatNumber
posSingleFloatInfinity = "PosSingleFloatInfinity
negSingleFloatNumber = “NegSingleFloatNumber
negSingleFloatInfinity = "NegSingleFloatInfinity

exactImaginary = “ExactImaginary
exactComplex = "ExactComplex

floatImaginary = " FloatImaginary
singleFloatImaginary = "SingleFloatImaginary

floatComplex = "“FloatComplex
singleFloatComplex = "SingleFloatComplex

(* compound numeric types *)

type
type
type
type
type
type
type
type
type

posByte = (one | byteLargerThanOne)

byte = (zero | posByte)

posIndex = (one | byteLargerThanOne | posIndexNotByte)
index = (zero | posIndex)

posFixnum = (posFixnumNotIndex | posIndex)
nonnegFixnum = (posFixnum | zero)

nonposFixnum = (negFixnum | zero)

fixnum = (negFixnum | zero | posFixnum)

posInteger = (posIntegerNotFixnum | posFixnum)

166

type
type
type
type
type
type
type
type
type
type
type
type
type
type
type

type

type
type
type
type

type

type
type
type
type

type
type
type
type

type
type
type
type
type
type
type
type
type
type
type
type
type
type
type

nonnegInteger = (zero | posInteger)
negInteger = (negFixnum | negIntegerNotFixnum)
nonposInteger = (negInteger | zero)
integer = (negInteger | zero | posInteger)
posRational = (posRationalNotInteger | posInteger)
nonnegRational = (zero | posRational)
negRational = (negRationalNotInteger | negInteger)
nonposRational = (negRational | zero)
rational = (negRational | zero | posRational)
floatZero = (floatPosZero | floatNegZero | floatNaN)
posFloat = (posFloatNumber | posFloatInfinity | floatNaN)
nonnegFloat = (posFloat | floatZero)
negFloat = (negFloatNumber | negFloatInfinity | floatNaN)
nonposFloat = (negFloat | floatZero)
float = (negFloatNumber | negFloatInfinity | floatNegZero
| floatPosZero | posFloatNumber | posFloatInfinity
| floatNaN)
singleFloatZero = (singleFloatPosZero | singleFloatNegZero
| singleFloatNaN)
inexactRealNaN = (floatNaN | singleFloatNaN)
inexactRealPosZero = (singleFloatPosZero | floatPosZero)
inexactRealNegZero = (singleFloatNegZero | floatNegZero)
inexactRealZero = (inexactRealPosZero | inexactRealNegZero
| inexactRealNaN)
posSingleFloat = (posSingleFloatNumber | posSingleFloatInfinity
| singleFloatNaN)
posInexactReal = (posSingleFloat | posFloat)
nonnegSingleFloat = (posSingleFloat | singleFloatZero)
nonnegInexactReal = (posInexactReal | inexactRealZero)
negSingleFloat = (negSingleFloatNumber | negSingleFloatInfinity
| singleFloatNaN)
negInexactReal = (negSingleFloat | negFloat)
nonposSingleFloat = (negSingleFloat | singleFloatZero)
nonposInexactReal = (negInexactReal | inexactRealZero)

singleFloat = (negSingleFloat | singleFloatNegZero | singleFloatPosZero
| posSingleFloat | singleFloatNaN)

inexactReal = (singleFloat | float)

posInfinity = (posFloatInfinity | posSingleFloatInfinity)

negInfinity = (negFloatInfinity | negSingleFloatInfinity)

realZero = (zero | inexactRealZero)

realZeroNoNaN (zero | inexactRealPosZero | inexactRealNegZero)
posReal = (posRational | posInexactReal)

nonnegReal = (nonnegRational | nonnegInexactReal)

negReal = (negRational | negInexactReal)

nonposReal = (nonposRational | nonposInexactReal)

real = (rational | inexactReal)

exactNumber = (exactImaginary | exactComplex | rational)
inexactImaginary = (floatImaginary | singleFloatImaginary)
imaginary = (exactImaginary | inexactImaginary)
inexactComplex = (floatComplex | singleFloatComplex)

number = (real | imaginary | exactComplex | inexactComplex)

(* Typed Racket's type for plus has about 125 arrows in its type. *)

(* However, Typed Racket reasons simply about function application; *)

(* Typed Racket simply picks the first applicable arrow and uses that. *)
(* The type below for plus is a condensed version that is just *)

(* as expressive as Typed Racket (for the 2 argument case) *)

(* when a more complete/precise calculation is used for function *)

167

(* application. *)
let plus ((byte, byte) -> index
(index, index) -> nonnegFixnum
(negFixnum, one) -> nonposFixnum
(one, negFixnum) -> nonposFixnum
(nonposFixnum, nonnegFixnum) -> fixnum
(nonnegFixnum, nonposFixnum) -> fixnum
(integer, integer) -> integer
(float, real) -> float
(real, float) -> float
(singleFloat, rational | singleFloat) -> singleFloat
(rational | singleFloat, singleFloat) -> singleFloat
; (posReal, nonnegReal) -> posReal
(nonnegReal, posReal) -> posReal
(negReal, nonposReal) -> negReal
(nonposReal, negReal) -> negReal
(nonnegReal, nonnegReal) -> nonnegReal
(nonposReal, nonposReal) -> nonposReal
(real, real) -> real
(exactNumber, exactNumber) -> exactNumber
(floatComplex, number) -> floatComplex
(number, floatComplex) -> floatComplex
(float, inexactComplex) -> floatComplex
(inexactComplex, float) -> floatComplex
; (singleFloatComplex, rational | singleFloat | singleFloatComplex)
-> singleFloatComplex
; (rational | singleFloat | singleFloatComplex, singleFloatComplex)
-> singleFloatComplex
; (number, number) -> number

| (a, b) -> raise (a,b)

let applyToPair (f : ('a , 'b) -> 'c) (p: ('a, 'b)) : 'c=1T p;;

(* This line takes an extremely long time to type check (> 15 min): *)

let addPosBytes (bl : posByte) (b2 : posByte) : posIndex =
applyToPair plus (bl, b2);;

168

[10]

[11]

REFERENCES

Robert Cartwright. “User-defined data types as an aid to verifying LISP programs”.
In: ICALP. 1976.

Gilad Bracha and David Griswold. “Strongtalk: typechecking Smalltalk in a produc-
tion environment.” In: OOPSLA. 1993.

Microsoft Co. TypeScript Language Specification. http://www.typescriptlang.org. 2014.

Ravi Chugh, David Herman, and Ranjit Jhala. “Dependent Types for JavaScript”. In:
OOPSLA. 2012.

Benjamin S. Lerner et al. “TeJaS: Retrofitting Type Systems for JavaScript”. In:

Proceedings of the 9th Symposium on Dynamic Languages. DLS. 2013.

Aseem Rastogi et al. “Safe & Efficient Gradual Typing for TypeScript”. In: Pro-
ceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’15. Mumbai, India: ACM, 2015, pp. 167-180. ISBN:
978-1-4503-3300-9.

Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. “Trust, but Verify: Two-Phase
Typing for Dynamic Languages”. In: ECOOP. 2015.

Avik Chaudhuri et al. “Fast and Precise Type Checking for JavaScript”. In: Proc.
ACM Program. Lang. 1.00PSLA (Oct. 2017), 48:1-48:30.

Sam Tobin-Hochstadt and Matthias Felleisen. “Logical Types for Untyped Languages”.
In: Proc. ACM Intl. Conf. on Functional Programming. ICFP. 2010.

Ambrose Bonnaire-Sergeant, Rowan Davies, and Sam Tobin-Hochstadt. “Practical

Optional Types for Clojure”. In: ESOP 2016. 2016.

André Murbach Maidl, Fabio Mascarenhas, and Roberto Ierusalimschy. “Typed Lua:
An Optional Type System for Lua”. In: Proceedings of the ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI) (June 2014).

169

Facebook Inc. Hack. http://hacklang.org. 2014.

Michael M. Vitousek et al. “Design and Evaluation of Gradual Typing for Python”.
In: DLS. 2014.

Sam Tobin-Hochstadt and Matthias Felleisen. “The Design and Implementation of
Typed Scheme”. In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Sympo-
stum on Principles of Programming Languages. POPL ’08. San Francisco, California,

USA: ACM, 2008, pp. 395-406. 1SBN: 978-1-59593-689-9.

Ceylon Project. The Ceylon Language. https://ceylon-lang.org/documentation /1.3 /spec/.
Visited on 2019-02-14.

David J. Pearce. “Sound and Complete Flow Typing with Unions, Intersections and

Negations”. In: VMCALI. 2013.
JetBrains. Kotlin. http://kotlinlang.org/docs/reference/. Visited on 2019-02-14.
Apache Software Foundation. Groovy. http://groovy-lang.org. Visited on 2019-02-14.

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. “The essence of JavaScript”.

In: ECOOP. 2010.

Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. “Liquid Types”. In: Proc. ACM

Conf. on Programming Language Design and Implementation. PLDI. 2008.

Gavin M. Bierman et al. “Semantic Subtyping with an SMT Solver”. In: Proceedings of
the 15th ACM SIGPLAN International Conference on Functional Programming. ICFP
’10. Baltimore, Maryland, USA: ACM, 2010, pp. 105-116. 1sBN: 978-1-60558-794-3.

Nikhil Swamy et al. “Secure Distributed Programming with Value-dependent Types”.
In: Proc. ACM Intl. Conf. on Functional Programming. ICFP. 2011.

Niki Vazou et al. “Refinement Types for Haskell”. In: Proc. ACM Intl. Conf. on

Functional Programming. ICFP. 2014.

Benjamin C. Pierce and David N. Turner. “Local Type Inference”. In: ACM Trans.
Program. Lang. Syst. (2000).

Facebook Inc. Flow: A static type checker for JavaScript. http://flowtype.org. 2014.

170

[26]

[27]

[28]

[29]

[34]

[35]

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. “Typing Local Control
and State Using Flow Analysis”. In: Proceedings of the 20th European Conference on
Programming Languages and Systems: Part of the Joint European Conferences on

Theory and Practice of Software. ESOP. 2011.

Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyén. “Set-Theoretic Types

for Polymorphic Variants” In: ICFP. 2016.

Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. “Semantic Subtyping:
Dealing Set-theoretically with Function, Union, Intersection, and Negation Types”.

In: J. ACM 55.4 (Sept. 2008), 19:1-19:64.

Simon Peyton Jones et al. “Simple Unification-based Type Inference for GADTs”. In:
Proceedings of the Eleventh ACM SIGPLAN International Conference on Functional
Programming. ICFP ’06. Portland, Oregon, USA: ACM, 2006, pp. 50—61. 1SBN: 1-
59593-309-3.

Ambrose Bonnaire-Sergeant, Rowan Davies, and Sam Tobin-Hochstadt. “Practical
Optional Types for Clojure”. In: Thiemann P. (eds) Programming Languages and
Systems. ESOP ’06. Springer, 2006, pp. 68-94.

Ravi Chugh, Patrick M. Rondon, and Ranjit Jhala. “Nested Refinements: A Logic for
Duck Typing”. In: Proc. ACM Sym. on Principles of Programming Languages. POPL.
2012.

Jessica Gronski et al. “Sage: Hybrid Checking for Flexible Specifications”™ In: Proc.

Wksp. on Scheme and Functional Programming. 2006.

Kenneth Knowles and Cormac Flanagan. “Compositional Reasoning and Decidable

Checking for Dependent Contract Types”. In: PLPV. 2009.

Xinming Ou et al. “Dynamic Typing with Dependent Types”. In: IFIP Intl. Conf. on

Theoretical Computer Science (2004).

Benjamin Cosman and Ranjit Jhala. “Local Refinement Typing”. In: Proc. ACM Pro-
gram. Lang. 1.ICFP (Aug. 2017), 26:1-26:27.

171

[36]

[40]

[41]

[44]

[45]

[46]

Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. “Refinement Types for Type-
Script”. In: Proceedings of the 87th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. PLDI '16. Santa Barbara, CA, USA: ACM, 2016,
pp- 310-325. 1SBN: 978-1-4503-4261-2.

Sam Tobin-Hochstadt and Matthias Felleisen. “Interlanguage Migration: From Scripts
to Programs”. In: DLS. 2006.

Esteban Allende et al. “Gradual Typing for Smalltalk”. In: Science of Computer Pro-

gramming (2014).

Matthew Fluet and Riccardo Pucella. “Practical Datatype Specializations with Phan-
tom Types and Recursion Schemes”. In: FElectronic Notes in Theoretical Computer

Science (2006).

Stephanie Weirich. “Depending on Types”. In: Proc. ACM Intl. Conf. on Functional
Programming. ICFP. 2014.

Hongwei Xi and Frank Pfenning. “Eliminating Array Bound Checking Through De-
pendent Types”. In: Proc. ACM Conf. on Programming Language Design and Imple-
mentation. PLDI. 1998.

George B. Dantzig and B. Curtis Eaves. “Fourier-Motzkin Elimination and Its Dual”.
In: J. Combinatorial Theory Series A (1973).

Hongwei Xi. “Dependent ML: An Approach to Practical Programming with Depen-

dent Types”. In: J. Functional Programming (2007).

Leonardo De Moura and Nikolaj Bjorner. “Z3: An Efficient SMT Solver”. In: TACAS.
2008.

Frederic P. Miller, Agnes F. Vandome, and John McBrewster. Advanced Encryption
Standard. 2009.

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engineering
with PLT Redex. MIT Press, 2009.

Matthew Flatt and PLT. Reference: Racket. Tech. rep. PLT-TR-2010-1. https://racket-
lang.org/trl. PLT Design Inc., 2010.

172

[48]

[49]

[50]

[51]

[54]

[55]

Christos Dimoulas et al. “Correct Blame for Contracts: No More Scapegoating”. In:
Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL ’11. Austin, Texas, USA: ACM, 2011, pp. 215-226.
ISBN: 978-1-4503-0490-0.

Chiyan Chen and Hongwei Xi. “Combining Programming with Theorem Proving”. In:

Proc. ACM Intl. Conf. on Functional Programming. ICFP. 2005.

Nikhil Swamy et al. “Dependent Types and Multi-monadic Effects in F*”. In: Proc.

ACM Sym. on Principles of Programming Languages. POPL. 2016.

Kenneth Knowles and Cormac Flanagan. “Hybrid Type Checking”. In: ACM Trans.
Program. Lang. Syst. (2010).

Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich. “Contracts Made
Manifest”. In: Proc. ACM Sym. on Principles of Programming Languages. POPL.
2010.

Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. “CDuce: An XML-centric
General-purpose Language”. In: Proceedings of the Eighth ACM SIGPLAN Interna-
tional Conference on Functional Programming. ICFP ’03. Uppsala, Sweden: ACM,
2003, pp. 51-63. 1SBN: 1-58113-756-7.

The Pony Developers. Pony. https://www.ponylang.io/. Visited on 2019-02-18.

Koen Claessen and John Hughes. “QuickCheck: A Lightweight Tool for Random Test-
ing of Haskell Programs”. In: Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming. ICEFP ’00. New York, NY, USA: ACM, 2000,
pp- 268-279. 1SBN: 1-58113-202-6.

Alain Frisch. Théorie, conception et réalisation d’un langage adapté ¢ XML. Ph.D
thesis (in French). 2004.

Giuseppe Castagna. “Covariance and Controvariance: a fresh look at an old issue (a
primer in advanced type systems for learning functional programmers)”. In: CoRR

abs/1809.01427 (2018). arXiv: 1809.01427.

173

https://arxiv.org/abs/1809.01427

[58]

[59]

[60]

[61]

David J. Pearce. “Rewriting for Sound and Complete Union, Intersection and Negation
Types”™. In: Proceedings of the 16th ACM SIGPLAN International Conference on
Generative Programming: Concepts and FExperiences. GPCE 2017. Vancouver, BC,
Canada: ACM, 2017, pp. 117-130. 1SBN: 978-1-4503-5524-7.

Giuseppe Castagna and Alain Frisch. “A Gentle Introduction to Semantic Subtyping”.
In: Proceedings of the 7th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming. PPDP ’05. Lisbon, Portugal: ACM, 2005,
pp. 198-199. 1SBN: 1-59593-090-6.

Giuseppe Castagna et al. “Polymorphic Functions with Set-theoretic Types: Part
1: Syntax, Semantics, and Evaluation”. In: Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’14. San Diego,
California, USA: ACM, 2014, pp. 5-17. 1SBN: 978-1-4503-2544-8.

Giuseppe Castagna et al. “Polymorphic Functions with Set-Theoretic Types: Part
2: Local Type Inference and Type Reconstruction”. In: Proceedings of the 42Nd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’15. Mumbai, India: ACM, 2015, pp. 289-302. 1sBN: 978-1-4503-3300-9.

Giuseppe Castagna and Victor Lanvin. “Gradual Typing with Union and Intersection

Types”. In: Proc. ACM Program. Lang. 1.ICFP (Aug. 2017), 41:1-41:28.

Davide Ancona et al. “Semantic subtyping for non-strict languages”. In: 24th Inter-

national Conference on Types for Proofs and Programs (TYPES 2018). 2018.

G. Castagna, R. De Nicola, and D. Varacca. “Semantic subtyping for the m-calculus”.
In: Theoretical Computer Science 398.1-3 (2008). Essays in honour of Mario Coppo,

Mariangiola Dezani-Ciancaglini and Simona Ronchi della Rocca, pp. 217-242.

Fabian Muehlboeck and Ross Tate. “Empowering Union and Intersection Types with
Integrated Subtyping”. In: Proc. ACM Program. Lang. 2.00PSLA (Oct. 2018), 112:1—
112:29.

Paul Lorenzen. “Konstruktive Begriindung der mathematik”. In: Mathematische Zeitschrift

53 (1950).

174

[67]

[68]

[69]

[70]

Enrico Moriconi and Laura Tesconi. “On Inversion Principles”™ In: History and Phi-

losophy of Logic 29 (May 2008), pp. 103-113.

Andrew M. Kent, David Kempe, and Sam Tobin-Hochstadt. “Occurrence Typing
Modulo Theories”. In: Proc. ACM Conf. on Programming Language Design and Im-
plementation. PLDI. 2016.

Andrew K. Wright and Matthias Felleisen. “A Syntactic Approach to Type Sound-

ness”. In: Information and Computation 115.1 (Nov. 1994), pp. 38-94.

Vincent St-Amour et al. “Typing the Numeric Tower”. In: Proceedings of the 14th
International Conference on Practical Aspects of Declarative Languages. PADL’12.

Philadelphia, PA: Springer-Verlag, 2012, pp. 289-303. 1SBN: 978-3-642-27693-4.
Giuseppe Castagna. Private communication. 2018-09-06.

Adam Chlipala. Certified Programming with Dependent Types: A Pragmatic Introduc-
tion to the Coq Proof Assistant. The MIT Press, 2013. 1SBN: 0262026651, 9780262026659.

175

Andrew M. Kent

RESEARCHER - SOFTWARE ENGINEER * PROGRAMMING LANGUAGE SPECIALIST
= pnwamk@gmail.com | « pnwamk.github.io | e pnwamk
Education
Indiana University Bloomington, Indiana
PH.D. IN COMPUTER SCIENCE May 2014 - Oct. 2019

Dissertation topic: Advanced Logical Type Systems for Untyped Languages.
Advised by Sam Tobin-Hochstadt.

Indiana University Bloomington, Indiana
M.S. IN COMPUTER SCIENCE May 2014 - May 2017
Brigham Young University Provo, Utah
B.S. IN COMPUTER SCIENCE Aug. 2010 - Aug. 2013

Graduated magna cum laude.

Technical Skills

Programming Racket, Haskell, C/C++, Java, Scala, Python, unix tools, KTEX, etc
Verification Coq

Experience
Galois, Inc. Portland, Oregon
RESEARCH ENGINEER Apr. 2019 - Present

Investigate and develop of research software and technologies leveraging programming language and
verification techniques.

Indiana University Bloomington, Indiana
GRADUATE RESEARCH ASSISTANT May 2014 - Mar. 2019

Developed novel technique for adding refinement types to a type system for untyped languages (i.e.
Typed Racket) which is included in releases of the Racket programming language since v6.11.
Modeled and mechanically verified a novel technique for combining semantic subtyping with a type
system for untyped languages.

Advised by Sam Tobin-Hochstadt.

INSTRUCTOR (CSCI-B 490/629 DEPENDENT TYPES) Spring 2018
Taught introductory dependent types course based on Friedman and Christiansen’s “The Little Typer™.

Microsoft Research Ltd. Cambridge, UK
RESEARCH INTERN May 2017 - Jul. 2017

Developed and prototyped unique solutions to trusted computing problems in the cloud leveraging
TPM and SGX/Enclave technologies. (U.S. patent application 20190163898.)
Advised by Sylvan Clebsch.

Brigham Young University Provo, Utah

GRADUATE RESEARCH ASSISTANT Aug. 2013 - Apr. 2014
Investigated the formalization of security protocol analysis techniques (Strand Spaces) utilizing the
Coq proof assistant.

Advised by Dr. Jay McCarthy.
Microsoft Corporation Redmond, Washington
SOFTWARE DEVELOPMENT ENGINEER INTERN May 2012 - Aug. 2012

Explored optimizations and improvements for Microsoft OneNote during a summer internship.

Brigham Young University Provo, Utah
UNDERGRADUATE RESEARCH ASSISTANT May 2011 - Sep. 2011

Developed method for automatically generating historical social networks from source documents.
Advised by Dr. William Berret and Dr. Tom Sederberg.

OCTOBER 8, 2019 ANDREW M. KENT CURRICULUM VITAE

United States Marine Corps

SIGNALS INTELLIGENCE ANALYST

Camp Pendleton, California
Nov. 2005 - Aug. 2010

o Provided SIGINT analysis and reporting in support of military operations during deployments in 2008
and 2009; led and trained team of five SIGINT analysts during 2009 deployment.

o Received honorable discharge at the rank of Sergeant.

Publications

Migratory Typing: Ten Years Later

S. ToBIN-HocusTADT, M. FELLEISEN, R. B. FINDLER, M. FrATT, B.
GREENMAN, A. M. Kent, V. ST-AMOUR, , T. S. STRICKLAND, A.
TAKIKAWA. Proc. 2" Summit on Advances in Programming Languages.
Occurrence Typing Modulo Theories

A. M. Kent, D. KEMPE, S. TOBIN-HOCHSTADT. Proc. 87" ACM Conf. on
Programming Language Design and Implementation.

Design and Evaluation of Gradual Typing for Python
M.M. VITOUSEK, A. M. Kent, J.G. SIEK, J. BAKER. Proc. 10" ACM
Symposium on Dynamic Languages.

Linking the Past: Discovering Historical Social Networks
from Documents and Linking to a Genealogical Database
D.J. KENNARD, A. M. Kent, W.A. BARRET. Proc. 15 Workshop on

Historical Document Imaging and Processing.

SNAPL

2017

PLDI
2016
DLS

2014

HIP

2011

Open Source and Community Involvement

Typed Racket

CORE CONTRIBUTOR

github.com/racket/typed-
racket
Dec. 2014 - Mar. 2019

e Performed significant refactorings to improve performance and code maintainability.
o Added refinement types (v6.11) and other features/enhancements to the type system.

e Increased coverage of manual and random test suites.

o Helped adopt (Rust-inspired) RFC process to better coordinate contributions to the type system.

Racket

CONTRIBUTOR

github.com/racket/racket
Oct. 2016 - Mar. 2019

¢ Contributed occasional bug fixes, features, and improvements to the core Racket language.

Interfaith Winter Shelter Volunteer

VOLUNTEER

Bloomington, Indiana
Jan. 2016 - Mar. 2018

e Semi-regular night-shift volunteer at shelter for the homeless during winter months.

Honors, Awards, Etc

2017 People’s Choice Runner-up, MSR Cambridge Hackathon Cambridge, UK
2013 Fellowship, NASA Space Grant Consortium Provo, Utah
92007 1%t in class, Intermediate Comm. Signals Analysis Course, Pensacola,
Naval Center for Information Warfare Training Florida

2006 TS/SCI Clearance, expired approximately 2011
2002 Eagle Scout, Boy Scouts of America Cjamas,
Washington

OCTOBER 8, 2019 ANDREW M. KENT

CURRICULUM VITAE

	Title Page
	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	1 Introduction and Background
	1.1 Refinement Types
	1.2 Set-theoretic types
	1.3 Thesis Statement and Outline

	2 Occurrence Typing
	2.1 Occurrence Typing Examples
	2.2 OT: A Calculus for Occurrence Typing
	2.2.1 OT Syntax
	2.2.2 OT Type System
	2.2.3 OT Subtyping
	2.2.4 OT Logic and Type Metafunctions
	2.2.5 OT Semantics
	2.2.6 OT Soundness
	2.2.7 Scaling Up OT
	2.2.8 Related Work in Occurrence Typing

	3 Occurrence Typing with Refinement Types
	3.1 Beyond Occurrence Typing
	3.1.1 Occurrence Typing with Linear Arithmetic
	3.1.2 Occurrence Typing with Bitvectors

	3.2 Formal Model
	3.2.1 Syntax
	3.2.2 Typing Rules
	3.2.3 Subtyping and Proof System
	3.2.4 Integrating Additional Theories
	3.2.5 Semantics and Soundness

	3.3 Scaling to a Real Implementation
	3.3.1 Efficient, Algorithmic Subtyping
	3.3.2 Mutation
	3.3.3 Type Inference and Polymorphism
	3.3.4 Complex Macros

	3.4 Case Study: Safe Vector Access
	3.4.1 Enriching the Math Library

	3.5 Adding Refinements to Typed Racket
	3.5.1 Compiling Dependent Types into Contracts
	3.5.2 Pay-as-you-go costs for developers
	3.5.3 Dealing with Existentials

	3.6 Related Work

	4 Semantic Subtyping
	4.1 Set-theoretic Types
	4.1.1 Subtyping
	4.1.2 Semantic Subtyping
	4.1.3 Deciding Inhabitation, Normal Forms

	4.2 Type Representation
	4.2.1 Types as Data Structures
	4.2.2 Base DNF Representation
	4.2.3 Product and Function DNFs
	4.2.4 Parsing and Example Types

	4.3 Type Inhabitation
	4.3.1 Deciding Type Inhabitation

	4.4 Other Type-level Metafunctions
	4.4.1 Product Projection
	4.4.2 Function Domain
	4.4.3 Function Application

	4.5 Strategies for Testing
	4.6 Related Work
	4.6.1 Other Tutorials and Overviews
	4.6.2 First-order or incomplete semantic subtyping
	4.6.3 Semantic subtyping with additional features
	4.6.4 Expressive Syntactic Subtyping

	5 A Set-theoretic Foundation for Occurrence Typing
	5.1 Logical Inversion
	5.1.1 Function Application Inversion
	5.1.2 Algorithm Intuition
	5.1.3 Algorithm
	5.1.4 Soundness and Completeness
	5.1.5 Efficient Implementation
	5.1.6 Conservative Function Application Inversion

	5.2 Formal Language Model
	5.2.1 SO Syntax
	5.2.2 SO Type System
	5.2.3 SO Semantics
	5.2.4 SO Soundness
	5.2.5 Additional Language Features

	5.3 Semantic Numeric Tower
	5.3.1 Semantic Types for Comparison Operators
	5.3.2 Semantic Types for Other Numeric Operators
	5.3.3 Semantic/Syntactic Function Type Comparison
	5.3.4 Challenges and Future Work

	5.4 Expressiveness
	5.5 Related Work

	A Function Application Inversion Proofs
	B Numeric Tower Types
	C CDuce Numeric Tower
	References
	Curriculum Vitae

