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About This Book

This book is compilation of material published online centered
on the general release of PowerShell 7. For this project, a number
of PowerShell-focused bloggers and authors created content on

many of the new features of PowerShell 7. The intent was to raise awareness of the new release
and provide an incentive for existing Windows PowerShell administrators to make the move to
PowerShell 7. The content was released over the course of week inMarch 2020 using the #PSBlogWeek
and #PS7Now tags on Twitter. If you missed some or all of the content originally, this book is your
chance to discover what you missed.

The ebook is being freely offered but we hope you will consider making a small donation. All
proceeds benefit the OnRamp Scholarship fund maintained by The DevOps Collective, which is
the organization behind the PowerShell Summit. The authors have freely contributed their content.
Nobody is receiving any financial compensation. The content in this book may vary slightly from
the originally published articles. The original content has been edited for consistency, grammar and
spelling. Although be aware that not all authors are from North America!

Cover art graciously contributed by Jennifer Kanakos.

A Note On Code Listings

Due to page size limitations you may see some code samples in this book where the line ends in a
backslash. This is Leanpub’s line continuation character and is inserted when the line is too long
to fit the width of the code sample. We’ve tried to adjust code as much as possible to reduce these
breaks, but in some cases we felt it was easier to leave them in. Extended code samples are included
in an extras zip file which you should have obtained when getting this book. All code is offered as
is with no warranties or guarantees.

No code samples or snippets should be considered ready for
production. They are for educational purposes only.
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Questions and Comments

We are foregoing the usual book forum that can be setup with a Leanpub book. If you have questions,
or comments about any of the content in this book, feel free to reach out to the individual author
on Twitter. Check the Contributors page at the end of the book for a list of online links. You are
also encouraged to use the free forums at PowerShell.org for all your other PowerShell questions or
problems.



About OnRamp

OnRamp is designed for entry-level technology professionals who
have completed foundational certifications such as CompTIA A+
and Cisco IT Essentials. PowerShell + DevOps Global Summit’s¹
OnRamp track is a distinct ticket type that includes admission to
a separate track of content designed for entry-level technology
professionals. Less a conference and more of a guided, hands-on
class, OnRamp is taught by some the industry’s leading Power-
Shell instructors. It’s more than just an introduction to PowerShell
as a technology; OnRamp is also an introduction to the PowerShell
community and ecosystem. By blending classroom time with time

in Summit’s general sessions, keynotes, and social events, OnRamp attendees can supercharge their
entry into the broader world of DevOps and IT automation.

No prior PowerShell experience is required, although some basic knowledge of server administration
will be useful. A number of full-ride scholarships designed to help bring new and diverse young
professionals into the community and field are offered by the DevOps Collective. Your donation for
this book goes towards this scholarship fund.

Learnmore about theOnRamp Scholarship at https://events.devopscollective.org/OnRamp/Scholarship/.

¹https://events.devopscollective.org/

https://events.devopscollective.org/
https://events.devopscollective.org/


About The DevOps Collective

Originally formed in 2012, The DevOps Collective, Inc.², is a
US 501 C(3) nonprofit dedicated to education and community in
the DevOps field. It specializes in technologies built around the
PowerShell Language Specification (PLS), covering all platforms

and operating systems. Aside from the PowerShell Summit³ and the PowerShell.org website, it offers
a number of free ebooks, free webinars, and more. Most PowerShell Summit sessions are recorded
and offered for free on YouTube⁴. The organization also provide assistance to local user groups and
enthusiasts who want to hold their own local events, such as a PowerShell Saturday or DevOps Day.

²https://devopscollective.org
³http://powershellsummit.org
⁴https://www.youtube.com/user/powershellorg

https://devopscollective.org/
http://powershellsummit.org/
https://www.youtube.com/user/powershellorg
https://devopscollective.org/
http://powershellsummit.org/
https://www.youtube.com/user/powershellorg


Foreword
“PowerShell 7 is an open-source, cross-platform, automation and configuration
tool enabling businesses to achieve greater agility in cloud, hybrid-cloud, and
on-premises through reliable and repeatable expert automation.”

This sentence would not exist if not for you. Your shared discoveries and contributions are the
foundation of PowerShell’s success. I’m grateful that my friend, and top industry expert Jeff Hicks
gathered a merry band of Super-Star PowerShell professionals together to share their PowerShell
experiences. Let them show you how to flip today’s challenges into tomorrow’s success with
PowerShell 7.

PowerShell loves technology. Open this book to explore the vast management and control you can
automate with your existing technology investments. Is scaling service in the cloud part on your
To-Do list? How about on-premises server management? Or do you have both in the form of a
hybrid-cloud? Explore what these thought-leaders, experts and enthusiasts are thinking about, how
they go about solving their daily challenges, and what failures impacted them along the way to
success.

When you’re finished with this book, help spread the word. Join with these authors and experts in
helping everyone be successful with PowerShell. Help your friends and co-workers understand the
benefits of adopting PowerShell 7 now!

Jason Helmick,

Program Manager | PowerShell Team



PowerShell 7 Experimental Features

by Dave Carroll

Experimental Features Defined

After becoming open-source software, the PowerShell community requested a mechanism for users
to try out new features and provide early feedback to feature developers. This discussion took place
in PowerShell RFC0029⁵ which was finalized and implemented in PowerShell Core 6.1. New features
that are not production ready are deemed experimental in nature. Users can choose to opt-in for an
experimental feature on an individual basis. Administrators can choose to opt-in at the system level.

Please note that user configuration will take precedence over system configuration.

Using the built-in support for experimental features, developers can roll out an alternate command
or a parameter to their modules. Experimental features are not limited to the PowerShell engine
itself.

Experimental Feature Commands

Commands to discover, enable, and disable experimental features are provided to the user.

Get-ExperimentalFeature

The command Get-ExperimentalFeature will display a list of discovered experimental features.
These features can come from the PowerShell engine itself or from modules. You can see where
the experimental feature is defined by looking at the Source column in the command’s output.
Also, features can be specific to an operating system as the following illustrates. Notice the
PSUnixFileStat feature in the Linux output.

⁵https://github.com/PowerShell/PowerShell-RFC/blob/master/5-Final/RFC0029-Support-Experimental-Features.md

https://github.com/PowerShell/PowerShell-RFC/blob/master/5-Final/RFC0029-Support-Experimental-Features.md
https://github.com/PowerShell/PowerShell-RFC/blob/master/5-Final/RFC0029-Support-Experimental-Features.md
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Experimental Features on Windows

Get-ExperimentalFeature on Windows

Experimental Features on Linux

Get-ExperimentalFeature on Linux

Experimental feature discovery targets the paths in $env:PSModulePath.

Enable-ExperimentalFeature

The Enable-ExperimentalFeature command turns on one or more experimental features for the
current user or all users. Enabling a feature will add it to an array in the ExperimentalFeatures key
in the Powershell configuration file, powershell.config.json. If you do not specify a Scope, it will
default to CurrentUser.

For Windows, the user configuration file will be saved in the $HOME\Documents\PowerShell folder.
For Linux, the user configuration file will be saved in the $HOME\config\powershell folder.

On my system, I re-target my Documents folder to a separate volume. The PowerShell
configuration file is saved there and is not in the $HOME hierarchy.

You can turn on all experimental features in one line. In the following example, I’ve added a sanity
check by getting the content of the configuration file.
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Enable-ExperimentalFeature All on Windows

Restart Sessions
Take note of the warning message that serves as a reminder to restart the PowerShell session. In fact,
I believe you will need to close all console sessions (those of the same version and platform, that is)
before the change will take effect. Don’t forget the stop the terminal in Visual Studio Code.

Disable-ExperimentalFeature

The Disable-ExperimentalFeature command turns off the experimental feature. As with enabling,
when you disable one or more features, you must close all PowerShell sessions and start a new
session. Disabling the feature removes its entry from the enabled feature list in the appropriate
configuration file. The ExperimentalFeatures key will remain even if you disable all experimental
features.

PSUnixFileStat In Action

Now that we’ve talked about Experimental Features and how to enable/disable them, let’s take
one out for a spin. One of the features that Linux admins would probably appreciate is the
PSUnixFileStat feature. Let’s get some information about it.

PSUnixFileStat Information

The default output for Get-ChildItem looks the same on Windows or Linux.
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Get-ChildItem Before Enabling PSUnixFileStat

The output doesn’t help the Linux admin with permissions. Let’s enable the feature and correct that.

Enable-ExperimentalFeature PSUnixFileStat on Linux

I close all PowerShell sessions in my WSL instance and start a new one. And now to see the
difference.

Get-ChildItem After Enabling PSUnixFileStat

Those new UnixMode entries look much more useful (and are super cool).

This is PowerShell on Linux!

PSCommandNotFoundSuggestion In Action

Let’s take a quick look at another experimental feature.
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PSCommandNotFoundSuggestion Sample Output

I meant to type git, not get. With the PSCommandNotFoundSuggestion experimental feature
enabled, PowerShell can suggest commands when we have a typo or just space out.

Thanks, PowerShell!

Adding Support for an Experimental Feature to Your
Module

As I mentioned at the beginning of this article, experimental features are not limited to the
PowerShell engine. In fact, there are a couple delivered with PowerShell 7 within the modules
Microsoft.PowerShell.Utility and PSDesiredStateConfiguration. I wanted to provide the com-
munity a working demo of experimental features, but I couldn’t find any online.

My google-foo is strong, but it either failed me this time or there are no current examples in
the wild.

I wrote a very simple demomodule that contains experimental features. You can find it at the bottom
of this article.

Experimental Features Demo Module

Module Manifest

In the Module Experimental Feature⁶ section of RFC0029, I found where experimental feature
support can be added to a module manifest. In the PrivateData.PSData section, there is a new
ExperimentalFeatures entry which allows an array of hashtables with Name and Description. This
metadata has been incorporated into the necessary components to update the PSModuleInfo object.

⁶https://github.com/PowerShell/PowerShell-RFC/blob/master/5-Final/RFC0029-Support-Experimental-Features.md#module-
experimental-feature

https://github.com/PowerShell/PowerShell-RFC/blob/master/5-Final/RFC0029-Support-Experimental-Features.md#module-experimental-feature
https://github.com/PowerShell/PowerShell-RFC/blob/master/5-Final/RFC0029-Support-Experimental-Features.md#module-experimental-feature
https://github.com/PowerShell/PowerShell-RFC/blob/master/5-Final/RFC0029-Support-Experimental-Features.md#module-experimental-feature
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Feature Naming

When I was creating the demo module, I originally created a feature name like PSDemoFeature. I
quickly discovered this was not the correct naming scheme for experimental features. It became
evident when I tested my demo module manifest.

PS> Test-ModuleManifest 'C:\Program Files\PowerShell\Modules\Demo

ExperimentalFeatures\DemoExperimentalFeatures.psd1'

Test-ModuleManifest: One or more invalid experimental feature names found:

PSDemoExpFeature. A module experimental feature name should follow this

convention: 'ModuleName.FeatureName'.

Be sure to use the proper naming scheme for your experimental features. The name must be in the
format of ModuleName.FeatureName.

The name of PowerShell engine experimental features is PSDescriptiveText. Once I realized
this, I removed the PS from my feature names to reduce any confusion.

Experimental Attribute

The about_Experimental_Feature⁷ documentation goes into detail on how to use the new Experimental

attribute.

[Experimental(NameOfExperimentalFeature, ExperimentAction)]

This attribute can be used for the function or any parameter. The ExperimentAction is an enum with
values of Hide or Show.

• Show will allow the experimental feature to be used when it’s enabled.
• Hide will prohibit the experimental feature to be used when it’s enabled.

They can be used to provide mutual exclusivity between different versions of a command or
parameter.

Additional Information

Refer to the about_Experimental_Feature (referenced above) documentation for examples of C# and
how to check if an experimental feature is enabled. The latter would be necessary when you don’t
need mutual exclusivity and when writing Pester tests for your code.

Demo Module with Experimental Features (Mutually Exclusive)

⁷https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_experimental_features?view=powershell-
7

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_experimental_features?view=powershell-7
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_experimental_features?view=powershell-7
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_experimental_features?view=powershell-7
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#DemoExperimentalFeatures.psd1

@{

RootModule = 'DemoExperimentalFeatures.psm1'

ModuleVersion = '0.7.0'

CompatiblePSEditions = 'Core'

GUID = 'a007643e-c876-4806-b6cb-367963716e98'

Author = 'Dave'

CompanyName = 'thedavecarroll'

Copyright = '(c) Dave. All rights reserved.'

PowerShellVersion = '7.0'

FunctionsToExport = 'Show-HelloWorld', 'Get-LoremIpsum'

PrivateData = @{

PSData = @{

ExperimentalFeatures = @(

@{

Name = 'DemoExperimentalFeatures.ExperimentalFunction'

Description = 'Demo of Experimental Functions'

},

@{

Name = 'DemoExperimentalFeatures.ExperimentalParameter'

Description = 'Demo of Experimental Parameter'

}

)

}

}

}
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#DemoExperimentalFeatures.psm1

function Show-HelloWorld {

[Experimental("DemoExperimentalFeatures.ExperimentalFunction", "Show")]

[CmdletBinding()]

param()

'PowerShell 7 is here!' | Write-Host -ForegroundColor Yellow

}

function Show-HelloWorld {

[Experimental("DemoExperimentalFeatures.ExperimentalFunction", "Hide")]

[CmdletBinding()]

param()

'PowerShell 7 is shipping soon!' | Write-Host -ForegroundColor Green

}

function Get-LoremIpsum {

[CmdletBinding()]

param(

[Experimental("DemoExperimentalFeatures.ExperimentalParameter", "Show")]

[switch]$Show,

[Experimental("DemoExperimentalFeatures.ExperimentalParameter", "Hide")]

[switch]$Display

)

$LoremIpsum = @"

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed varius mi erat,

in laoreet nibh eleifend eget. Phasellus odio diam, tincidunt rhoncus massa

in, feugiat iaculis mauris. Nulla ornare enim et semper tincidunt. Maecenas

ac tempor quam, in scelerisque lorem. Duis hendrerit urna sapien, ut

pellentesque odio placerat finibus. Mauris molestie nulla ac vestibulum

aliquet. Quisque ut lacus quis lorem venenatis elementum. Morbi hendrerit

odio at nibh faucibus finibus. Vivamus porta elit libero, et porttitor leo

malesuada et. Suspendisse luctus erat sed lectus ultricies laoreet.

"@

$fox = 'The quick brown fox jumps over the lazy dog'

if ($Display) {

Write-Output $LoremIpsum
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}

if ($Show) {

Write-Output $fox

}

}

This code is available in the Extras zip file.

Summary

I believe module developers will start delivering experimental features as theymigrate to PowerShell
7, especially if their modules supportmission critical automation and processes. Thank you for taking
the time to read this article and for being part of the PowerShell community. You are the reason we
do what we do!

If you haven’t already, begin your journey with PowerShell 7 now!

This article originally appeared online at https://powershell.anovelidea.org/powershell/ps7now-
experimental-features/
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