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Adversarial Examples

o VoiceHack (]
(O ) 14 k.;uu:‘;u‘, FUurn on /\Hi)l.un' iMmoace

&Y 3D Turtle > Rifle & Noise > “Ok Google’

[Athalye et al. 2017] [Carlini et al. 2017]
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0 VoiceHack
Olc Google, Turn On Alrplane Mode

# Drebin

@SD Turtle - Rifle @ Noise - “Ok Google” @ Malware = Benign

[Athalye et al. 2017] [Carlini et al. 2017] [Grosse et al. 2017]
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Two layer networks

W
Key idea: Uniformly bound gradients = Q\@\v$
(@) < f(z)+ € max |V f(Z)|1 $2€>.%/'Z@/Qf(l‘)
flx)=v'o(Wz)

Bound on gradient: ||V f(Z)|i = ||[W "diag(v)e’ (W )|y

optimize over optimize over signs of
activations perturbation

Final step: SDP relaxation (similar to MAXCUT) leads to Grad-cert
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Objective: HV‘I/I,E;L(Z“W,U)+P>%};g><ltr( (W, v)P)

.. regularizer
training loss

Differentiable objective but expensive gradients

Duality to the rescue!
Regularizer: D - A} . ((M(v, W) — diag(c)) + 1" max(c,0)

Just one max eigenvalue computation for gradients
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Some networks are empirically robust but not certified
(e.g. Adversarial Training of Madry et al. 2018)

Can we certify such “foreign” networks?
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Summary so far...

Certified robustness: relaxed optimization to bound worst-case attack
Grad-cert: Upper bound on worst case attack using uniform bound on
gradient

Training against the bound makes it tight

LP-cert and Grad-cert are tight only on training

Goal: Efficiently certify foreign multi-layer networks

18



19



New SDP-cert relaxation



New SDP-cert relaxation

Deep Neural Network

input layer hidden layer 1 hidden layer 2 hidden layer 3

\ v '
\ /. SARCS N\ A‘lln/_ SN -,
WS O\ 2 ON\\exe7/ >
R NS 4/7“&\\:& 7

8, 2
RO vy ) N ,r’w. 207, WS 28
N «"r,,,;;;f_\, Z NSV ) N NNSRNCR IS
PR \‘\‘ 7R £ 7 \\\\"\\\V \‘."':"I/’ \\\\\\ ““’ o X/
NP S EL NN A NSO A
NS KT A5 WS RALH2 R A
% D0\ . 'l" NN /“\‘ PN ‘l:’\ XN\ X Y
.:\9'5';"‘—:"703,"/',}. ‘ .A‘\‘\".&‘.I:&"':/L’Il/g . 4\'\".\‘.\:; 2
KR AN — S WOX R G S — SO A R,
SN X5 NI AL NIRRT
\\._?‘g AV 3,:.;.':,§ }-:;:Q’,:‘;‘..f-.‘.',:":0;':::§ //.:‘Q»‘e‘;-'.-‘ IR XAX
\‘.4:.‘.“.-.;' RS ‘ vt Vb ‘ et
X X X RN T —) ik
IRIRIRENT ) NS BAIRREST = Nk
*'-'00 A= AP KR AR '.-.‘Q:‘.“ XA K ‘

: e

4 N X S 4 o ) SaVZe e Za % 0aY %
A ST RN \\ 0.5 ‘._‘; ESN RLHD
BRI TR }- ‘ / POAFALR e‘.'\'.\l . 4 20,86

Q0
>, ' o 5
2582 % 9,5 AN P EION RN
//;;Q:.";:b‘;‘{ ‘:\:2? ?é’o'.';l;";/ o ‘\‘\\}\g ?,gl’,’-]:;'.z \\',:i"\\\x‘ = == ‘l/l" .\\
/. RCAER PN PP .\;‘\. Sy D 254 B\ 5 W
SRR SN SN 74
e e AN A S NN 80 DA 2 RO V %
S QIR HLEL SN AALEL SN
=7 - § ” :” AN A § ‘\ \ ) v , o " “\ \
\ 22 SN A2 SN/
N\ SN @ AN @

19



New SDP-cert relaxation

Deep Neural Network

input layer hidden layer 1 hidden layer 2 hidden layer 3

\ v '
\ /. SARCS N\ A‘lln/_ SN -,
WS O\ 2 ON\\exe7/ >
R NS 4/7“&\\:& 7

8, 2
RO vy ) N ,r’w. 207, WS 28
N «"r,,,;;;f_\, Z NSV ) N NNSRNCR IS
PR \‘\‘ 7R £ 7 \\\\"\\\V \‘."':"I/’ \\\\\\ ““’ o X/
NP S EL NN A NSO A
NS KT A5 WS RALH2 R A
% D0\ . 'l" NN /“\‘ PN ‘l:’\ XN\ X Y
.:\9'5';"‘—:"703,"/',}. ‘ .A‘\‘\".&‘.I:&"':/L’Il/g . 4\'\".\‘.\:; 2
KR AN — S WOX R G S — SO A R,
SN X5 NI AL NIRRT
\\._?‘g AV 3,:.;.':,§ }-:;:Q’,:‘;‘..f-.‘.',:":0;':::§ //.:‘Q»‘e‘;-'.-‘ IR XAX
\‘.4:.‘.“.-.;' RS ‘ vt Vb ‘ et
X X X RN T —) ik
IRIRIRENT ) NS BAIRREST = Nk
*'-'00 A= AP KR AR '.-.‘Q:‘.“ XA K ‘

: e

4 N X S 4 o ) SaVZe e Za % 0aY %
A ST RN \\ 0.5 ‘._‘; ESN RLHD
BRI TR }- ‘ / POAFALR e‘.'\'.\l . 4 20,86

Q0
>, ' o 5
2582 % 9,5 AN P EION RN
//;;Q:.";:b‘;‘{ ‘:\:2? ?é’o'.';l;";/ o ‘\‘\\}\g ?,gl’,’-]:;'.z \\',:i"\\\x‘ = == ‘l/l" .\\
/. RCAER PN PP .\;‘\. Sy D 254 B\ 5 W
SRR SN SN 74
e e AN A S NN 80 DA 2 RO V %
S QIR HLEL SN AALEL SN
=7 - § ” :” AN A § ‘\ \ ) v , o " “\ \
\ 22 SN A2 SN/
N\ SN @ AN @

19



New SDP-cert relaxation

_ Deep Neural Network

€T L1 T2 T3 = X,
input layer hidden layer 1 hidden layer 2 hidden layer 3

0
RN O S/ 7 NS S S<THE \
z . > 7 \
NV ! / \ > & S /
DRSNS N FALAY WS S AL
NP OIS
O X7 O - ',
N FONRKSZ IO
W\ R0 RNV LL ‘s,
5 \.\ W "-:l; i’f". R A PR \.017 k7P
AR % 0:0,; / o'.‘,
79 \

AN
NN
A\

RO v RO )
NN s ‘ ERSNNEIRIAAD . =\ \‘2\4
\\‘t’q’ R " L/ '».:’1 N“’\’ R/ ’»’:lq \ R
BRI o5l IR oo 2 X
PRSININ ) 8 LG LR _ S OEEN
AR r— ‘ v N— ‘ 4‘\.&:’@,
N RS N BRI A S5
RS R 5_‘.:.'_&.0..\ ,..:. ¢ ";‘. '3 :".';'"‘\.’Q..\ 7 /',‘V.:“_
2% a2, I\ R v/ LN LATAN L NG e
s A AW 2 58 S AV e 2y 7
A B PI RREN ‘ R AR A FRA RIS . 77 R
7

L/ 7
ity s BN '*/, CTATV S A TATSS \
» s VaAs T O 3 L /3T LX \\5 N

BHERRNST AT RN Doyl in s e FAT O
-11//,.'&;" ‘t\‘\;\r \ e (',1, :\\\ -y, \ h 7 X ;\\\\ ., % I/l’
SR PR Rt T RN /

s %05 0‘\\\‘\\\v A A S RO I ALK N 77
1 s S X7 SRR S X7 SN
///'A ~ “§\‘ \ _,I'If,”"‘:‘)““t\“\ Y1y 1'» % \"} ‘\‘\
=7 A ’ \ \ A
=702\ 2N\ ;
> = W77 2SN A}}Q‘\t ‘ Z "

> \\\ /) “‘




New SDP-cert relaxation

Deep Neural Network

X L1 L2 L3 = I,
input layer hidden layer 1 hidden layer 2 hidden layer 3

O @

X ) \\‘g{\§ ‘4';1/,'/4 ”\\\\\{:g ‘4’2:/

SN &7 WSS N or >,

SR OO N

DRSS - - e 2 iy X %

NN 7 AN W 7 AN : =

. NN e WIS HZAL LA WS L AL \ S
. AR EH AL 2R A RNRK LA N
C O n S ra I n S W SR Sk XK 7 — ENNINENFPDIL 77 NN AL 777 \\‘\ s

. ,.:"".A SA DL — §\’\ O S ',.:(7 SN B SR KXY ’ W 0%

RS .“ "‘.." '? " §":‘$’ Q\ ‘\" -~ 5 x 4 N '0~‘$’ t'v \\’;_ .': ‘:",0’4 \ . “V 3 ’Il\

o ok BN RO K WA % ';‘.Q“c‘ g "‘r,".“é"‘ X Qo X3¢

SR ST FSZN ZRSAMI] CAR
k"':“‘:'-f -.;.?.e?& . }“.1.:\0;.'.,.0 AN

oy g
PR B
KL AV?@:"’:} 7
)

W
P
» .. '
v binee @) SiEescane B S innis B aST e, v
AQ; e A TA NS O \\,:I‘~’ ".'.‘.:".‘ ey ":‘{ \\':'0‘6 QR AR :.‘:‘J 25 ’;‘;0\
——L A SR RGOS PSR ITEPERA IR PR IR JICRR Z AR
- I"' A S § %0 0r %, I\ RSN PSRN SRIEAREN 7 L
ot WATAN T S o P57 oA 2 -.Qv,‘§ Y a.v..-.p,*& 7 A L7 AN
oA ‘..f“.\ AN e AAISENAS = = ARINESDANNAS = Ve,
R MEROSNT AU PR S AN =77 ¥ >4
-",I/:'/;" ‘\‘“‘ g\"\\ v,/"".';';/; a".\“:"'\ /’0",’;',:/’“ ):'A‘\Q\:’0§ , \
L7 K ’4\:\,\ \\ ///.'/; «of‘\“v X \ // LT .g\.\§ / //
20 ’0"\‘ N\ =77/ "."I& et ‘/,I/_"IA et A

"
/ » o \‘ .\ -/, l NG \/ \\> - - e |-
SN QT2 SN2 58K
FL X INNAEL SN A2 SN
177 2 A‘}}‘\b ‘ _44;;& SN

1D
/ TS O
\\\ ~

25 SN E \
=\ W

19



New SDP-cert relaxation

_ Deep Neural Network

X L1 T2 T3 = X,
input layer hidden layer 1 hidden layer 2 hidden layer 3

oS Lo L A\
A NS NS N
SR O P ORNREOQRN
et A Ly 2 ) " \‘.",v ‘\ .’ \',, _" -
;‘“‘\‘}"‘-‘? \"'"""17/; \\‘f““}\”llﬁo‘.’z \\‘s\‘\?'g xe';:.:t? \§ ,
\})ﬁ.‘ A 5:70" X4 \\...“\t\,“;“. :,t;l 05 RX \\\“‘\:: 20T \ \‘ »
ST e A S W S 7
'l

OGO
= RRAARL% SR
& RIS 3',‘.,/4“\\,'2‘3

output layer

Attack model
constraints:

o CX YRR XKD o
PR D IS NI AT 50 PR 2
X S ZanV S o (RN oy
R T S ‘ /4“;.30;-.'.3 — vetd
v » \‘ .‘. ‘ .l.' X

N A 8 v N AT

B A B ) ‘\:.Q: ", 0.0,"

. .-'I" < “0'\ RAT KX X % "'.-' - .".‘ .’:'/ 7 '.‘V."\
2P AT SO e %, AN ATAN o\ R R NI TRN / PAXE
B R & CRAAIERIN G ERATRIERIN ) L5 TEX
' 43 s TASS AN X
< AR SR IR 27 73N

LA BORN BT B o ”
7 i .""\““ ‘\"?\Q /// "'r' T\ ~.‘.‘T\§ /
A ONNS @) 22 VNN @ =N 05 >
N\ N SN
=/ - \\ 754 7O/ .
75l = ‘ 7557 NSO
/// ‘\\§§§\> ) 4{5/&%\\3:\\, y

AN
>, ®

‘f—iﬁ’igé

R ENEROST \ S SRR ? < 4
f . 1 2 -‘I’I/:'/;; \‘:“Q‘\ ///"(‘;' Y /
— ( i ] < N s
Or Z ’ ’ e o o Y/ .'I’ ’v N ‘\\tk\\ / 7 LN \—




28 3 9,
. -:'III/,:'/‘.-' }g: CHN 0, ' lb _wy o ', (, 4\\\\ N /’ /’
fO r Z - 1 ’ 2 ’ o o o d "; ’."'I" ;:'?‘:‘\' ‘5\§ ‘ I,l " 2 " \‘\ \\ ‘ ' ""’IA ) “\ g . //;,

New SDP-cert relaxation

_ Deep Neural Network
T L1 T2 r3 = I
input layer hidden layer 1 hidden layer 2 hidden layer 3

S O

/ L= -, o — =y \

/= \ /
S>> / \\\“ )’4/7 \\ ‘ ’l
\‘\ o 41,, / W v’ N WS ': /
\\\‘ ~$‘( " 1 = \\\\ L% l/,,,, . ZN \\\‘I RE .”/’ll,_

). “\\ " \, ’/ 1’/ \\\ \‘\ P N ' "'I/ ‘\\' ’\ N '/ 'l/
—‘\\\\ ‘\ \\ ‘ \‘ \‘ “" \ \‘ “. ,
4} ‘
.0‘\‘ - l",\ .‘\\‘ ‘\‘\ ". 'I: \ . ‘\‘\‘\ J" 'Il;

"
constraints NS ) Sy e (VNS :-.’4
ﬁ\\‘.‘\ '_‘.\9,“ ..:0", ‘ ’ l. '0 7 \\\Ot‘ﬁ - ’ O.' 'o v ":‘Q
—— P 0 ST DY J WS O AN o 5 §-' S
N SHAELL TSN \\ X ) IR PRSI NS 2K \ RSSH—
Prce -t ) Ceves ‘ X :0. ASSORGAN ‘ L SAPRGAN KRR
', 7 W\ PO L LWL Y, -, e AP N B - - .
— -~ ORI UK o7 §"'. L 2 ’ RNy A § V.8,
aj —_— x . 6 “v '.'.I.‘- _.‘§ »"’Q.q Qf ™ CR 5 " - P .\‘/ \,'. (XD X o 7 O
i BEERSN IR KBRS A B
S0 ”'o,::‘:«

: A
NS PN TN o . 5 DT WS
AL W at v, S v\'..,-.
), ..’.I’ ‘." .‘:“.:: D\ % . / AN '/s 4\\ ‘ XX \‘ ‘ 2t 8 Vo

NPT K :" AN

/, » AP \ = ,’ 7, ‘v ,’,, -, A% ‘\\'
1/[{;"6. “§\.‘\ /';/ R ' ‘\ \\\

"‘Q“\ k 4 447 I’ S .\\\W//

““\ P77 \‘ 4 “"
N9 -\

Neural net constraints
RGLU(Wi_lﬂ}i_l)
tore=1,2,... L



New SDP-cert relaxation

input layer

Attack model
constraints:

‘f—iﬁ’igé
for:=1,2,...d

_ Deep Neural Network

X L1 To T3 = X,
hidden layer 1 hidden layer 2 hidden layer 3

&
N AF%EEE‘ S 05@ e :’,,’,,/r\\

/

‘
‘\\ " \, ’/ ' 1’[ \\\ \‘\ N " "I 7 \\:' " "/ 'l — \
—-\\\\ \\ ' \\ ‘ \\ \» 4;" e / \» 4.' , 4 ’
v " 0 ' 3
0‘§‘ ., ‘ ‘I\ _“\‘\" ‘\\\ ‘0 . 'I:; . \ ’\\\ J': :{IA "//
b, .\ ‘ 0 - l ' ( *y .‘ 5 ‘
R ':. :.‘./ § > *‘ z R =X R t’ 7, W o
\\‘?‘t‘ t\-,: ‘3'0:.:".‘§ ‘ . , ., 2R ‘ . o‘. X " ‘
e ¥ RS 0 ’ 5 G LN A WK 2 o'& ?" 0'
RAXPALBIRAM N ; @,
SN A R >N \\ "' LA 5, A‘_'

/ % ;‘ ‘v.v v‘ v v ‘v v. ‘V ‘
X % S ST \\ Tl S\ ’ \
=R YR BRI 57 RIS ‘ ’ LN
DA Vvt A 2 o ’0 X ’ »"‘“3«'-
25 P “'?‘\ ZXAK '/. 4\‘ ‘\'. ,I.‘l; .\;‘ ' ":\/
s 3
e “‘: 0N ,,‘ " \ “\ 7 ‘."‘ Vs (. .'\“\
— /14 e A 2V \ l’ any ', l» <v \\\ \
LTS IENN D ‘» & > \
AN B 2 AR AR \
RIS TSRS \} wri St \\\\“'
I"
“ \
AN
A

/ ’ “4\\\ /
// "‘“\ 077 SO /I’ SN
e /f)‘&flf/"& 2 /

Neural net constraints
— RGLU(Wi_lﬂ}i_l)
tore=1,2,... L

Objective

19



New SDP-cert relaxation

Deep Neural Network

€T L1 T2 T3 = X,
input layer hidden layer 1 hidden layer 2 hidden layer 3

N0 7 \ £ 7 \\%*“{‘;?;’2;’; \ Cgoutput layer
= &) >~ 4 NS S A4
Attack model \\t:‘.. ,:u/— KX ‘\{S:‘:* Zéf;;é.&\ | Ob J ective

= WA’ : XA
constraints e OO

3)
\
/‘\‘\\ S

‘f—iﬁ’igé

RS

/ fo X s 3 .\’ P LR 0 \'\ \7
TR I AA L KA L ¥, AT RN

° — / /4 o A o ORI a8 A S
— AR A RN L SANTN
—_— ' l,’" > LT A e \ [/ ‘-‘.‘ ‘. \\
’ 9 o o o RACT RN ‘ 2t WV NN M PA LSO NS
A A B oK Do P BT SR\

PRSP D St Lo
/ I’Ii') "‘ \\
17K XN SN

%“ ‘\}\}. ‘ "”""‘“‘ 8 ‘ "’I""“\“.' ‘
W, & W & @
0 1 WQ
Neural net constraints
L; — RGLU(Wi_lﬂ}i_l)
tore=1,2,... L

R DA T2 Rt
Vet \ 19 A2 Q‘
N 44//4’/"’ XN

19



New SDP-cert relaxation

Deep Neural Network

€T L1 T2 T3 = X,
input layer hidden layer 1 hidden layer 2 hidden layer 3

N7 b —
@277 L5 output layer . .
Attack mode N O Objective

. < '::.; P % WA R
constraints: RO

4
£
RORINX

\E—i‘]ige
tfore=1,2,...d

IR
C)

Norx
ORI
; SRR
"\

T BT S NS
775 oy Y 'lfl’ 0" ,‘\“ \

<z /> \\\ 21, 7 7 HE D \
77 RN RN

P SIN /7
N ://;/s;,;‘A“}\—Qw/
R ® N Y

Neural net constraints
L; — RGLU(Wi_liE,,;_l)
tore=1,2,... L

19



New SDP-cert relaxation

_ Deep Neural Network

€T L1 T2 T3 = X,
input layer hidden layer 1 hidden layer 2 hidden layer 3

-, ) o, S

N/ AN\ N NZ 7 y

"?,,' 7 NS 24 output layer
Ve & X .

’,
)
(77

X \\ ' '
RNANTATE) 7, WS 22577 N\ O b
>‘,\':‘}v ’/ c,' 5 ’{7 ‘\‘2\:‘:'\ R /02‘? \\ _— J e Ct I Ve
s :\ ; “. y
e 2 e 4

% SRR
0, /‘/'A:
75
/7
/

2
74

Attack model
constraints:

\E—i‘]ige

R

§
<z 7 "" x ——
/ A ~. —-— 3 -— kY, /7 LN
2.0 ":’ X o ,’,"‘: ROAA :\‘, NP ‘\“7 ’ ,/l/l'l.\\
. S W N\ ’ 'l", NN ‘g\_\’v\ '0"!;' K S AR / Y
fori=1,2 d OFZEER IO~ S R L=
— ’ ’ e o o //';’ % <\ X \ =7 ',."l;‘ ’:\\‘.\\\\ =77/ /.'.’I.& /:“\.‘\§ . /

SFALEL SRR L SN

NN
Wl . WQ
Neural net constraints
L; — RGLU(Wi_liE,,;_l)

tore=1,2,... L

Source of non-convexity is the

RelLU constraints

19



20



Handling RelLU constraints

20



Handling ReLLU constraints

Consider single ReLU constraint 2z = max(0, x)

20



Handling ReLLU constraints

Consider single ReLU constraint 2z = max(0, x)

Key insight: Can be replaced by linear + quadratic constraints

20



Handling ReLLU constraints

Consider single ReLU constraint 2z = max(0, x)

Key insight: Can be replaced by linear + quadratic constraints

2z > x Linear

20



Handling ReLLU constraints

Consider single ReLU constraint 2z = max(0, x)

Key insight: Can be replaced by linear + quadratic constraints

2z > x Linear
z > () Linear

20



Handling ReLLU constraints

Consider single ReLU constraint 2z = max(0, x)

Key insight: Can be replaced by linear + quadratic constraints

2z > x Linear

Z is greater than x, 0
z > () Linear

20



Handling ReLLU constraints

Consider single ReLU constraint 2z = max(0, x)

Key insight: Can be replaced by linear + quadratic constraints

2z > x Linear

Z is greater than x, 0
z > () Linear

2(z—x) =0 Quadratic

20



Handling ReLLU constraints

Consider single ReLU constraint 2z = max(0, x)

Key insight: Can be replaced by linear + quadratic constraints

2z > x Linear

Z is greater than x, 0
z > () Linear

Z equal to one of x, 0 Z(Z — :lf) — 0 Quadratic

20



Handling ReLLU constraints

Consider single ReLU constraint 2z = max(0, x)

Key insight: Can be replaced by linear + quadratic constraints

2z > x Linear

Z is greater than x, 0
z > () Linear

Z equal to one of x, 0 Z(Z — :lf) — 0 Quadratic

20
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Consider single ReLU constraint 2z = max(0, x)

Key insight: Can be replaced by linear + quadratic constraints

2z > x Linear

Z is greater than x, 0
z > () Linear

Z equal to one of x, 0 Z(Z — :li) — 0 Quadratic

Can relax quadratic constraints to get a semidefinite program
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SDP relaxation

Single ReLU constraint 2 — maX(O, :I;’) = Linear + Quadratic constraints
1 oz oz
M — r r2 s ReLU constraints as linear constraints
5 on matrix entries
< Xz <

Constraint on M

M = vv' Exact but non-convex set

M = VVT Relaxed and convex set

Generalizes to multiple layers: large matrix M with all activations
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€ SDP
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T1, Ty € |—€, €]
z1 = ReLLU(z1 + x2)

29 = ReLU(xl — 562) Z2
(Relaxed)

Unrelaxed
value
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SDP relaxation

Interaction between different hidden units

Feasible region of relaxed
activations for fixed input

T1, Ty € |—€, €]
z1 = ReLLU(z1 + x2)
— ReLU(xl — 562) 22

(Relaxed)

€ SDP
LP

Unrelaxed
value

Z1 (Relaxed) 1.5¢
L1 — X9 — 0.5¢

LP treats units independently
SDP reasons jointly

Theorem: For a random two layer network with ™ hidden nodes and input
dimension d , opt(LP) = ©(md) and opt(SDP) = ©(mV/'d + dv/m)
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PGD-attack

LP-NN

[Wong and Kolter 2018]

35%
97%
20%
15%

93%
22%
20%
18%

PGD-NN
[Madry et al. 2018]

N/A
100%
18%
9%
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Three different robust networks

Grad-NN LP-NN PGD-NN
[Raghunathan et al. 2018] [Wong and Kolter 2018] [Madry et al. 2018]

35% 93% N/A

97 % 22% 100%

20% 20% 18%
PGD-attack 15% 18% 9%

SDP provides good certificates on all three different networks 93
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PGD-NN

[Madry et al. 2018]
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Results on MNIST

PGD-NN
[Madry et al. 2018]

PGD Margin of closest incorrect class

_for SDP unverified points
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Uncertified points are more vulnerable to attack
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e Adversarial examples more broadly..
e Does there exist a mathematically well defined attack model?
* Would the current techniques (deep learning + appropriate
regularization) transfer to this attack model?
e Secure vs. better models?
e Adversarial examples expose limitations of current systems

e How do we get models to learn “the right thing”?
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Thank you!

Google

Open
Philanthropy
Project

Jacob Steinhardt Percy Liang

’

“Certified Defenses against Adversarial Examples’
https://arxiv.org/abs/1801.09344 [ICLR 2018]

“Semidefinite Relaxations for Certifying Robustness to Adversarial Examples”
https://arxiv.org/abs/1811.01057 [NeurlPS 2018]
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