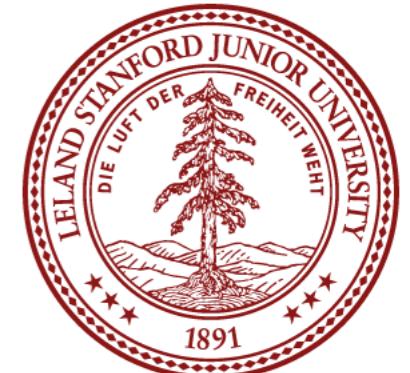


Semidefinite relaxations for certifying robustness to adversarial examples



Jacob Steinhardt

Percy Liang

Aditi
Raghunathan

ML: Powerful But Fragile

ML: Powerful But Fragile

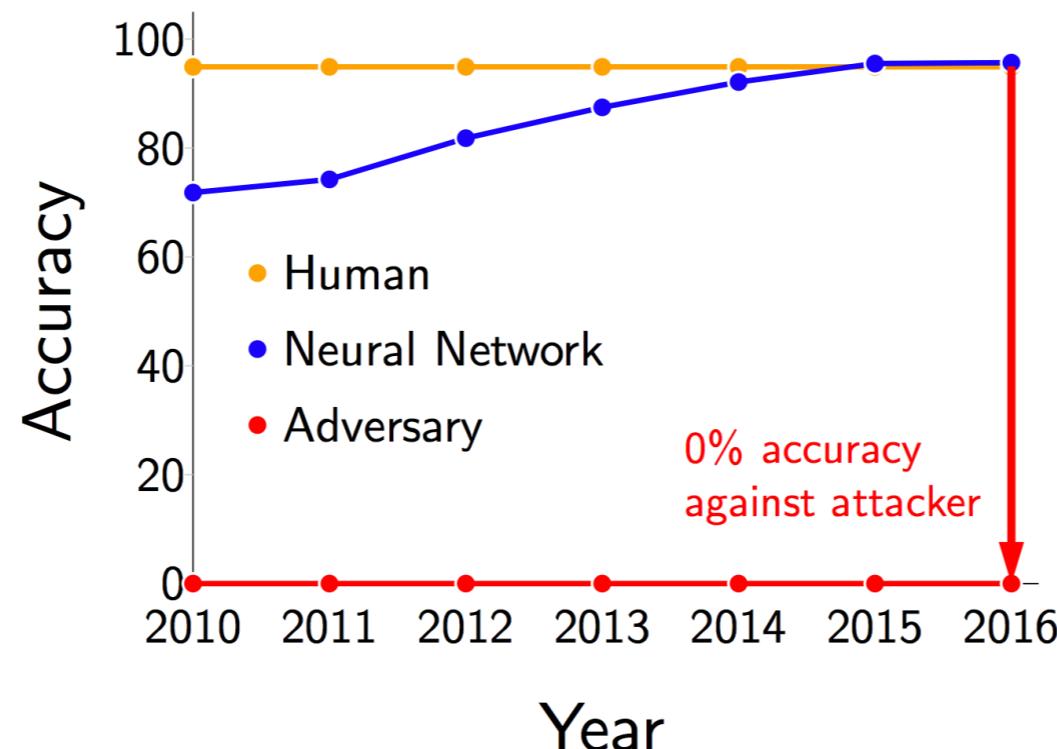
- ML is successful on several tasks: object recognition, game playing, face recognition

ML: Powerful But Fragile

- ML is successful on several tasks: object recognition, game playing, face recognition
- ML systems **fail catastrophically** in presence of **adversaries**

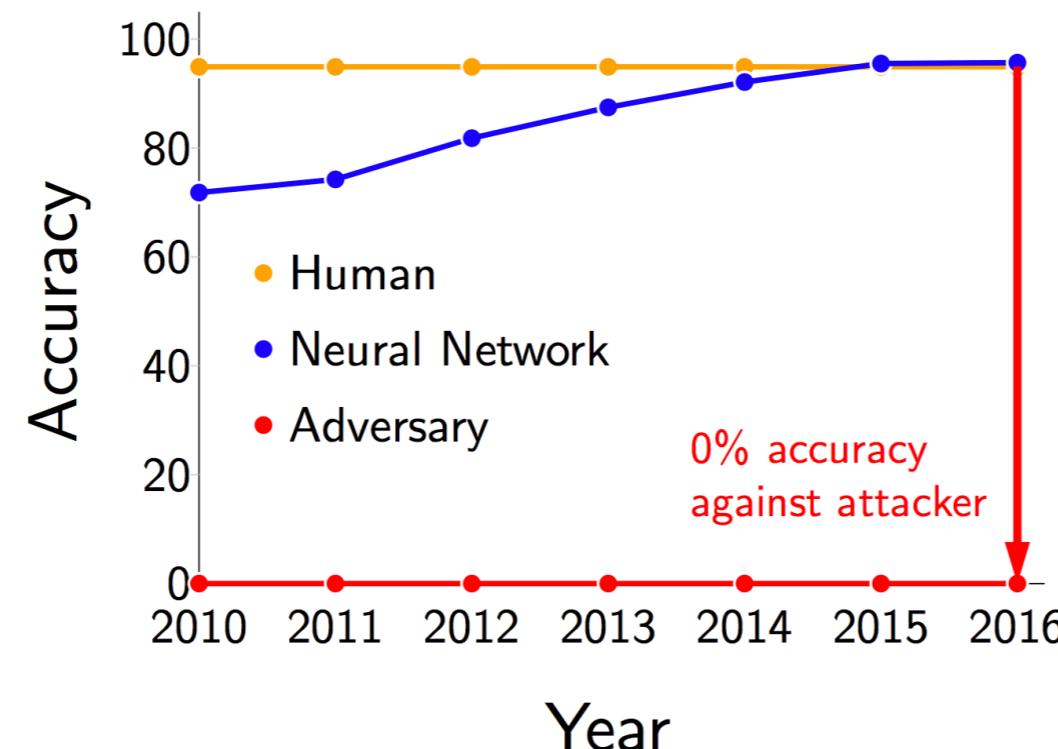
ML: Powerful But Fragile

- ML is successful on several tasks: object recognition, game playing, face recognition
- ML systems **fail catastrophically** in presence of **adversaries**



ML: Powerful But Fragile

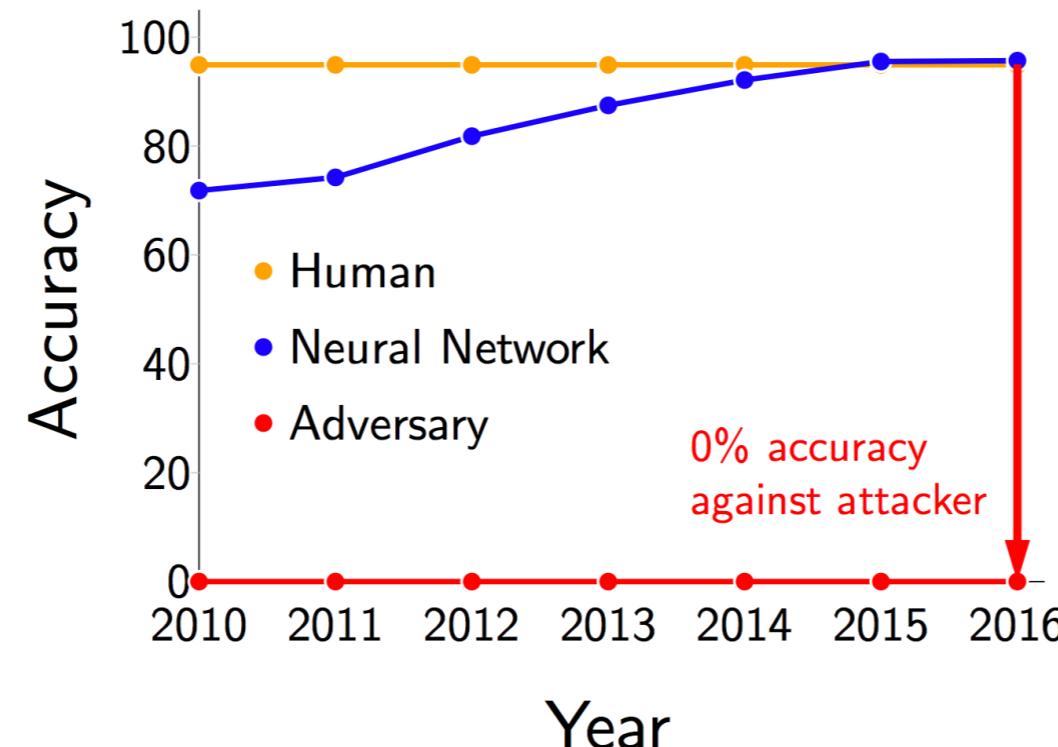
- ML is successful on several tasks: object recognition, game playing, face recognition
- ML systems **fail catastrophically** in presence of **adversaries**



- Different kinds of adversarial manipulations – data poisoning, **manipulation of test inputs**, model theft, membership inference etc.

ML: Powerful But Fragile

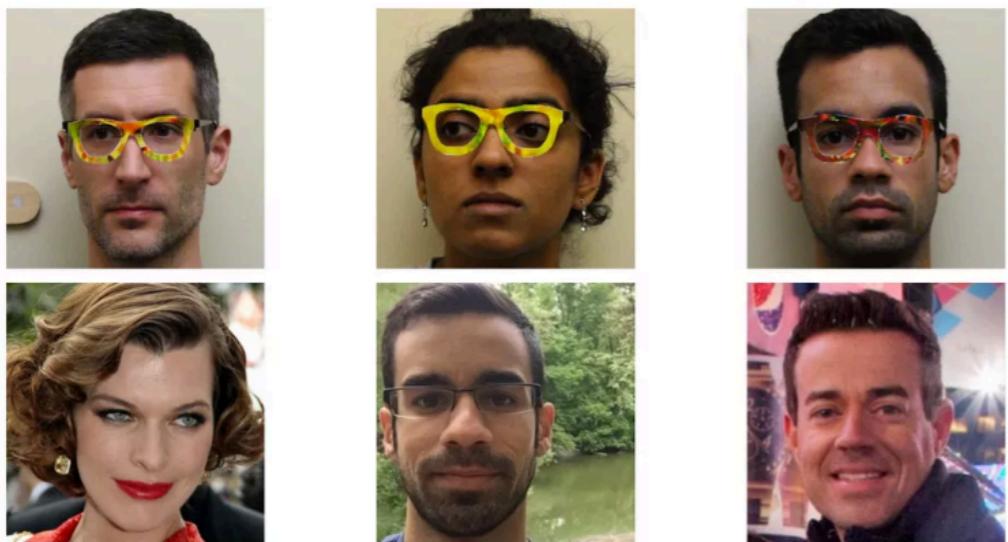
- ML is successful on several tasks: object recognition, game playing, face recognition
- ML systems **fail catastrophically** in presence of **adversaries**



- Different kinds of adversarial manipulations – data poisoning, **manipulation of test inputs**, model theft, membership inference etc.
- Focus on **adversarial examples** – manipulation of test inputs

Adversarial Examples

Adversarial Examples



devil emoji Glasses → Impersonation

[Sharif et al. 2016]

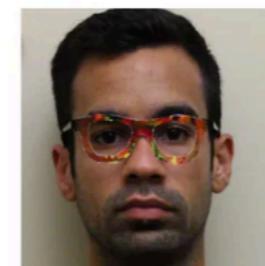
Adversarial Examples



😈 Glasses → Impersonation
[Sharif et al. 2016]

Banana + 😈 patch → Toaster
[Brown et al. 2017]

Adversarial Examples



😈 Glasses → Impersonation
[Sharif et al. 2016]

Banana + 😈 patch → Toaster
[Brown et al. 2017]

Stop + 😈 sticker → Yield
[Evtimov et al. 2017]

Adversarial Examples

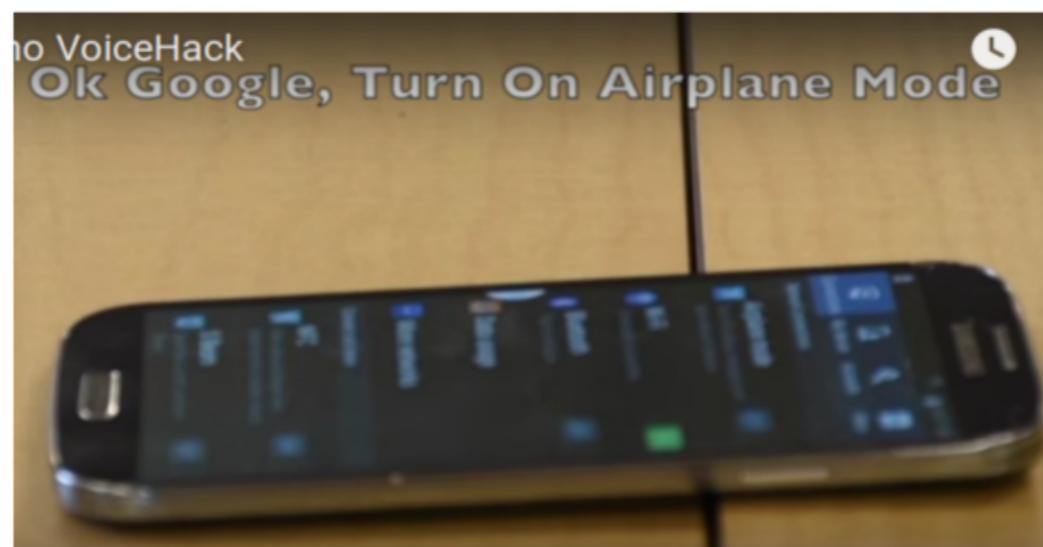
Adversarial Examples

3D Turtle → Rifle

[Athalye et al. 2017]

Adversarial Examples

devil 3D Turtle → Rifle
[Athalye et al. 2017]

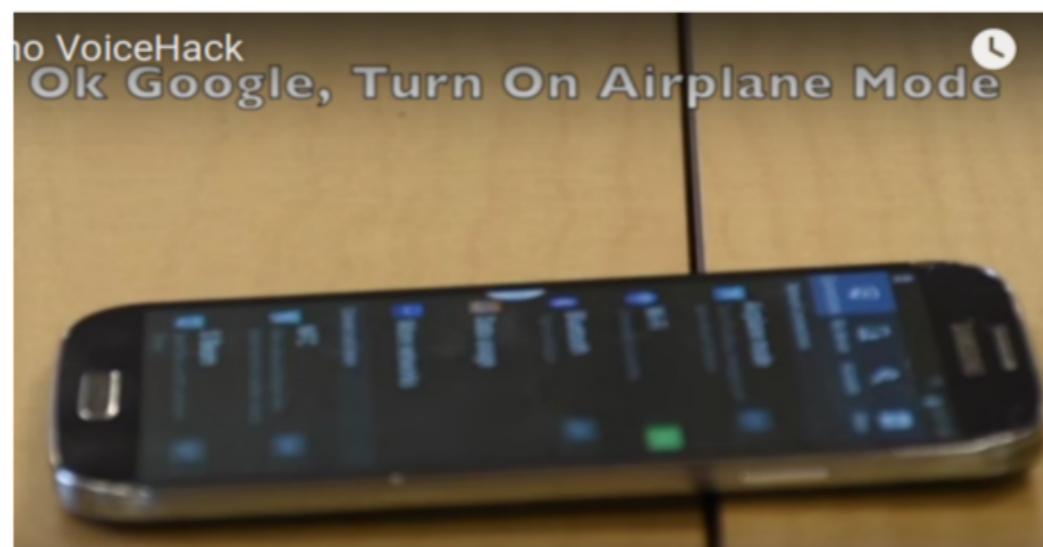


devil Noise → “Ok Google”
[Carlini et al. 2017]

Adversarial Examples

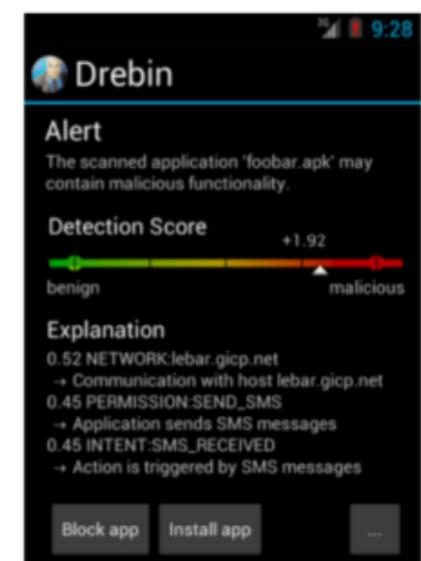
devil 3D Turtle → Rifle

[Athalye et al. 2017]



devil Noise → “Ok Google”

[Carlini et al. 2017]



devil Malware → Benign

[Grosse et al. 2017]

What is an adversarial example?

What is an adversarial example?

Definition of attack model usually application specific and complex

What is an adversarial example?

Definition of attack model usually application specific and complex

We consider the well studied ℓ_∞ attack model

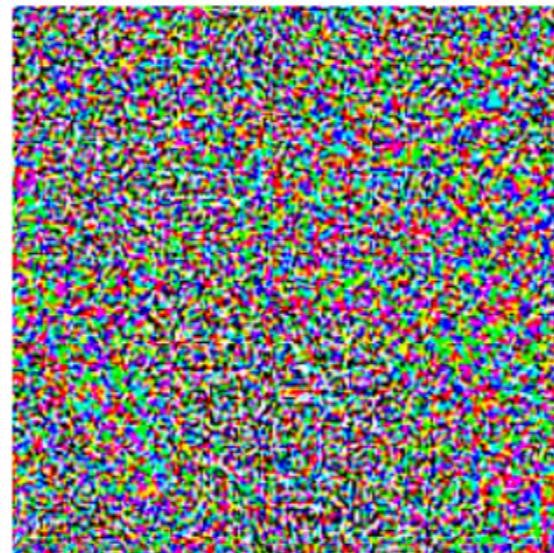
What is an adversarial example?

Definition of attack model usually application specific and complex

We consider the well studied ℓ_∞ attack model

Szegedy et al. 2014

$+ .007 \times$



=

Panda

Gibbon

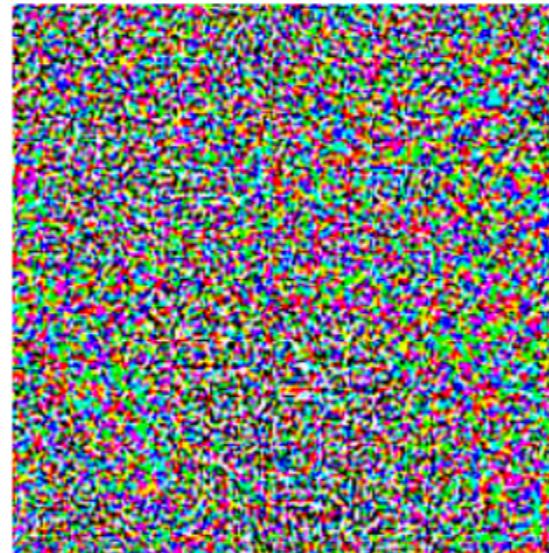
What is an adversarial example?

Definition of attack model usually application specific and complex

We consider the well studied ℓ_∞ attack model

Szegedy et al. 2014

$+ .007 \times$



$=$

Panda

Gibbon

$$|x_{\text{adv}} - x|_i \leq \epsilon \text{ for } i = 1, 2, \dots, d$$

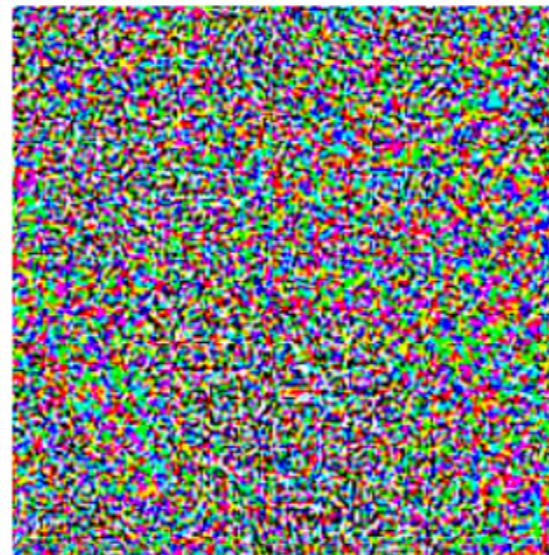
What is an adversarial example?

Definition of attack model usually application specific and complex

We consider the well studied ℓ_∞ attack model

Szegedy et al. 2014

$+ .007 \times$



$=$

Panda

Gibbon

$$|x_{\text{adv}} - x|_i \leq \epsilon \text{ for } i = 1, 2, \dots, d$$

$$x_{\text{adv}} \in B_\epsilon(x)$$

History

History

Hard to defend even in this well defined model...

History

Hard to defend even in this well defined model...

- [Szegedy+ 2014]: First discover adversarial examples

History

Hard to defend even in this well defined model...

- [Szegedy+ 2014]: First discover adversarial examples
- [Goodfellow+ 2015]: Adversarial training (AT) against FGSM

History

Hard to defend even in this well defined model...

- [Szegedy+ 2014]: First discover adversarial examples
- [Goodfellow+ 2015]: Adversarial training (AT) against FGSM
- [Papernot+ 2015]: Defensive Distillation

History

Hard to defend even in this well defined model...

- [Szegedy+ 2014]: First discover adversarial examples
- [Goodfellow+ 2015]: Adversarial training (AT) against FGSM
- [Papernot+ 2015]: Defensive Distillation
- [Carlini & Wagner 2016]: Distillation is not secure

History

Hard to defend even in this well defined model...

- [Szegedy+ 2014]: First discover adversarial examples
- [Goodfellow+ 2015]: Adversarial training (AT) against FGSM
- [Papernot+ 2015]: Defensive Distillation
- [Carlini & Wagner 2016]: Distillation is not secure
- [Papernot + 2017]: Better distillation

History

Hard to defend even in this well defined model...

- [Szegedy+ 2014]: First discover adversarial examples
- [Goodfellow+ 2015]: Adversarial training (AT) against FGSM
- [Papernot+ 2015]: Defensive Distillation
- [Carlini & Wagner 2016]: Distillation is not secure
- [Papernot + 2017]: Better distillation
- [Carlini & Wagner 2017]: Ten detection strategies fail

History

Hard to defend even in this well defined model...

- [Szegedy+ 2014]: First discover adversarial examples
- [Goodfellow+ 2015]: Adversarial training (AT) against FGSM
- [Papernot+ 2015]: Defensive Distillation
- [Carlini & Wagner 2016]: Distillation is not secure
- [Papernot + 2017]: Better distillation
- [Carlini & Wagner 2017]: Ten detection strategies fail
- [Madry+ 2017]: AT against PGD, informal argument about optimality

History

Hard to defend even in this well defined model...

- [Szegedy+ 2014]: First discover adversarial examples
- [Goodfellow+ 2015]: Adversarial training (AT) against FGSM
- [Papernot+ 2015]: Defensive Distillation
- [Carlini & Wagner 2016]: Distillation is not secure
- [Papernot + 2017]: Better distillation
- [Carlini & Wagner 2017]: Ten detection strategies fail
- [Madry+ 2017]: AT against PGD, informal argument about optimality
- [Lu + July 12 2017]: "NO Need to Worry about Adversarial Examples in Object Detection in Autonomous Vehicles"

History

Hard to defend even in this well defined model...

- [Szegedy+ 2014]: First discover adversarial examples
- [Goodfellow+ 2015]: Adversarial training (AT) against FGSM
- [Papernot+ 2015]: Defensive Distillation
- [Carlini & Wagner 2016]: Distillation is not secure
- [Papernot + 2017]: Better distillation
- [Carlini & Wagner 2017]: Ten detection strategies fail
- [Madry+ 2017]: AT against PGD, informal argument about optimality
- [Lu + July 12 2017]: "NO Need to Worry about Adversarial Examples in Object Detection in Autonomous Vehicles"
- [Athalye and Sutskever July 17 2017]: Break above defense

History

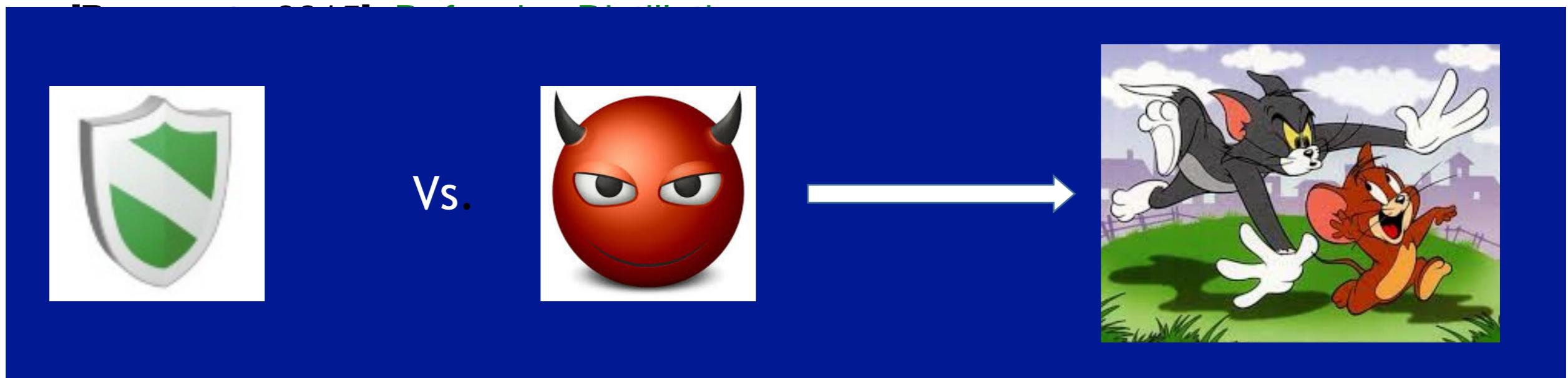
Hard to defend even in this well defined model...

- [Szegedy+ 2014]: First discover adversarial examples
- [Goodfellow+ 2015]: Adversarial training (AT) against FGSM
- [Papernot+ 2015]: Defensive Distillation
- [Carlini & Wagner 2016]: Distillation is not secure
- [Papernot + 2017]: Better distillation
- [Carlini & Wagner 2017]: Ten detection strategies fail
- [Madry+ 2017]: AT against PGD, informal argument about optimality
- [Lu + July 12 2017]: "NO Need to Worry about Adversarial Examples in Object Detection in Autonomous Vehicles"
- [Athalye and Sutskever July 17 2017]: Break above defense
- [Athalye, Carlini, Wagner]: Break 6 out of 7 ICLR defenses

History

Hard to defend even in this well defined model...

- [Szegedy+ 2014]: First discover adversarial examples
- [Goodfellow+ 2015]: Adversarial training (AT) against FGSM



- [Lu + July 12 2017]: "NO Need to Worry about Adversarial Examples in Object Detection in Autonomous Vehicles"
- [Athalye and Sutskever July 17 2017]: Break above defense
- [Athalye, Carlini, Wagner]: Break 6 out of 7 ICLR defenses

Provable robustness

Provable robustness

Can we get robustness to **all** attacks?

Provable robustness

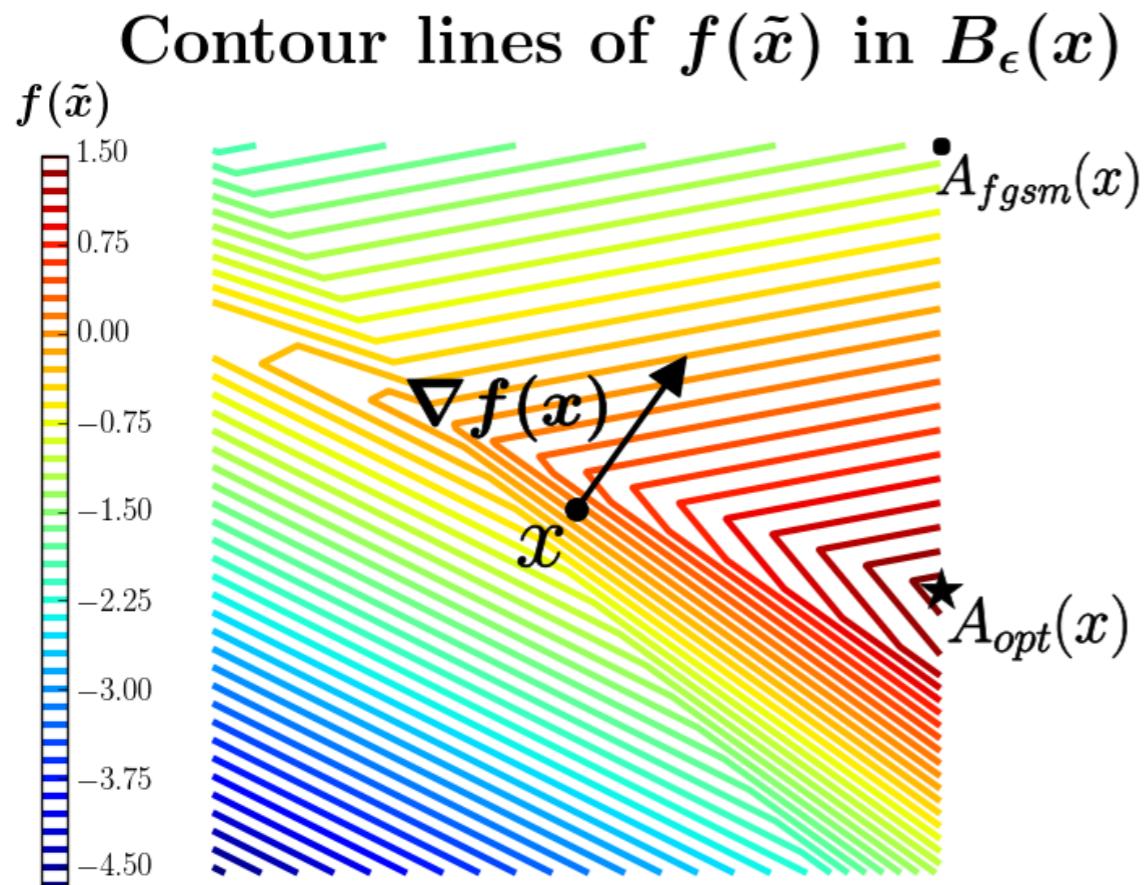
Can we get robustness to **all** attacks?

Let $f(\tilde{x})$ be the scoring function and adversary wants to maximize $f(\tilde{x})$

Provable robustness

Can we get robustness to **all** attacks?

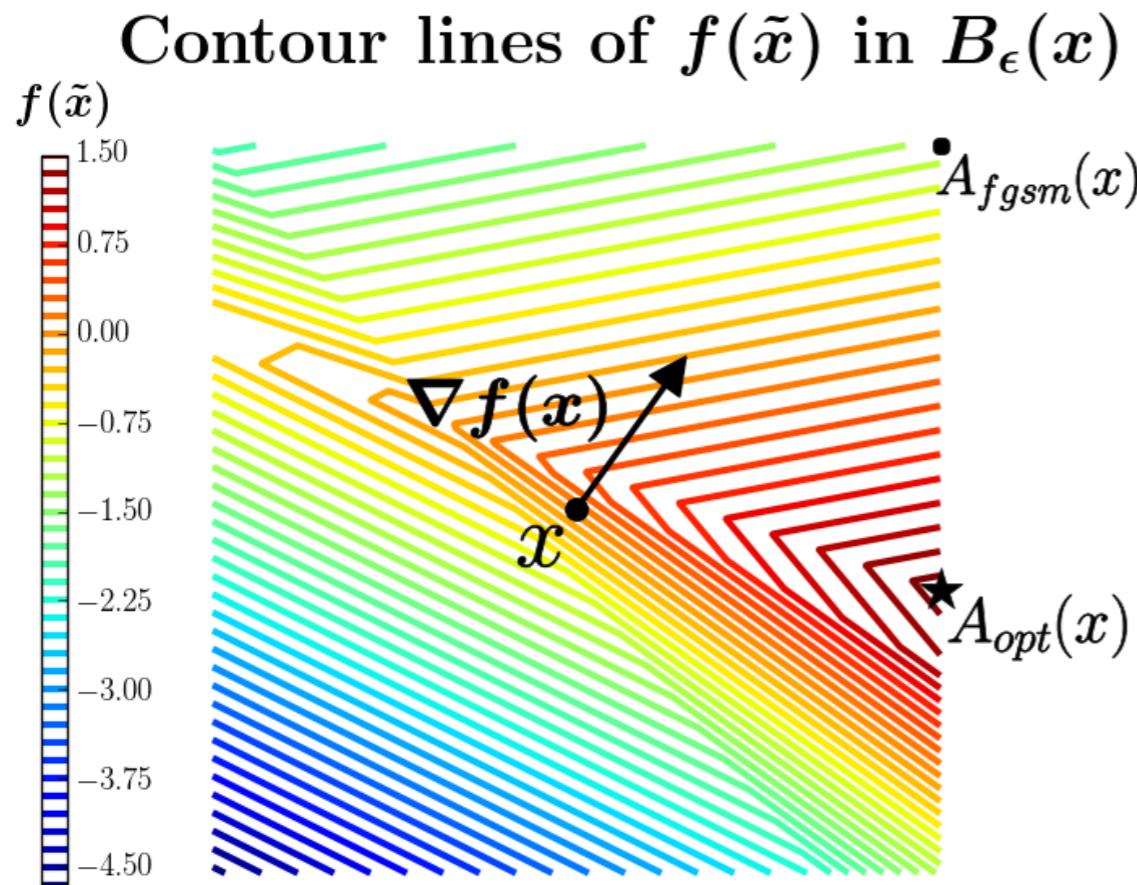
Let $f(\tilde{x})$ be the scoring function and adversary wants to maximize $f(\tilde{x})$



Provable robustness

Can we get robustness to **all** attacks?

Let $f(\tilde{x})$ be the scoring function and adversary wants to maximize $f(\tilde{x})$

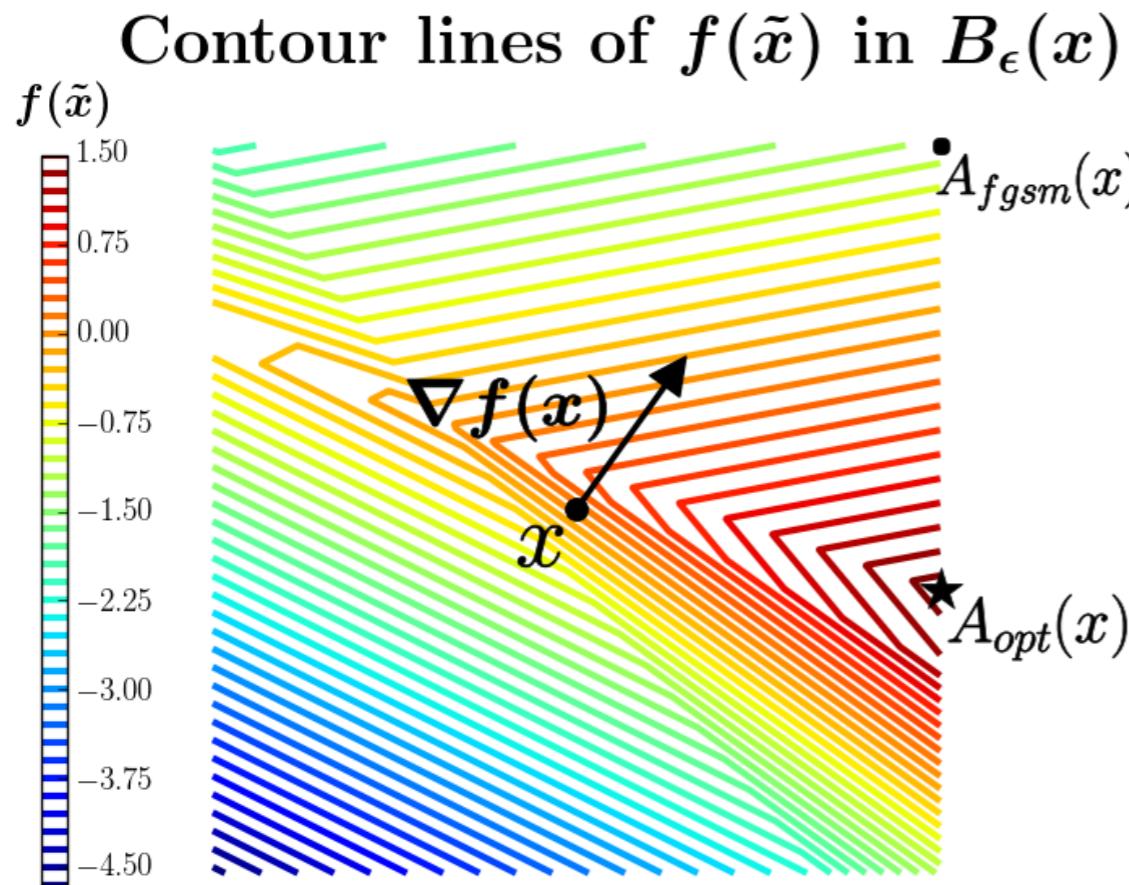


Attacks: Generate points in $B_\epsilon(x)$

Provable robustness

Can we get robustness to **all** attacks?

Let $f(\tilde{x})$ be the scoring function and adversary wants to maximize $f(\tilde{x})$



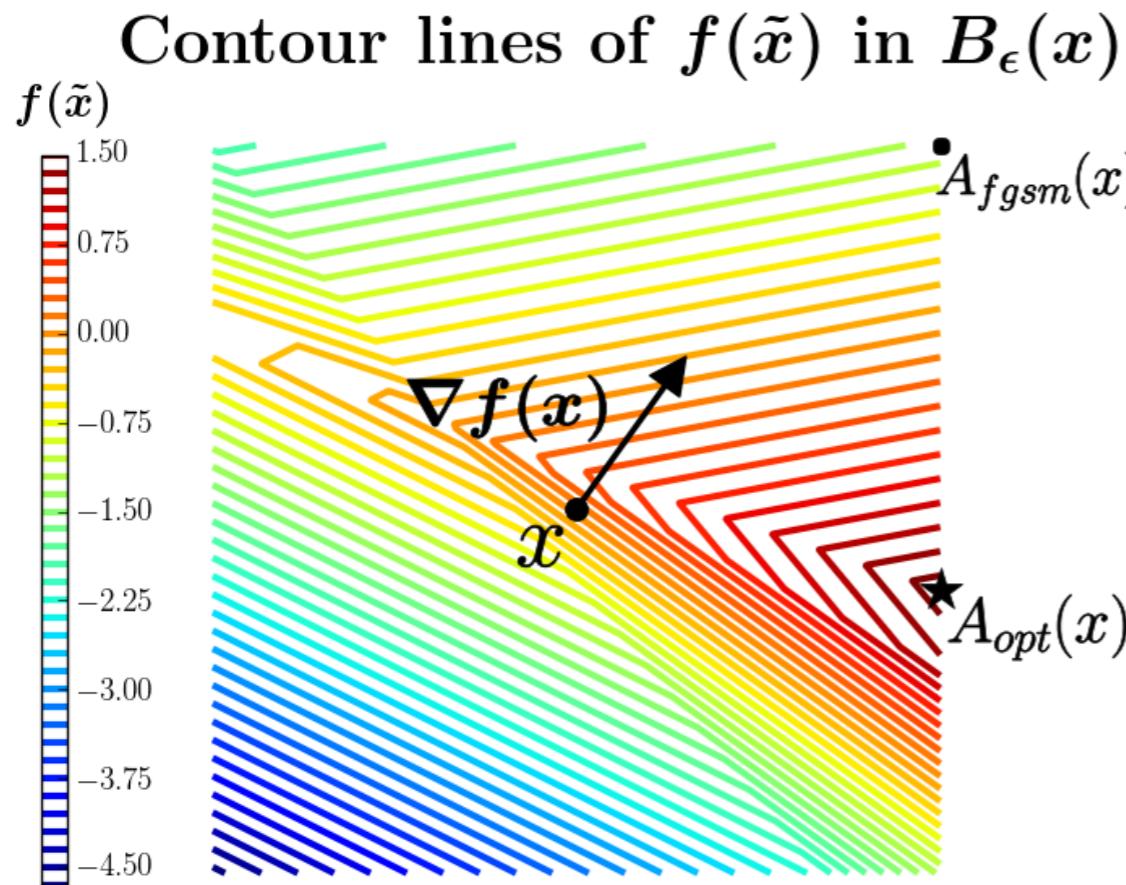
Attacks: Generate points in $B_\epsilon(x)$

$$A_{fgsm}(x) = x + \epsilon \operatorname{sign}(\nabla f(x))$$

Provable robustness

Can we get robustness to **all** attacks?

Let $f(\tilde{x})$ be the scoring function and adversary wants to maximize $f(\tilde{x})$



Attacks: Generate points in $B_\epsilon(x)$

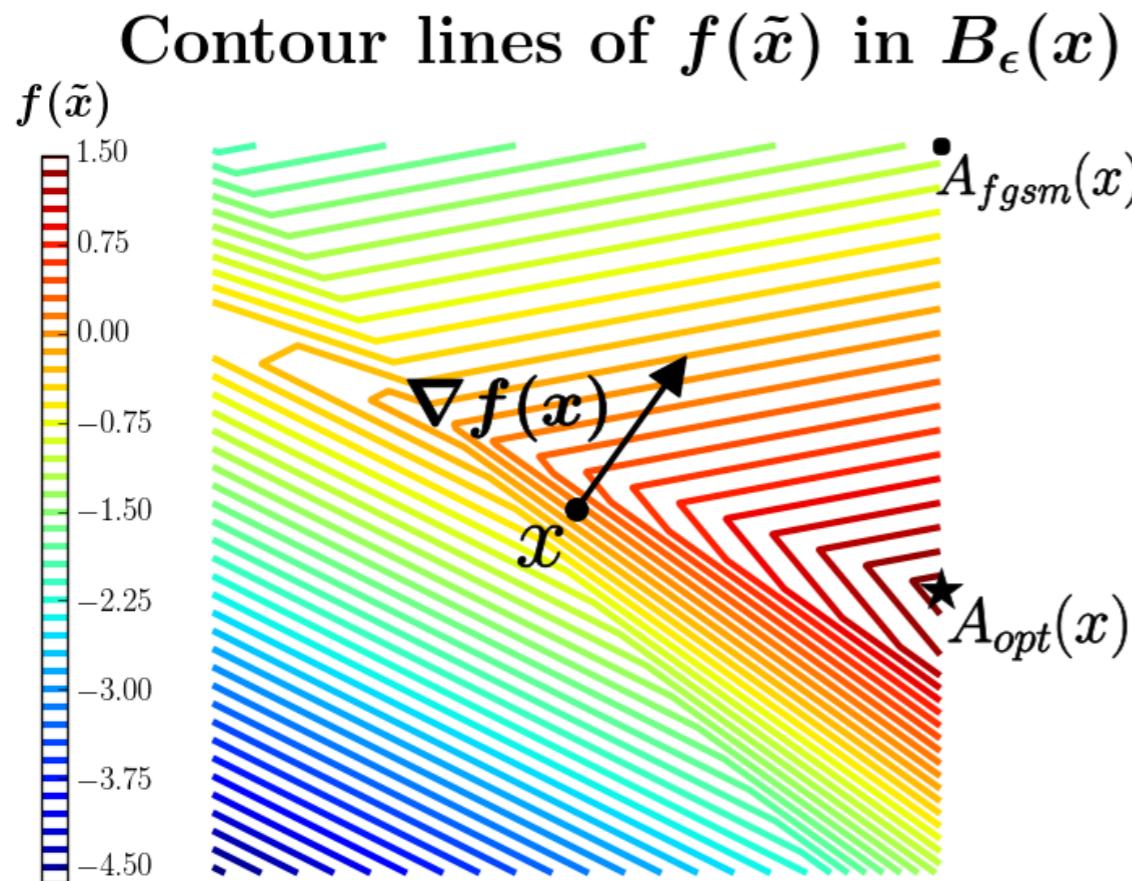
$$A_{fgsm}(x) = x + \epsilon \operatorname{sign}(\nabla f(x))$$

$$A_{opt}(x) = \arg \max_{\tilde{x}} f(\tilde{x})$$

Provable robustness

Can we get robustness to **all** attacks?

Let $f(\tilde{x})$ be the scoring function and adversary wants to maximize $f(\tilde{x})$



Attacks: Generate points in $B_\epsilon(x)$

$$A_{fgsm}(x) = x + \epsilon \operatorname{sign}(\nabla f(x))$$

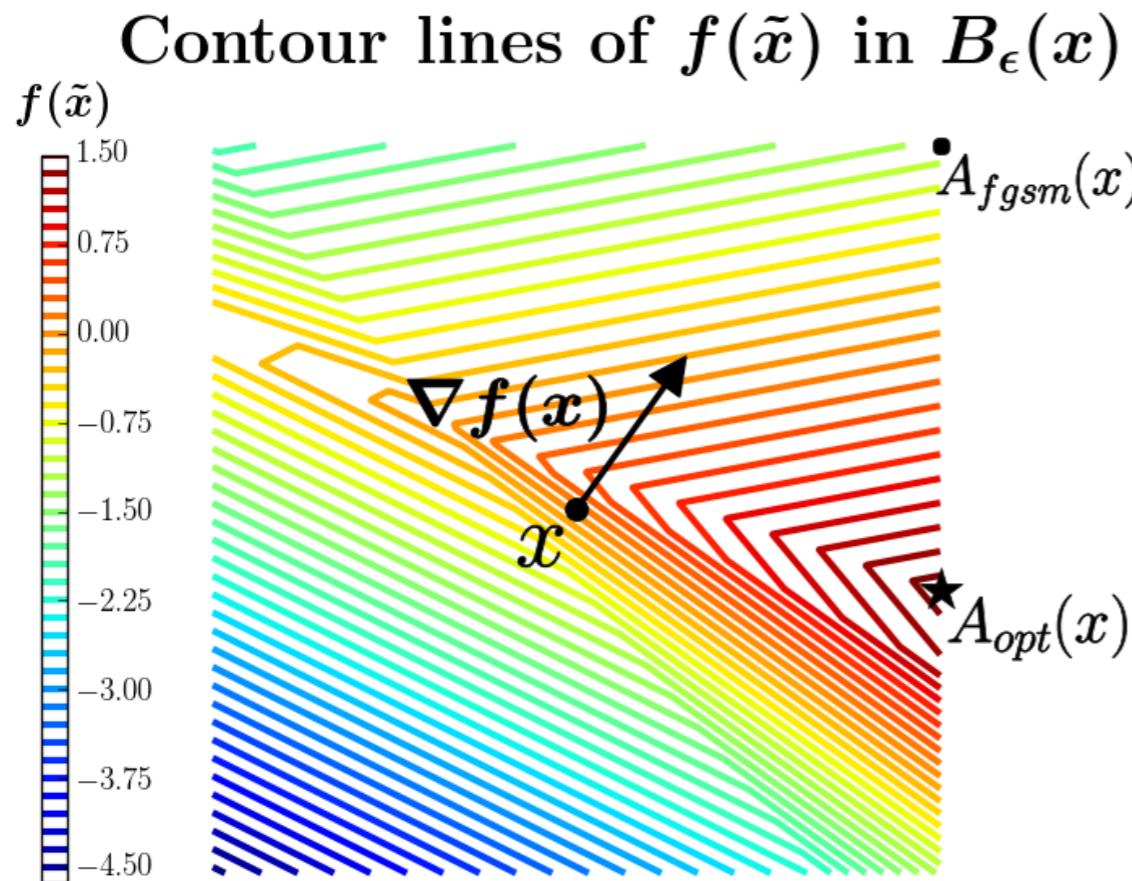
$$A_{opt}(x) = \arg \max_{\tilde{x}} f(\tilde{x})$$

Network is provably robust if
optimal attack fails

Provable robustness

Can we get robustness to **all** attacks?

Let $f(\tilde{x})$ be the scoring function and adversary wants to maximize $f(\tilde{x})$



Attacks: Generate points in $B_\epsilon(x)$

$$A_{fgsm}(x) = x + \epsilon \operatorname{sign}(\nabla f(x))$$

$$A_{opt}(x) = \arg \max_{\tilde{x}} f(\tilde{x})$$

Network is provably robust if
optimal attack fails

$$f^* \equiv f(A_{opt}(x)) < 0$$

Provable robustness

Network is provably robust if $f^* \equiv f(A_{\text{opt}}(x)) < 0$

Provable robustness

Network is provably robust if $f^* \equiv f(A_{\text{opt}}(x)) < 0$

Computing f^* is intractable in general

Provable robustness

Network is provably robust if $f^* \equiv f(A_{\text{opt}}(x)) < 0$

Computing f^* is intractable in general

- Combinatorial approaches to compute f^*

Provable robustness

Network is provably robust if $f^* \equiv f(A_{\text{opt}}(x)) < 0$

Computing f^* is intractable in general

- Combinatorial approaches to compute f^*
 - SMT based Reluplex [Katz+ 2018]

Provable robustness

Network is provably robust if $f^* \equiv f(A_{\text{opt}}(x)) < 0$

Computing f^* is intractable in general

- Combinatorial approaches to compute f^*
 - SMT based Reluplex [Katz+ 2018]
 - MILP based with specialized preprocessing [Tjeng+ 2018]

Provable robustness

Network is provably robust if $f^* \equiv f(A_{\text{opt}}(x)) < 0$

Computing f^* is intractable in general

- Combinatorial approaches to compute f^*
 - SMT based Reluplex [Katz+ 2018]
 - MILP based with specialized preprocessing [Tjeng+ 2018]
- Convex relaxations to compute upper bound on f^*

Provable robustness

Network is provably robust if $f^* \equiv f(A_{\text{opt}}(x)) < 0$

Computing f^* is intractable in general

- Combinatorial approaches to compute f^*
 - SMT based Reluplex [Katz+ 2018]
 - MILP based with specialized preprocessing [Tjeng+ 2018]
- Convex relaxations to compute upper bound on f^*
 - Upper bound is negative \implies optimal attack fails

Provable robustness

Network is provably robust if $f^* \equiv f(A_{\text{opt}}(x)) < 0$

Computing f^* is intractable in general

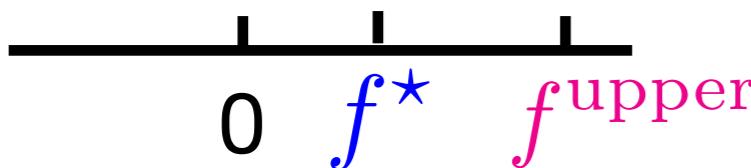
- Combinatorial approaches to compute f^*
 - SMT based Reluplex [Katz+ 2018]
 - MILP based with specialized preprocessing [Tjeng+ 2018]
- Convex relaxations to compute upper bound on f^*
 - Upper bound is negative \implies optimal attack fails
 - Computationally efficient upper bound

Provable robustness

Network is provably robust if $f^* \equiv f(A_{\text{opt}}(x)) < 0$

Computing f^* is intractable in general

- Combinatorial approaches to compute f^*
 - SMT based Reluplex [Katz+ 2018]
 - MILP based with specialized preprocessing [Tjeng+ 2018]
- Convex relaxations to compute upper bound on f^*
 - Upper bound is negative \implies optimal attack fails
 - Computationally efficient upper bound



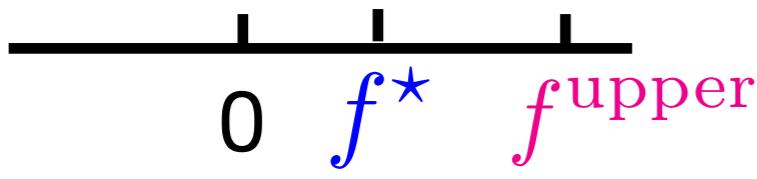
Not robust

Provable robustness

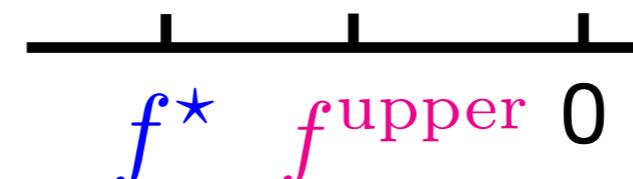
Network is provably robust if $f^* \equiv f(A_{\text{opt}}(x)) < 0$

Computing f^* is intractable in general

- Combinatorial approaches to compute f^*
 - SMT based Reluplex [Katz+ 2018]
 - MILP based with specialized preprocessing [Tjeng+ 2018]
- Convex relaxations to compute upper bound on f^*
 - Upper bound is negative \implies optimal attack fails
 - Computationally efficient upper bound



Not robust



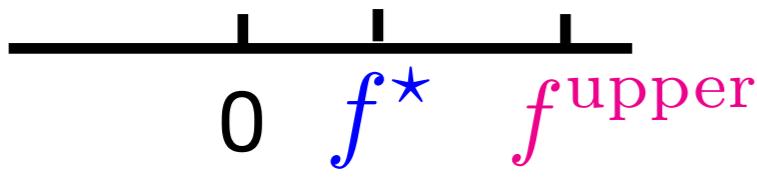
Robust and certified

Provable robustness

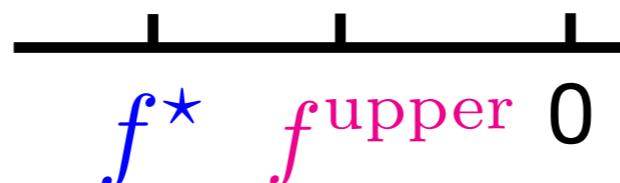
Network is provably robust if $f^* \equiv f(A_{\text{opt}}(x)) < 0$

Computing f^* is intractable in general

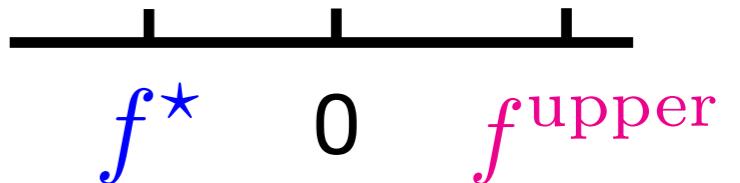
- Combinatorial approaches to compute f^*
 - SMT based Reluplex [Katz+ 2018]
 - MILP based with specialized preprocessing [Tjeng+ 2018]
- Convex relaxations to compute upper bound on f^*
 - Upper bound is negative \implies optimal attack fails
 - Computationally efficient upper bound



Not robust



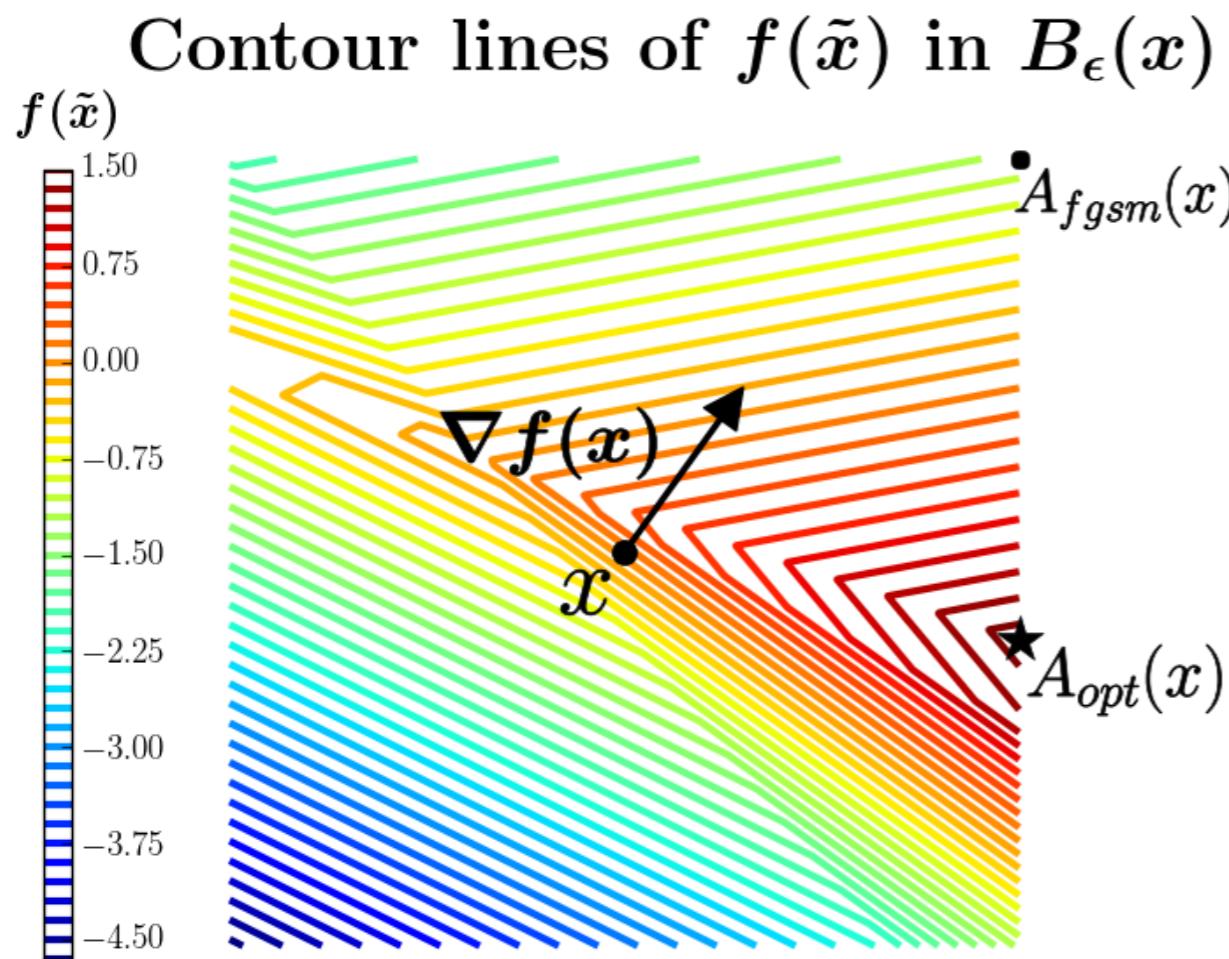
Robust and certified



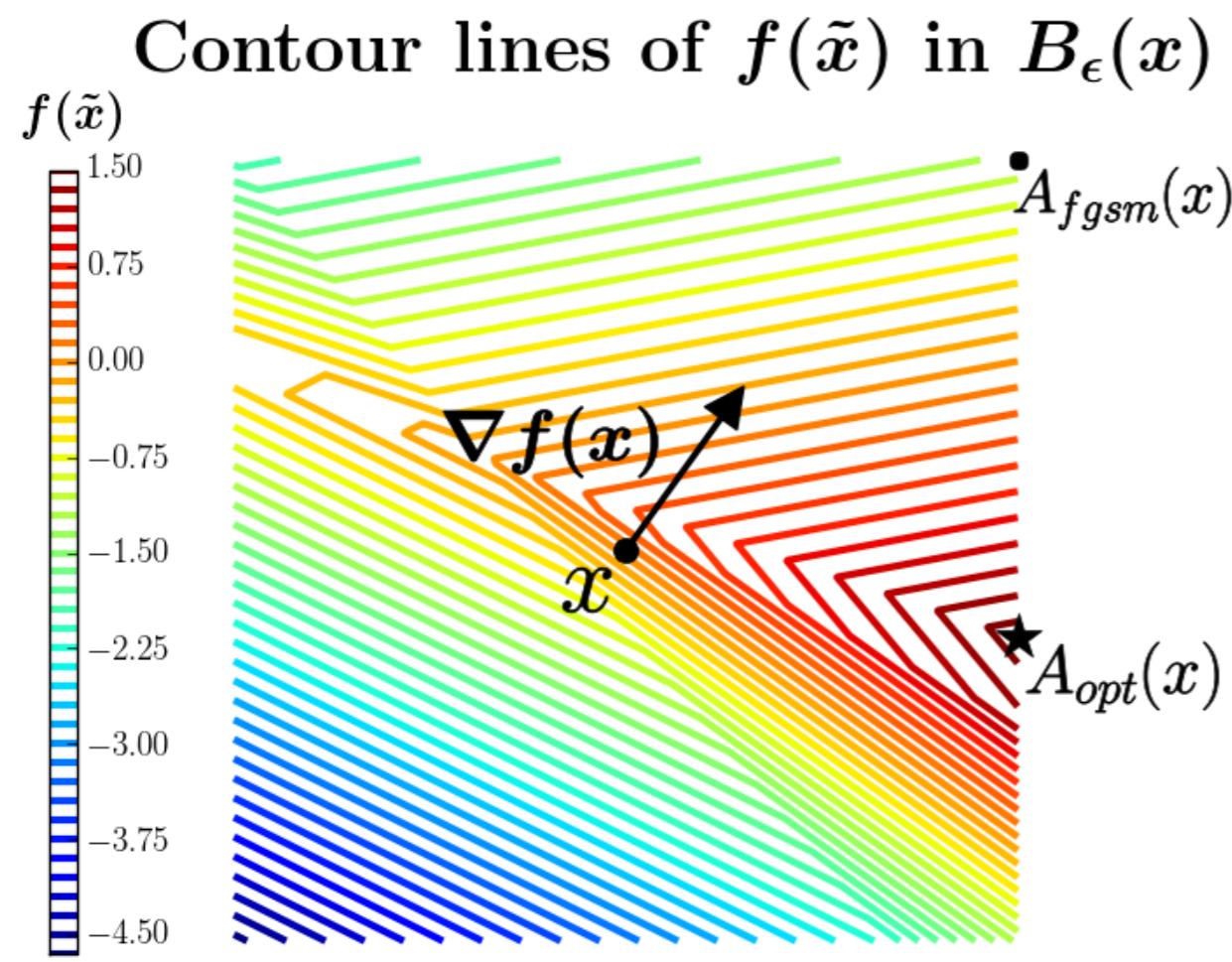
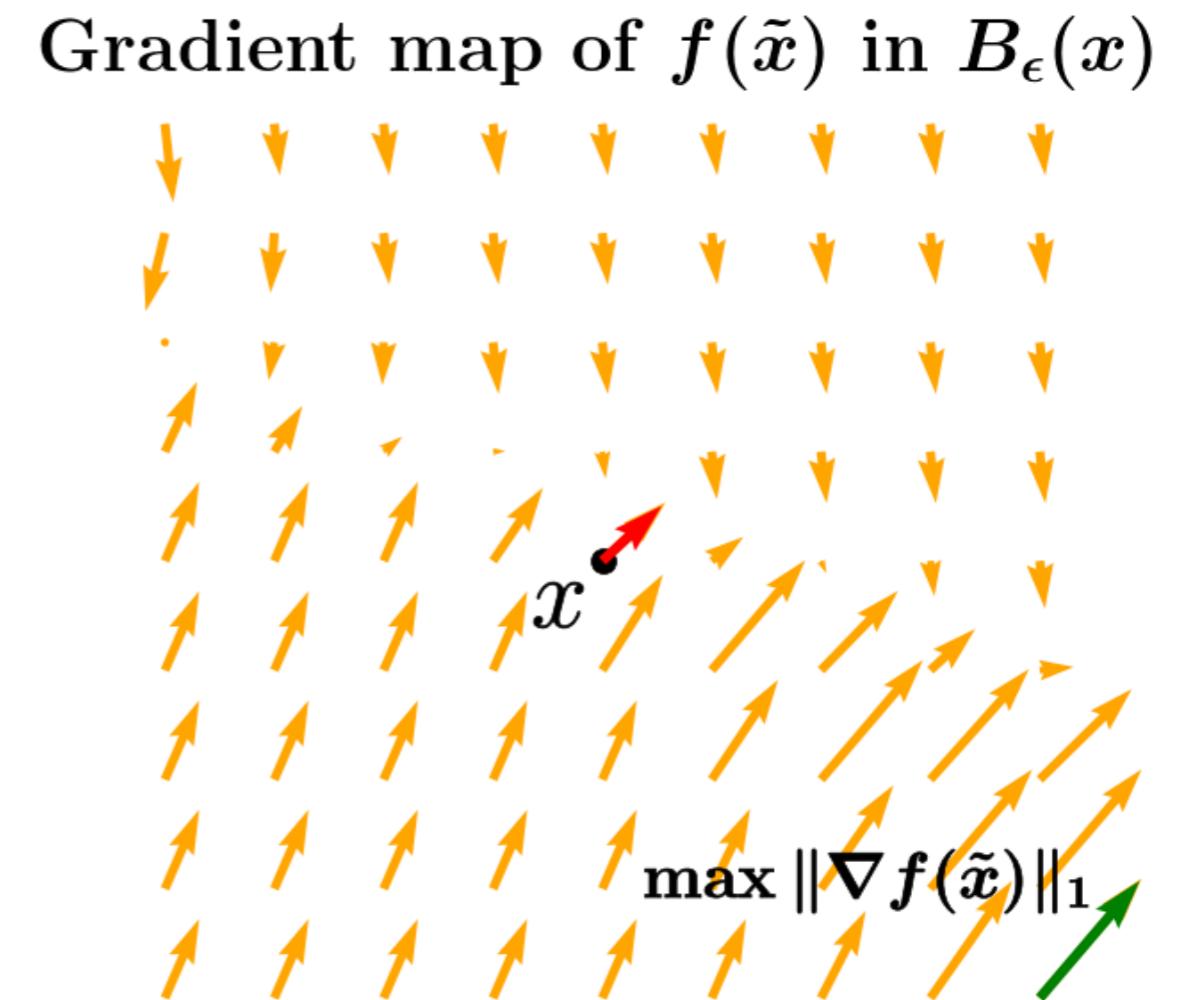
Robust and not certified

Two layer networks

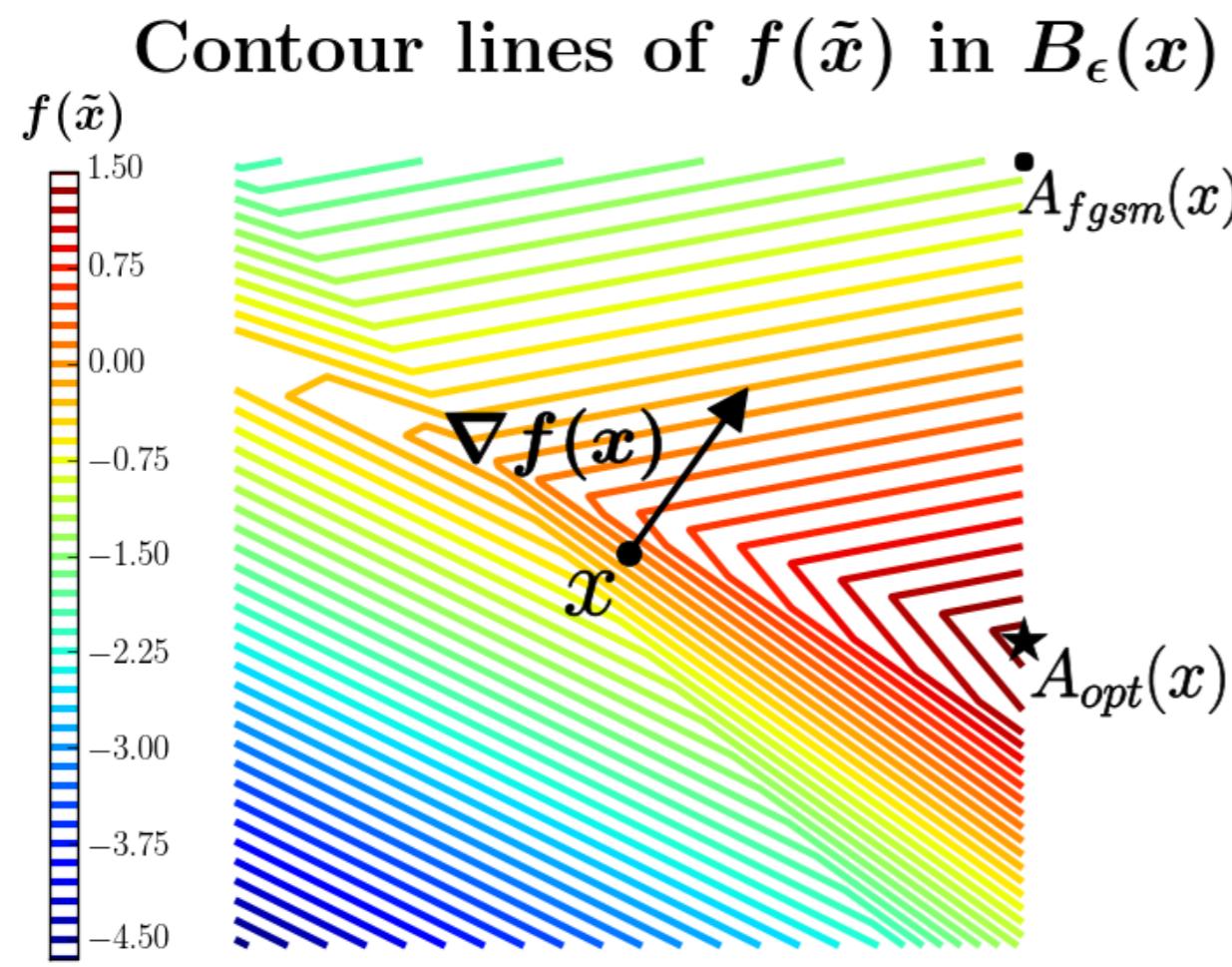
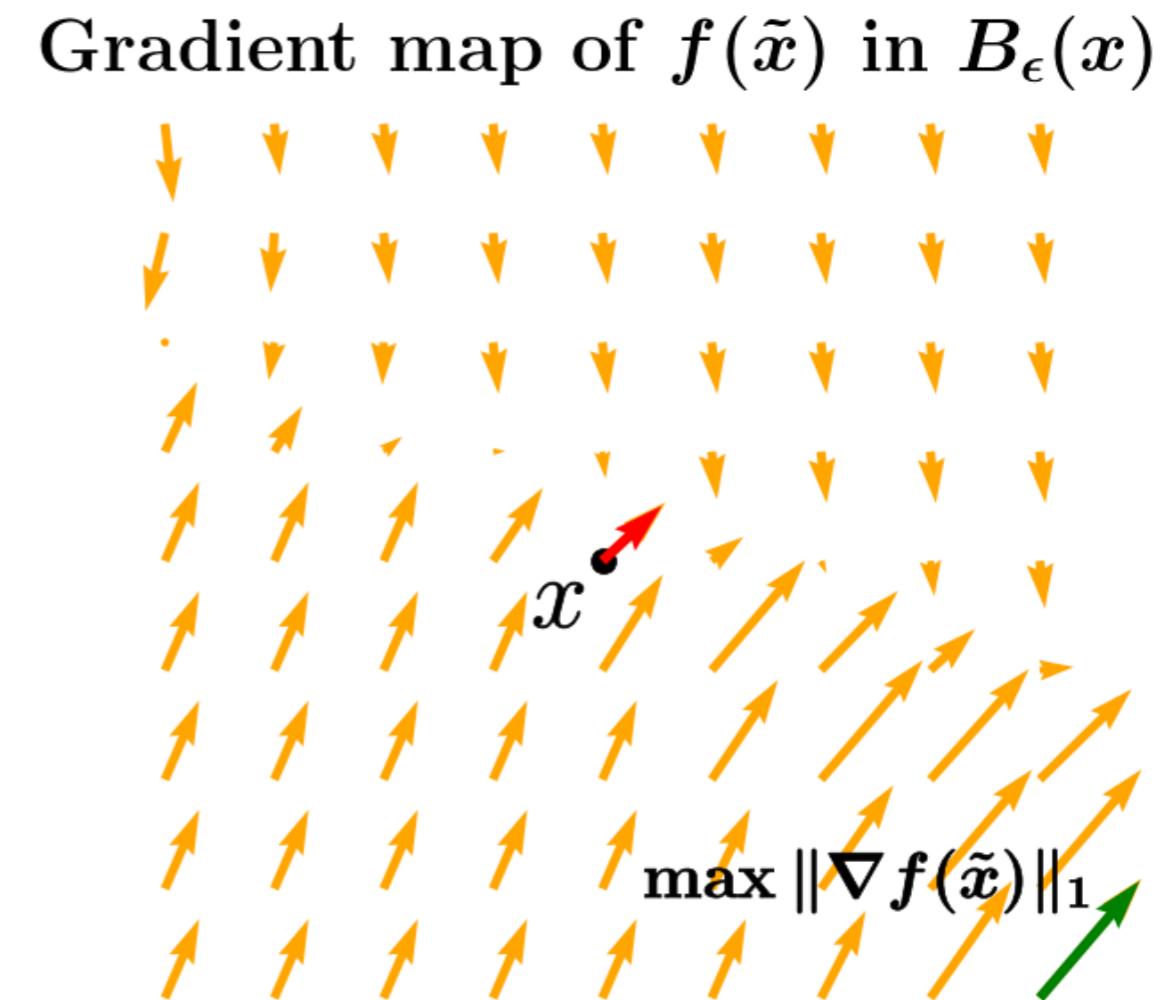
Two layer networks



Two layer networks

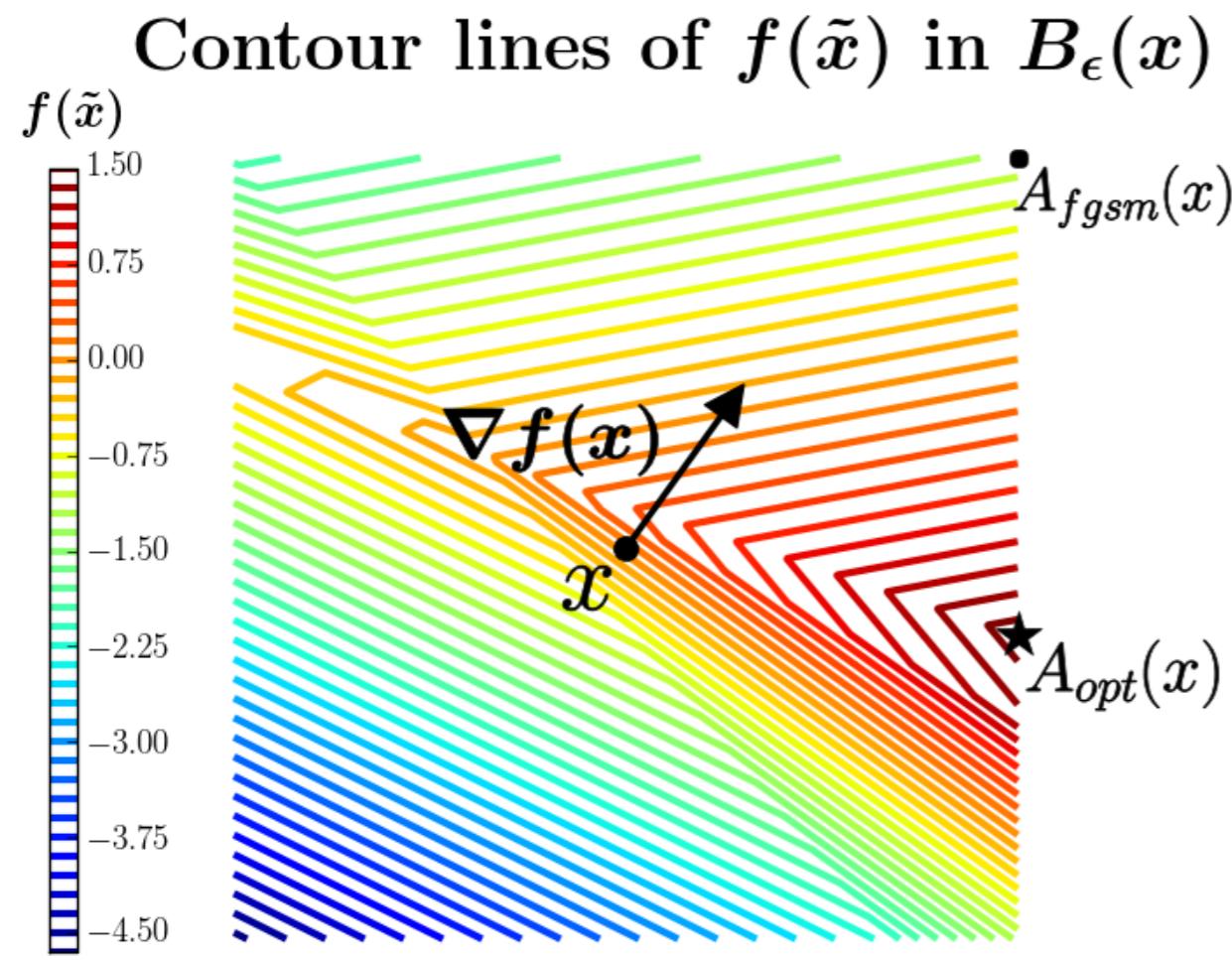
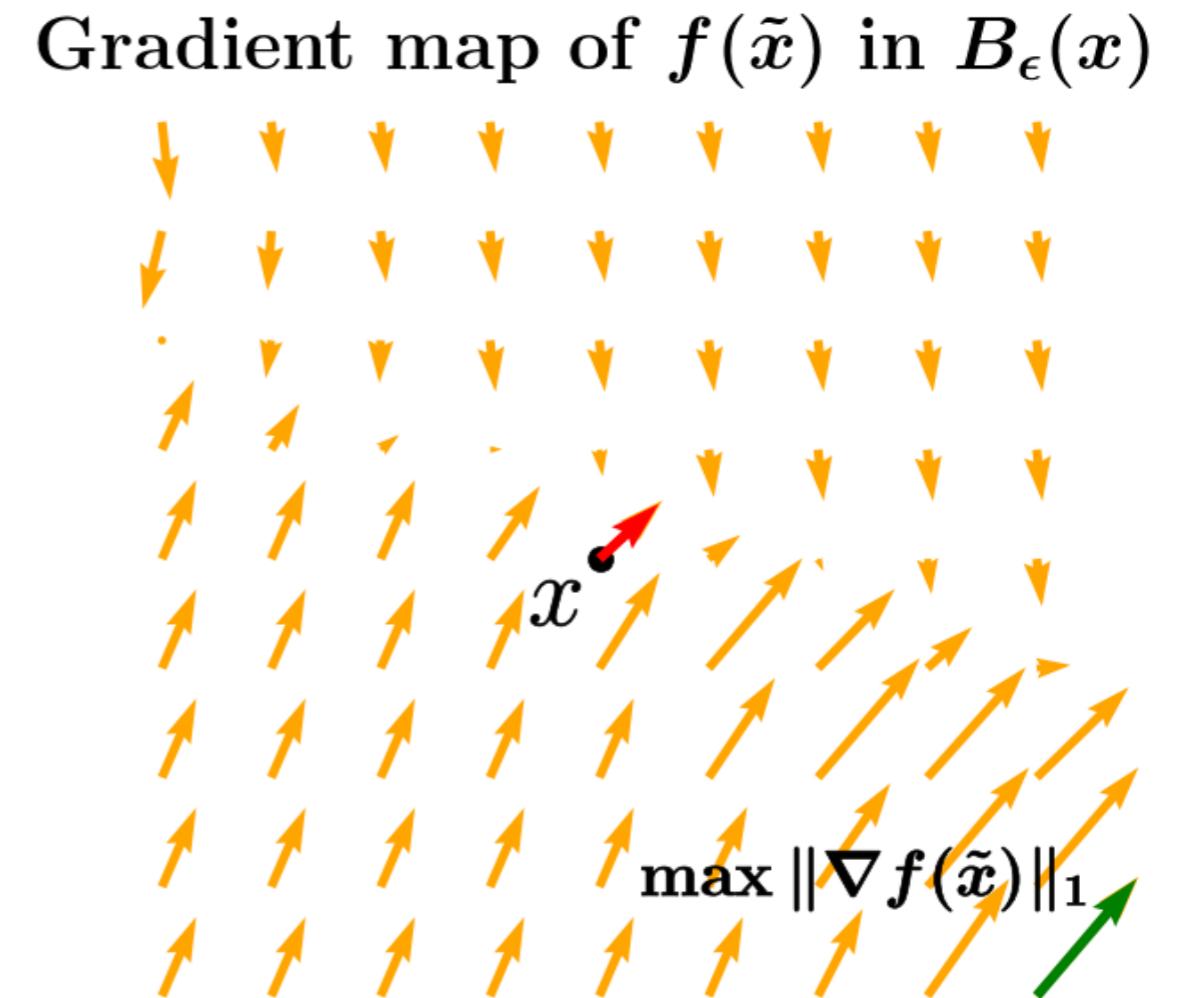


Two layer networks



Key idea: Uniformly bound gradients

Two layer networks

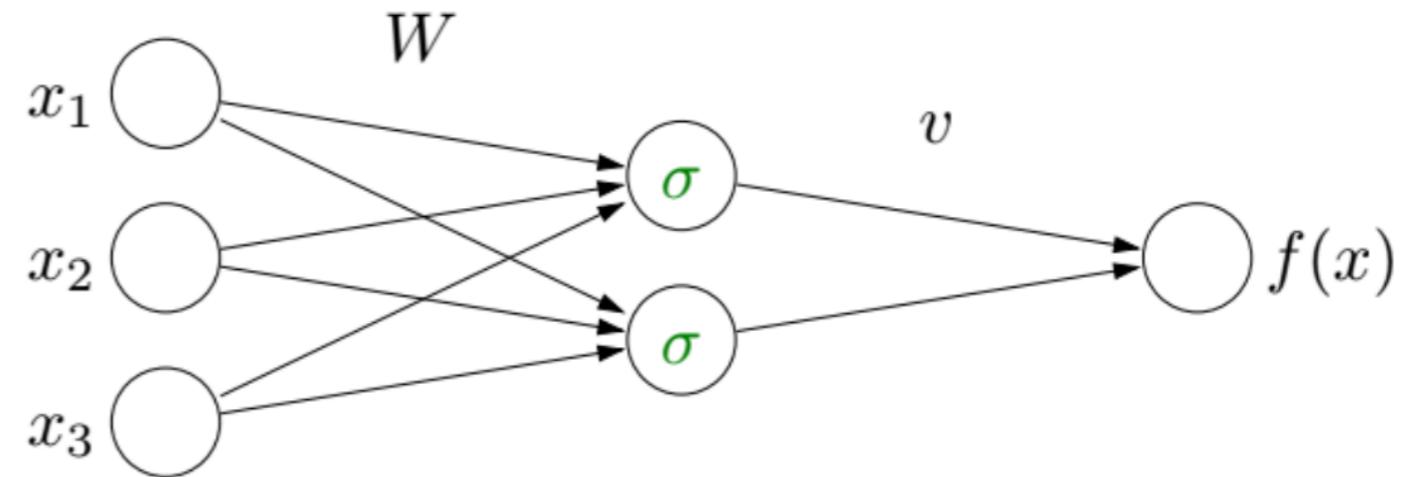


Key idea: Uniformly bound gradients

$$f(\tilde{x}) \leq f(\bar{x}) + \epsilon \max_{\tilde{x}} \|\nabla f(\tilde{x})\|_1$$

Two layer networks

Two layer networks

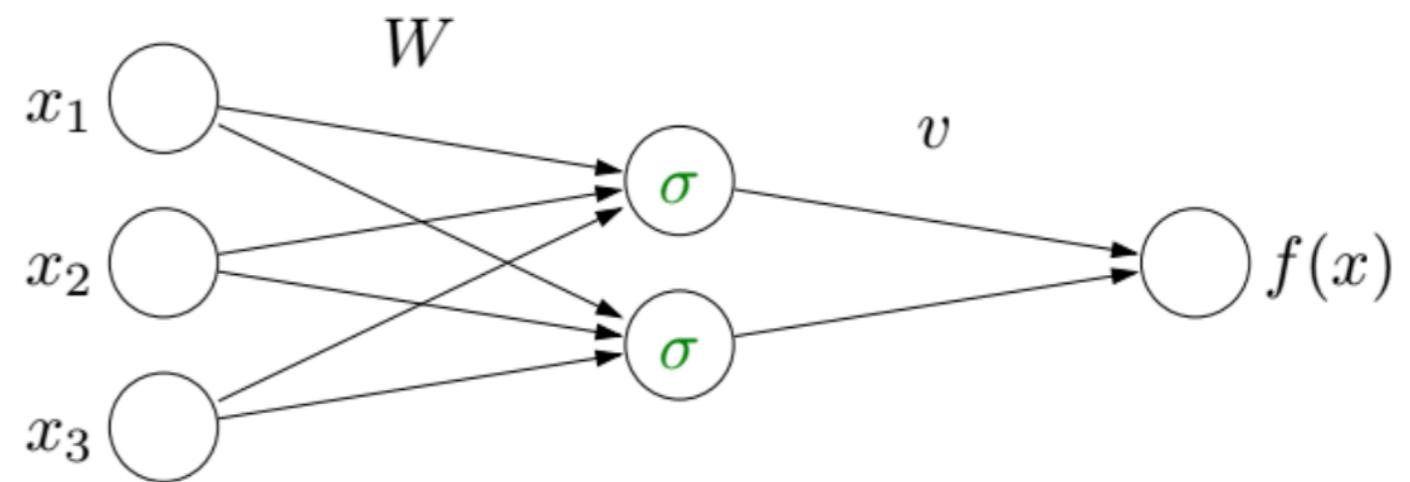


$$f(x) = v^\top \sigma(Wx)$$

Two layer networks

Key idea: Uniformly bound gradients

$$f(\tilde{x}) \leq f(\bar{x}) + \epsilon \max_{\tilde{x}} \|\nabla f(\tilde{x})\|_1$$

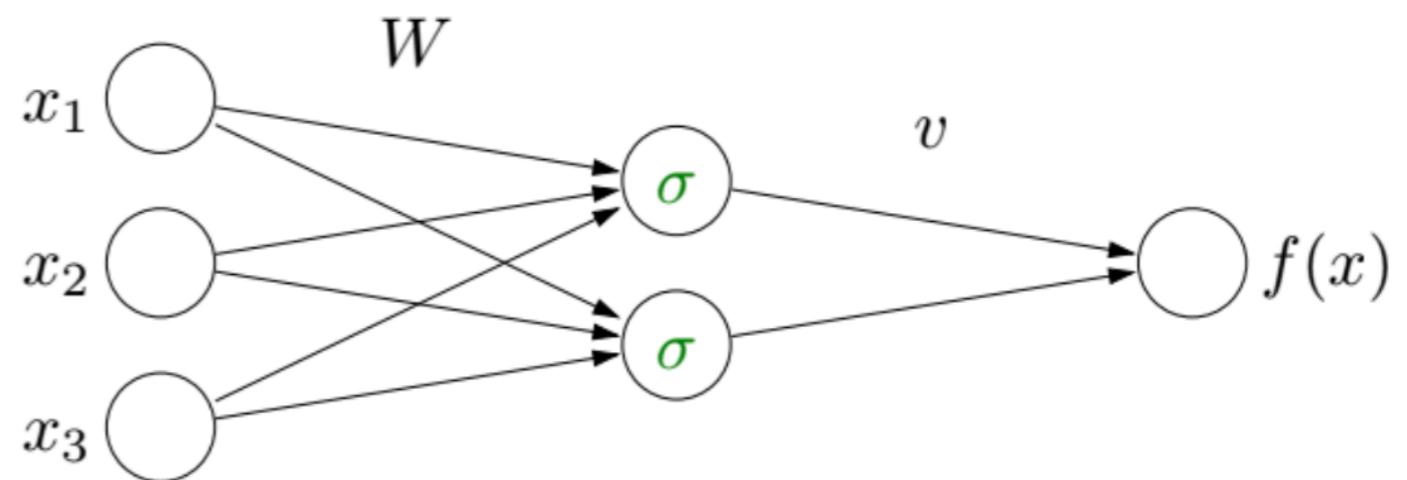


$$f(x) = v^\top \sigma(Wx)$$

Two layer networks

Key idea: Uniformly bound gradients

$$f(\tilde{x}) \leq f(\bar{x}) + \epsilon \max_{\tilde{x}} \|\nabla f(\tilde{x})\|_1$$



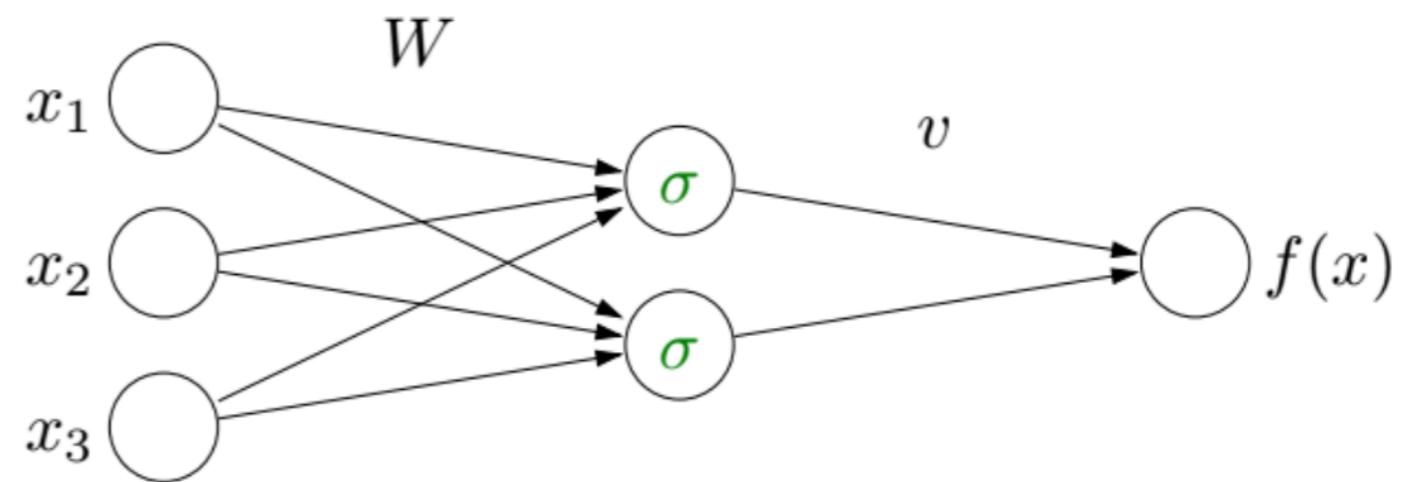
$$f(x) = v^\top \sigma(Wx)$$

Bound on gradient:

Two layer networks

Key idea: Uniformly bound gradients

$$f(\tilde{x}) \leq f(\bar{x}) + \epsilon \max_{\tilde{x}} \|\nabla f(\tilde{x})\|_1$$

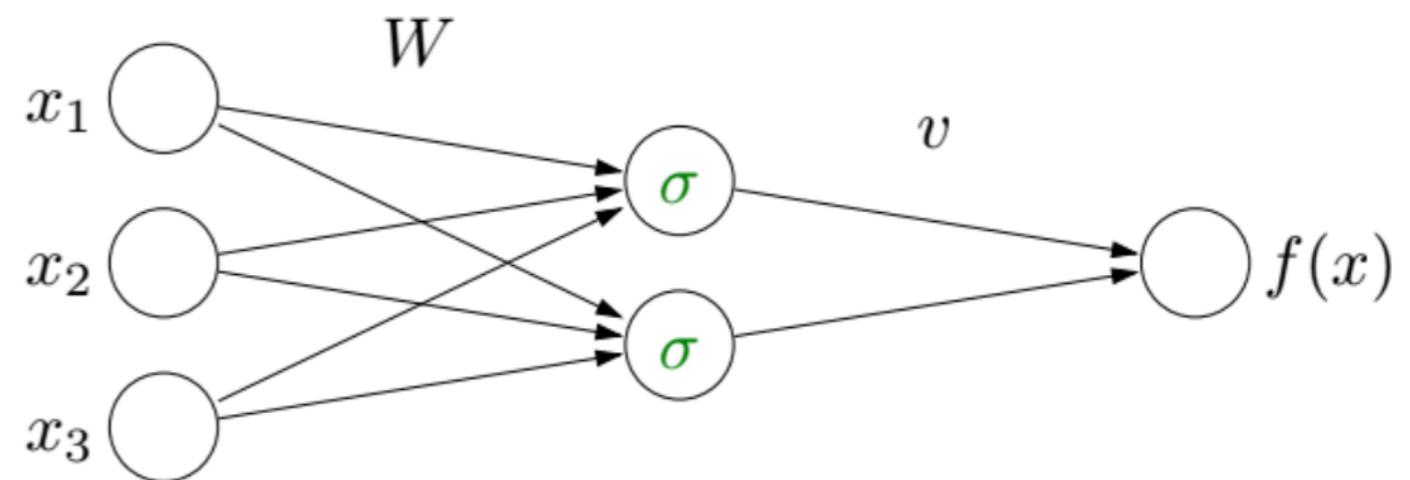


$$\text{Bound on gradient: } \|\nabla f(\tilde{x})\|_1 = \|W^\top \text{diag}(v) \sigma'(W\tilde{x})\|_1$$

Two layer networks

Key idea: Uniformly bound gradients

$$f(\tilde{x}) \leq f(\bar{x}) + \epsilon \max_{\tilde{x}} \|\nabla f(\tilde{x})\|_1$$



$$f(x) = v^\top \sigma(Wx)$$

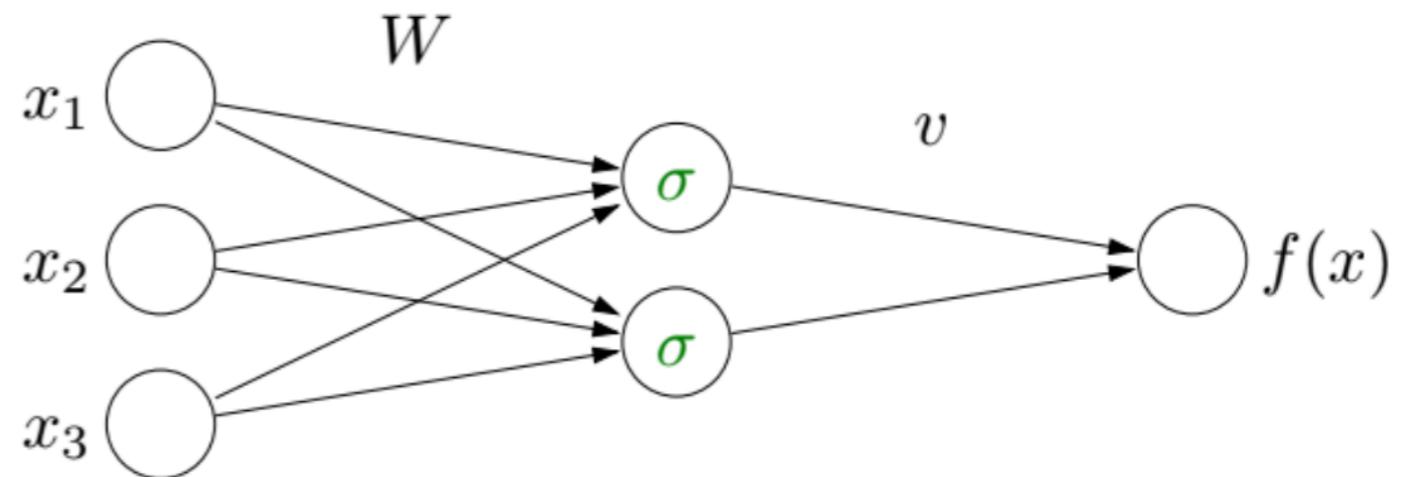
Bound on gradient: $\|\nabla f(\tilde{x})\|_1 = \|W^\top \text{diag}(v) \sigma'(W\tilde{x})\|_1$

$$\leq \max_{s \in [0,1]^m, t \in [-1,1]^d} t^\top W^\top \text{diag}(v) \sigma'(W\tilde{x})$$

Two layer networks

Key idea: Uniformly bound gradients

$$f(\tilde{x}) \leq f(\bar{x}) + \epsilon \max_{\tilde{x}} \|\nabla f(\tilde{x})\|_1$$



$$f(x) = v^\top \sigma(Wx)$$

Bound on gradient: $\|\nabla f(\tilde{x})\|_1 = \|W^\top \text{diag}(v) \sigma'(W\tilde{x})\|_1$

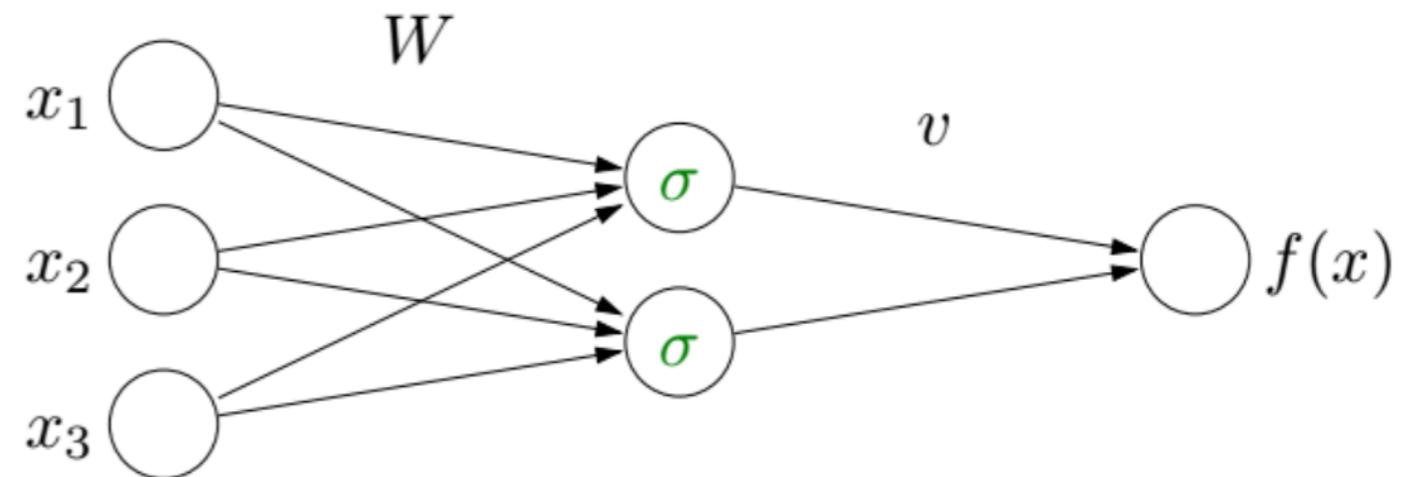
$$\leq \max_{s \in [0,1]^m, t \in [-1,1]^d} t^\top W^\top \text{diag}(v) \sigma'(W\tilde{x})$$

optimize over
activations

Two layer networks

Key idea: Uniformly bound gradients

$$f(\tilde{x}) \leq f(\bar{x}) + \epsilon \max_{\tilde{x}} \|\nabla f(\tilde{x})\|_1$$



$$f(x) = v^\top \sigma(Wx)$$

Bound on gradient: $\|\nabla f(\tilde{x})\|_1 = \|W^\top \text{diag}(v) \sigma'(W\tilde{x})\|_1$

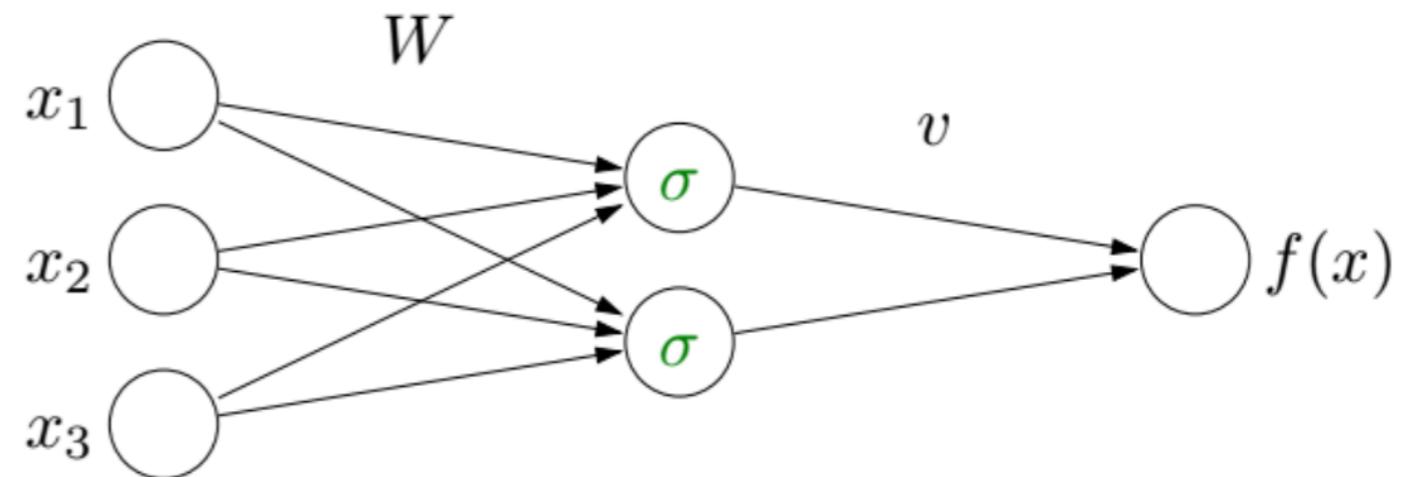
$$\leq \max_{s \in [0,1]^m, t \in [-1,1]^d} t^\top W^\top \text{diag}(v) s$$

optimize over activations optimize over signs of perturbation

Two layer networks

Key idea: Uniformly bound gradients

$$f(\tilde{x}) \leq f(\bar{x}) + \epsilon \max_{\tilde{x}} \|\nabla f(\tilde{x})\|_1$$



$$f(x) = v^\top \sigma(Wx)$$

Bound on gradient: $\|\nabla f(\tilde{x})\|_1 = \|W^\top \text{diag}(v) \sigma'(W\tilde{x})\|_1$

$$\leq \max_{s \in [0,1]^m, t \in [-1,1]^d} t^\top W^\top \text{diag}(v) s$$

optimize over activations optimize over signs of perturbation

Final step: SDP relaxation (similar to MAXCUT) leads to **Grad-cert**

Relaxation → Training

Relaxation → Training

Training a neural network

Relaxation → Training

Training a neural network

Objective:

Relaxation → Training

Training a neural network

Objective: $\min_{W, v} \underbrace{\sum_{i=1}^n L(z_i, W, v)}_{\text{training loss}} + \underbrace{\max_{P \succeq 0, P_{ii} \leq 1} \text{tr}(M(W, v)P)}_{\text{regularizer}}$

Relaxation → Training

Training a neural network

Objective: $\min_{W, v} \underbrace{\sum_{i=1}^n L(z_i, W, v)}_{\text{training loss}} + \underbrace{\max_{P \succeq 0, P_{ii} \leq 1} \text{tr}(M(W, v)P)}_{\text{regularizer}}$

Differentiable objective but expensive gradients

Relaxation → Training

Training a neural network

$$\text{Objective: } \min_{W, v} \underbrace{\sum_{i=1}^n L(z_i, W, v)}_{\text{training loss}} + \underbrace{\max_{P \succeq 0, P_{ii} \leq 1} \text{tr}(M(W, v)P)}_{\text{regularizer}}$$

Differentiable objective but expensive gradients

Duality to the rescue!

Relaxation → Training

Training a neural network

$$\text{Objective: } \min_{W, v} \underbrace{\sum_{i=1}^n L(z_i, W, v)}_{\text{training loss}} + \underbrace{\max_{P \succeq 0, P_{ii} \leq 1} \text{tr}(M(W, v)P)}_{\text{regularizer}}$$

Differentiable objective but expensive gradients

Duality to the rescue!

$$\text{Regularizer: } D \cdot \lambda_{\max}^+((M(v, W) - \text{diag}(c)) + \mathbf{1}^\top \max(c, 0))$$

Relaxation → Training

Training a neural network

$$\text{Objective: } \min_{W, v} \underbrace{\sum_{i=1}^n L(z_i, W, v)}_{\text{training loss}} + \underbrace{\max_{P \succeq 0, P_{ii} \leq 1} \text{tr}(M(W, v)P)}_{\text{regularizer}}$$

Differentiable objective but expensive gradients

Duality to the rescue!

$$\text{Regularizer: } D \cdot \lambda_{\max}^+((M(v, W) - \text{diag}(c)) + \mathbf{1}^\top \max(c, 0))$$

Just one max eigenvalue computation for gradients

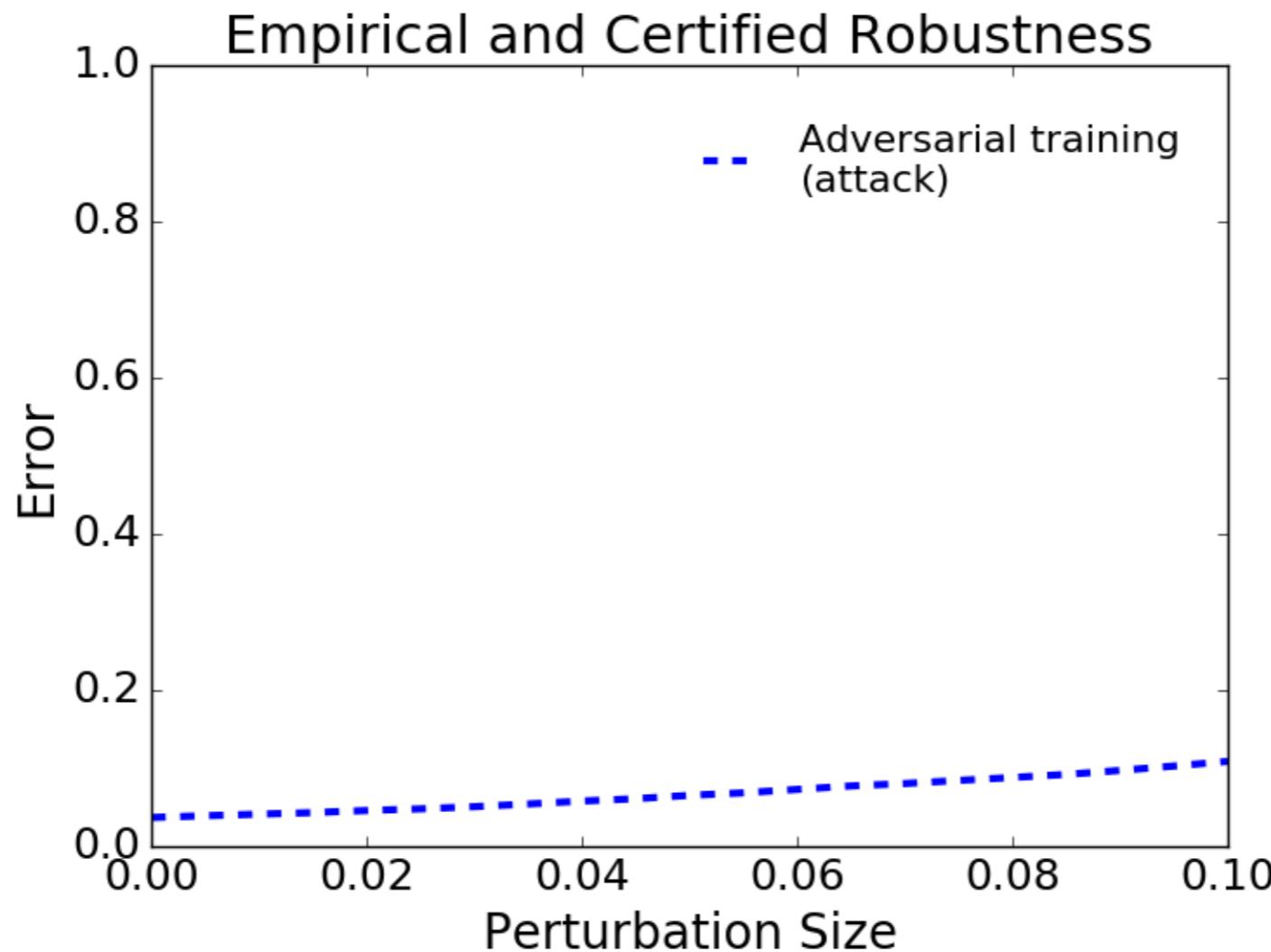
Results on MNIST

Results on MNIST

Attack: Projected Gradient Descent attack of Madry et al. 2018

Adversarial training: Minimizes this lower bound on training set

Results on MNIST

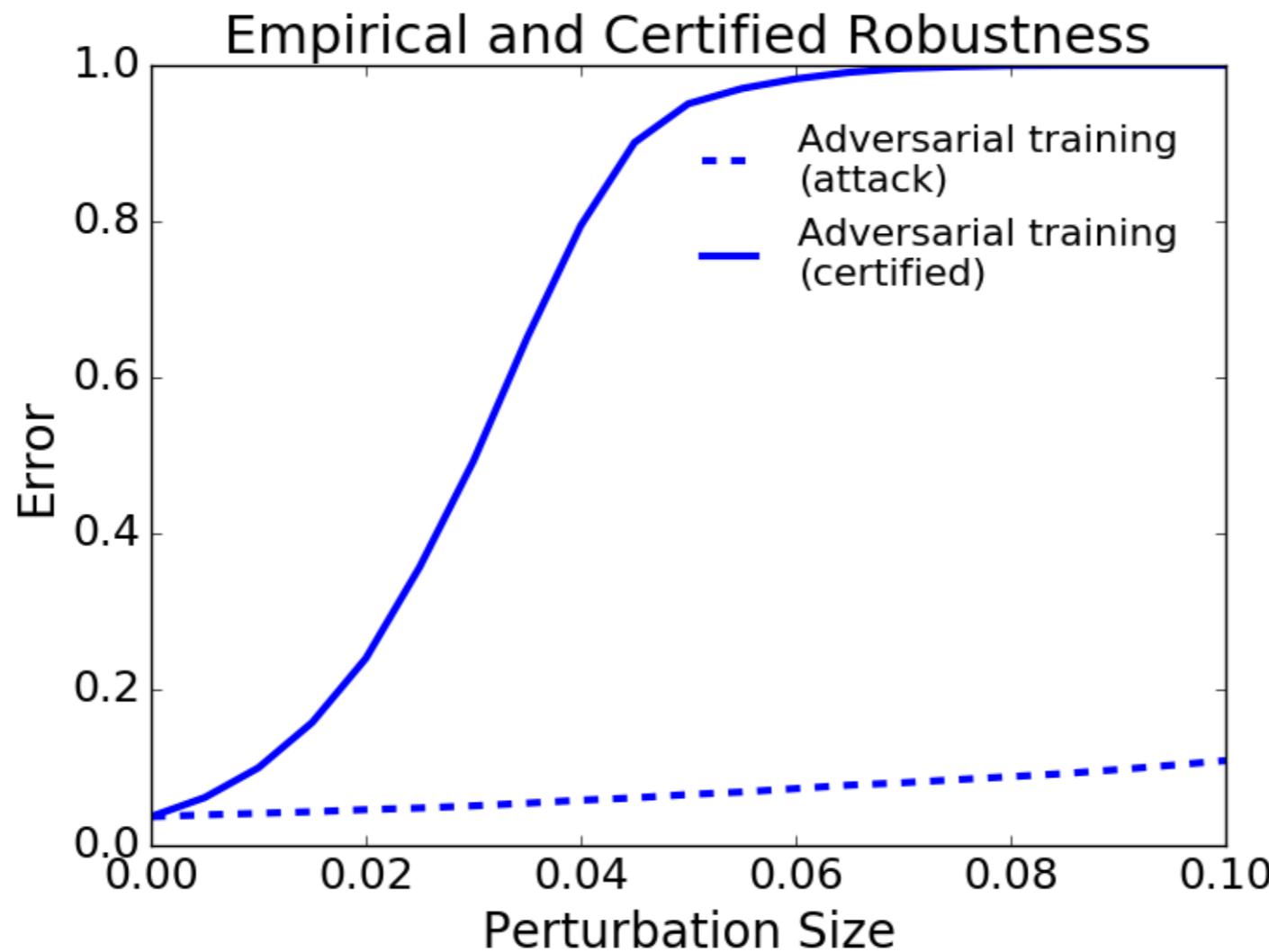


Attack: Projected Gradient Descent attack of Madry et al. 2018

Adversarial training: Minimizes this lower bound on training set

Results on MNIST

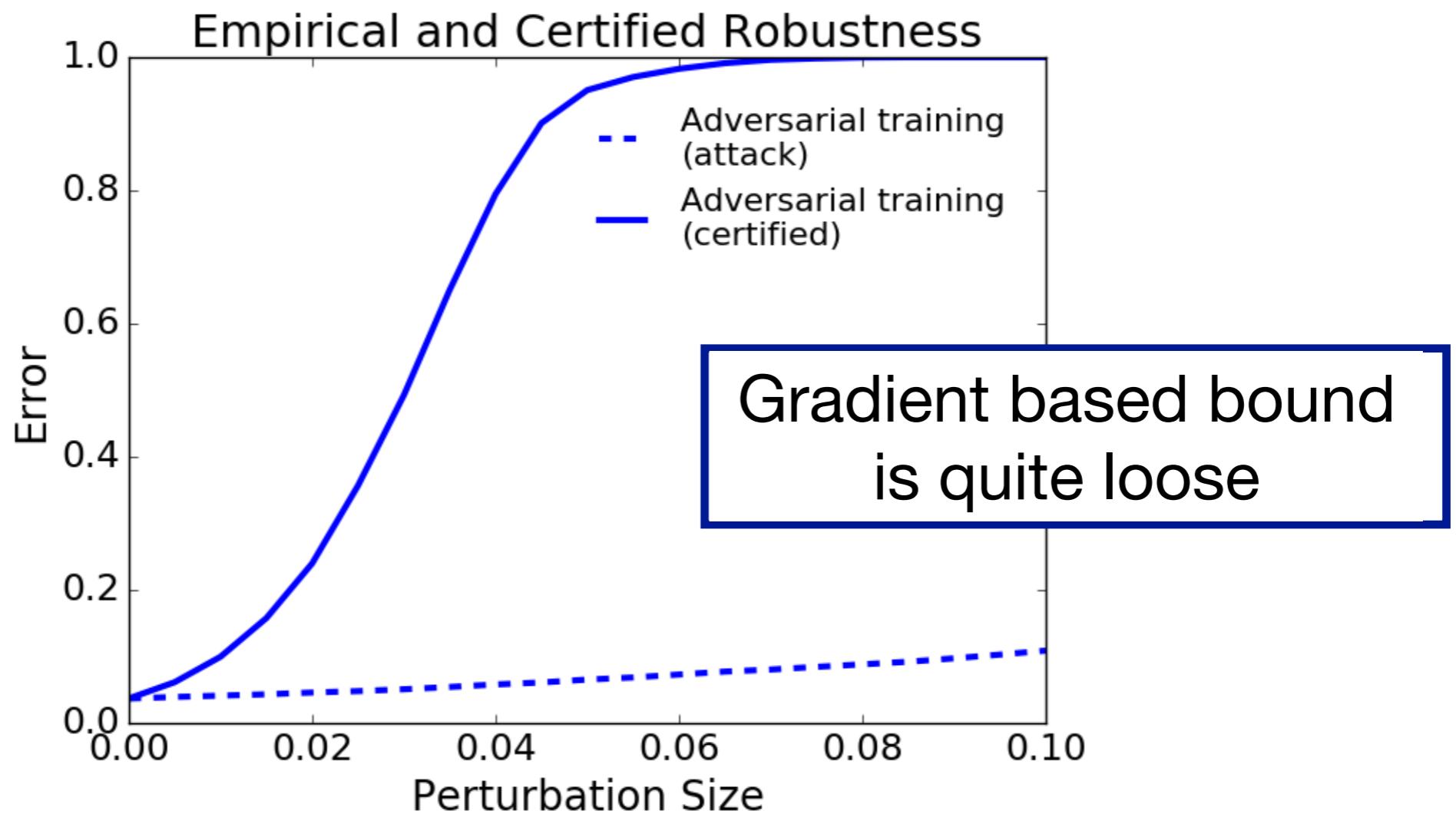
Results on MNIST



Attack: Projected Gradient Descent attack of Madry et al. 2018

Adversarial training: Minimizes this lower bound on training set

Results on MNIST



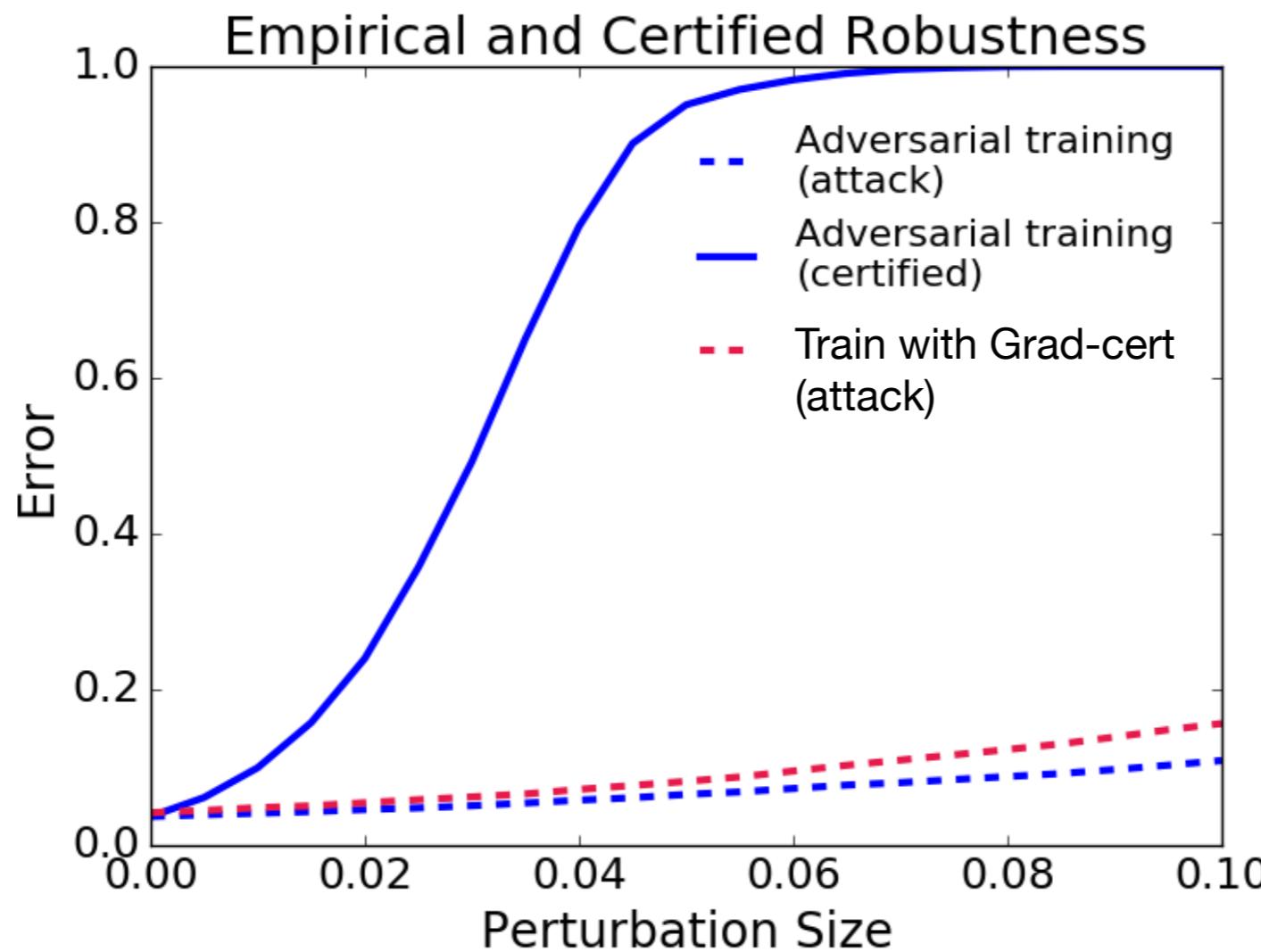
Attack: Projected Gradient Descent attack of Madry et al. 2018

Adversarial training: Minimizes this lower bound on training set

Results on MNIST

Train with Grad-cert
(attack)

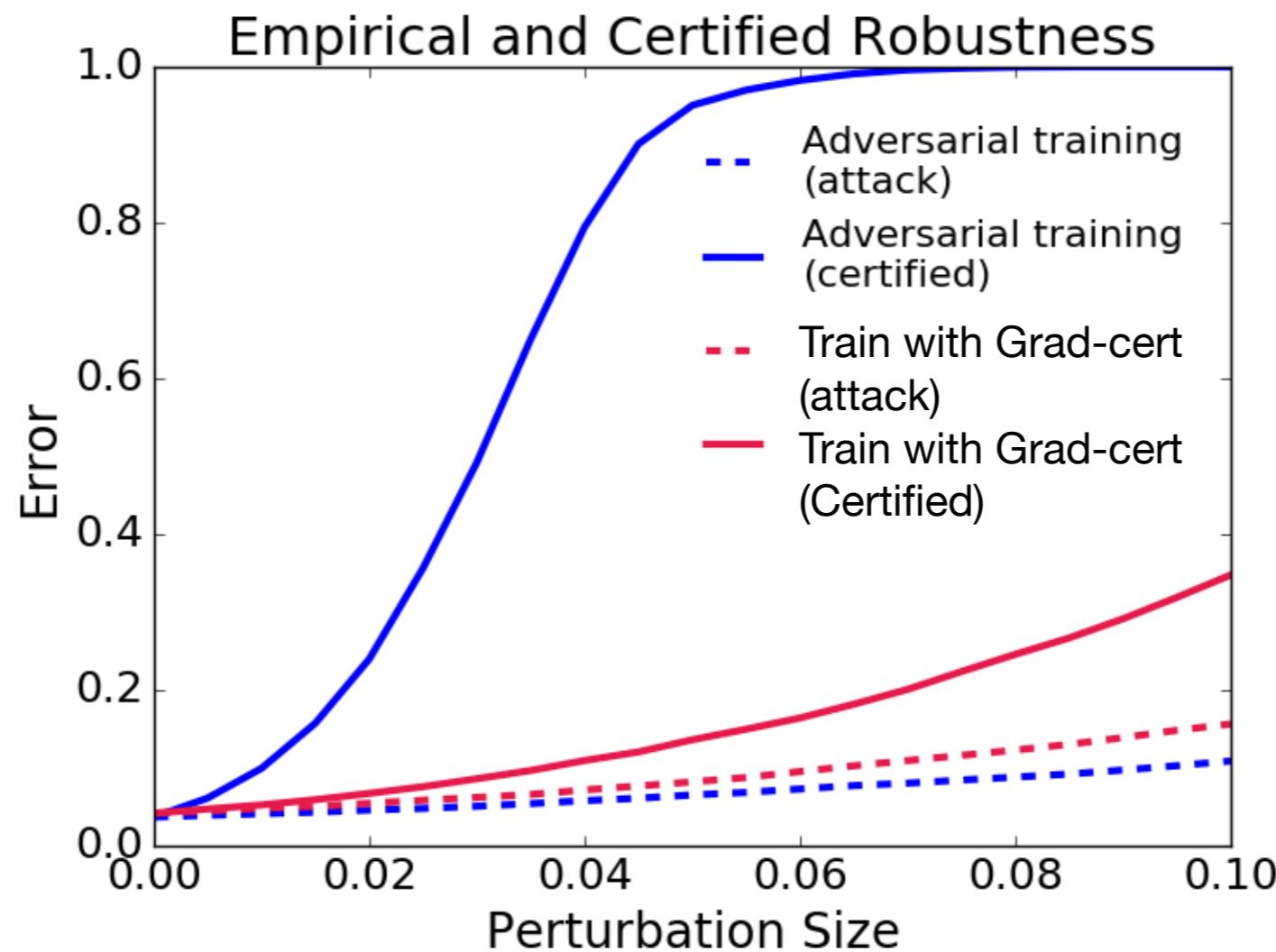
Results on MNIST



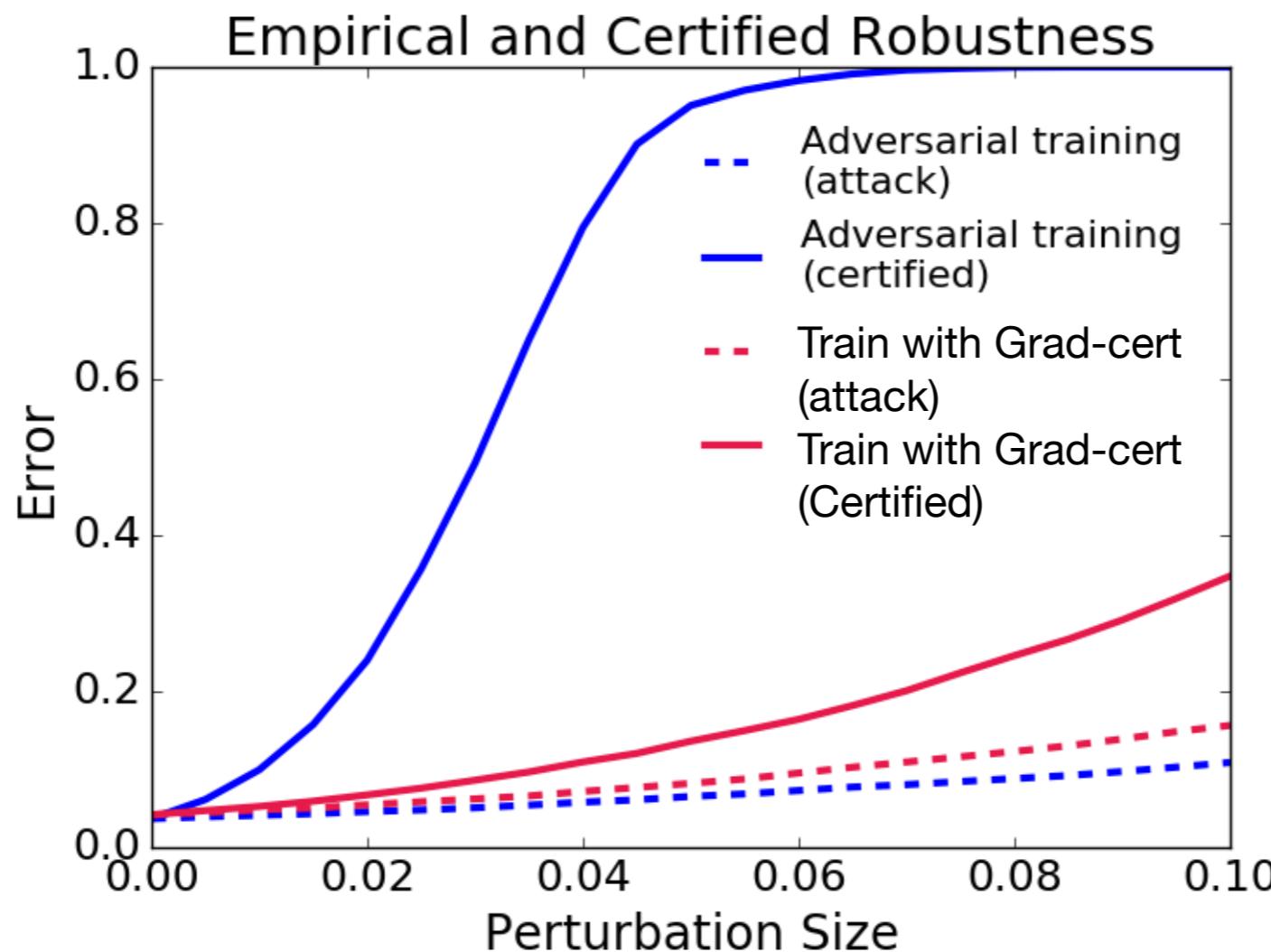
Attack: Projected Gradient Descent attack of Madry et al. 2018

Our method: Minimize gradient based upper bound

Results on MNIST



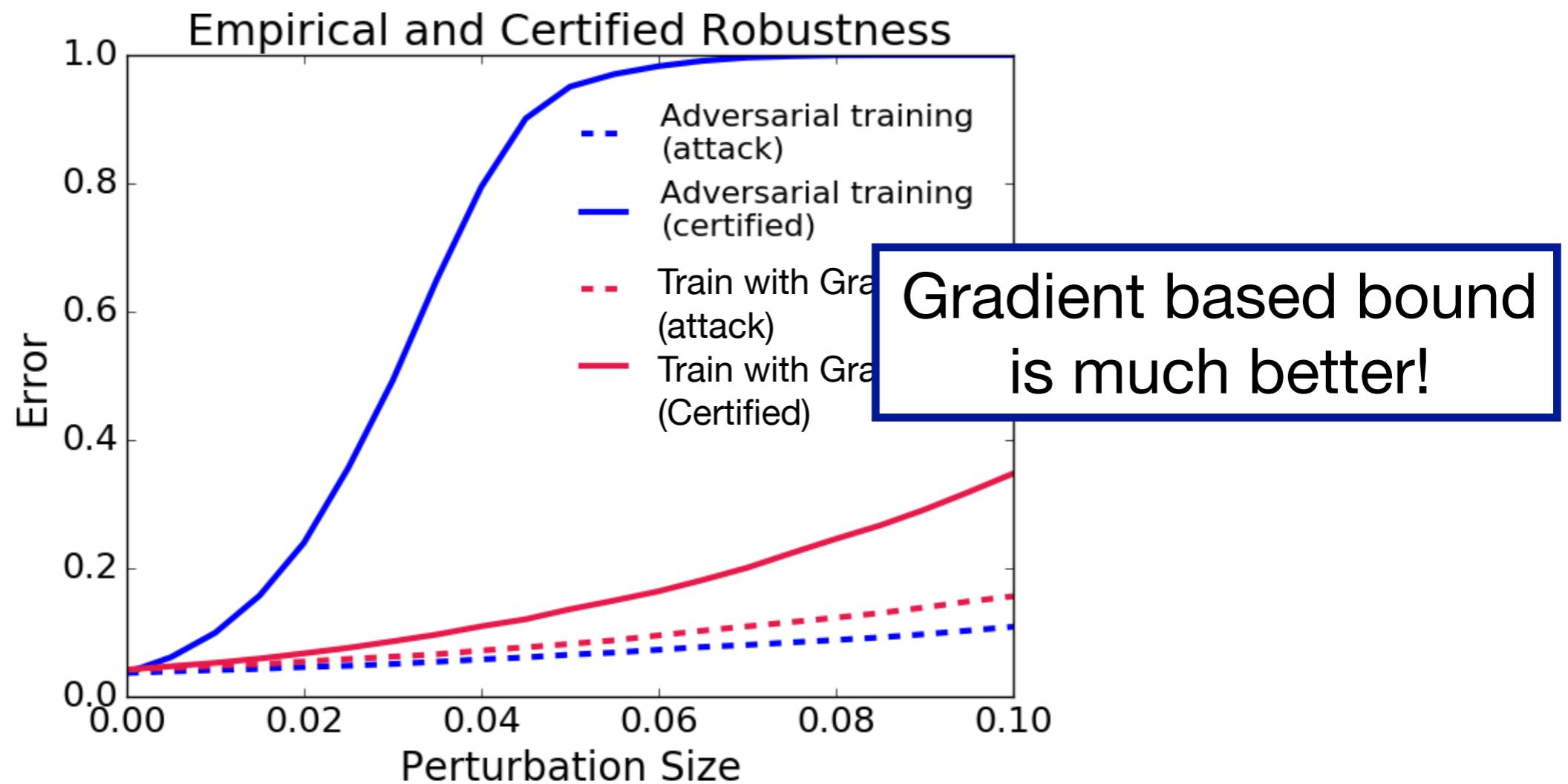
Results on MNIST



Attack: Projected Gradient Descent attack of Madry et al. 2018

Our method: Minimize gradient based upper bound

Results on MNIST



Attack: Projected Gradient Descent attack of Madry et al. 2018

Our method: Minimize gradient based upper bound

Results on MNIST

Results on MNIST

Training a network to minimize gradient upper bound
finds networks where the bound is tight

Results on MNIST

Training a network to minimize gradient upper bound
finds networks where the bound is tight

Comparison with Wong and Kolter 2018 (LP-cert)

Results on MNIST

Training a network to minimize gradient upper bound
finds networks where the bound is tight

Comparison with Wong and Kolter 2018 (LP-cert)

Network	PGD-attack	LP-cert	Grad-cert
LP-NN	22%	26%	93%
Grad-NN	15%	97%	35%

Results on MNIST

Training a network to minimize gradient upper bound
finds networks where the bound is tight

Comparison with Wong and Kolter 2018 (LP-cert)

Network	PGD-attack	LP-cert	Grad-cert
LP-NN	22%	26%	93%
Grad-NN	15%	97%	35%

Bounds are tight when you train

Results on MNIST

Results on MNIST

Training a network to minimize gradient upper bound
finds networks where the bound is tight

Comparison with Wong and Kolter 2018 (LP-cert)

Network	PGD-attack	LP-cert	Grad-cert
LP-NN	22%	26%	93%
Grad-NN	15%	97%	35%

Bounds are tight when you train

Results on MNIST

Training a network to minimize gradient upper bound
finds networks where the bound is tight

Comparison with Wong and Kolter 2018 (LP-cert)

Network	PGD-attack	LP-cert	Grad-cert
LP-NN	22%	26%	93%
Grad-NN	15%	97%	35%

Bounds are tight when you train

Bounds are tight **only** when you train

Results on MNIST

Training a network to minimize gradient upper bound
finds networks where the bound is tight

Comparison with Wong and Kolter 2018 (LP-cert)

Network	PGD-attack	LP-cert	Grad-cert
LP-NN	22%	26%	93%
Grad-NN	15%	97%	35%

Bounds are tight when you train

Bounds are tight **only** when you train

Some networks are **empirically robust** but not certified
(e.g. Adversarial Training of Madry et al. 2018)

Results on MNIST

Training a network to minimize gradient upper bound
finds networks where the bound is tight

Comparison with Wong and Kolter 2018 (LP-cert)

Network	PGD-attack	LP-cert	Grad-cert
LP-NN	22%	26%	93%
Grad-NN	15%	97%	35%

Bounds are tight when you train

Bounds are tight **only** when you train

Some networks are **empirically robust** but not certified
(e.g. Adversarial Training of Madry et al. 2018)

Can we certify such “foreign” networks?

Summary so far...

Summary so far...

- Certified robustness: relaxed optimization to bound worst-case attack

Summary so far...

- Certified robustness: relaxed optimization to bound worst-case attack
- Grad-cert: Upper bound on worst case attack using uniform bound on gradient

Summary so far...

- Certified robustness: relaxed optimization to bound worst-case attack
- Grad-cert: Upper bound on worst case attack using uniform bound on gradient
- Training against the bound makes it tight

Summary so far...

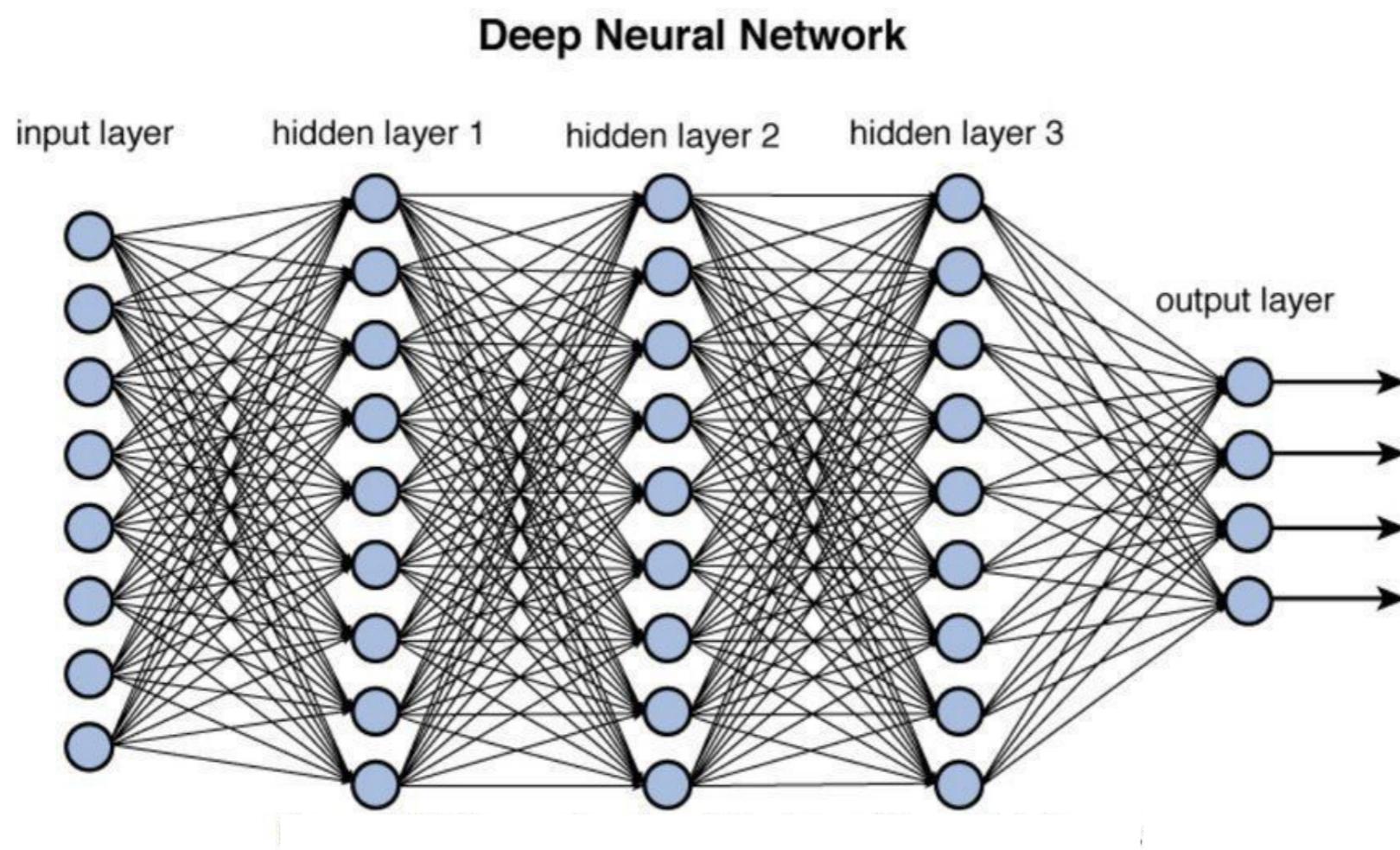
- Certified robustness: relaxed optimization to bound worst-case attack
- Grad-cert: Upper bound on worst case attack using uniform bound on gradient
- Training against the bound makes it tight
- LP-cert and Grad-cert are tight only on training

Summary so far...

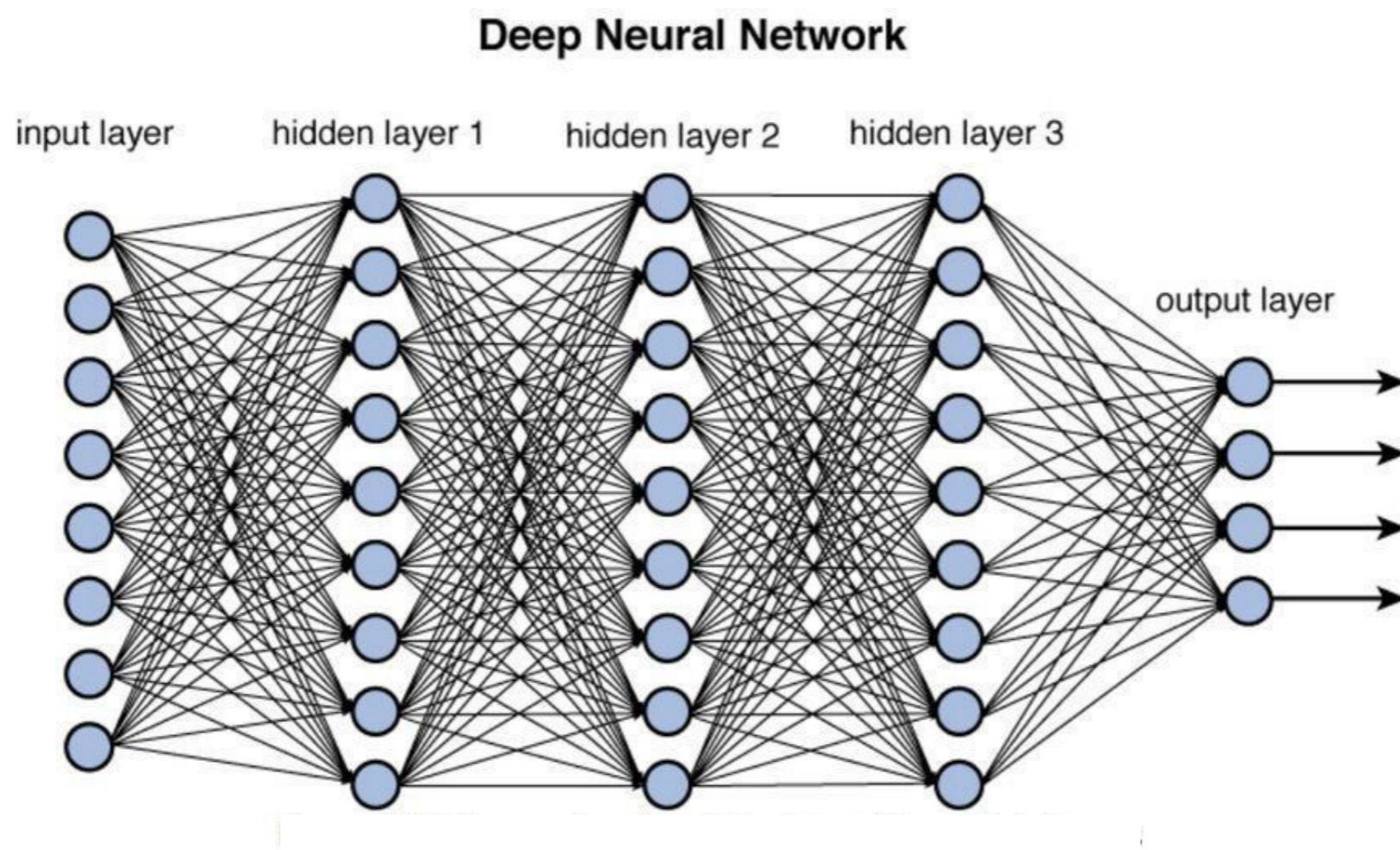
- Certified robustness: relaxed optimization to bound worst-case attack
- Grad-cert: Upper bound on worst case attack using uniform bound on gradient
- Training against the bound makes it tight
- LP-cert and Grad-cert are tight only on training
- **Goal:** Efficiently certify foreign multi-layer networks

New SDP-cert relaxation

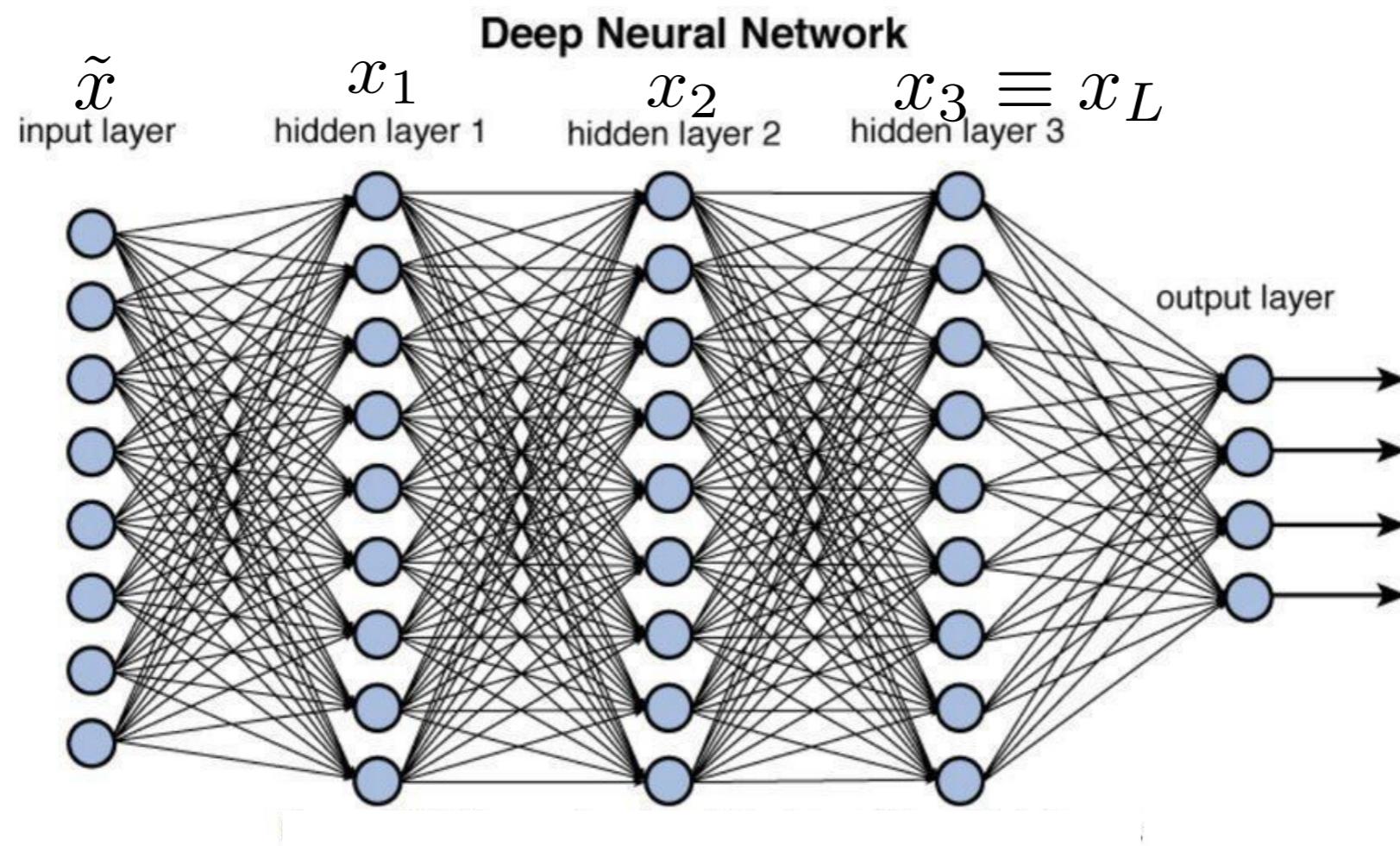
New SDP-cert relaxation



New SDP-cert relaxation

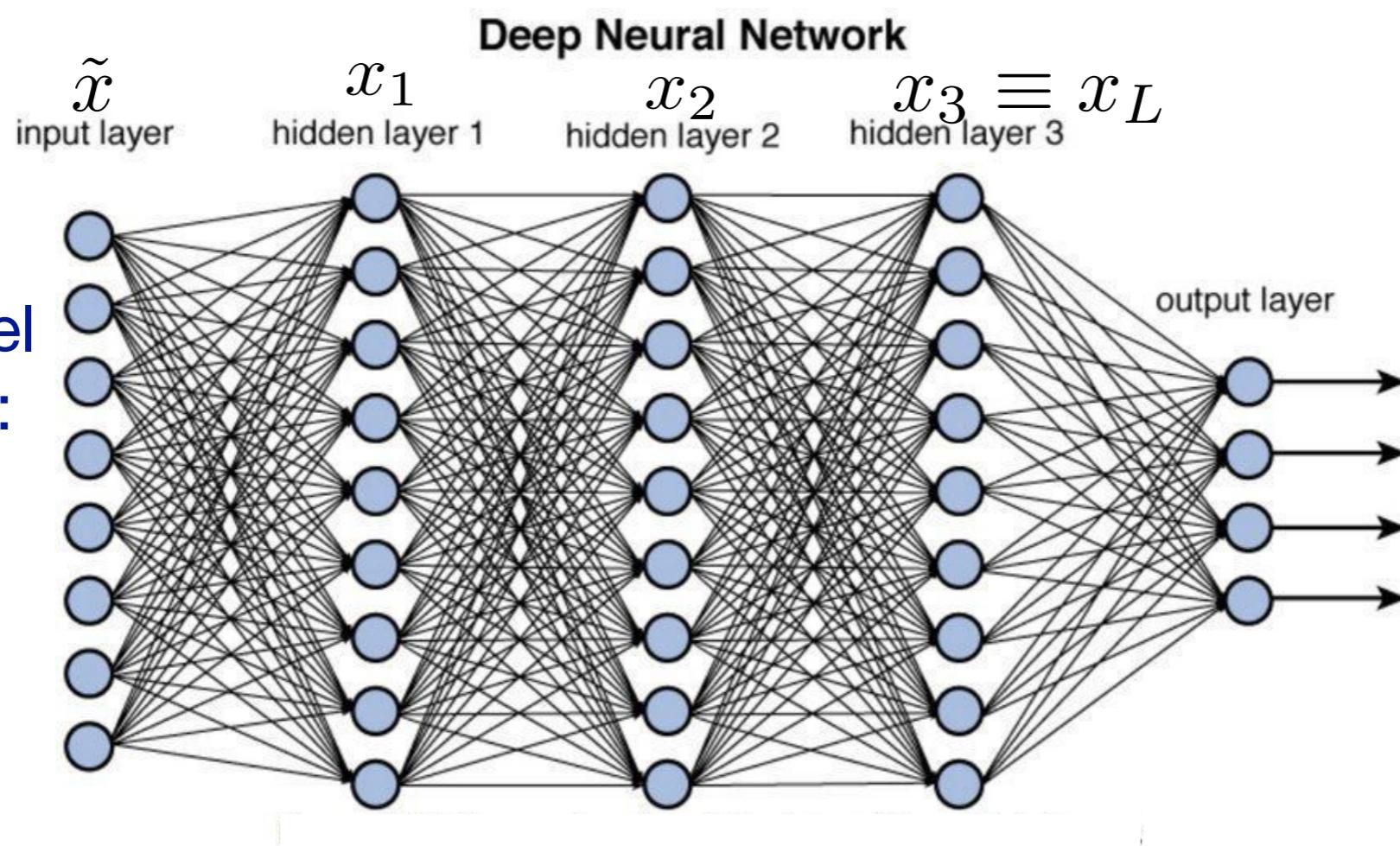


New SDP-cert relaxation



New SDP-cert relaxation

Attack model
constraints:

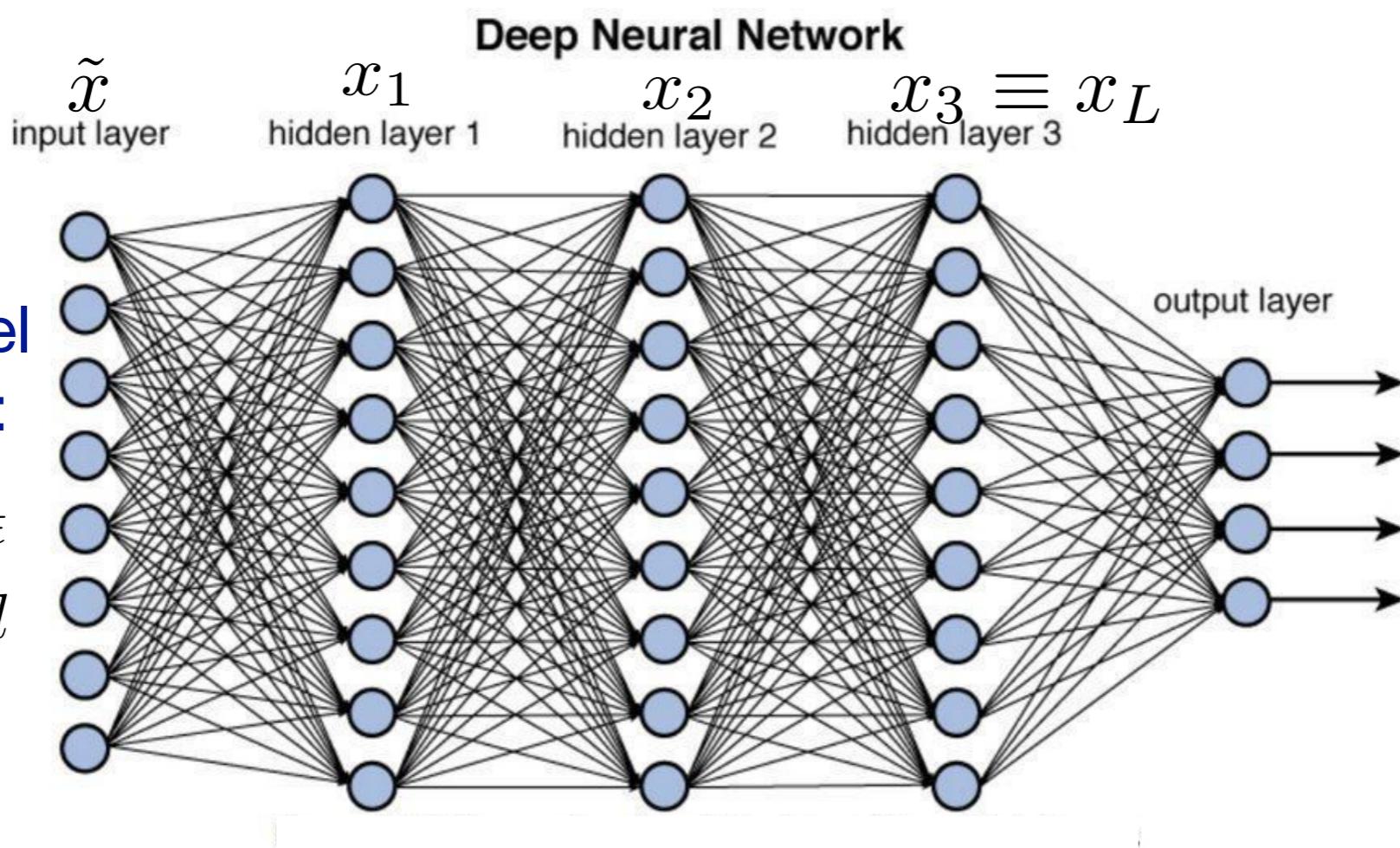


New SDP-cert relaxation

Attack model
constraints:

$$|\bar{x} - \tilde{x}|_i \leq \epsilon$$

for $i = 1, 2, \dots, d$

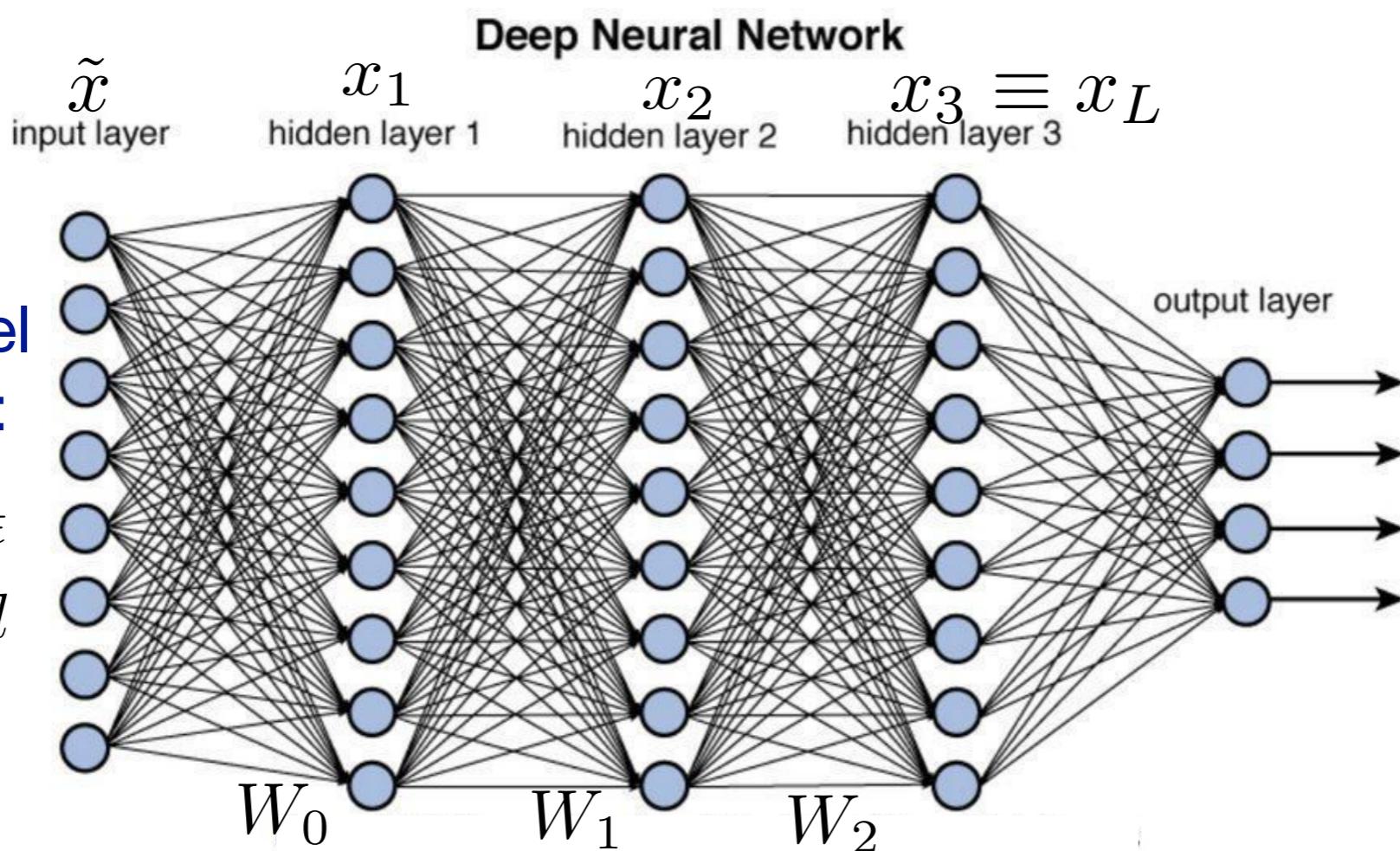


New SDP-cert relaxation

Attack model
constraints:

$$|\bar{x} - \tilde{x}|_i \leq \epsilon$$

for $i = 1, 2, \dots, d$



Neural net constraints

$$x_i = \text{ReLU}(W_{i-1}x_{i-1})$$

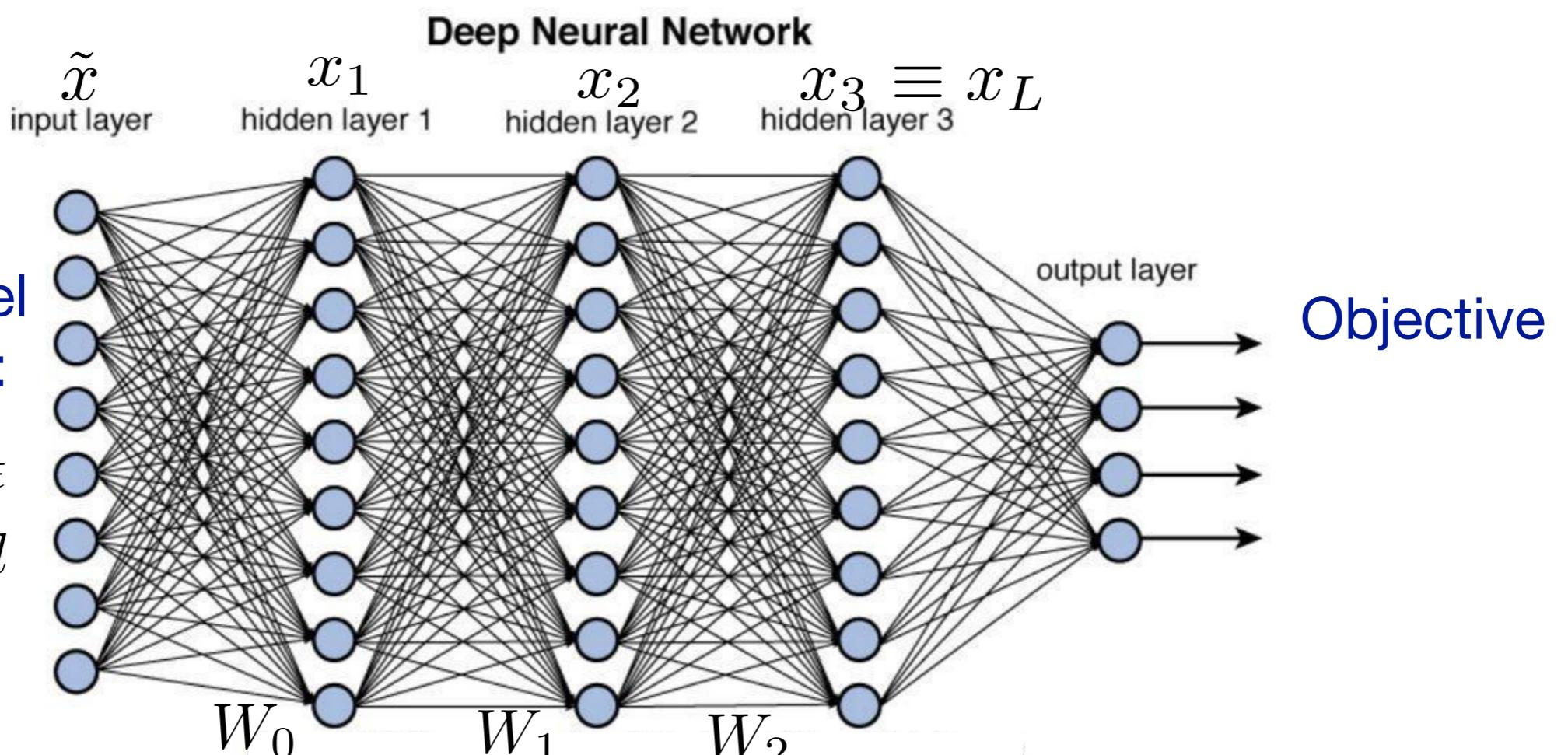
for $i = 1, 2, \dots, L$

New SDP-cert relaxation

Attack model
constraints:

$$|\bar{x} - \tilde{x}|_i \leq \epsilon$$

for $i = 1, 2, \dots, d$



$$x_i = \text{ReLU}(W_{i-1}x_{i-1})$$

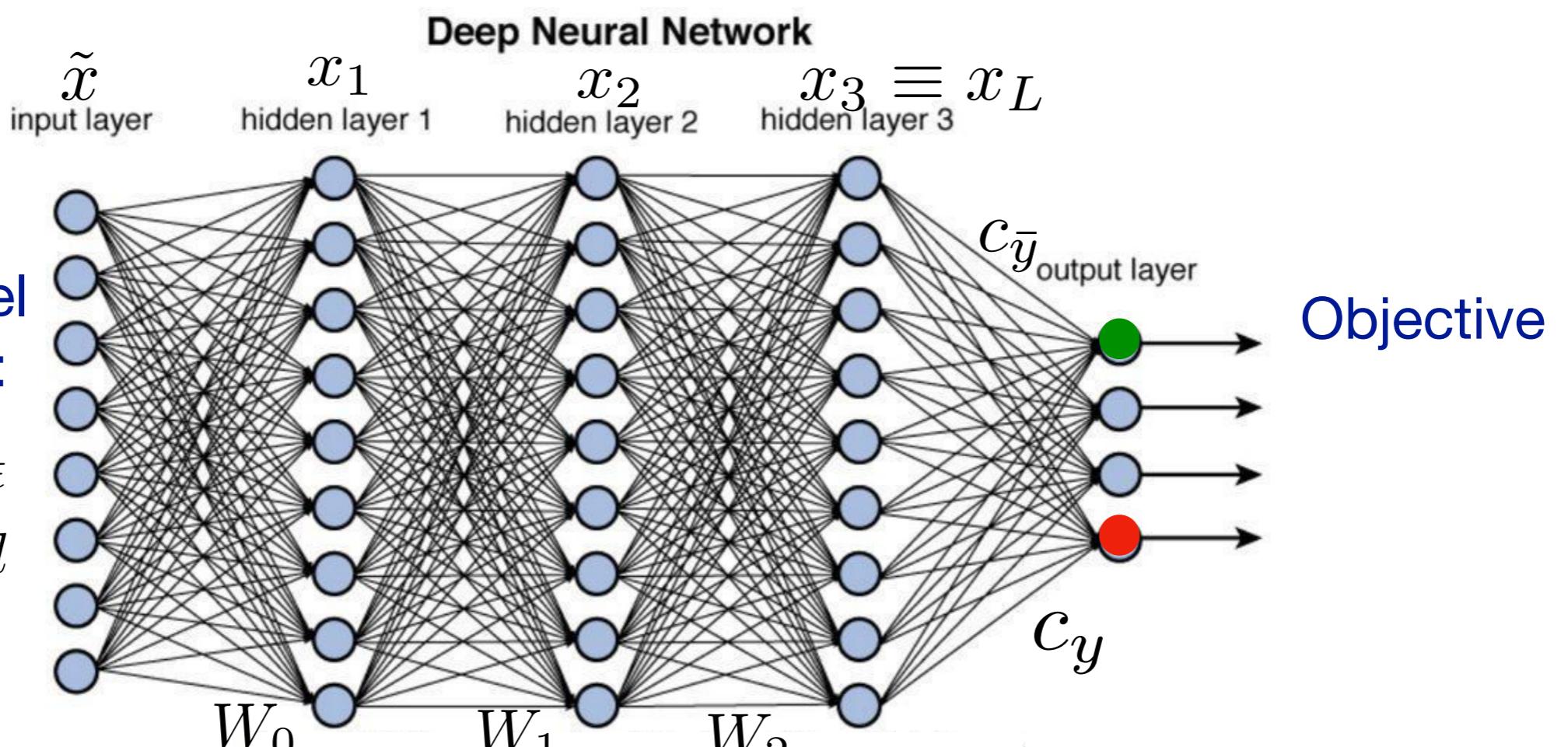
for $i = 1, 2, \dots, L$

New SDP-cert relaxation

Attack model
constraints:

$$|\bar{x} - \tilde{x}|_i \leq \epsilon$$

for $i = 1, 2, \dots, d$



$$x_i = \text{ReLU}(W_{i-1}x_{i-1})$$

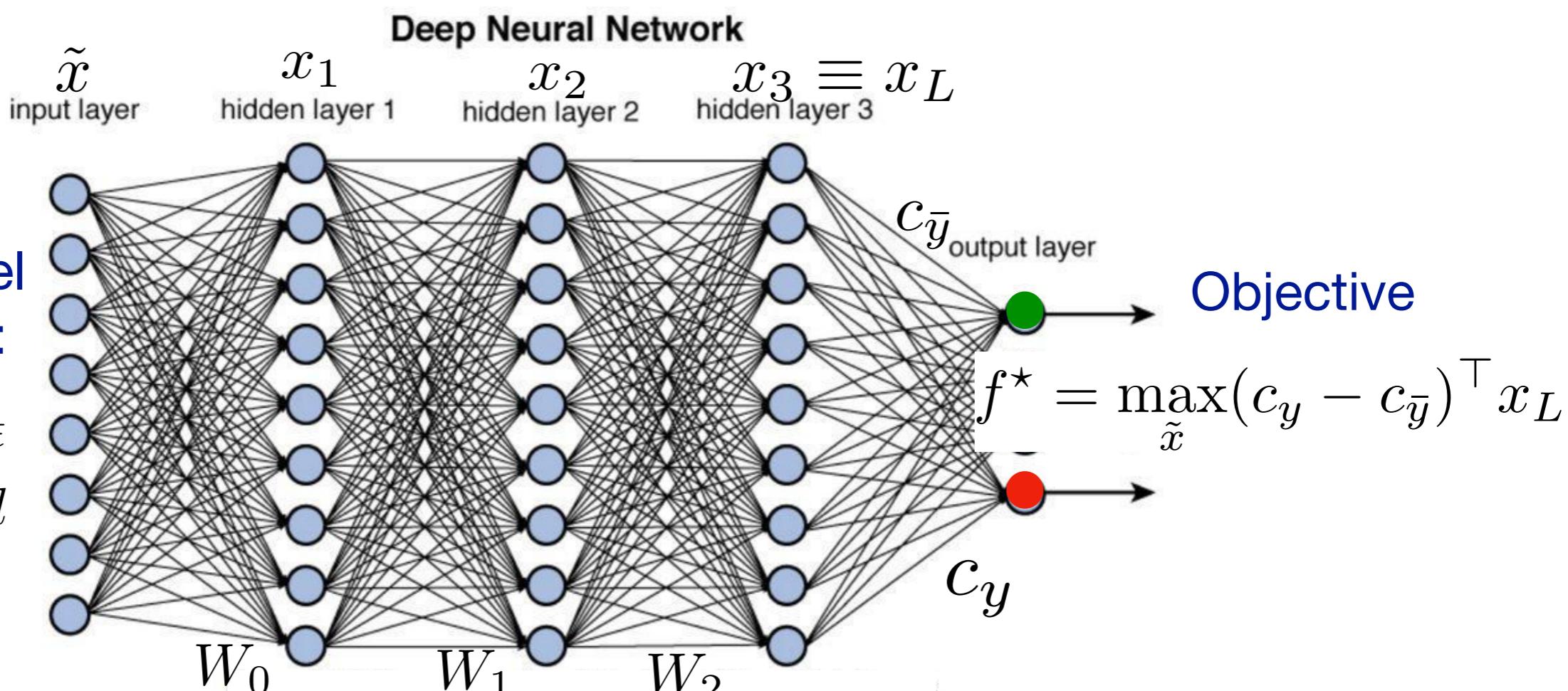
for $i = 1, 2, \dots, L$

New SDP-cert relaxation

Attack model constraints:

$$|\bar{x} - \tilde{x}|_i \leq \epsilon$$

for $i = 1, 2, \dots, d$

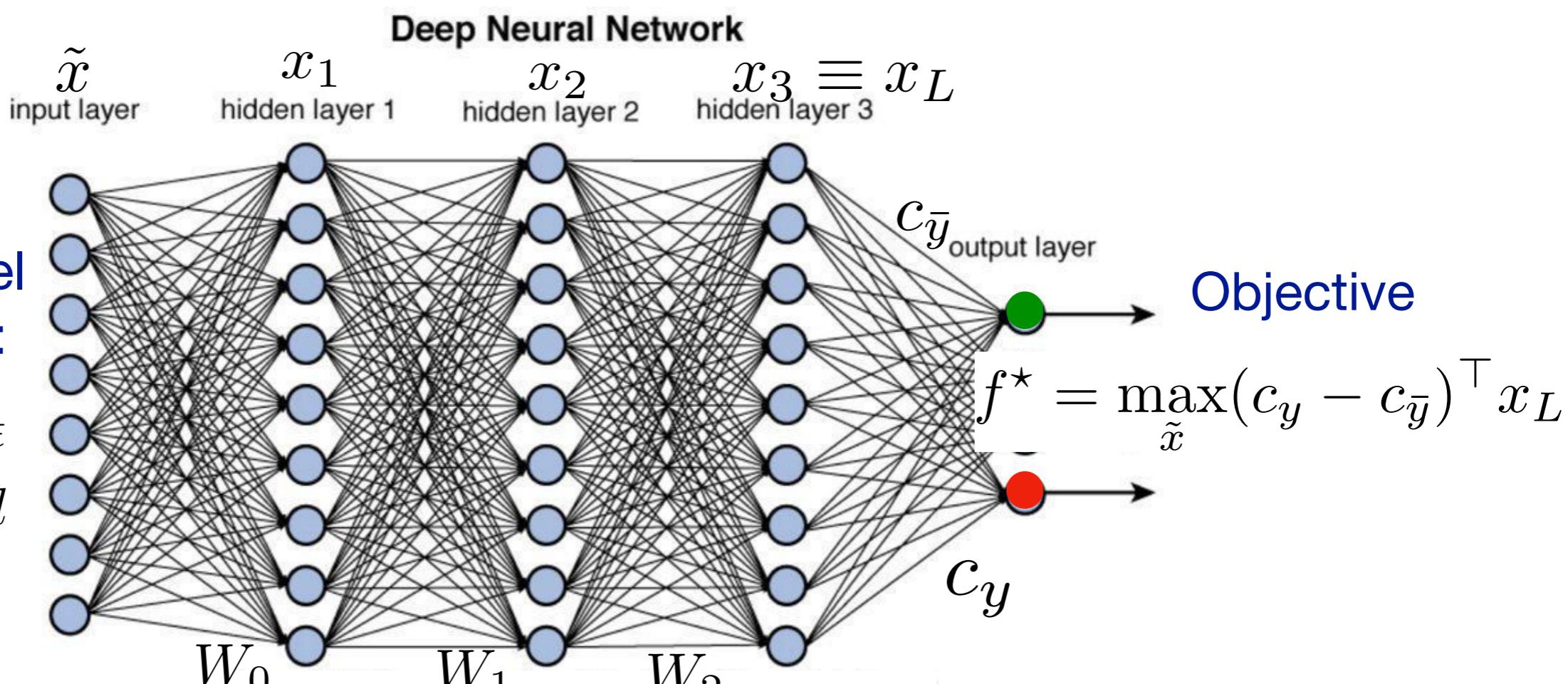


New SDP-cert relaxation

Attack model constraints:

$$|\bar{x} - \tilde{x}|_i \leq \epsilon$$

for $i = 1, 2, \dots, d$



$$x_i = \text{ReLU}(W_{i-1}x_{i-1})$$

for $i = 1, 2, \dots, L$

Source of non-convexity is the
ReLU constraints

Handling ReLU constraints

Handling ReLU constraints

Consider **single** ReLU constraint $z = \max(0, x)$

Handling ReLU constraints

Consider **single** ReLU constraint $z = \max(0, x)$

Key insight: Can be replaced by linear + quadratic constraints

Handling ReLU constraints

Consider **single** ReLU constraint $z = \max(0, x)$

Key insight: Can be replaced by linear + quadratic constraints

$$z \geq x \quad \text{Linear}$$

Handling ReLU constraints

Consider **single** ReLU constraint $z = \max(0, x)$

Key insight: Can be replaced by linear + quadratic constraints

$$z \geq x \quad \text{Linear}$$

$$z \geq 0 \quad \text{Linear}$$

Handling ReLU constraints

Consider **single** ReLU constraint $z = \max(0, x)$

Key insight: Can be replaced by linear + quadratic constraints

$$z \text{ is greater than } x, 0 \quad \left\{ \begin{array}{ll} z \geq x & \text{Linear} \\ z \geq 0 & \text{Linear} \end{array} \right.$$

Handling ReLU constraints

Consider **single** ReLU constraint $z = \max(0, x)$

Key insight: Can be replaced by linear + quadratic constraints

$$z \text{ is greater than } x, 0 \quad \left\{ \begin{array}{ll} z \geq x & \text{Linear} \\ z \geq 0 & \text{Linear} \\ z(z - x) = 0 & \text{Quadratic} \end{array} \right.$$

Handling ReLU constraints

Consider **single** ReLU constraint $z = \max(0, x)$

Key insight: Can be replaced by linear + quadratic constraints

$$\begin{array}{ll} z \text{ is greater than } x, 0 & \left\{ \begin{array}{ll} z \geq x & \text{Linear} \\ z \geq 0 & \text{Linear} \end{array} \right. \\ z \text{ equal to one of } x, 0 & z(z - x) = 0 \quad \text{Quadratic} \end{array}$$

Handling ReLU constraints

Consider **single** ReLU constraint $z = \max(0, x)$

Key insight: Can be replaced by linear + quadratic constraints

$$\begin{array}{ll} z \text{ is greater than } x, 0 & \left\{ \begin{array}{ll} z \geq x & \text{Linear} \\ z \geq 0 & \text{Linear} \end{array} \right. \\ z \text{ equal to one of } x, 0 & z(z - x) = 0 \quad \text{Quadratic} \end{array}$$

Handling ReLU constraints

Consider **single** ReLU constraint $z = \max(0, x)$

Key insight: Can be replaced by linear + quadratic constraints

$$z \text{ is greater than } x, 0 \quad \left\{ \begin{array}{ll} z \geq x & \text{Linear} \\ z \geq 0 & \text{Linear} \end{array} \right.$$

$$z \text{ equal to one of } x, 0 \quad z(z - x) = 0 \quad \text{Quadratic}$$

Can relax quadratic constraints to get a semidefinite program

SDP relaxation

SDP relaxation

Single ReLU constraint $z = \max(0, x) \equiv$ Linear + Quadratic constraints

SDP relaxation

Single ReLU constraint $z = \max(0, x) \equiv$ Linear + Quadratic constraints

$$M = \begin{bmatrix} 1 & x & z \\ x & x^2 & xz \\ z & xz & z^2 \end{bmatrix}$$

SDP relaxation

Single ReLU constraint $z = \max(0, x) \equiv$ Linear + Quadratic constraints

$$M = \begin{bmatrix} 1 & x & z \\ x & x^2 & xz \\ z & xz & z^2 \end{bmatrix} \quad z \geq x$$

SDP relaxation

Single ReLU constraint $z = \max(0, x) \equiv$ Linear + Quadratic constraints

$$M = \begin{bmatrix} 1 & x & z \\ x & x^2 & xz \\ z & xz & z^2 \end{bmatrix} \quad z \geq x$$

SDP relaxation

Single ReLU constraint $z = \max(0, x) \equiv$ Linear + Quadratic constraints

$$M = \begin{bmatrix} 1 & x & z \\ x & x^2 & xz \\ z & xz & z^2 \end{bmatrix} \quad z \geq 0$$

SDP relaxation

Single ReLU constraint $z = \max(0, x) \equiv$ Linear + Quadratic constraints

$$M = \begin{bmatrix} 1 & x & z \\ x & x^2 & xz \\ z & xz & z^2 \end{bmatrix} \quad \begin{aligned} z(z - x) &= 0 \\ z^2 &= xz \end{aligned}$$

SDP relaxation

Single ReLU constraint $z = \max(0, x) \equiv$ Linear + Quadratic constraints

$$M = \begin{bmatrix} 1 & x & z \\ x & x^2 & xz \\ z & xz & z^2 \end{bmatrix}$$

SDP relaxation

Single ReLU constraint $z = \max(0, x) \equiv$ Linear + Quadratic constraints

$$M = \begin{bmatrix} 1 & x & z \\ x & x^2 & xz \\ z & xz & z^2 \end{bmatrix}$$

ReLU constraints as linear constraints
on matrix entries

SDP relaxation

Single ReLU constraint $z = \max(0, x) \equiv$ Linear + Quadratic constraints

$$M = \begin{bmatrix} 1 & x & z \\ x & x^2 & xz \\ z & xz & z^2 \end{bmatrix}$$

ReLU constraints as linear constraints
on matrix entries

Constraint on M

SDP relaxation

Single ReLU constraint $z = \max(0, x) \equiv$ Linear + Quadratic constraints

$$M = \begin{bmatrix} 1 & x & z \\ x & x^2 & xz \\ z & xz & z^2 \end{bmatrix}$$

ReLU constraints as linear constraints
on matrix entries

Constraint on M

$$M = vv^\top \text{ Exact but non-convex set}$$

SDP relaxation

Single ReLU constraint $z = \max(0, x) \equiv$ Linear + Quadratic constraints

$$M = \begin{bmatrix} 1 & x & z \\ x & x^2 & xz \\ z & xz & z^2 \end{bmatrix}$$

ReLU constraints as linear constraints
on matrix entries

Constraint on M

$M = vv^\top$ Exact but non-convex set

$M = VV^\top$ Relaxed and convex set

SDP relaxation

Single ReLU constraint $z = \max(0, x) \equiv$ Linear + Quadratic constraints

$$M = \begin{bmatrix} 1 & x & z \\ x & x^2 & xz \\ z & xz & z^2 \end{bmatrix}$$

ReLU constraints as linear constraints
on matrix entries

Constraint on M

$M = vv^\top$ Exact but non-convex set

$$M \succeq 0$$

$M = VV^\top$ Relaxed and convex set

SDP relaxation

Single ReLU constraint $z = \max(0, x) \equiv$ Linear + Quadratic constraints

$$M = \begin{bmatrix} 1 & x & z \\ x & x^2 & xz \\ z & xz & z^2 \end{bmatrix}$$

ReLU constraints as linear constraints
on matrix entries

Constraint on M

$M = vv^\top$ Exact but non-convex set

$M = VV^\top$ Relaxed and convex set

$$M \succeq 0$$

Generalizes to multiple layers: large matrix M with all activations

SDP relaxation

SDP relaxation

Interaction between different hidden units

SDP relaxation

Interaction between different hidden units

$$x_1, x_2 \in [-\epsilon, \epsilon]$$

SDP relaxation

Interaction between different hidden units

$$x_1, x_2 \in [-\epsilon, \epsilon]$$

$$z_1 = \text{ReLU}(x_1 + x_2)$$

$$z_2 = \text{ReLU}(x_1 - x_2)$$

SDP relaxation

Interaction between different hidden units

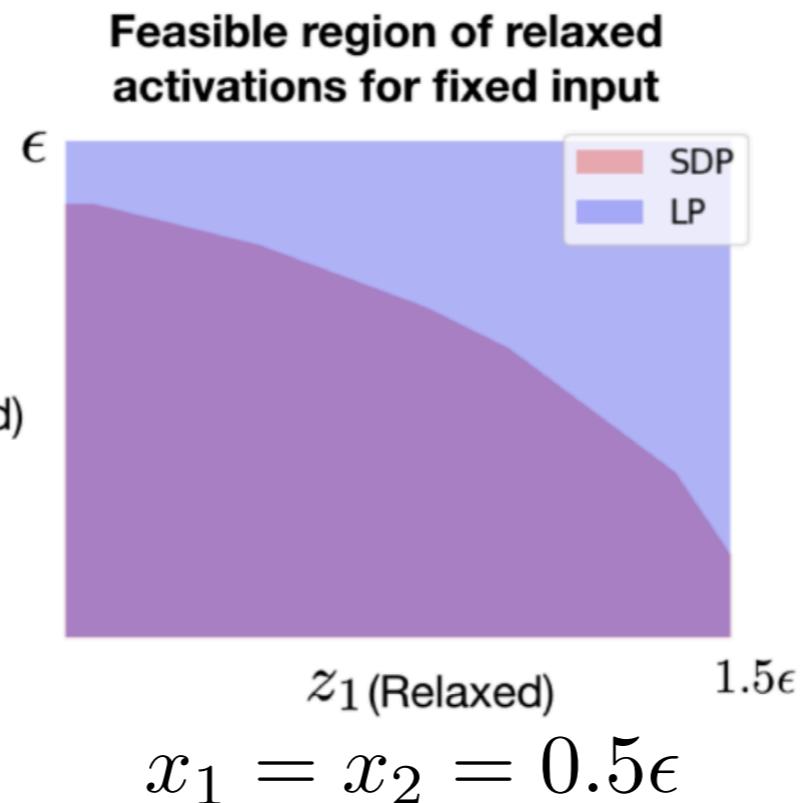
$$x_1, x_2 \in [-\epsilon, \epsilon]$$

$$z_1 = \text{ReLU}(x_1 + x_2)$$

$$z_2 = \text{ReLU}(x_1 - x_2)$$

z_2
(Relaxed)

$$x_1 = x_2 = 0.5\epsilon$$



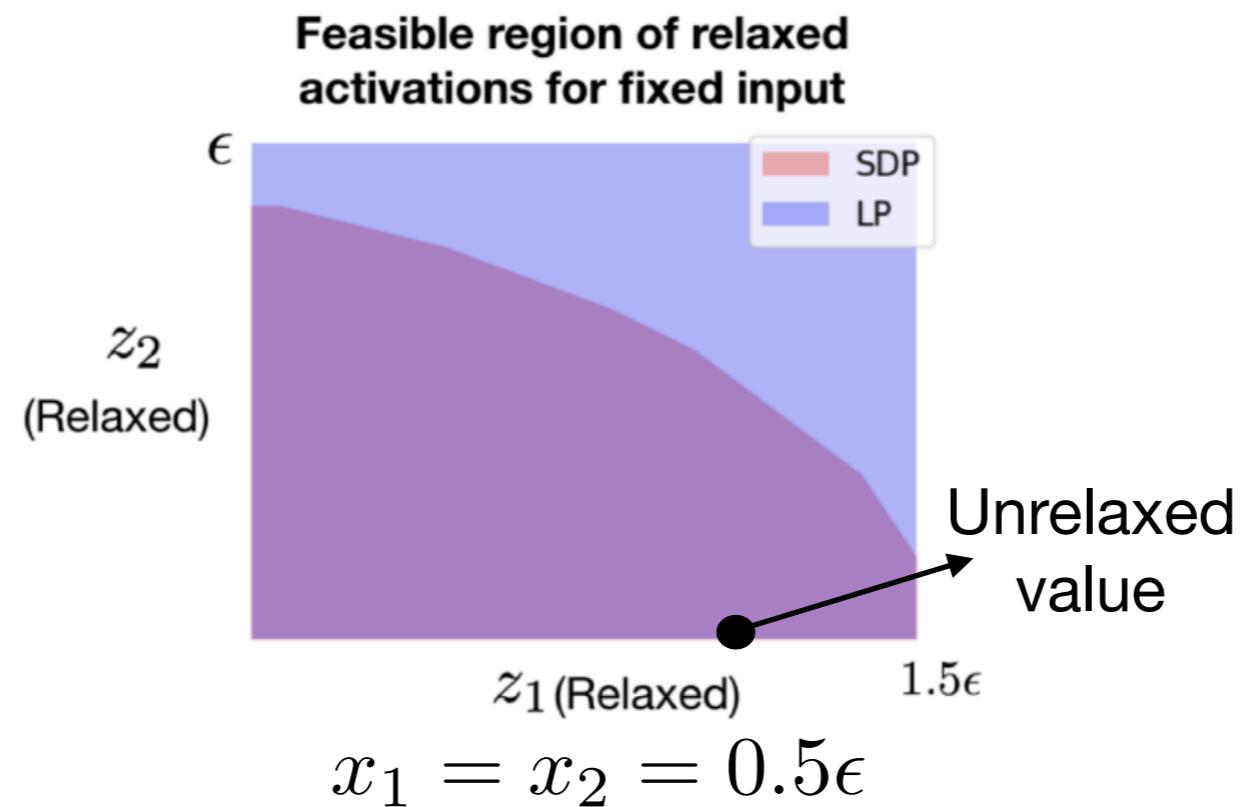
SDP relaxation

Interaction between different hidden units

$$x_1, x_2 \in [-\epsilon, \epsilon]$$

$$z_1 = \text{ReLU}(x_1 + x_2)$$

$$z_2 = \text{ReLU}(x_1 - x_2)$$



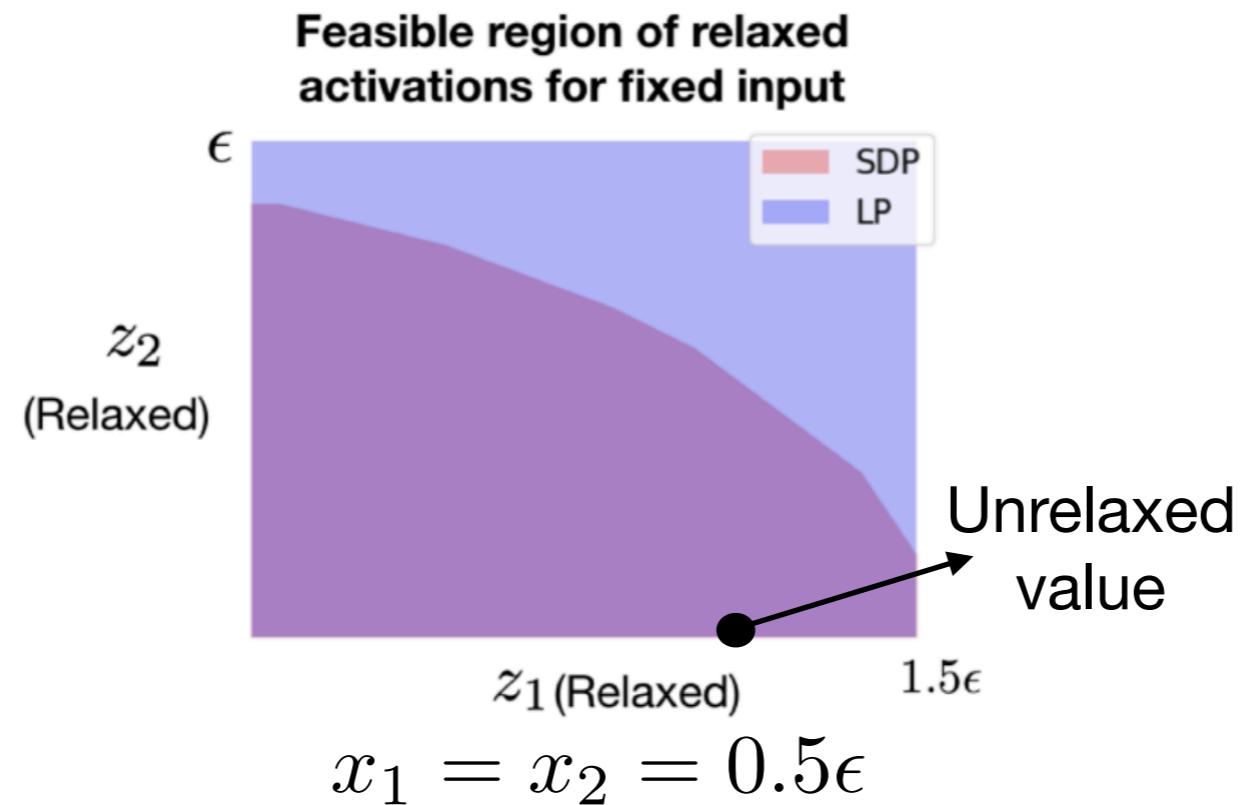
SDP relaxation

Interaction between different hidden units

$$x_1, x_2 \in [-\epsilon, \epsilon]$$

$$z_1 = \text{ReLU}(x_1 + x_2)$$

$$z_2 = \text{ReLU}(x_1 - x_2)$$



LP treats units independently
SDP reasons jointly

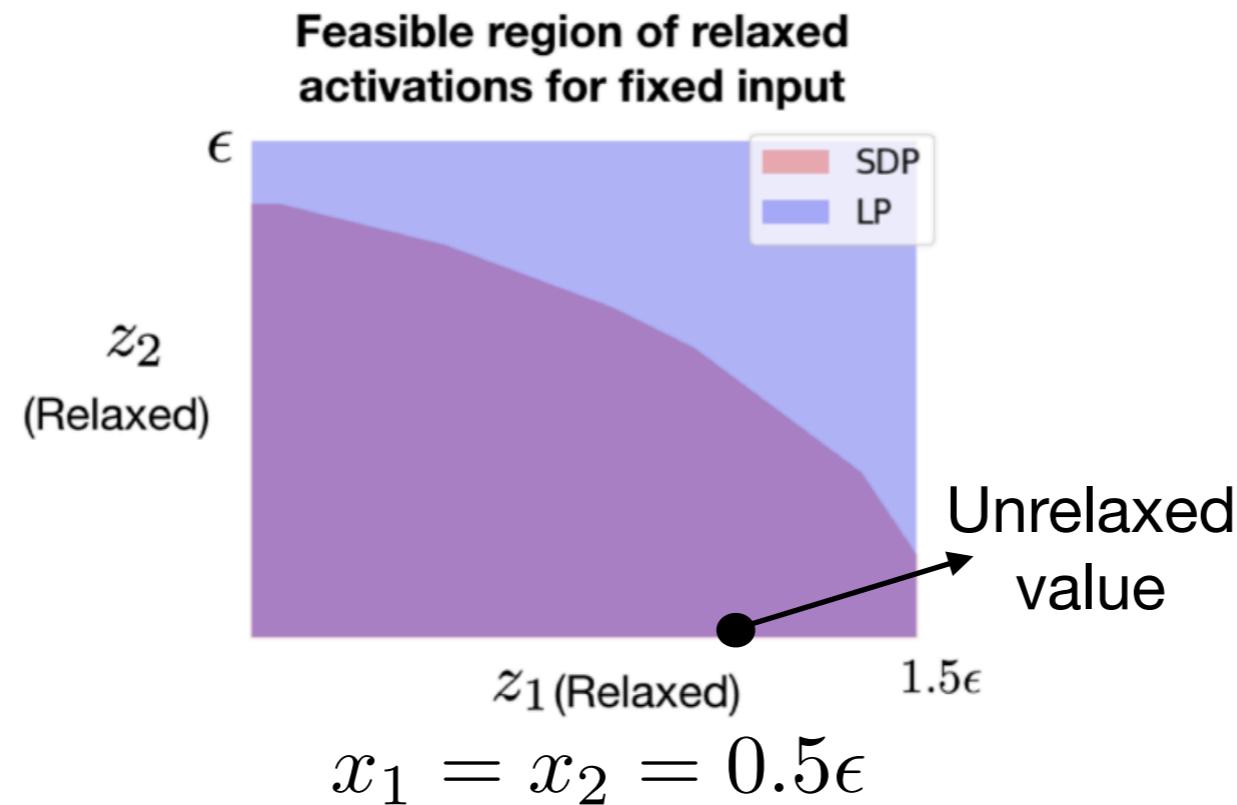
SDP relaxation

Interaction between different hidden units

$$x_1, x_2 \in [-\epsilon, \epsilon]$$

$$z_1 = \text{ReLU}(x_1 + x_2)$$

$$z_2 = \text{ReLU}(x_1 - x_2)$$



LP treats units independently
SDP reasons jointly

Theorem: For a random two layer network with m hidden nodes and input dimension d , $\text{opt}(\text{LP}) = \Theta(md)$ and $\text{opt}(\text{SDP}) = \Theta(m\sqrt{d} + d\sqrt{m})$

Results on MNIST

Results on MNIST

Three different robust networks

Results on MNIST

Three different robust networks

Grad-NN

[Raghunathan et al. 2018]

Results on MNIST

Three different robust networks

Grad-NN

[Raghunathan et al. 2018]

LP-NN

[Wong and Kolter 2018]

Results on MNIST

Three different robust networks

Grad-NN

[Raghunathan et al. 2018]

LP-NN

[Wong and Kolter 2018]

PGD-NN

[Madry et al. 2018]

Results on MNIST

Three different robust networks

Grad-NN

[Raghunathan et al. 2018]

LP-NN

[Wong and Kolter 2018]

PGD-NN

[Madry et al. 2018]

	Grad-NN	LP-NN	PGD-NN
Grad-cert	35%	93%	N/A
LP-cert	97%	22%	100%
SDP-cert	20%	20%	18%
PGD-attack	15%	18%	9%

Results on MNIST

Three different robust networks

Grad-NN

[Raghunathan et al. 2018]

LP-NN

[Wong and Kolter 2018]

PGD-NN

[Madry et al. 2018]

	Grad-NN	LP-NN	PGD-NN
Grad-cert	35%	93%	N/A
LP-cert	97%	22%	100%
SDP-cert	20%	20%	18%
PGD-attack	15%	18%	9%

SDP provides good certificates on all three different networks

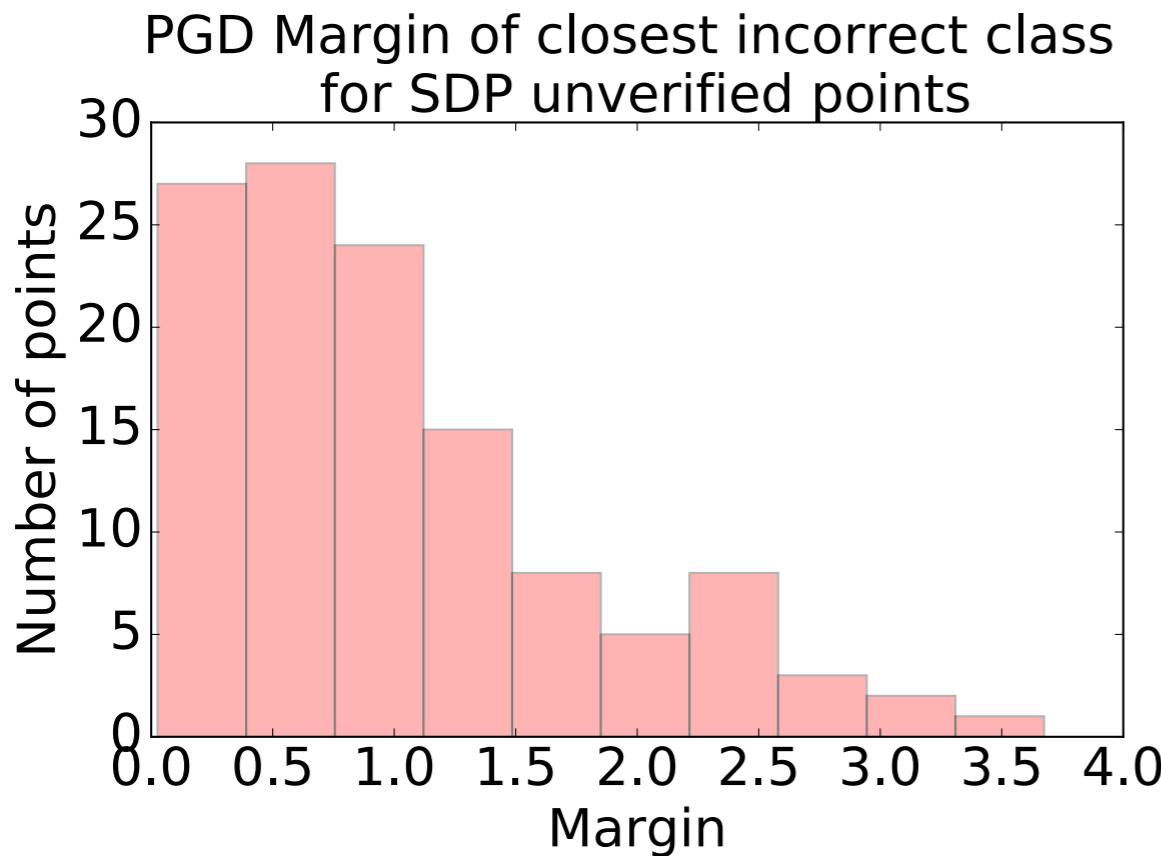
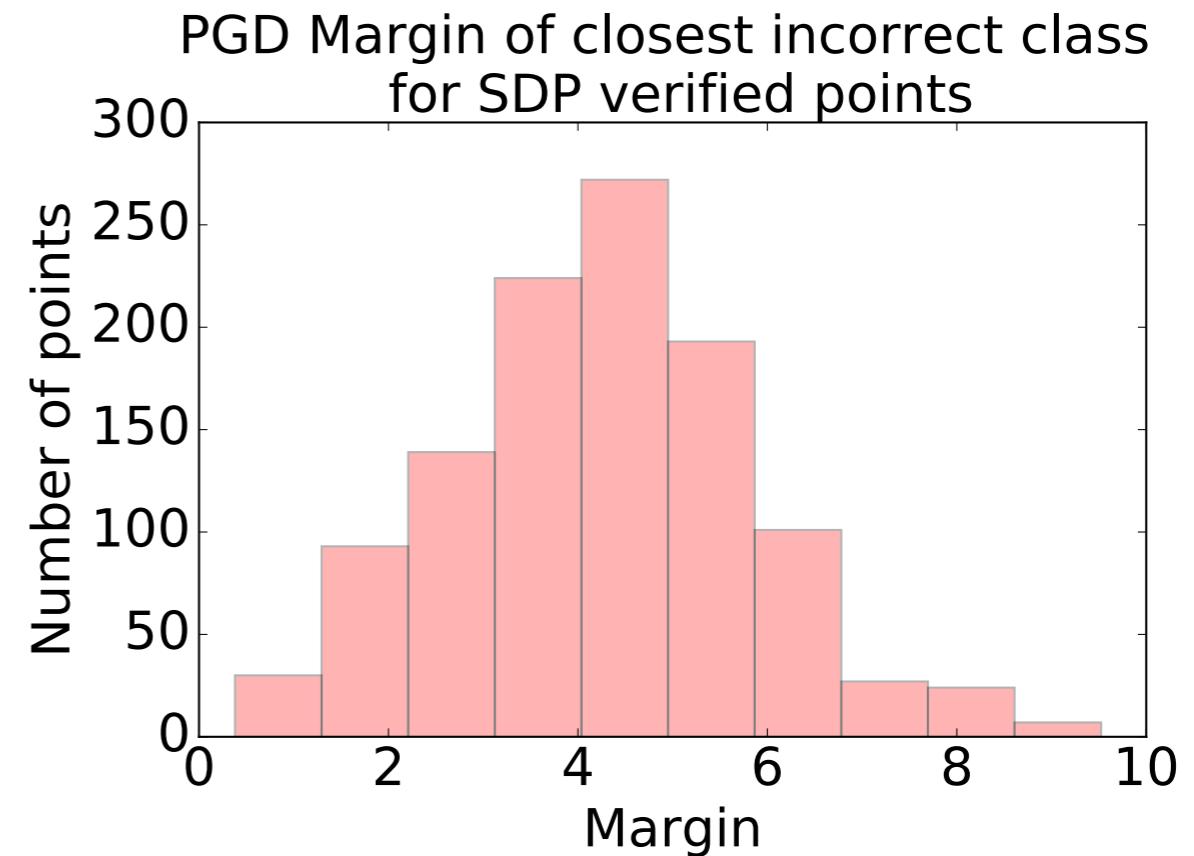
Results on MNIST

Results on MNIST

PGD-NN
[Madry et al. 2018]

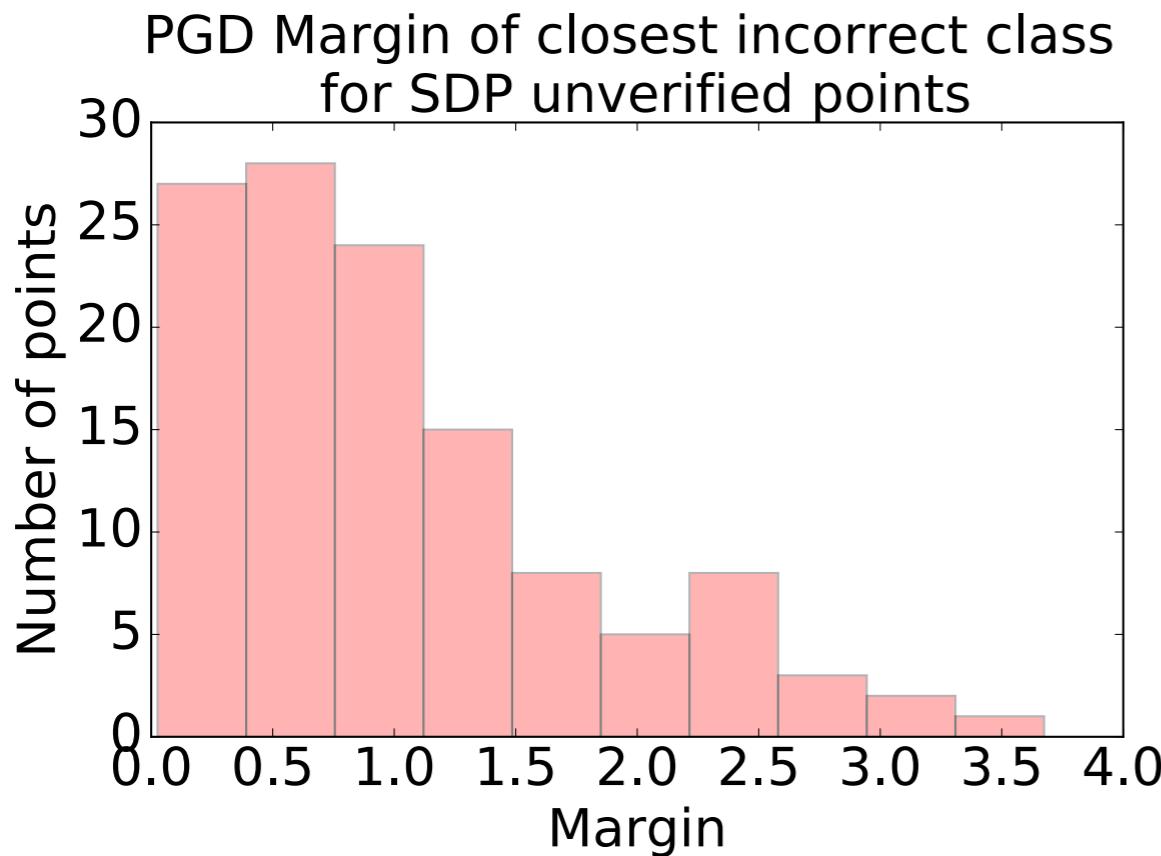
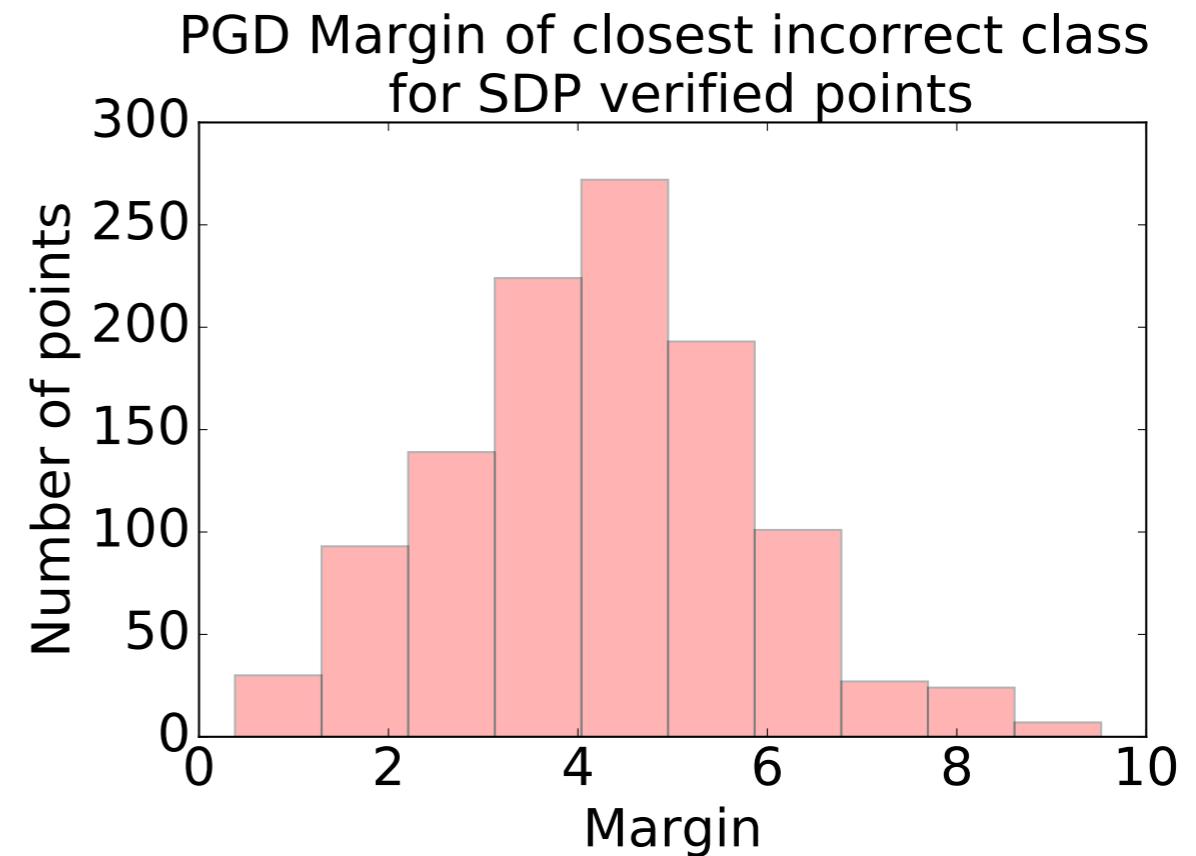
Results on MNIST

PGD-NN
[Madry et al. 2018]



Results on MNIST

PGD-NN
[Madry et al. 2018]



Uncertified points are more vulnerable to attack

Scaling up...

Scaling up...

In general, CNNs are more robust than fully connected networks

Scaling up...

In general, CNNs are more robust than fully connected networks

Off-the-shelf SDP solvers do not exploit the CNN structure

Scaling up...

In general, CNNs are more robust than fully connected networks

Off-the-shelf SDP solvers do not exploit the CNN structure

Ongoing work:

Scaling up...

In general, CNNs are more robust than fully connected networks

Off-the-shelf SDP solvers do not exploit the CNN structure

Ongoing work:

Scaling up...

In general, CNNs are more robust than fully connected networks

Off-the-shelf SDP solvers do not exploit the CNN structure

Ongoing work:

First order matrix-vector product based SDP solvers

Scaling up...

In general, CNNs are more robust than fully connected networks

Off-the-shelf SDP solvers do not exploit the CNN structure

Ongoing work:

First order matrix-vector product based SDP solvers

Scaling up...

In general, CNNs are more robust than fully connected networks

Off-the-shelf SDP solvers do not exploit the CNN structure

Ongoing work:

First order matrix-vector product based SDP solvers

Exploit efficient CNN implementations in Tensorflow

Scaling up...

In general, CNNs are more robust than fully connected networks

Off-the-shelf SDP solvers do not exploit the CNN structure

Ongoing work:

First order matrix-vector product based SDP solvers

Exploit efficient CNN implementations in Tensorflow

Concurrent work:

Scaling up...

In general, CNNs are more robust than fully connected networks

Off-the-shelf SDP solvers do not exploit the CNN structure

Ongoing work:

First order matrix-vector product based SDP solvers

Exploit efficient CNN implementations in Tensorflow

Concurrent work:

Scaling up...

In general, CNNs are more robust than fully connected networks

Off-the-shelf SDP solvers do not exploit the CNN structure

Ongoing work:

First order matrix-vector product based SDP solvers

Exploit efficient CNN implementations in Tensorflow

Concurrent work:

MILP solving with efficient preprocessing [Tjeng+ 2018, Xiao+ 2018]

Scaling up...

In general, CNNs are more robust than fully connected networks

Off-the-shelf SDP solvers do not exploit the CNN structure

Ongoing work:

First order matrix-vector product based SDP solvers

Exploit efficient CNN implementations in Tensorflow

Concurrent work:

MILP solving with efficient preprocessing [Tjeng+ 2018, Xiao+ 2018]

Scaling up...

In general, CNNs are more robust than fully connected networks

Off-the-shelf SDP solvers do not exploit the CNN structure

Ongoing work:

First order matrix-vector product based SDP solvers

Exploit efficient CNN implementations in Tensorflow

Concurrent work:

MILP solving with efficient preprocessing [Tjeng+ 2018, Xiao+ 2018]

Scaling up LP based methods [Dvijotham+ 2018, Wong and Kolter 2018]

Scaling up...

In general, CNNs are more robust than fully connected networks

Off-the-shelf SDP solvers do not exploit the CNN structure

Ongoing work:

First order matrix-vector product based SDP solvers

Exploit efficient CNN implementations in Tensorflow

Concurrent work:

MILP solving with efficient preprocessing [Tjeng+ 2018, Xiao+ 2018]

Scaling up LP based methods [Dvijotham+ 2018, Wong and Kolter 2018]

Summary

Summary

- Robustness for ℓ_∞ attack model

Summary

- Robustness for ℓ_∞ attack model
 - Certified evaluation to avoid arms race

Summary

- Robustness for ℓ_∞ attack model
 - Certified evaluation to avoid arms race
 - Presented two different relaxations for certification

Summary

- Robustness for ℓ_∞ attack model
 - Certified evaluation to avoid arms race
 - Presented two different relaxations for certification
- Adversarial examples more broadly..

Summary

- Robustness for ℓ_∞ attack model
 - Certified evaluation to avoid arms race
 - Presented two different relaxations for certification
- Adversarial examples more broadly..
 - Does there exist a mathematically well defined attack model?

Summary

- Robustness for ℓ_∞ attack model
 - Certified evaluation to avoid arms race
 - Presented two different relaxations for certification
- Adversarial examples more broadly..
 - Does there exist a mathematically well defined attack model?
 - Would the current techniques (deep learning + appropriate regularization) transfer to this attack model?

Summary

- Robustness for ℓ_∞ attack model
 - Certified evaluation to avoid arms race
 - Presented two different relaxations for certification
- Adversarial examples more broadly..
 - Does there exist a mathematically well defined attack model?
 - Would the current techniques (deep learning + appropriate regularization) transfer to this attack model?
- Secure vs. better models?

Summary

- Robustness for ℓ_∞ attack model
 - Certified evaluation to avoid arms race
 - Presented two different relaxations for certification
- Adversarial examples more broadly..
 - Does there exist a mathematically well defined attack model?
 - Would the current techniques (deep learning + appropriate regularization) transfer to this attack model?
- Secure vs. better models?
 - Adversarial examples expose limitations of current systems

Summary

- Robustness for ℓ_∞ attack model
 - Certified evaluation to avoid arms race
 - Presented two different relaxations for certification
- Adversarial examples more broadly..
 - Does there exist a mathematically well defined attack model?
 - Would the current techniques (deep learning + appropriate regularization) transfer to this attack model?
- Secure vs. better models?
 - Adversarial examples expose limitations of current systems
 - How do we get models to learn “**the right thing**”?

Thank you!

Jacob Steinhardt

Percy Liang

Google

Open
Philanthropy
Project

“Certified Defenses against Adversarial Examples”
<https://arxiv.org/abs/1801.09344> [ICLR 2018]

“Semidefinite Relaxations for Certifying Robustness to Adversarial Examples”
<https://arxiv.org/abs/1811.01057> [NeurIPS 2018]