

#PS7Now
A Blogger’s Guide to Getting Started with PowerShell 7

Jeff Hicks

This book is for sale at http://leanpub.com/ps7now

This version was published on 2020-03-26

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2020 The DevOps Collective, Inc.

http://leanpub.com/ps7now
http://leanpub.com/
http://leanpub.com/manifesto

Contents

About This Book . i

About OnRamp . iii

About The DevOps Collective . iv

Foreword . 1

PowerShell 7 Experimental Features . 2

Contributors . 11

About This Book

This book is compilation of material published online centered
on the general release of PowerShell 7. For this project, a number
of PowerShell-focused bloggers and authors created content on

many of the new features of PowerShell 7. The intent was to raise awareness of the new release
and provide an incentive for existing Windows PowerShell administrators to make the move to
PowerShell 7. The content was released over the course of week inMarch 2020 using the #PSBlogWeek
and #PS7Now tags on Twitter. If you missed some or all of the content originally, this book is your
chance to discover what you missed.

The ebook is being freely offered but we hope you will consider making a small donation. All
proceeds benefit the OnRamp Scholarship fund maintained by The DevOps Collective, which is
the organization behind the PowerShell Summit. The authors have freely contributed their content.
Nobody is receiving any financial compensation. The content in this book may vary slightly from
the originally published articles. The original content has been edited for consistency, grammar and
spelling. Although be aware that not all authors are from North America!

Cover art graciously contributed by Jennifer Kanakos.

A Note On Code Listings

Due to page size limitations you may see some code samples in this book where the line ends in a
backslash. This is Leanpub’s line continuation character and is inserted when the line is too long
to fit the width of the code sample. We’ve tried to adjust code as much as possible to reduce these
breaks, but in some cases we felt it was easier to leave them in. Extended code samples are included
in an extras zip file which you should have obtained when getting this book. All code is offered as
is with no warranties or guarantees.

No code samples or snippets should be considered ready for
production. They are for educational purposes only.

About This Book ii

Questions and Comments

We are foregoing the usual book forum that can be setup with a Leanpub book. If you have questions,
or comments about any of the content in this book, feel free to reach out to the individual author
on Twitter. Check the Contributors page at the end of the book for a list of online links. You are
also encouraged to use the free forums at PowerShell.org for all your other PowerShell questions or
problems.

About OnRamp

OnRamp is designed for entry-level technology professionals who
have completed foundational certifications such as CompTIA A+
and Cisco IT Essentials. PowerShell + DevOps Global Summit’s¹
OnRamp track is a distinct ticket type that includes admission to
a separate track of content designed for entry-level technology
professionals. Less a conference and more of a guided, hands-on
class, OnRamp is taught by some the industry’s leading Power-
Shell instructors. It’s more than just an introduction to PowerShell
as a technology; OnRamp is also an introduction to the PowerShell
community and ecosystem. By blending classroom time with time

in Summit’s general sessions, keynotes, and social events, OnRamp attendees can supercharge their
entry into the broader world of DevOps and IT automation.

No prior PowerShell experience is required, although some basic knowledge of server administration
will be useful. A number of full-ride scholarships designed to help bring new and diverse young
professionals into the community and field are offered by the DevOps Collective. Your donation for
this book goes towards this scholarship fund.

Learnmore about theOnRamp Scholarship at https://events.devopscollective.org/OnRamp/Scholarship/.

¹https://events.devopscollective.org/

https://events.devopscollective.org/
https://events.devopscollective.org/

About The DevOps Collective

Originally formed in 2012, The DevOps Collective, Inc.², is a
US 501 C(3) nonprofit dedicated to education and community in
the DevOps field. It specializes in technologies built around the
PowerShell Language Specification (PLS), covering all platforms

and operating systems. Aside from the PowerShell Summit³ and the PowerShell.org website, it offers
a number of free ebooks, free webinars, and more. Most PowerShell Summit sessions are recorded
and offered for free on YouTube⁴. The organization also provide assistance to local user groups and
enthusiasts who want to hold their own local events, such as a PowerShell Saturday or DevOps Day.

²https://devopscollective.org
³http://powershellsummit.org
⁴https://www.youtube.com/user/powershellorg

https://devopscollective.org/
http://powershellsummit.org/
https://www.youtube.com/user/powershellorg
https://devopscollective.org/
http://powershellsummit.org/
https://www.youtube.com/user/powershellorg

Foreword
“PowerShell 7 is an open-source, cross-platform, automation and configuration
tool enabling businesses to achieve greater agility in cloud, hybrid-cloud, and
on-premises through reliable and repeatable expert automation.”

This sentence would not exist if not for you. Your shared discoveries and contributions are the
foundation of PowerShell’s success. I’m grateful that my friend, and top industry expert Jeff Hicks
gathered a merry band of Super-Star PowerShell professionals together to share their PowerShell
experiences. Let them show you how to flip today’s challenges into tomorrow’s success with
PowerShell 7.

PowerShell loves technology. Open this book to explore the vast management and control you can
automate with your existing technology investments. Is scaling service in the cloud part on your
To-Do list? How about on-premises server management? Or do you have both in the form of a
hybrid-cloud? Explore what these thought-leaders, experts and enthusiasts are thinking about, how
they go about solving their daily challenges, and what failures impacted them along the way to
success.

When you’re finished with this book, help spread the word. Join with these authors and experts in
helping everyone be successful with PowerShell. Help your friends and co-workers understand the
benefits of adopting PowerShell 7 now!

Jason Helmick,

Program Manager | PowerShell Team

PowerShell 7 Experimental Features

by Dave Carroll

Experimental Features Defined

After becoming open-source software, the PowerShell community requested a mechanism for users
to try out new features and provide early feedback to feature developers. This discussion took place
in PowerShell RFC0029⁵ which was finalized and implemented in PowerShell Core 6.1. New features
that are not production ready are deemed experimental in nature. Users can choose to opt-in for an
experimental feature on an individual basis. Administrators can choose to opt-in at the system level.

Please note that user configuration will take precedence over system configuration.

Using the built-in support for experimental features, developers can roll out an alternate command
or a parameter to their modules. Experimental features are not limited to the PowerShell engine
itself.

Experimental Feature Commands

Commands to discover, enable, and disable experimental features are provided to the user.

Get-ExperimentalFeature

The command Get-ExperimentalFeature will display a list of discovered experimental features.
These features can come from the PowerShell engine itself or from modules. You can see where
the experimental feature is defined by looking at the Source column in the command’s output.
Also, features can be specific to an operating system as the following illustrates. Notice the
PSUnixFileStat feature in the Linux output.

⁵https://github.com/PowerShell/PowerShell-RFC/blob/master/5-Final/RFC0029-Support-Experimental-Features.md

https://github.com/PowerShell/PowerShell-RFC/blob/master/5-Final/RFC0029-Support-Experimental-Features.md
https://github.com/PowerShell/PowerShell-RFC/blob/master/5-Final/RFC0029-Support-Experimental-Features.md

PowerShell 7 Experimental Features 3

Experimental Features on Windows

Get-ExperimentalFeature on Windows

Experimental Features on Linux

Get-ExperimentalFeature on Linux

Experimental feature discovery targets the paths in $env:PSModulePath.

Enable-ExperimentalFeature

The Enable-ExperimentalFeature command turns on one or more experimental features for the
current user or all users. Enabling a feature will add it to an array in the ExperimentalFeatures key
in the Powershell configuration file, powershell.config.json. If you do not specify a Scope, it will
default to CurrentUser.

For Windows, the user configuration file will be saved in the $HOME\Documents\PowerShell folder.
For Linux, the user configuration file will be saved in the $HOME\config\powershell folder.

On my system, I re-target my Documents folder to a separate volume. The PowerShell
configuration file is saved there and is not in the $HOME hierarchy.

You can turn on all experimental features in one line. In the following example, I’ve added a sanity
check by getting the content of the configuration file.

PowerShell 7 Experimental Features 4

Enable-ExperimentalFeature All on Windows

Restart Sessions
Take note of the warning message that serves as a reminder to restart the PowerShell session. In fact,
I believe you will need to close all console sessions (those of the same version and platform, that is)
before the change will take effect. Don’t forget the stop the terminal in Visual Studio Code.

Disable-ExperimentalFeature

The Disable-ExperimentalFeature command turns off the experimental feature. As with enabling,
when you disable one or more features, you must close all PowerShell sessions and start a new
session. Disabling the feature removes its entry from the enabled feature list in the appropriate
configuration file. The ExperimentalFeatures key will remain even if you disable all experimental
features.

PSUnixFileStat In Action

Now that we’ve talked about Experimental Features and how to enable/disable them, let’s take
one out for a spin. One of the features that Linux admins would probably appreciate is the
PSUnixFileStat feature. Let’s get some information about it.

PSUnixFileStat Information

The default output for Get-ChildItem looks the same on Windows or Linux.

PowerShell 7 Experimental Features 5

Get-ChildItem Before Enabling PSUnixFileStat

The output doesn’t help the Linux admin with permissions. Let’s enable the feature and correct that.

Enable-ExperimentalFeature PSUnixFileStat on Linux

I close all PowerShell sessions in my WSL instance and start a new one. And now to see the
difference.

Get-ChildItem After Enabling PSUnixFileStat

Those new UnixMode entries look much more useful (and are super cool).

This is PowerShell on Linux!

PSCommandNotFoundSuggestion In Action

Let’s take a quick look at another experimental feature.

PowerShell 7 Experimental Features 6

PSCommandNotFoundSuggestion Sample Output

I meant to type git, not get. With the PSCommandNotFoundSuggestion experimental feature
enabled, PowerShell can suggest commands when we have a typo or just space out.

Thanks, PowerShell!

Adding Support for an Experimental Feature to Your
Module

As I mentioned at the beginning of this article, experimental features are not limited to the
PowerShell engine. In fact, there are a couple delivered with PowerShell 7 within the modules
Microsoft.PowerShell.Utility and PSDesiredStateConfiguration. I wanted to provide the com-
munity a working demo of experimental features, but I couldn’t find any online.

My google-foo is strong, but it either failed me this time or there are no current examples in
the wild.

I wrote a very simple demomodule that contains experimental features. You can find it at the bottom
of this article.

Experimental Features Demo Module

Module Manifest

In the Module Experimental Feature⁶ section of RFC0029, I found where experimental feature
support can be added to a module manifest. In the PrivateData.PSData section, there is a new
ExperimentalFeatures entry which allows an array of hashtables with Name and Description. This
metadata has been incorporated into the necessary components to update the PSModuleInfo object.

⁶https://github.com/PowerShell/PowerShell-RFC/blob/master/5-Final/RFC0029-Support-Experimental-Features.md#module-
experimental-feature

https://github.com/PowerShell/PowerShell-RFC/blob/master/5-Final/RFC0029-Support-Experimental-Features.md#module-experimental-feature
https://github.com/PowerShell/PowerShell-RFC/blob/master/5-Final/RFC0029-Support-Experimental-Features.md#module-experimental-feature
https://github.com/PowerShell/PowerShell-RFC/blob/master/5-Final/RFC0029-Support-Experimental-Features.md#module-experimental-feature

PowerShell 7 Experimental Features 7

Feature Naming

When I was creating the demo module, I originally created a feature name like PSDemoFeature. I
quickly discovered this was not the correct naming scheme for experimental features. It became
evident when I tested my demo module manifest.

PS> Test-ModuleManifest 'C:\Program Files\PowerShell\Modules\Demo

ExperimentalFeatures\DemoExperimentalFeatures.psd1'

Test-ModuleManifest: One or more invalid experimental feature names found:

PSDemoExpFeature. A module experimental feature name should follow this

convention: 'ModuleName.FeatureName'.

Be sure to use the proper naming scheme for your experimental features. The name must be in the
format of ModuleName.FeatureName.

The name of PowerShell engine experimental features is PSDescriptiveText. Once I realized
this, I removed the PS from my feature names to reduce any confusion.

Experimental Attribute

The about_Experimental_Feature⁷ documentation goes into detail on how to use the new Experimental

attribute.

[Experimental(NameOfExperimentalFeature, ExperimentAction)]

This attribute can be used for the function or any parameter. The ExperimentAction is an enum with
values of Hide or Show.

• Show will allow the experimental feature to be used when it’s enabled.
• Hide will prohibit the experimental feature to be used when it’s enabled.

They can be used to provide mutual exclusivity between different versions of a command or
parameter.

Additional Information

Refer to the about_Experimental_Feature (referenced above) documentation for examples of C# and
how to check if an experimental feature is enabled. The latter would be necessary when you don’t
need mutual exclusivity and when writing Pester tests for your code.

Demo Module with Experimental Features (Mutually Exclusive)

⁷https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_experimental_features?view=powershell-
7

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_experimental_features?view=powershell-7
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_experimental_features?view=powershell-7
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_experimental_features?view=powershell-7

PowerShell 7 Experimental Features 8

#DemoExperimentalFeatures.psd1

@{

RootModule = 'DemoExperimentalFeatures.psm1'

ModuleVersion = '0.7.0'

CompatiblePSEditions = 'Core'

GUID = 'a007643e-c876-4806-b6cb-367963716e98'

Author = 'Dave'

CompanyName = 'thedavecarroll'

Copyright = '(c) Dave. All rights reserved.'

PowerShellVersion = '7.0'

FunctionsToExport = 'Show-HelloWorld', 'Get-LoremIpsum'

PrivateData = @{

PSData = @{

ExperimentalFeatures = @(

@{

Name = 'DemoExperimentalFeatures.ExperimentalFunction'

Description = 'Demo of Experimental Functions'

},

@{

Name = 'DemoExperimentalFeatures.ExperimentalParameter'

Description = 'Demo of Experimental Parameter'

}

)

}

}

}

PowerShell 7 Experimental Features 9

#DemoExperimentalFeatures.psm1

function Show-HelloWorld {

[Experimental("DemoExperimentalFeatures.ExperimentalFunction", "Show")]

[CmdletBinding()]

param()

'PowerShell 7 is here!' | Write-Host -ForegroundColor Yellow

}

function Show-HelloWorld {

[Experimental("DemoExperimentalFeatures.ExperimentalFunction", "Hide")]

[CmdletBinding()]

param()

'PowerShell 7 is shipping soon!' | Write-Host -ForegroundColor Green

}

function Get-LoremIpsum {

[CmdletBinding()]

param(

[Experimental("DemoExperimentalFeatures.ExperimentalParameter", "Show")]

[switch]$Show,

[Experimental("DemoExperimentalFeatures.ExperimentalParameter", "Hide")]

[switch]$Display

)

$LoremIpsum = @"

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed varius mi erat,

in laoreet nibh eleifend eget. Phasellus odio diam, tincidunt rhoncus massa

in, feugiat iaculis mauris. Nulla ornare enim et semper tincidunt. Maecenas

ac tempor quam, in scelerisque lorem. Duis hendrerit urna sapien, ut

pellentesque odio placerat finibus. Mauris molestie nulla ac vestibulum

aliquet. Quisque ut lacus quis lorem venenatis elementum. Morbi hendrerit

odio at nibh faucibus finibus. Vivamus porta elit libero, et porttitor leo

malesuada et. Suspendisse luctus erat sed lectus ultricies laoreet.

"@

$fox = 'The quick brown fox jumps over the lazy dog'

if ($Display) {

Write-Output $LoremIpsum

PowerShell 7 Experimental Features 10

}

if ($Show) {

Write-Output $fox

}

}

This code is available in the Extras zip file.

Summary

I believe module developers will start delivering experimental features as theymigrate to PowerShell
7, especially if their modules supportmission critical automation and processes. Thank you for taking
the time to read this article and for being part of the PowerShell community. You are the reason we
do what we do!

If you haven’t already, begin your journey with PowerShell 7 now!

This article originally appeared online at https://powershell.anovelidea.org/powershell/ps7now-
experimental-features/

Contributors
The following people were kind enough to contribute their time and energy towards this project.
Not only did they create and publish original content on their respective blogs or web sites, but they
also took the extra step to provide their content for this book.

Adam Bertram

Adam Bertram is a 20+ year veteran of IT and an experienced online business professional. He’s
a consultant, Microsoft MVP, blogger, trainer, published author and content marketer for multiple
technology companies.

Dan Franciscus

Dan Franciscus is a veteran IT professional specializing in PowerShell, Active Directory, Windows
Server, and generally automating stuff. His current role focuses on end-user digital experience using
data science techniques.

Dave Carroll

Dave Carroll has spent more than two decades in IT in various capacities with significant focus on
systems administration. For most of this time, he developed automation through multiple scripting
languages, with a strong focus on PowerShell over the last 10 years. Currently, he is an Identity and
Access Management Application Developer for a top university.

You can find more of Dave’s content online on Github at https://github.com/thedavecarroll.

Jeff Hicks

Jeffery Hicks is an IT veteran with almost 30 years of experience, much of it spent as an
IT infrastructure consultant specializing in Microsoft server technologies with an emphasis on
automation and efficiency. He is a multi-year recipient of the Microsoft MVP Award. He works
today as an independent author, teacher and consultant. Jeff has taught and presented on PowerShell
and the benefits of automation to IT Pros worldwide. He has authored and co-authored a number of
books, writes for numerous online sites, a Pluralsight author, and a frequent speaker at technology
conferences and user groups.

Contributors 12

Jonathan Medd

Jonathan is a Cloud Automation Engineer at Atos. A PowerShell MVP between 2010 - 2019 and
VMware vExpert between 2011 and 2020, he is the co-author of VMware vSphere PowerCLI
Reference 1st and 2nd editions and co-organiser of both PSDayUK, a PowerShell one day conference
in the UK, and PowerShell Southampton.

Josh Duffney

Josh Duffney is a DevOps engineer with 10 years of systems administration and engineering expe-
rience. Josh is a Pluralsight author of several courses on the topic of automation and infrastructure
development and blogs at duffney.io. Josh enjoys being an active member of the PowerShell and
DevOps community where he gets to share his knowledge but more importantly enjoys learning
from others in the industry. Outside of his professional work Josh is a practitioner of digital
minimalism who strives to find balance in a digital world. Josh also spends his time weight lifting
and training in the art of Brazilian jiu-jitsu.

Josh King

Josh King is a Microsoft MVP and Systems Administrator at Tribe, an IT services organization
in New Zealand. Josh predominantly works within Windows and VMware environments. He is
also a contributor at TechSnips⁸, an e-learning tech screencast platform. Josh has a passion for
automation and his primary tool of choice is PowerShell. He also has an unhealthy obsession with
toast notifications and how they can be leveraged for script to operator communication.

Mike Kanakos

Mike Kanakos is a 20 year IT infrastructure pro currently working as a Senior Systems Engineer
and Identity Access Management specialist. Mike is also the co-leader of the Research Triangle
PowerShell users group⁹, community lead for PowerShell.org, active blogger and public speaker.
He focuses on teaching PowerShell fundamentals and sharing tools with the community to make a
sysadmin’s life easier.

Prateek Singh

Prateek Singh is an Infrastructure Developer working at LinkedIn¹⁰, an avid PowerShell blogger,
and a community contributor. In 2017 and 2018, his blog RidiCurious.com as among the “Top 50

⁸https://techsnips.io/
⁹https://rtpsug.com/
¹⁰https://www.linkedin.com/in/prateeksingh1590/

https://techsnips.io/
https://rtpsug.com/
https://rtpsug.com/
https://www.linkedin.com/in/prateeksingh1590/
https://techsnips.io/
https://rtpsug.com/
https://www.linkedin.com/in/prateeksingh1590/

Contributors 13

PowerShell blogs in the world”. Find his work open-sourced at GitHub¹¹, and at Leanpub¹².

Thomas Lee

PowerShell/Lync Geek, Grateful Dead/Jerry Live Recording Enthusiast and living in the UK.

Tommy Maynard

TommyMaynard is a Senior Systems Administrator with a passion for PowerShell. He has nearly 20
years of experience in Information Technology, and PowerShell has so far, been the most rewarding
part of his overall career. Luckily for him, PowerShell works alongside the technologies he has long
supported. It often even works with the new ones, too. His goal is to help educate and inspire people
that work in his industry to embrace PowerShell, and in general, automation. Tommy lives in Tucson,
Arizona with his wife Jenn and two kids, Carson and Arianna.

#PS7Now Contributors Online

Author Twitter Blog
Josh King https://twitter.com/WindosNZ https://toastit.dev/
Josh Duffney https://twitter.com/joshduffney http://duffney.io/
Adam Bertram https://twitter.com/adbertram https://adamtheautomator.com/
Mike Kanakos https://twitter.com/MikeKanakos https://www.networkadm.in/
Jonathan Medd https://twitter.com/jonathanmedd https://www.jonathanmedd.net/
Thomas Lee https://twitter.com/doctordns https://tfl09.blogspot.com/
Prateek Singh https://twitter.com/singhprateik https://ridicurious.com
Dave Carroll https://twitter.com/thedavecarroll https://powershell.anovelidea.org/
Dan Franciscus https://twitter.com/dan_franciscus https://winsysblog.com/
Jeff Hicks https://twitter.com/jeffhicks https://jdhitsolutions.com/
Tommy Maynard https://twitter.com/thetommymaynard https://tommymaynard.com/

¹¹https://github.com/PrateekKumarSingh
¹²https://leanpub.com/b/books

https://github.com/PrateekKumarSingh
https://leanpub.com/b/books
https://github.com/PrateekKumarSingh
https://leanpub.com/b/books

	Table of Contents
	About This Book
	About OnRamp
	About The DevOps Collective
	Foreword
	PowerShell 7 Experimental Features
	Contributors

