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• ML systems fail catastrophically in presence of adversaries
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• Different kinds of adversarial manipulations — data poisoning, 
manipulation of test inputs, model theft, membership inference etc. 

• Focus on adversarial examples — manipulation of test inputs 
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[Sharif et al. 2016]
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[Brown et al. 2017] [Evtimov et al. 2017]
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5

What is an adversarial 
example?

|xadv � x|i  ✏ for i = 1, 2, . . . d xadv 2 B✏(x)

Panda Gibbon
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Can we get robustness to all attacks?

Attacks: Generate points in B✏(x)

Afgsm(x) = x+ ✏ sign
�
rf(x)

�

Network is provably robust if 
optimal attack fails

f(x̃)Let           be the scoring function and adversary wants to maximizef(x̃)

Aopt(x) = argmax
x̃

f(x̃)

f? ⌘ f(Aopt(x)) < 0
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Two layer networks

Bound on gradient: 

optimize over 
activations

optimize over signs of 
perturbation

Final step: SDP relaxation (similar to MAXCUT) leads to Grad-cert

f(x̃)  f(x̄) + ✏max
x̃

krf(x̃)k1

10

Key idea: Uniformly bound gradients 
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Relaxation       Training
Training a neural network

Objective:

Differentiable objective but expensive gradients

Duality to the rescue! 

Regularizer: 

Just one max eigenvalue computation for gradients

11

D · �+
max

�
(M(v,W )� diag(c)

�
+ 1> max(c, 0)
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    15

Train with Grad-cert

(attack)

Train with Grad-cert

(Certified)

Gradient based bound 

is much better!
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finds networks where the bound is tight

Comparison with Wong and Kolter 2018 (LP-cert)

Bounds are tight when you train

Some networks are empirically robust but not certified 

(e.g. Adversarial Training of Madry et al. 2018) 

Can we certify such “foreign” networks?

Bounds are tight only when you train

Network PGD-attack LP-cert Grad-cert

LP-NN 22% 26% 93%
Grad-NN 15% 97% 35%
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Summary so far…

• Certified robustness: relaxed optimization to bound worst-case attack

• Grad-cert: Upper bound on worst case attack using uniform bound on 

gradient 

• Training against the bound makes it tight 

• LP-cert and Grad-cert are tight only on training

• Goal: Efficiently certify foreign multi-layer networks
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z = max(0, x)

z � 0

z � x

z(z � x) = 0 Quadratic

Linear

Linear

20

{is greater than z x, 0

z equal to one of x, 0

Can relax quadratic constraints to get a semidefinite program
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Single ReLU constraint ⌘ Linear + Quadratic constraintsz = max(0, x)

M =

2

4
1 x z
x x2 xz
z xz z2

3

5

Constraint on M

M = vv> Exact but non-convex set

M = V V > Relaxed and convex set

ReLU constraints as linear constraints 
on matrix entries

M ⌫ 0

Generalizes to multiple layers: large matrix M with all activations
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x1, x2 2 [�✏, ✏]

x1 = x2 = 0.5✏

Unrelaxed 

value

LP treats units independently 

SDP reasons jointly

Theorem: For a random two layer network with      hidden nodes and input 
dimension    , opt(LP) =              and opt(SDP) = 

m
d ⇥(md) ⇥(m

p
d+ d

p
m)
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z2 = ReLU(x1 � x2)
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Three different robust networks 

Grad-NN 

[Raghunathan et al. 2018]

LP-NN 

[Wong and Kolter 2018]

PGD-NN 

[Madry et al. 2018]

Grad-NN LP-NN PGD-NN

Grad-cert 35% 93% N/A

LP-cert 97% 22% 100%

SDP-cert 20% 20% 18%

PGD-attack 15% 18% 9%

SDP provides good certificates on all three different networks
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PGD-NN 

[Madry et al. 2018]

Uncertified points are more vulnerable to attack
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• Does there exist a mathematically well defined attack model?

• Would the current techniques (deep learning + appropriate 

regularization) transfer to this attack model?

• Secure vs. better models?

• Adversarial examples expose limitations of current systems

• How do we get models to learn “the right thing”?
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Thank you!

Jacob Steinhardt Percy Liang
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