Chainlink Confidential Compute
Whitepaper

Lorenz Breidenbach Alex Coventry Siam Hussain
Yan Ji Dahlia Malkhi Christian Miiller
Gregory Neven Chrysoula Stathakopoulou
Philipp Schindler Pawet Szatachowski*

Chainlink Labs

November 4, 2025

Abstract

Blockchains excel at integrity and availability but fall short on con-
fidentiality, preventing many important applications handling sensitive
data from running onchain. Existing approaches to decentralized confi-
dential computation based on multi-party computation (MPC), fully ho-
momorphic encryption (FHE), or zero-knowledge (ZK) proofs face per-
formance or applicability limits, while trusted execution environments
(TEEs) alone are too brittle to trust. This paper describes Chainlink
Confidential Compute that combines TEEs with threshold cryptography
to provide trust-minimized confidential computing as a decentralized ser-
vice. The system enforces a need-to-know data minimization principle on
TEEs, ensuring that a compromised TEE only learns the private inputs
of requests assigned to it after it was compromised. It additionally fea-
tures proactive key re-sharing of the master key and leverages cloud-hosted
TEEs for performance and security. The system integrates seamlessly with
the Chainlink Runtime Environment (CRE). We present its architecture,
security model, and use cases—including confidential API access, private
tokens, and privacy-preserving identity——showing how Chainlink Con-
fidential Compute makes practical decentralized confidential computing
possible. Looking ahead, Chainlink Confidential Compute follows a pro-
gressive roadmap towards combining TEEs with zero-knowledge proofs,
secure multi-party computation, and fully-homomorphic encryption, pro-
viding users with different choices depending on their preferred trust as-
sumptions and performance needs.

*Authors in alphabetical order.



1 Introduction

Blockchains have proven remarkably effective at providing integrity and avail-
ability to a decentralized system. Once data is committed to a blockchain, it
becomes practically immutable, and anyone can verify the correctness of the
chain’s history. Likewise, decentralized consensus and replication ensure that
data remains , even if individual nodes fail or act maliciously.

In contrast, blockchains offer little in the way of confidentiality. By design,
most blockchains embrace full transparency: every transaction and every con-
tract state is public, and this openness is often celebrated as a feature rather
than a flaw. Transparency enables verifiability, open participation, and broad
trust without intermediaries. But it also means that sensitive business logic, fi-
nancial data, or personal information cannot safely be processed onchain—ruling
out a wide swath of applications that would otherwise be natural candidates for
decentralized execution.

Existing approaches. Achieving decentralized confidentiality is hard. Sev-
eral approaches have been explored, each with its own limitations:

e Secure multi-party computation (MPC) and fully homomorphic
encryption (FHE) provide strong privacy guarantees in theory, but in
practice they are complex to engineer and suffer from high performance
overheads. This makes them challenging to deploy at scale for real-world
blockchain applications.

e Zero-knowledge (ZK) proofs have become somewhat practical in re-
cent years, but they are best suited for proving statements about a single
party’s data. They fall short when multiple independent data owners need
to jointly compute over their private inputs while keeping them hidden.

e Trusted Execution Environments (TEEs), also known as secure en-
claves, offer an attractive hardware-based approach, but history has shown
that they are not invulnerable. New attacks are discovered with troubling
regularity, raising concerns about their long-term security.

Chainlink Confidential Compute. Our new technology called Chainlink
Confidential Compute takes a different approach by combining the strengths
of existing paradigms while mitigating their weaknesses. We deliberately rely
on TEEs for their performance advantages, but design the system so that the
damage from any TEE compromise is tightly contained.

The key idea is to integrate TEEs with threshold encryption, ensuring that
no single machine, TEE or other, ever holds a master secret that, when compro-
mised, would jeopardize confidentiality of the entire system. Access to private
information is granted strictly on a need-to-know basis, following the principle of
least privilege. That is, each component only receives the minimum permissions
and data required to perform its role, and nothing more.



At the same time, the architecture leverages cloud-hosted TEEs provided
by reputable cloud providers, benefiting from the providers’ strong physical and
organizational security measures. Moreover, their multi-billion cloud business
itself serves as an external stake to the protocol: large providers have reputations
to protect, and the risk of reputational damage creates an additional deterrent
against mismanagement or abuse.

Decentralization is still preserved through cryptographic safeguards and dis-
tribution of trust. In particular, we do not rely on a single technology stack
or cloud provider; instead, we envisage a heterogeneous pool of TEEs spanning
different hardware vendors, cloud providers, and independent operators. This
pool is orchestrated and assigned by a decentralized network of node operators,
ensuring that no single organization or technology constitutes a single point of
failure.

This design aims to make confidential computing practical, scalable, and
compatible with the decentralized ethos that underpins blockchain systems.

2 System Architecture

2.1 System Overview

The architecture of Chainlink Confidential Compute combines decentralized or-
chestration with cloud-hosted trusted execution environments (TEEs), layered
with cryptographic safeguards. The design avoids dependence on a single vendor
or technology, relying instead on a heterogeneous pool of enclaves distributed
across cloud providers and operators.

Entities. The main entities in the system are:

e users, who feed private inputs into the Chainlink Confidential Compute
service by encrypting their inputs under the system’s master public key
and submitting the resulting ciphertexts to applications.

e applications, which may be centralized services or decentralized smart
contracts, assemble encrypted user inputs together with a description of
the code to be executed. This code specifies the algorithm that should be
run on the private inputs contained in the ciphertexts, forming a compu-
tation request.

e oracle nodes, organized in a decentralized oracle network (DON), that
jointly check the authenticity of requests, assigns requests to enclaves,
checks compliance, and attests to responses.

e decryption nodes, also organized in a DON, that collectively hold the
decryption master secret in threshold form, and that produce encrypted
key shares for enclaves.

e compute enclaves, TEEs that receive encrypted inputs and key shares,
execute computations, and return attested results.



0 Decryption

Nodes

-—

*o{} 7. DON—at:'tested

Application AN o
Users {F ‘ %li%& b
) a* 2.enc_inputs > o e
fa5 ool T ) —— W
Zod respdnse g 3 2 6 Q:@@,’o\j Compute
N %"Fs Enclaves
: 05,
| ° ;

Figure 1: High-level architecture and workflow in Chainlink Confidential Com-
pute. Steps 0-7 in the text illustrate how encrypted user inputs are processed
by the oracle nodes, decryption nodes, and compute enclaves to yield a verified
result.

Flow diagram. The overall workflow proceeds as depicted in Figure 1:

0. The decryption nodes jointly generates a public key and secret key shares
for a threshold public-key encryption scheme. In such a scheme, the de-
cryption key is split among many nodes so that no single node can decrypt
alone; only a threshold subset of nodes acting together can recover plain-
texts. In parallel, each compute enclave in the pool generates its own
public-private key pair, used to receive re-encrypted inputs from the Con-
fidential Data network.

1. Users encrypt their private inputs under the threshold public key and
submit the resulting ciphertexts to an application.

2. Applications (either centralized services or decentralized smart contracts
running on a blockchain) assemble encrypted inputs together with the
code to be executed on these private input into computation requests and
submit these to the Chainlink Confidential Compute service.

3. The oracle nodes verify the authenticity of each request (e.g., observing
a smart contract on a blockchain), assigns it to one or more compute
enclaves in the pool, and submits the quorum-signed encrypted inputs
and the assigned enclave public key to the decryption nodes.

4. The decryption nodes apply their secret shares to the encrypted inputs to
re-encrypt the encrypted inputs to the public key of the assigned enclave.



5. The oracle nodes forwards the quorum-signed re-encrypted inputs to the
designated compute enclave(s).

6. The compute enclave(s) decrypt the private inputs, execute the specified
computation, and produce an attestation over the result. This attesta-
tion proves not only that the computation was performed correctly, but
also that it was executed inside genuine enclave hardware running in the
designated cloud environment.

7. The oracle nodes verify the enclaves’ attestations, quorum-sign the result,
and return the signed result to the application.

2.2 Integration in the Chainlink Runtime Environment

The Chainlink Runtime Environment (CRE) provides a flexible framework for
composing decentralized services. At its core, CRE supports triggers that ini-
tiate workflows, workflows that define sequences of actions and capabilities,
capabilities that encapsulate services such as data feeds, randomness, or de-
cryption, and targets that are the endpoints that consume workflow results.
This abstraction allows developers to define modular and reusable decentralized
processes.

Chainlink Confidential Compute in CRE. Within CRE, the main com-
ponents of the Chainlink Confidential Compute architecture correspond to CRE
roles as follows:

e The oracle nodes are instantiated as a Workflow DON, which coordinates
requests, enforces compliance, and orchestrates capabilities.

e The decryption nodes will appear as a threshold decryption capability,
also referred to as the Vault DON or Confidential Data capability.

e The pool of compute enclaves is exposed as a Confidential Compute capa-
bility.
A typical confidential workflow in CRE proceeds in the following steps:

1. A trigger activates the workflow, specifying encrypted inputs and a refer-
ence to the code that should be executed on them.

2. The Workflow DON is activated, verifying the request and assigning an
enclave from the Confidential Compute capability.

3. The Workflow DON invokes the Confidential Data capability, which ap-
plies its threshold shares of the decryption key and produces encrypted
key shares addressed to the assigned enclave.

4. The Workflow DON passes the computation request and encrypted key
shares to the designated enclave in the Confidential Compute capability.



5. The enclave decrypts inputs, executes the code, and produces an attested
response.

6. The Workflow DON verifies the enclave’s attestation, signs the result, and
forwards it to the specified target.

Through CRE integration, Chainlink Confidential Compute becomes a com-
posable service inside the Chainlink ecosystem. The CRE workflow model pro-
vides the glue between triggers, confidential computation, threshold decryption,
and result delivery, ensuring that the system’s confidentiality and integrity guar-
antees carry over seamlessly into broader decentralized applications.

3 Configurable Security

The design of Chainlink Confidential Compute supports multiple security pro-
files. Depending on the requirements of a given application, users can select the
configuration that offers the right balance of confidentiality, integrity, perfor-
mance, and privacy.

3.1 Single Execution

At the most basic security level, each query is assigned to and executed by a
single compute enclave in the pool.

Confidentiality. Confidentiality of the private inputs is ensured by multiple
mechanisms:

e Proactive threshold security. The master decryption key is never
held by any single node; instead, it is secret-shared among the decryp-
tion nodes. Security is guaranteed as long as fewer than a threshold of
decryption nodes is corrupted within the same epoch. At every epoch,
the master secret is proactively re-shared among the nodes, preventing
adversaries from accumulating key shares over time.

e Strict need-to-know principle and data minimization. A compro-
mised compute enclave only ever learns inputs for those requests assigned
to it after it is compromised and before it is removed from the pool. This is
achieved by using per-ciphertext threshold decryption shares and forward-
secure encryption: enclaves generate a fresh public encryption key for each
request, so that decryption shares can only be used in that request and
do not expose past or future computations.

¢ Binding ciphertexts with associated data. Encryption labels (also
known as associated data) can be used to bind ciphertexts to specific
applications or decryption policies. This ensures that even if ciphertexts
are replayed or redirected, they cannot be decrypted outside their intended
context.



Integrity. Integrity of the result is achieved by the TEE’s hardware attesta-
tion, verified by the oracle nodes, which then re-sign the response with a quorum
signature. Execution integrity is therefore achieved as long as the assigned TEE
is uncompromised and fewer than a threshold of oracle nodes are corrupt.

Availability. The system is designed to avoid single points of failure. A de-
centralized threshold network of oracle nodes and decryption nodes ensures that
the service can continue despite individual failures or corruptions. A diverse pool
of compute enclaves, sourced from multiple hardware vendors, cloud providers,
and operators, provides redundancy. If a computation fails on one enclave, the
oracle nodes can reassign it to another enclave in the pool.

Compliance. The strong privacy offered by Chainlink Confidential Compute
must be balanced with safeguards against abuse. Compliance measures can
be embedded directly into the application code, allowing developers to enforce
relevant checks (e.g., KYC or data-use policies), including on private data.

3.2 Replicated Execution

The next security level improves execution integrity, at the cost of increasing pri-
vacy risk. It assigns each query to multiple enclaves, who execute it in parallel;
oracle nodes compare the results before reporting back on chain.

This approach requires computations to be deterministic, which can be a
problem for inherently randomized computations, e.g., encryption of outputs.
Chainlink Confidential Compute therefore employs threshold-generated deter-
ministic randomness provided by the key machines, to ensure that results are
comparable.

Replicated execution provides stronger integrity guarantees, since inconsis-
tencies across enclaves can be detected, but weaker privacy, since compromise
of a single assigned enclave suffices to leak inputs.

3.3 Zero-knowledge Attestation

At this security level, each query is assigned to a single enclave, which executes
it and additionally produces a zero-knowledge (ZK) proof of correct execution.
Integrity of the result is now guaranteed mathematically, rather than based on
trust in the secure hardware, while confidentiality is based on the hardware
security of a single enclave. It comes at the cost of a considerable loss in perfor-
mance compared to native execution, however, since generating zero-knowledge
proofs is highly resource-intensive.

3.4 MPC/FHE Execution

For maximal decentralization of trust, each query is assigned to multiple en-
claves, which perform the computation jointly using secure multiparty compu-
tation (MPC) or fully-homomorphic encryption (FHE).



In the case of MPC, each enclave only learns a secret share of every input,
which requires an adapted threshold encryption scheme that distributes private
inputs into shares across enclaves. In the case of FHE, all enclaves perform the
operations on encrypted inputs using the homomorphic properties, and then
jointly decrypt the public outputs.

Privacy is preserved as long as less than a threshold of the participating
enclaves are compromised; integrity of the result is achieved under the same
assumption. The performance penalty is typically even higher than for zero-
knowledge attestation, though.

4 Use Cases

Chainlink Confidential Compute provides generic confidential computation as a
decentralized service. Its flexibility allows developers to incorporate confidential
logic into a wide range of applications without having to develop dedicated
cryptographic primitives. We highlight several illustrative use cases below.

4.1 Confidential Connectivity

A common requirement in decentralized workflows is to call external APIs over
HTTPS. In conventional designs, developers must embed their API credentials
directly into the workflow, which exposes those secrets to all participating nodes
in the Workflow DON.

With Chainlink Confidential Compute, this problem can be solved elegantly
by following the Town Crier! design, enabling secure and verifiable HTTPS
queries. API credentials are encrypted under the system’s master public key and
stored safely within the workflow. At execution time, the oracle nodes retrieve
the encrypted credentials and forward them to a compute enclave. Inside the
enclave, the credentials are decrypted, used to call out and authenticate to
the external API, and immediately discarded. The API call therefore executes
with both confidentiality and integrity guarantees, while preserving verifiability
through attestation.

This mechanism naturally generalizes to more complex interactions, where
additional encrypted secrets can be provided as private inputs, or where only
selected parts of the API response are revealed in the output. For example,
a user of the smart contract could supply an encrypted credit card number to
enable a payment provider to process transactions securely, without exposing
the card details to the blockchain, to the developer, or to any node outside the
enclave.

Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. Town crier: An
authenticated data feed for smart contracts. ACM CCS 2016.



4.2 Proprietary Data Feeds

Some data providers, particularly in the financial sector, sell timely and accurate
data to customers for a fee, e.g., proprietary market indices or portfolio weights.
They are obviously unwilling to make such data openly available on a public
blockchain, where it could be freely copied and redistributed. Onchain protocols
and DeFi applications may want to purchase and consume this data directly
within blockchain workflows, enabling the next wave of decentralized finance
built on private, high-quality information.

To satisfy contractual and regulatory requirements, the data providers would
like to have an irrefutable record of when data was made available, and which
customer accessed it at which time.

With blockchains and Chainlink Confidential Compute, these goals become
compatible. Data providers can post the encrypted data feeds directly to an
onchain smart contract, which serves as a privacy-preserving distribution hub.
The smart contract maintains a list of approved subscribers, and when a sub-
scriber requests access, it invokes the Chainlink Confidential Compute service
to re-encrypt the data to that subscriber’s public key, or to post it securely to an
API endpoint of the subscriber’s choice. Every interaction is logged immutably
onchain, providing transparency and auditability without disclosing the data it-
self. The Chainlink Confidential Compute service could even trigger automated
onchain actions such as executing token trades or adjusting collateral positions
based on the decrypted data, enabling fully autonomous, privacy-preserving
financial workflows.

This approach allows data providers to monetize confidential information
safely, while giving decentralized applications verifiable access to trusted off-
chain data streams. In doing so, Chainlink Confidential Compute bridges the
gap between traditional data markets and the emerging ecosystem of onchain
finance, unlocking a new class of privacy-preserving data-driven applications.

4.3 Private Tokens

Another compelling use case is the creation of privacy-preserving digital assets.
Chainlink Confidential Compute simplifies the design of private tokens in both
balance confidentiality and transaction anonymity.

Hiding balances and transaction amounts. In the simplest model, an ap-
plication maintains a balance table, but each balance entry is encrypted under
the master public key. A transaction contains an encrypted amount. The smart
contract verifies the sender’s (plaintext) signature, looks up the encrypted sender
and receiver balances, and submits a request to Chainlink Confidential Com-
pute. Inside the enclave, the balances and transaction amount are decrypted,
updated, and returned in encrypted form.

Compared to UTXO-based privacy designs, this account-based model is more
efficient and also provides a simpler mental model for users, since they only need
to keep track of balances rather than managing sets of individual coins or notes.



Hiding sender and receiver addresses. Privacy can be further strength-
ened by encrypting the sender and receiver addresses themselves. In this variant,
the smart contract maintains an encrypted balance table, while transactions con-
tain encrypted sender and receiver addresses along with an encrypted signature.
A Dbatch of such transactions is submitted to Chainlink Confidential Compute,
where the enclave decrypts the balance table and the transactions, validates
the transactions, applies the updates to the balance table, and re-encrypts the
updated balance table. The enclave may report only a hash of the updated
balance table onchain, while storing the full encrypted state on a separate data
availability layer.

This design achieves stronger privacy than existing approaches based on zero-
knowledge proofs or fully homomorphic encryption, while outperforming them
in efficiency. Prototype benchmarks demonstrate significantly lower overhead
in both computation and storage.

4.4 Identity

Identity verification is a critical building block for moving traditional finance
onchain, where regulatory compliance and user privacy must coexist.

Simple credential checks. At its simplest, Chainlink Confidential Compute
can verify digital credentials inside an enclave, releasing only a coarse-grained
attribute onchain (e.g., whether a user is resident of a non-embargoed country).
This allows smart contracts to enforce compliance without exposing sensitive
personal data.

Chainlink Confidential Compute identity system. A more advanced
pattern is to use Chainlink Confidential Compute as the basis for a full-fledged
identity system by letting the enclave act as a “credential re-certifier”. Here,
a long-term re-certification key is generated inside the enclave and kept in its
encrypted state. The enclave verifies any Web2 credentials as described above,
checks that it satisfies the requested claim, and issues a one-time certificate for
the user’s blockchain address attesting to the claim.

The certificate can be used and verified directly onchain, without having to
invoke the Chainlink Confidential Compute service. This approach enables effi-
cient verification while maintaining user privacy and unlinkability. Optionally,
encrypted credentials or detailed personally identifiable information (PII) can
be stored encrypted onchain, on a Chainlink Confidential Compute data avail-
ability layer, or at a trusted escrow agent, so that regulators could de-anonymize
suspicious transactions if needed.

Additional features such as claim revocation and Sybil-resistant pseudonyms
can be added to the identity system in a fairly straightforward fashion.

10



Acknowledgements

We would like to thank Dan Boneh, Christian Cachin, and Ari Juels, and
Michael Reiter for their review of earlier versions of this work, fruitful discus-
sions about the architecture, and for reviewing security proofs of its underlying
cryptographic protocols.

11



