
Modelica® – A Unified Object-Oriented Language

for Systems Modeling

Language Specification

Version 3.7-dev

February 6, 2026

Modelica Association

Abstract

This document defines the Modelica1 language, version 3.7-dev, which is developed by the Modelica
Association, a non-profit organization with seat in Linköping, Sweden. Modelica is a freely available,
object-oriented language for modeling of large, complex, and heterogeneous systems. It is suited for
multi-domain modeling, for example, mechatronic models in robotics, automotive and aerospace appli-
cations involving mechanical, electrical, hydraulic control and state machine subsystems, process oriented
applications and generation and distribution of electric power. Models in Modelica are mathematically
described by differential, algebraic and discrete equations. No particular variable needs to be solved
for manually. A Modelica tool will have enough information to decide that automatically. Model-
ica is designed such that available, specialized algorithms can be utilized to enable efficient handling
of large models having more than one hundred thousand equations. Modelica is suited and used for
hardware-in-the-loop simulations and for embedded control systems. More information is available at
https://modelica.org.

1Modelica is a registered trademark of the Modelica Association.

https://modelica.org

Modelica Language Specification 3.7-dev

Copyright © 1998-2023, Modelica Association (https://modelica.org)

All rights reserved. Reproduction or use of editorial or pictorial content is permitted, i.e., this document
can be freely distributed especially electronically, provided the copyright notice and these conditions
are retained. No patent liability is assumed with respect to the use of information contained herein.
While every precaution has been taken in the preparation of this document no responsibility for errors
or omissions is assumed.

The contributors to this and to previous versions of this document are listed in appendix D.

1

https://modelica.org

Contents

Preface 6

1 Introduction 8
1.1 Overview of Modelica . 8
1.2 Scope of the Specification . 8
1.3 Some Definitions . 9
1.4 Notation . 10

2 Lexical Structure 11
2.1 Character Set . 11
2.2 Comments . 11
2.3 Identifiers, Names, and Keywords . 12
2.4 Literals . 13
2.5 Operator Symbols . 14

3 Operators and Expressions 15
3.1 Expressions . 15
3.2 Operator Precedence and Associativity . 15
3.3 Evaluation Order . 17
3.4 Arithmetic Operators . 18
3.5 Equality, Relational, and Logical Operators . 18
3.6 Miscellaneous Operators and Variables . 19
3.7 Built-in Operators and Functions . 20
3.8 Variability of Expressions . 36

4 Classes, Predefined Types, and Declarations 40
4.1 Access Control – Public and Protected Elements . 40
4.2 Double Declaration not Allowed . 41
4.3 Declaration Order . 41
4.4 Component Declarations . 41
4.5 Component Variability . 47
4.6 Class Declarations . 51
4.7 Specialized Classes . 54
4.8 Balanced Models . 56
4.9 Predefined Types and Classes . 62

5 Scoping, Name Lookup, and Flattening 69
5.1 Flattening Context . 69
5.2 Enclosing Classes . 69
5.3 Static Name Lookup . 69
5.4 Inner Declarations - Instance Hierarchy Name Lookup 71
5.5 Simultaneous Inner/Outer Declarations . 74
5.6 Flattening Process . 74

6 Interface or Type Relationships 80
6.1 Interface Terminology . 80
6.2 The Concepts of Type, Interface and Subtype . 81
6.3 Interface or Type . 82

2

Modelica Language Specification 3.7-dev
Contents

6.4 Interface Compatibility or Subtyping . 84
6.5 Plug-Compatibility or Restricted Subtyping . 85
6.6 Function-Compatibility or Function-Subtyping for Functions 86
6.7 Type Compatible Expressions . 88

7 Inheritance, Modification, and Redeclaration 90
7.1 Inheritance – Extends Clause . 90
7.2 Modifications . 93
7.3 Redeclaration . 100
7.4 Selective Model Extension . 108

8 Equations 111
8.1 Equation Categories . 111
8.2 Flattening and Lookup in Equations . 111
8.3 Equations in Equation Sections . 111
8.4 Synchronous Data-Flow Principle and Single Assignment Rule 120
8.5 Events and Synchronization . 120
8.6 Initialization, initial equation, and initial algorithm . 122

9 Connectors and Connections 128
9.1 Connect-Equations and Connectors . 128
9.2 Generation of Connection Equations . 134
9.3 Restrictions of Connections and Connectors . 137
9.4 Overconstrained Connections . 139

10 Arrays 146
10.1 Array Declarations . 146
10.2 Flexible Array Sizes . 149
10.3 Built-in Array Operators and Functions . 149
10.4 Vector, Matrix and Array Constructors . 154
10.5 Indexing . 158
10.6 Scalar, Vector, Matrix, and Array Operator Functions 159
10.7 Empty Arrays . 164

11 Statements and Algorithm Sections 166
11.1 Algorithm Sections . 166
11.2 Statements . 167

12 Functions 174
12.1 Function Declaration . 174
12.2 Function as a Specialized Class . 176
12.3 Pure Modelica Functions . 177
12.4 Function Call . 179
12.5 Built-in Functions . 186
12.6 Record Constructor Functions . 187
12.7 Derivatives and Inverses of Functions . 190
12.8 Function Inlining and Event Generation . 200
12.9 External Function Interface . 202

13 Packages 219
13.1 Package as Specialized Class . 219
13.2 Importing Definitions from a Package . 219
13.3 The Modelica Library Path – MODELICAPATH . 221
13.4 File System Mapping of Package/Class . 222
13.5 Stored Definitions Containing Multiple Class Definitions 223
13.6 External Resources . 223
13.7 Multilingual Descriptions . 224

14 Overloaded Operators 228

3

Modelica Language Specification 3.7-dev
Contents

14.1 Overview of Overloaded Operators . 228
14.2 Matching Function . 229
14.3 Overloaded Constructors . 229
14.4 Overloaded String Conversions . 230
14.5 Overloaded Binary Operations . 230
14.6 Overloaded Unary Operations . 231
14.7 Example of Overloading for Complex Numbers . 232

15 Stream Connectors 236
15.1 Definition of Stream Connectors . 236
15.2 inStream and Connection Equations . 237
15.3 actualStream . 241

16 Synchronous Language Elements 242
16.1 Rationale for Clocked Semantics . 243
16.2 Definitions . 244
16.3 Clock Constructors . 247
16.4 Clocked State Variables . 250
16.5 Partitioning Operators . 251
16.6 Clocked When-Clause . 255
16.7 Clock Partitioning . 255
16.8 Discretized Sub-Partition . 259
16.9 Initialization of Clocked Partitions . 264
16.10 Other Operators . 264
16.11 Semantics . 265

17 State Machines 267
17.1 Transitions . 267
17.2 State Machine Graphics . 269
17.3 State Machine Semantics . 270

18 Annotations 279
18.1 Notation for Annotation Definitions . 279
18.2 Semantic Restrictions of Annotation Syntax . 280
18.3 Expression Evaluation Inside Annotations . 280
18.4 Vendor-Specific Annotations . 281
18.5 Documentation . 281
18.6 Symbolic Processing . 288
18.7 Simulations . 289
18.8 Usage Restrictions . 290
18.9 Graphical Objects . 291
18.10 Graphical User Interface . 303
18.11 Versions . 309
18.12 Access Control to Protect Intellectual Property . 317
18.13 License Texts . 322
18.14 Functions . 323
18.15 Choices for Modifications and Redeclarations . 323

19 Unit Expressions 324
19.1 The Syntax of Unit Expressions . 324

20 The Modelica Standard Library 327

A Modelica Concrete Syntax 328
A.1 Lexical conventions . 328
A.2 Grammar . 329

B Modelica DAE Representation 336

C Derivation of Stream Equations 340

4

Modelica Language Specification 3.7-dev
Contents

D Modelica Revision History 345

Bibliography 346

Index 347

5

Preface

Modelica is a freely available, object-oriented language for modeling of large, complex, and heterogeneous
physical systems. From a user’s point of view, models are described by schematics, also called object
diagrams. Examples are shown below:

A schematic consists of connected components, like a resistor, or a hydraulic cylinder. A component has
connectors (often also called ports) that describe the interaction possibilities, e.g., an electrical pin, a
mechanical flange, or an input signal. By drawing connection lines between connectors a physical system
or block diagram model is constructed. Internally a component is defined by another schematic, or on
“bottom” level, by an equation-based description of the model in Modelica syntax.

The Modelica language is a textual description to define all parts of a model and to structure model
components in libraries, called packages. An appropriate Modelica simulation environment is needed
to graphically edit and browse a Modelica model (by interpreting the information defining a Modelica
model) and to perform model simulations and other analysis. Information about such environments is
available at https://modelica.org/tools. Basically, all Modelica language elements are mapped to
differential, algebraic and discrete equations. There are no language elements to describe directly partial
differential equations, although some types of discretized partial differential equations can be reasonably
defined, e.g., based on the finite volume method and there are Modelica libraries to import results of
finite-element programs.

This document defines the details of the Modelica language. It is not intended to learn the Modelica
language with this text. There are better alternatives, such as the Modelica books referenced at https://
modelica.org/publications. This specification is used by computer scientist to implement a Modelica
translator and by modelers who want to understand the exact details of a particular language element.

6

https://modelica.org/tools
https://modelica.org/publications
https://modelica.org/publications

Modelica Language Specification 3.7-dev
Contents

The text directly under the chapter headings are non-normative introductions to the chapters.

The Modelica language has been developed since 1996. This document describes version 3.7-dev of the
Modelica language. The revision history is available in appendix D.

7

Chapter 1

Introduction

1.1 Overview of Modelica

Modelica is a language for modeling of cyber-physical systems, supporting acausal connection of com-
ponents governed by mathematical equations to facilitate modeling from first principles. It provides
object-oriented constructs that facilitate reuse of models, and can be used conveniently for modeling
complex systems containing, e.g., mechanical, electrical, electronic, magnetic, hydraulic, thermal, con-
trol, electric power or process-oriented subcomponents.

1.2 Scope of the Specification

The semantics of the Modelica language is specified by means of a set of rules for translating any class
described in the Modelica language to a flat Modelica structure. The semantic specification should be
read together with the Modelica grammar.

A class (of specialized class model or block) intended to be simulated on its own is called a simulation
model .

The flat Modelica structure is also defined for other cases than simulation models; including functions
(can be used to provide algorithmic contents), packages (used as a structuring mechanism), and partial
models (used as base-models). This allows correctness to be verified for those classes, before using them
to build the simulation model.

There are specific semantic restrictions for a simulation model to ensure that the model is complete; they
allow its flat Modelica structure to be further transformed into a set of differential, algebraic and discrete
equations (= flat hybrid DAE). Note that satisfying the semantic restrictions does not guarantee that
the model can be initialized from the initial conditions and simulated.

Modelica was designed to facilitate symbolic transformations of models, especially by mapping basically
every Modelica language construct to equations in the flat Modelica structure. Many Modelica models,
especially in the associated Modelica Standard Library, are higher index systems, and can only be
reasonably simulated if symbolic index reduction is performed, i.e., equations are differentiated and
appropriate variables are selected as states, so that the resulting system of equations can be transformed
to state space form (at least locally numerically), i.e., a hybrid DAE of index zero. In order to allow
this structural analysis, a tool may reject simulating a model if parameters cannot be evaluated during
translation – due to calls of external functions or initial equations/initial algorithms for fixed = false
parameters. Accepting such models is a quality of implementation issue. The Modelica specification
does not define how to simulate a model. However, it defines a set of equations that the simulation result
should satisfy as well as possible.

The key issues of the translation (or flattening) are:

� Expansion of inherited base classes.

� Parameterization of base classes, local classes and components.

8

Modelica Language Specification 3.7-dev
1.3. Some Definitions

� Generation of connection equations from connect-equations.

The flat hybrid DAE form consists of:

� Declarations of variables with the appropriate basic types, prefixes and attributes, such as parameter
Real v = 5.

� Equations from equation sections.

� Function invocations where an invocation is treated as a set of equations which involves all input
and all result variables (number of equations = number of basic result variables).

� Algorithm sections where every section is treated as a set of equations which involves the variables
occurring in the algorithm section (number of equations = number of different assigned variables).

� The when-clauses where every when-clause is treated as a set of conditionally evaluated equations,
which are functions of the variables occurring in the clause (number of equations = number of
different assigned variables).

Therefore, a flat hybrid DAE is seen as a set of equations where some of the equations are only condi-
tionally evaluated. Initial setup of the model is specified using start-attributes and equations that hold
only during initialization.

A Modelica class may also contain annotations, i.e., formal comments, which specify graphical represen-
tations of the class (icon and diagram), documentation text for the class, and version information.

1.3 Some Definitions

Explanations of many terms can be found using the document index in appendix D. Some important
terms are defined below.

Definition 1.1. Component . An element defined by the production component-clause in the Modelica
grammar (basically a variable or an instance of a class)

Definition 1.2. Element . Class definition, extends-clause, or component-clause declared in a class
(basically a class reference or a component in a declaration).

Definition 1.3. Flattening . The translation of a model described in Modelica to the correspond-
ing model described as a hybrid DAE (see appendix B), involving expansion of inherited base classes,
parameterization of base classes, local classes and components, and generation of connection equations
from connect-equations. In other words, mapping the hierarchical structure of a model into a set of
differential, algebraic and discrete equations together with the corresponding variable declarations and
function definitions from the model.

Definition 1.4. Initialization. Simulation starts with solving the initialization problem at the start-
ing time, resulting in values for all variables that are consistent with the result of the flattening.

Definition 1.5. Transient analysis. Starting from the result of the initialization problem, the model
is simulated forward in time. This uses numerical methods for handling the hybrid DAE, resulting in
solution trajectories for the model’s variables, i.e., the value of the variables as a function of time.

[In the numerical literature transient analysis is often called solving the initial value problem, but that
term is not used here to avoid confusion with the initialization problem.]

Definition 1.6. Simulation. Simulation is the combination of initialization followed by transient
analysis.

[The model can be analyzed in ways other than simulation, e.g., linearization, and parameter estimation,
but they are not described in the specification.]

Definition 1.7. Translation. Translation is the process of preparing a Modelica simulation model
for simulation, starting with flattening but not including the simulation itself.

[Typically, in addition to flattening, translation involves symbolic manipulation of the hybrid DAE and
transforming the result into computer code that can simulate the model.]

9

Modelica Language Specification 3.7-dev
1.4. Notation

1.4 Notation

The remainder of this section shows examples of the presentation used in this document.

Syntax highlighting of Modelica code is illustrated by the code listing below. Things to note include
keywords that define code structure such as equation, keywords that do not define code structure such
as connect, and recognized identifiers with meaning defined by the specification such as semiLinear:

model Example "Example used to illustrate syntax highlighting"
/* The string above is a class description string , this is a comment. */
/* Invalid code is typically presented like this: */
String s = 1.0; // Error: No conversion from Real to String.
Real x;

equation
2 * x = semiLinear(time - 0.5, 2, 3);
/* The annotation below has omitted details represented by an ellipsis: */
connect(resistor.n, conductor.p) annotation(. . .);

end Example;

Relying on implicit conversion of Integer literals to Real is common, as seen in the equation above
(note use of Modelica code appearing inline in the text).

It is common to mix Modelica code with mathematical notation. For example, average(x, y) could be
defined as x+y

2 .

Inline code fragments are sometimes surrounded by quotes to clearly mark their beginning and end, or
to emphasize separation from the surrounding text. For example, ‘,’ is used to separate the arguments
of a function call.

Definition 1.8. Something . Text defining the meaning of something.

In addition to the style of definition above, new terminology can be introduced in the running text. For
example, a dummy is something that. . .

[This is non-normative content that provides some explanation, motivation, and/or additional things to
keep in mind. It has no defining power and may be skipped by readers strictly interested in just the
definition of the Modelica language.]

[Example: This is an example, which is a special kind of non-normative content. Examples often contain
a mix of code listings and explanatory text, and this is no exception:

String s = 1.0; // Error: No conversion form Real to String.

To fix the type mismatch above, the number has to be replaced by a String expression, such as "1.0".]

Other code listings in the document include specification of lexical units and grammatical structure, both
using metasymbols of the extended BNF-grammar defined in appendix A.1. Lexical units are named
with all upper-case letters and introduced with the ‘=’ sign:

SOME-TOKEN = NON-DIGIT { DIGIT | NON-DIGIT }

Grammatical structure is recognized by production rules being named with lower-case letters and intro-
duced with the ‘:’ sign (also note appearance of the Modelica keyword der):

differentiated-expression :
der "(" SOME-TOKEN ")"
| "(" differentiated-expression "+" differentiated-expression ")"

Annotations are defined using the syntactic forms of Modelica record definitions and component decla-
rations, but with special semantics given in section 18.1.

10

Chapter 2

Lexical Structure

This chapter describes several of the basic building blocks of Modelica such as characters and lexical
units including identifiers and literals. Without question, the smallest building blocks in Modelica are
single characters belonging to a character set. Characters are combined to form lexical units, also called
tokens. These tokens are detected by the lexical analysis part of the Modelica translator. Examples
of tokens are literals, identifiers, and operators. Comments are not really lexical units since they are
eventually discarded. On the other hand, comments are detected by the lexical analyzer before being
thrown away.

The information presented here is derived from the more formal specification in appendix A.

2.1 Character Set

The character set of the Modelica language is Unicode, but restricted to the Unicode characters corre-
sponding to 7-bit ASCII characters for identifiers; see appendix A.1.

2.2 Comments

There are two kinds of comments in Modelica which are not lexical units in the language and therefore
are treated as white-space by a Modelica translator. The white-space characters are space, tabulator,
and line separators (carriage return and line feed); and white-space cannot occur inside tokens, e.g., <=
must be written as two characters without space or comments between them. The following comment
variants are available:

// Rest -of -line comment: Everything from // to the end of the line are ignored.
"Not part of comment"
/* Delimited comment: Characters after /* are ignored ,
including line termination. The comment ends with */

[The comment syntax is identical to that of C++.]

Delimited Modelica comments do not nest, i.e., /* */ cannot be embedded within /* . . . */. The
following is invalid :

/* Invalid nesting of comments , the comment ends just before 'end'
model Interesting
/* To be done */

end Interesting;
*/

Rest-of-line comments can safely be used to comment out blocks of code without risk of conflict with
comments inside.

// model Valid // Some other comment
// /* To be done */
//end Valid;

11

Modelica Language Specification 3.7-dev
2.3. Identifiers, Names, and Keywords

There is also a description-string, that is part of the Modelica language and therefore not ignored by
the Modelica translator. Such a description-string may occur at the end of a declaration, equation, or
statement or at the beginning of a class definition. For example:

model TempResistor "Temperature dependent resistor"
. . .
parameter Real R "Resistance for reference temp.";
. . .

end TempResistor;

2.3 Identifiers, Names, and Keywords

Identifiers are sequences of letters, digits, and other characters such as underscore, which are used for
naming various items in the language. Certain combinations of letters are keywords represented as
reserved words in the Modelica grammar and are therefore not available as identifiers.

2.3.1 Identifiers

Modelica identifiers, used for naming classes, variables, constants, and other items, are of two forms.
The first form always starts with a letter or underscore (‘_’), followed by any number of letters, digits,
or underscores. Case is significant, i.e., the identifiers Inductor and inductor are different. The second
form (Q-IDENT) starts with a single quote, followed by a sequence of any printable ASCII character, where
single-quote must be preceded by backslash, and terminated by a single quote, e.g., '12H', '13\'H',
'+foo'. Control characters in quoted identifiers have to use string escapes. The single quotes are part
of the identifier, i.e., 'x' and x are distinct identifiers. The redundant escapes ('\?' and '\"') are the
same as the corresponding non-escaped variants ('?' and '"'), but are only for use in Modelica source
code. A full BNF definition of the Modelica syntax and lexical units is available in appendix A.

IDENT = NON-DIGIT { DIGIT | NON-DIGIT } | Q-IDENT
Q-IDENT = "'" { Q-CHAR | S-ESCAPE } "'"
NON-DIGIT = "_" | letters "a" . . . "z" | letters "A" . . . "Z"
DIGIT = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
Q-CHAR = NON-DIGIT | DIGIT | "!" | "#" | "$" | "%" | "&" | "(" | ")"
| "*" | "+" | "," | "-" | "." | "/" | ":" | ";" | "<" | ">" | "="
| "?" | "@" | "[" | "]" | "^" | "{" | "}" | "|" | "~" | " " | """

S-ESCAPE = "\'" | "\"" | "\?" | "\\"
| "\a" | "\b" | "\f" | "\n" | "\r" | "\t" | "\v"

2.3.2 Names

A name is an identifier with a certain interpretation or meaning. For example, a name may denote
an Integer variable, a Real variable, a function, a type, etc. A name may have different meanings in
different parts of the code, i.e., different scopes. The interpretation of identifiers as names is described
in more detail in chapter 5. The meaning of package names is described in more detail in chapter 13.

[Example: A name: Ele.Resistor]

A component reference is an expression containing a sequence of identifiers and indices. A component
reference is equivalent to the referenced object, which must be a component. A component reference is
resolved (evaluated) in the scope of a class (section 4.4), or expression for the case of a local iterator
variable (section 10.6.9).

[Example: A component reference: Ele.Resistor.u[21].r]

2.3.3 Modelica Keywords

The following Modelica keywords are reserved words that cannot be used where IDENT is expected in the
language grammar (appendix A):

12

Modelica Language Specification 3.7-dev
2.4. Literals

algorithm each final model record
and else flow not redeclare
annotation elseif for operator replaceable
block elsewhen function or return
break encapsulated if outer stream
class end import output then
connect enumeration impure package time
connector equation in parameter true
constant expandable initial partial type
constrainedby extends inner protected when
der external input public while
discrete false loop pure within

In particular, it is not allowed to declare an element or enumeration literal with these names. This
also applies to the identifiers that name the predefined types Real, Integer, Boolean, and String, see
section 4.9.

[Example: Not all predefined types have names with restrictions:

type StateSelect = enumeration(one , two);
StateSelect s = StateSelect.one; // OK, using local StateSelect.
Real x(stateSelect = StateSelect.never); // Error: 'never' is not a literal

// of StateSelect.
Real y(stateSelect = .StateSelect.never); // OK , using predefined StateSelect.

]

2.4 Literals

Literals are unnamed constants used to build expressions, and have different forms depending on their
type. Each of the predefined types in Modelica has a way of expressing unnamed constants of the
corresponding type, which is presented in the ensuing subsections. Additionally, array literals and record
literals can be expressed.

2.4.1 Floating Point Numbers

A floating point number is expressed as a decimal number in the form of a sequence of decimal digits
followed by a decimal point, followed by decimal digits, followed by an exponent indicated by E or e
followed by a sign and one or more decimal digits. The various parts can be omitted, see UNSIGNED-REAL
in appendix A.1 for details and also the examples below. The minimal recommended range is that
of IEEE double precision floating point numbers, for which the largest representable positive number
is 1.7976931348623157 × 10308 and the smallest positive number is 2.2250738585072014 × 10−308. For
example, the following are floating point number literals:

22.5, 3.141592653589793 , 1.2E-35

The same floating point number can be represented by different literals. For example, all of the following
literals denote the same number:

13., 13E0 , 1.3e1 , 0.13E2 , .13E2

The last variant shows that that the leading zero is optional (in that case decimal digits must be present).
Note that 13 is not in this list, since it is not a floating point number, but can be converted to a floating
point number.

2.4.2 Integer Literals

Literals of type Integer are sequences of decimal digits, e.g., as in the integer numbers 33, 0, 100,
30030044. The range of supported Integer literals shall be at least large enough to represent the largest
positive IntegerType value, see section 4.9.2.

[Negative numbers are formed by unary minus followed by an integer literal.]

13

Modelica Language Specification 3.7-dev
2.5. Operator Symbols

2.4.3 Boolean Literals

The two Boolean literal values are true and false.

2.4.4 Strings

String literals appear between double quotes as in "between". Any character in the Modelica language
character set (see appendix A.1 for allowed characters) apart from double quote (") and backslash (\
), including new-line, can be directly included in a string without using an escape sequence. Certain
characters in string literals can be represented using escape sequences, i.e., the character is preceded by
a backslash (\) within the string. Those characters are:

Character Description

\' Single quote, may also appear without backslash in string constants
\" Double quote
\? Question-mark, may also appear without backslash in string constants
\\ Backslash itself
\a Alert (bell, code 7, ctrl-G)
\b Backspace (code 8, ctrl-H)
\f Form feed (code 12, ctrl-L)
\n Newline (code 10, ctrl-J), same as literal newline
\r Carriage return (code 13, ctrl-M)
\t Horizontal tab (code 9, ctrl-I)
\v Vertical tab (code 11, ctrl-K)

For example, a string literal containing a tab, the words: This is, double quote, space, the word: between,
double quote, space, the word: us, and new-line, would appear as follows:

"\tThis is\" between \" us\n"

Concatenation of string literals in certain situations (see the Modelica grammar) is denoted by the +
operator in Modelica, e.g., "a" + "b" becomes "ab". This is useful for expressing long string literals
that need to be written on several lines.

The "\n" character is used to conceptually indicate the end of a line within a Modelica string. Any
Modelica program that needs to recognize line endings can check for a single "\n" character to do so on
any platform. It is the responsibility of a Modelica implementation to make any necessary transformations
to other representations when writing to or reading from a text file.

[For example, a "\n" is written and read as-is in a Unix or Linux implementation, but written as "\r\n"
pair, and converted back to "\n" when read in a Windows implementation.]

[For long string comments, e.g., the info annotation to store the documentation of a model, it would be
very inconvenient, if the string concatenation operator would have to be used for every line of documen-
tation. It is assumed that a Modelica tool supports the non-printable newline character when browsing
or editing a string literal. For example, the following statement defines one string that contains (non-
printable) newline characters:

assert(noEvent(length > s_small),
"The distance between the origin of frame_a and the origin of frame_b
of a LineForceWithMass component became smaller as parameter s_small
(= a small number , defined in the
\" Advanced \" menu). The distance is
set to s_small , although it is smaller , to avoid a division by zero
when computing the direction of the line force.",

level = AssertionLevel.warning);

]

2.5 Operator Symbols

The predefined operator symbols are formally defined on page 328 and summarized in the table of
operators in section 3.2.

14

Chapter 3

Operators and Expressions

The lexical units are combined to form even larger building blocks such as expressions according to the
rules given by the expression part of the Modelica grammar in appendix A. For example, they can be
built from operators, function references, components, or component references (referring to components)
and literals. Each expression has a type and a variability.

This chapter describes the evaluation rules for expressions, the concept of expression variability, built-in
mathematical operators and functions, and the built-in special Modelica operators with function syntax.

Expressions can contain variables and constants, which have types, predefined or user defined. The
predefined built-in types of Modelica are Real, Integer, Boolean, String, and enumeration types which
are presented in more detail in section 4.9.

3.1 Expressions

Modelica equations, assignments and declaration equations contain expressions.

Expressions can contain basic operations, +, -, *, /, ^, etc. with normal precedence as defined in table 3.1
in section 3.2 and the grammar in appendix A. The semantics of the operations is defined for both scalar
and array arguments in section 10.6.

It is also possible to define functions and call them in a normal fashion. The function call syntax for both
positional and named arguments is described in section 12.4.1 and for vectorized calls in section 12.4.4.
The built-in array functions are given in section 10.1.1 and other built-in operators in section 3.7.

3.2 Operator Precedence and Associativity

Operator precedence determines the implicit subexpression structure of expressions with operators. (Ex-
plicit subexpression structure can be expressed by wrapping the subexpression in parentheses.) An
operator with higher precedence ties harder to its operands than an operator with lower precedence.
For example, ‘*’ having higher precedence than ‘+’ means that 1 + 2 * 3 is implicitly structured as
1 + (2 * 3).

Precedence group associativity is used to determine the implicit subexpression structure when operators
belong to the same group of equal precedence. Left associativity means that subexpressions are formed
from left to right. For example, left associativity of binary additive operators means that 1 - 2 - 3 is
implicitly structured as (1 - 2) - 3. A precedence group may also be non-associative, meaning that
there is no implicit subexpression structure defined based on associativity. For example, non-associativity
of relational operators means that 1 < 2 < 3 is an invalid expression. Note that the operators don’t
need to be identical for associativity to matter; also 1 == 2 < 3 is invalid, and 1 - 2 + 3 is implicitly
structured as (1 - 2) + 3. Also note that the non-associative array range in Modelica can be used with
either two or three operands separated by ‘:’, meaning that 1 : 2 : 5 is one valid ternary use of the
operator rather than two invalid binary uses of the operator.

15

Modelica Language Specification 3.7-dev
3.2. Operator Precedence and Associativity

At the parsing stage – which is where the here defined operator precedence and associativity matters –
the subexpression structure is fixed. Since Modelica tools have the freedom to symbolically manipulate
expressions, this subexpression structure cannot be expected to reflect order of evaluation, compare
section 3.3.

The following table presents the precedence and associativity of all the expression operators, consistent
with and complementing information that can be derived from the Modelica grammar in appendix A.

Table 3.1: Operators in order of precedence from highest to lowest. Operators with different
precedence are separated by horizontal lines. All operators are binary except array index, member
access, function call, those shown as unary together with expr, the conditional operator, the array
construction operator { } and concatenation operator [], and the array range constructor which
is either binary or ternary.
† The associativity of array construction and concatenation refers to the separator (‘,’ or ‘;’), not
the enclosing delimiters.

Operator group Assoc. Operator syntax Examples

Array index left [] arr[index]
Member access left . a.b
Function call none funcName(args) sin(4.36)
Array construction left† {expr, expr, . . .} {2, 3}
Horizontal concatenation left† [expr, expr, . . .] [5, 6]
Vertical concatenation left† [expr; expr; . . .] [2, 3; 7, 8]
Exponentiation none ^ 2 ^ 3
Multiplicative left * / 2 * 3, 2 / 3
Elementwise multiplicative left .* ./ {2, 3} .* {4, 5}
Additive unary none +expr -expr -0.5
Additive left + - 1 + 2
Elementwise additive left .+ .- {2, 3} .+ {4, 5}
Relational none < <= > >= == <> a < b, a <= b, a > b
Unary negation none not expr not b1
Logical and left and b1 and b2
Logical or left or b1 or b2

Array range
none expr : expr 1 : 5
none expr : expr : expr start : step : stop

Conditional none if expr then expr else expr if b then 3 else x
Named argument none ident = expr x = 2.26

The array index and member access operators can both be part of a component-reference (one of the
alternative productions for primary in the grammar) and be applied to general expressions when the left
operand is parenthesized. Directly using both member access and array index in a component-reference
has a special intuitive meaning. See section 10.5 and section 3.6.6.

[Example: Relative precedence of array index and member access. Consider the following definition of
the array variable a:

record R
Real [2] x;

end R;
R[3] a;

These are some valid as well as invalid ways to using array index and member access:

a[3].x[2] // OK: Component reference of type Real
a[3].x // OK: Component reference of type Real [2]
a.x[2] // OK: Component reference of type Real [3]
a.x[2, :] // Error.
a.x // OK: Component reference of type Real[3, 2]
(a.x)[2] // OK: Component reference of type Real [2] - same as a[2].x[:]
(a.x)[2, :] // OK: Component reference of type Real [2] - same as a[2].x[:]

16

Modelica Language Specification 3.7-dev
3.3. Evaluation Order

a[3] // OK: Component reference of type R
(a[3]).x // OK: Like a[3].x, but not a component reference
(a[3]).x[1] // Error.
((a[3]).x)[1] // OK: Like a[3].x[1], but not a component reference

The relation between a.x, a.x[2], and (a.x)[2] illustrates the effect of giving higher precedence to
array index than member access. Had the precedence been equal, this would have changed the meaning of
a.x[2] to the same thing that (a.x)[2] expresses, being a component reference of type Real[2].]

[Example: Non-associative exponentiation and array range operator (note that the array range operator
only takes scalar operands):

x ^ y ^ z // Not legal , use parentheses to make it clear.
a : b : c : d // Not legal , and parentheses cannot make it legal.

]

The additive unary expressions are only allowed in the first term of a sum, that is, not immediately to
the right of any of the additive or elementwise additive operators. For example, 1 + -1 + 1 is an invalid
expression (not parseable according to appendix A), whereas both 1 + (-1) + 1 and -1 + 1 + 1 are
fine.

[Example: The unary minus and plus in Modelica is slightly different than in Mathematica1 and in
MATLAB2, since the following expressions are illegal (whereas in Mathematica and in MATLAB these
are valid expressions):

2* -2 // = -4 in Mathematica/MATLAB; is illegal in Modelica
--2 // = 2 in Mathematica/MATLAB; is illegal in Modelica
++2 // = 2 in Mathematica/MATLAB; is illegal in Modelica
2--2 // = 4 in Mathematica/MATLAB; is illegal in Modelica

]

The conditional operator may also include elseif-branches.

Equality = and assignment := are not expression operators since they are allowed only in equations and
in assignment statements respectively.

[The operator precedence table is useful when generating textual representations of Modelica expression
trees. When doing this, attention must be paid to the rule that the unary additive operators are only
allowed for the first term in a sum. A naive implementation might not produce all the required parentheses
for an expression tree such as 1 + (-1), as it might think that the higher precedence of the unary operator
makes the parentheses redundant. A trick that solves this problem is to instead treat the additive unary
operators as left associative with the same precedence as the binary additive operators.]

3.3 Evaluation Order

A tool is free to solve equations, reorder expressions and to not evaluate expressions if their values do
not influence the result (e.g., short-circuit evaluation of Boolean expressions). if-statements and if-
expressions guarantee that their branches are only evaluated if the appropriate condition is true, but
relational operators generating state or time events will during continuous integration have the value
from the most recent event.

If a numeric operation overflows the result is undefined. For literals it is recommended to automatically
convert the number to another type with greater precision.

[Example: If one wants to guard an expression against incorrect evaluation, it should be guarded by an
if:

Boolean v[n];
Boolean b;
Integer I;

1Mathematica is a registered trademark of Wolfram Research Inc.
2MATLAB is a registered trademark of MathWorks Inc.

17

Modelica Language Specification 3.7-dev
3.4. Arithmetic Operators

equation
b = (I >= 1 and I <= n) and v[I]; // Unsafe , may result in
error
b = if (I >= 1 and I <= n) then v[I] else false; // Safe

To guard square against square root of negative number use noEvent:

der(h) = if h > 0 then -c * sqrt(h) else 0; // Incorrect
der(h) = if noEvent(h > 0) then -c * sqrt(h) else 0; // Correct

]

3.4 Arithmetic Operators

Modelica supports five binary arithmetic operators that operate on any numerical type:

Operator Description Reference

+, .+ Addition section 10.6.2
-, .- Subtraction section 10.6.2
, . Multiplication Section 10.6.3 and section 10.6.4
/, ./ Division Section 10.6.5 and section 10.6.6
^, .^ Exponentiation Section 10.6.7 and section 10.6.8

The semantics of these operators are given in section 10.6 (both when applied to scalar operands and
when one or both operands are of array type). For arrays this explains both the matrix algebra operators
and the element-wise operators that start with a dot.

The syntax of these operators is defined by Modelica grammar in appendix A.2.7, under the arithmetic-expression
rule.

3.5 Equality, Relational, and Logical Operators

Modelica supports the standard set of relational and logical operators, all of which produce the standard
boolean values true or false:

Operator Description

> Greater than
>= Greater than or equal
< Less than
<= Less than or equal to
== Equality within expressions
<> Inequality

A single equals sign = is never used in relational expressions, only in equations (chapter 8, section 10.6.1)
and in function calls using named parameter passing (section 12.4.1).

The following logical operators are defined:

Operator Description

not Logical negation (unary operator)
and Logical and (conjunction)
or Logical or (disjunction)

The grammar rules define the syntax of the relational and logical operators.

logical-expression :
logical-term { or logical-term }

logical-term :
logical-factor { and logical-factor }

logical-factor :
[not] relation

18

Modelica Language Specification 3.7-dev
3.6. Miscellaneous Operators and Variables

relation :
arithmetic-expression [relational-operator arithmetic-expression]

relational-operator :
"<" | " <=" | ">" | " >=" | "==" | "<>"

The following holds for relational operators:

� Relational operators <, <=,>, >=, ==, <>, are only defined for scalar operands of simple types. The
result is Boolean and is true or false if the relation is fulfilled or not, respectively.

� For operands of type String, str1 op str2 is for each relational operator, op, defined in terms
of the C function strcmp as strcmp(str1, str2) op 0.

� For operands of type Boolean, false < true.

� For operands of enumeration types, the order is given by the order of declaration of the enumeration
literals.

� In relations of the form v1 == v2 or v1 <> v2, v1 or v2 shall, unless used in a function, not be
a subtype of Real.

[The reason for this rule is that relations with Real arguments are transformed to state events (see
section 8.5) and this transformation becomes unnecessarily complicated for the == and <> relational
operators (e.g., two crossing functions instead of one crossing function needed, epsilon strategy
needed even at event instants). Furthermore, testing on equality of Real variables is questionable
on machines where the number length in registers is different to number length in main memory.]

� Relational operators can generate events, see section 3.8.5.

3.6 Miscellaneous Operators and Variables

Modelica also contains a few built-in operators which are not standard arithmetic, relational, or logical
operators. These are described below, including time, which is a built-in variable, not an operator.

3.6.1 String Concatenation

Concatenation of strings (see the Modelica grammar) is denoted by the + operator in Modelica.

[Example: "a" + "b" becomes "ab".]

3.6.2 Array Constructor Operator

The array constructor operator { . . . } is described in section 10.4.

3.6.3 Array Concatenation Operator

The array concatenation operator [. . .] is described in section 10.4.2.

3.6.4 Array Range Operator

The array range constructor operator : is described in section 10.4.3.

3.6.5 If-Expressions

An expression

if expression1 then expression2 else expression3

is one example of if-expression. First expression1, which must be Boolean expression, is evaluated. If
expression1 is true expression2 is evaluated and is the value of the if-expression, else expression3

19

Modelica Language Specification 3.7-dev
3.7. Built-in Operators and Functions

is evaluated and is the value of the if-expression. The two expressions, expression2 and expression3
, must be type compatible expressions (section 6.7) giving the type of the if-expression. The if-
expressions with elseif are defined by replacing elseif by else if. For short-circuit evaluation see
section 3.3.

[elseif in expressions has been added to the Modelica language for symmetry with if-equations.]

[Example:

Integer i;
Integer sign_of_i1 = if i < 0 then -1 elseif i == 0 then 0 else 1;
Integer sign_of_i2 = if i < 0 then -1 else if i == 0 then 0 else 1;

]

3.6.6 Member Access Operator

It is possible to access members of a class instance using dot notation, i.e., the . operator. It is also
possible to select a record member of a general expression by enclosing it in parentheses. Note that while
the selection is applied to an output-expression-list in the grammar, it is only semantically valid when
the output-expression-list represents an expression.

In case the first operand is an array it is seen as a slicing operation, see section 10.6.9.

[Example: The component reference R1.R accesses the resistance component R of resistor R1.

The qualified class name A.B is a reference to the local class B which is a member of the class A. Note
that the left operand in this case is a class, not an instance of the class.

(Complex(2, 3)).re constructs the record Complex(2, 3) and then selects the re component in it.
Complex(2, 3).re is not valid syntax.]

3.6.7 Built-in Variable time

All declared variables are functions of time. The name time is a keyword (see section 2.3.3), and
corresponds to a built-in variable available in all models and blocks, which is treated as an input variable.
It is implicitly defined as:

input Real time (final quantity = "Time",
final unit = "s");

In this document, the notation time.start is used to refer to the value of time when the simulation
starts (i.e., during simulation initialization). Note that time.start is not a valid Modelica expression.

[Example:

encapsulated model SineSource
import Modelica.Math.sin;
connector OutPort = output Real;
OutPort y = sin(time); // Uses the built -in variable time.

end SineSource;

]

3.7 Built-in Operators and Functions

Certain built-in operators of Modelica are called using the same syntax as a function call. However, they
do not behave as a mathematical function, because the result depends not only on the input arguments
but also on the status of the simulation.

There are also built-in functions that depend only on the input argument, but also may trigger events in
addition to returning a value. The built-in functions may also be overloaded such that a single Modelica
function cannot be compatible with all calls of the function. Here, built-in means that they are defined
at the Modelica language level, not through a Modelica function definition. The following built-in
operators/functions are available:

20

Modelica Language Specification 3.7-dev
3.7. Built-in Operators and Functions

� Mathematical functions and conversion operators, see section 3.7.1 below.

� Derivative and special purpose operators with function syntax, see section 3.7.4 below.

� Event-related operators, see section 3.7.5 below.

� Array operators/functions, see section 10.3.

� Synchronous operators, see chapter 16.

� State machine operators, see section 17.1.

Except where shadowing problems are being discussed, references to built-in functions and operators
within this document always assume that the built-in definitions are not shadowed by user-defined
definitions, see also section 12.5. With the exception where inputs are named (e.g., String), all operators
and functions in this section can only be called with positional arguments.

3.7.1 Numeric Functions and Conversion Operators

The mathematical functions and conversion operators listed below do not generate events.

Expression Description Details

abs(v) Absolute value (event-free) Function 3.1
sign(v) Sign of argument (event-free) Function 3.2
min(x, y) Least of two scalars (event-free) Operator 10.15
max(x, y) Greatest of two scalars (event-free) Operator 10.18
sqrt(v) Square root Function 3.3
nthRoot(v, n) nth root Function 3.4
Integer(e) Conversion from enumeration to Integer Operator 3.1
EnumTypeName(i) Conversion from Integer to enumeration Operator 3.2
String(. . .) Conversion to String Operator 3.3

Except for the String conversion operator, they are vectorizable according to section 12.4.6. The min
and max functions have array-specific variants which perform array reduction operations described in
section 10.3.4.

Additional non-event generating mathematical functions are described in section 3.7.3, whereas the
event-triggering mathematical functions are described in section 3.7.2.

Function 3.1 abs

abs(v)

Expands into noEvent(if v >= 0 then v else -v). Argument v needs to be an Integer or
Real expression.

[By not generating events the property abs(x) ≥ 0 for all x is ensured at the cost of sometimes having
a derivative that changes discontinuously between events.

A typical case requiring the event-free semantics is a flow equation of the form abs(x) * x = y. With
event generation, the equation would switch between the two forms x^2 = y and -x^2 = y at the events,
where the events would not be coinciding exactly with the sign changes of y. When y passes through zero,
neither form of the equation would have a solution in an open neighborhood of y = 0, and hence solving
the equation would have to fail at some point sufficiently close to y = 0. Without event generation, on
the other hand, the equation can be solved easily for x, also as y passes through zero. Note that without
event generation the derivative of abs(x) * x never changes discontinuously, despite abs(x) having a
discontinuous derivative.

In inverted form this equation is x = sign(y) * sqrt(abs(y)). With event generation, the call to sqrt
would fail when applied to a negative number during root finding of the zero crossing for abs(y), compare
section 8.5. Without event generation, on the other hand, evaluating sqrt(abs(y)) will never fail.]

Function 3.2 sign

sign(v)

21

Modelica Language Specification 3.7-dev
3.7. Built-in Operators and Functions

Expands into noEvent(if v > 0 then 1 else if v < 0 then -1 else 0). Argument v needs
to be an Integer or Real expression.

Function 3.3 sqrt

sqrt(v)

Square root of v, equivalent to nthRoot(v, 2).

Function 3.4 nthRoot

nthRoot(v, n)

nth root of v, where v shall be a Real expression, and n > 0 shall be an Integer expression. The
result y is a real root of the equation yn = v. If n is even, v must be non-negative and y shall be
the non-negative root. (If n is odd, there is no constraint on v and y will have the same sign as
v.)

Operator 3.1 Integer

Integer(e)

Ordinal number of the expression e of enumeration type that evaluates to the enumeration value
E.enumvalue, where Integer(E.e1) = 1, Integer(E.en) = n, for an enumeration type E =
enumeration(e1, . . ., en). See also section 4.9.5.2.

Operator 3.2 <EnumTypeName>

EnumTypeName(i)

For any enumeration type EnumTypeName, returns the enumeration value EnumTypeName.e such
that Integer(EnumTypeName.e) = i. Refer to the definition of Integer above.

It is an error to attempt to convert values of i that do not correspond to values of the enumeration
type. See also section 4.9.5.3.

Operator 3.3 String

String(b, ⟨options⟩)
String(i, ⟨options⟩)
String(i, format = s)
String(r, ⟨options⟩)
String(r, format = s)
String(e, ⟨options⟩)

Convert a scalar non-String expression to a String representation. The first argument may be
a Boolean b, an Integer i, a Real r, or an enumeration value e (section 4.9.5.2). The ⟨options⟩
represent zero or more of the following named arguments (that cannot be passed as positional
arguments):

� Integer minimumLength = 0: Minimum length of the resulting string. If necessary, the
blank character is used to fill up unused space.

� Boolean leftJustified = true: If true, the converted result is left justified in the string;
if false it is right justified in the string.

� Integer significantDigits = 6: Number of significant digits in the result string. Only
allowed when formatting a Real value.

The standard type coercion described in section 10.6.13 shall not be applied for the first argument
of String. Hence, specifying significantDigits is an error when the first argument of String
is an Integer expression.

For Real expressions the output shall be according to the Modelica grammar.

[Examples of Real values formatted with 6 significant digits: 12.3456, 0.0123456, 12345600,
1.23456E-10.]

The format string corresponding to ⟨options⟩ is:

22

Modelica Language Specification 3.7-dev
3.7. Built-in Operators and Functions

� For Real:
(if leftJustified then "-" else "") + String(minimumLength)
+ "." + String(signficantDigits) + "g"

� For Integer:
(if leftJustified then "-" else "") + String(minimumLength) + "d"

The ANSI-C style format string (which cannot be combined with any of the other named argu-
ments) consists of a single conversion specification without the leading %. It shall not contain a
length modifier, and shall not use ‘*’ for width and/or precision. For both Real and Integer val-
ues, the conversion specifiers ‘f’, ‘e’, ‘E’, ‘g’, ‘G’ are allowed. For Integer values it is also allowed
to use the ‘d’, ‘i’, ‘o’, ‘x’, ‘X’, ‘u’, and ‘c’ conversion specifiers. Using the Integer conversion
specifiers for a Real value is a deprecated feature, where tools are expected to produce a result by
either rounding the value, truncating the value, or picking one of the Real conversion specifiers
instead.

The ‘x’/‘X’ formats (hexa-decimal) and c (character) for Integer values give results that do not
agree with the Modelica grammar.

[Example: Some situations worth a remark:

� String(4.0, format = "g") produces 4 which is not a valid Real literal. However, it is an
Integer literal that can be used almost anywhere in Modelica code instead of the Real literal
4.0 (with the first argument to String being a notable exception here).

� String(4, format = ".3f") uses the Integer case of String since no automatic type co-
erction takes place for the first argument. An implementation may internally convert the
value to floating point and then fall back on the Real case implementation of format = ".3
f".

� String(4611686018427387648, format = ".0f") (a valid Integer value in an implemen-
tation with 64 bit IntegerType) may produce 4611686018427387904 (not equal to input
value), in case internal conversion to a 64 bit double is applied.

]

3.7.2 Event Triggering Mathematical Functions

The operators listed below trigger events unless explicitly or implicitly inhibited by noEvent (see sec-
tion 8.5).

Expression Description Details

div(x, y) Division with truncation toward zero Operator 3.4
mod(x, y) Integer modulus Operator 3.5
rem(x, y) Integer remainder Operator 3.6
ceil(x) Smallest integer Real not less than x Operator 3.7
floor(x) Largest integer Real not greater than x Operator 3.8
integer(x) Largest Integer not greater than x Operator 3.9
delay(. . .) Time delay Operator 3.10

Except for the noEvent-case the expressions div, ceil, floor, and integer can only change values at
events, and will trigger events as needed. The event triggering expressions for mod(x,y) is floor(x/y),
and for rem(x,y) it is div(x,y) – i.e., the expressions mod and rem do not only change values at events,
but events are triggered at the points of discontinuous change. The event triggering expression for delay
is the time remaining until the next discontinuity in the operator value.

[If this is not desired, the noEvent operator can be applied to them. E.g., noEvent(integer(v)).]

Operator 3.4 div

div(x, y)

Algebraic quotient x/y with any fractional part discarded (also known as truncation toward zero).

23

Modelica Language Specification 3.7-dev
3.7. Built-in Operators and Functions

[This is defined for / in C99; in C89 the result for negative numbers is implementation-defined,
so the standard function div must be used.]

Result and arguments shall have type Real or Integer. If either of the arguments is Real the
result is Real otherwise Integer.

Operator 3.5 mod

mod(x, y)

Integer modulus of x/y, i.e., mod(x, y) = x - floor(x / y) * y. Result and arguments shall
have type Real or Integer. If either of the arguments is Real the result is Real otherwise
Integer.

[Note, outside of a when-clause state events are triggered when the return value changes discon-
tinuously. Examples: mod(3, 1.4) = 0.2, mod(-3, 1.4) = 1.2, mod(3, -1.4) = -1.2.]

Operator 3.6 rem

rem(x, y)

Integer remainder of x/y, such that div(x, y) * y + rem(x, y) = x. Result and arguments
shall have type Real or Integer. If either of the arguments is Real the result is Real otherwise
Integer.

[Note, outside of a when-clause state events are triggered when the return value changes discon-
tinuously. Examples: rem(3, 1.4) = 0.2, rem(-3, 1.4) = -0.2.]

Operator 3.7 ceil

ceil(x)

Smallest integer not less than x. Result and argument shall have type Real.

[Note, outside of a when-clause state events are triggered when the return value changes discon-
tinuously.]

Operator 3.8 floor

floor(x)

Largest integer not greater than x. Result and argument shall have type Real.

[Note, outside of a when-clause state events are triggered when the return value changes discon-
tinuously.]

Operator 3.9 integer

integer(x)

Largest integer not greater than x. The argument shall have type Real. The result has type
Integer.

[Note, outside of a when-clause state events are triggered when the return value changes discon-
tinuously.]

Operator 3.10 delay

delay(expr , delayTime, delayMax)
delay(expr , delayTime)

Evaluates to: {
expr(time.start) time− delayTime ≤ time.start
expr(time− delayTime) otherwise

When a delay-expression is discrete-time (see section 3.8.5), events will be generated in order
to allow the value to change at the correct points in time. Further, when a delay-expression is
non-discrete-time and event generation is enabled (not appearing inside noEvent), events may

24

Modelica Language Specification 3.7-dev
3.7. Built-in Operators and Functions

also be generated in order to preserve discontinuities in expr . It is a quality of implementation to
avoid excessive generation of events by only preserving significant discontinuities.

The expression expr shall be a subtype of Real, Integer, Boolean, or an enumeration type. The
time arguments, delayTime and delayMax , shall be subtypes of Real. The type of the result is
the same as the type of expr .

When provided, delayMax shall be a parameter expression, and it shall hold that 0 ≤ delayTime ≤
delayMax . When delayMax is not provided, delayTime ≥ 0 shall be a parameter expression.
The operator is not allowed inside function classes. For non-scalar arguments the function is
vectorized according to section 10.6.12.

Using a delayTime too close to zero may compromise correctness due to the need for delay buffer
extrapolation. It is a quality of implementation to make the tradeoff between integration step size
and delay operator correctness.

For implementation notes, see section 3.7.2.1.

3.7.2.1 delay

This section provides notes for delay implementation in tools.

[delay allows a numerical sound implementation by interpolating in the (internal) integrator polynomi-
als, as well as a more simple realization by interpolating linearly in a buffer containing past values of
expression expr . Without further information, the complete time history of the delayed signals needs to
be stored, because the delayTime may change during simulation. To avoid excessive storage requirements
and to enhance efficiency, the maximum allowed delayTime has to be given via delayMax . This gives an
upper bound on the values of the delayed signals which have to be stored. For real-time simulation where
fixed step size integrators are used, this information is sufficient to allocate the necessary storage for the
internal buffer before the simulation starts. For variable step size integrators, the buffer size is dynamic
during integration.]

3.7.3 Elementary Mathematical Functions

The functions listed below are elementary mathematical functions. Tools are expected to utilize well
known properties of these functions (derivatives, inverses, etc) for symbolic processing of expressions and
equations.

Expression Description Details

sin(x) Sine
cos(x) Cosine
tan(x) Tangent (x shall not be: . . ., -π/2, π/2, 3π/2, . . .)
asin(x) Inverse sine (−1 ≤ x ≤ 1)
acos(x) Inverse cosine (−1 ≤ x ≤ 1)
atan(x) Inverse tangent
atan2(y, x) Principal value of the arc tangent of y/x Function 3.5
sinh(x) Hyperbolic sine
cosh(x) Hyperbolic cosine
tanh(x) Hyperbolic tangent
exp(x) Exponential, base e
log(x) Natural (base e) logarithm (x > 0)
log10(x) Base 10 logarithm (x > 0)

These functions are the only ones that can also be called using the deprecated "builtin" external
language, see section 12.9.

[End user oriented information about the elementary mathematical functions can be found for the corre-
sponding functions in the Modelica.Math package.]

Function 3.5 atan2

atan2(y, x)

25

Modelica Language Specification 3.7-dev
3.7. Built-in Operators and Functions

Principal value of the arc tangent of y/x, using the signs of the two arguments to determine the
quadrant of the result. The result φ is in the interval [−π, π] and satisfies:

|(x, y)| cos(φ) = x

|(x, y)| sin(φ) = y

3.7.4 Derivative and Special Purpose Operators with Function Syntax

The operators listed below include the derivative operator and special purpose operators with function
syntax.

Expression Description Details

der(expr) Time derivative Operator 3.11
cardinality(c) Number of occurrences in connect-equations Operator 3.12
homotopy(actual, simplified) Homotopy initialization Operator 3.13
semiLinear(x, k+, k−) Sign-dependent slope Operator 3.14
inStream(v) Stream variable flow into component Operator 3.15
actualStream(v) Actual value of stream variable Operator 3.16
spatialDistribution(. . .) Variable-speed transport Operator 3.17
getInstanceName() Name of instance at call site Operator 3.18

The special purpose operators with function syntax where the call below uses named arguments can be
called with named arguments (with the specified names), or with positional arguments (the inputs of the
functions are in the order given in the calls below).

Operator 3.11 der

der(expr)

The time derivative of expr . If the expression expr is a scalar it needs to be a subtype of Real.
The expression and all its time-varying subexpressions must be continuous and semi-differentiable.
An exception is when the operator reinit (Operator 3.27) is activated, as not even states are
continuous. The operator is not allowed inside function classes. If expr is an array, the operator is
applied to all elements of the array. For non-scalar arguments the function is vectorized according
to section 10.6.12.

[For Real parameters and constants the result is a zero scalar or array of the same size as the
variable.]

[Example: For continuous expression we have several cases.

Real when1 , x1 , x2 , x3 , w1 , y1 , y2 , y3;
equation

when sample(1, 1) then
when1 = . . .;

end when;
x1 = if time >=0 then 0 else time; // Continuous
x2 = if time <1 then 0 else time; // Not continuous
x3 = x1 * x2; // The product is continuous , despite x2

w1 = der(when1); // Explicitly illegal
y1 = der(x1); // Ok
y2 = der(x2); // Not ok at time=1
y3 = der(x3); // Ok

Since it is difficult to prove whether expressions are continuous, tools can dynamically check the
continuity such that x2 only generates an error when the integration reaches the discontinuity.]

[Example: Exception for reinit:

Real x4 , x5 , x6;
equation

when sample(1, 1) then
reinit(x4, 0);

end when;

26

Modelica Language Specification 3.7-dev
3.7. Built-in Operators and Functions

der(x4) = time;
x5 = x4^2;
x6 = der(x5); // Allowed even if x5 is not continuous , since that is due
to reinit

]

Operator 3.12 cardinality

cardinality(c)

[This is a deprecated operator. It should no longer be used, since it will be removed in one of the
next Modelica releases.]

Returns the number of (inside and outside) occurrences of connector instance c in a connect-
equation as an Integer number. For further details, see section 3.7.4.2.

Operator 3.13 homotopy

homotopy(actual = actual , simplified = simplified)

The scalar expressions actual and simplified are subtypes of Real. A Modelica translator should
map this operator into either of the two forms:

1. Returns actual (trivial implementation).

2. In order to solve algebraic systems of equations, the operator might during the solution
process return a combination of the two arguments, ending at actual.

[Example: actual · λ+ simplified · (1− λ), where λ is a homotopy parameter going from 0 to
1.]

The solution must fulfill the equations for homotopy returning actual .

For non-scalar arguments the function is vectorized according to section 12.4.6. For further details,
see section 3.7.4.3.

Operator 3.14 semiLinear

semiLinear(x, k+, k−)

Returns: smooth(0, if x >= 0 then k+ * x else k− * x). The result is of type Real. For
non-scalar arguments the function is vectorized according to section 10.6.12. For further details,
see section 3.7.4.4 (especially in the case when x = 0).

Operator 3.15 inStream

inStream(v)

inStream(v) is only allowed for stream variables v defined in stream connectors, and is the value
of the stream variable v close to the connection point assuming that the flow is from the connection
point into the component. This value is computed from the stream connection equations of the
flow variables and of the stream variables. The operator is not allowed inside function classes.
The operator is vectorizable. For further details, see section 15.2.

Operator 3.16 actualStream

actualStream(v)

actualStream(v) returns the actual value of the stream variable v for any flow direction. The
operator is not allowed inside function classes. The operator is vectorizable. For further details,
see section 15.3.

Operator 3.17 spatialDistribution

spatialDistribution(
in0 = in0 , in1 = in1 , x = x,
positiveVelocity = . . .,
initialPoints = . . .,
initialValues = . . .)

27

Modelica Language Specification 3.7-dev
3.7. Built-in Operators and Functions

spatialDistribution allows approximation of variable-speed transport of properties. The oper-
ator is not allowed inside function classes. For further details, see section 3.7.4.1.

Operator 3.18 getInstanceName

getInstanceName ()

Returns a string with the name of the model/block that is simulated, appended with the fully qual-
ified name of the instance in which this function is called. For further details, see section 3.7.4.5.

A few of these operators are described in more detail in the following.

3.7.4.1 spatialDistribution

[Many applications involve the modelling of variable-speed transport of properties. One option to model
this infinite-dimensional system is to approximate it by an ODE, but this requires a large number of
state variables and might introduce either numerical diffusion or numerical oscillations. Another option
is to use a built-in operator that keeps track of the spatial distribution of z(ξ, t), by suitable sampling,
interpolation, and shifting of the stored distribution. In this case, the internal state of the operator is
hidden from the ODE solver.]

spatialDistribution allows the infinite-dimensional problem below to be solved efficiently with good
accuracy

∂z(ξ, t)

∂t
+ v(t)

∂z(ξ, t)

∂ξ
= 0

z(0, t) = in0(t) if v(t) ≥ 0

z(1, t) = in1(t) if v(t) < 0

where z(ξ, t) is the transported quantity, ξ is the normalized spatial coordinate (0 ≤ ξ ≤ 1), t is the time,
v(t) is the normalized transport velocity and the boundary conditions are set at either ξ = 0 or ξ = 1,
depending on the sign of the velocity.

The calling syntax is:

(out0 , out1) = spatialDistribution(in0 , in1 , x, positiveVelocity ,
initialPoints = {0.0, 1.0},
initialValues = {0.0, 0.0});

where in0, in1, out0, out1, and x are all subtypes of Real, positiveVelocity is a Boolean, and
initialPoints and initialValues are arrays of subtypes of Real. The position x is the integral of the
transport velocity v, where the constant of integration does not matter. The arrays initialPoints and
initialValues shall be parameter expressions of equal size, containing the ξ coordinates and the z values
of a finite set of points describing the initial distribution of z(ξ, t0). The out0 and out1 are given by the
solutions at z(0, t) and z(1, t); and in0 and in1 are the boundary conditions at z(0, t) and z(1, t) (at each
point in time only one of in0 and in1 is used). The initialPoints array shall span the entire range
from 0 to 1, and must be sorted in non-descending order. The operator can not be vectorized according
to the vectorization rules described in section 12.4.6. The operator can be vectorized only with respect
to the arguments in0 and in1 (which must have the same size), returning vectorized outputs out0 and
out1 of the same size; the arguments initialPoints and initialValues are vectorized accordingly.

The solution, z, can be described in terms of characteristics:

z(ξ +

∫ t+β

t

v(α)dα, t+ β) = z(ξ, t), for all β as long as staying inside the domain

This allows the direct computation of the solution based on interpolating the boundary conditions.

spatialDistribution can be described in terms of the pseudo-code given as a block:

block spatialDistribution
input Real in0;
input Real in1;
input Real x;

28

Modelica Language Specification 3.7-dev
3.7. Built-in Operators and Functions

input Boolean positiveVelocity;
parameter Real initialPoints(each min=0, each max=1)[:] = {0.0, 1.0};
parameter Real initialValues [:] = {0.0, 0.0};
output Real out0;
output Real out1;

protected
Real points [:];
Real values [:];
Real x0;
Integer m;

algorithm
/* The notation
* x <and then > y
* is used below as a shorthand for
* if x then y else false
* also known as "short -circuit evaluation of x and y".
*/

if positiveVelocity then
out1 := interpolate(points , values , 1 - (x - x0));
out0 := values [1]; // Similar to in0 but avoiding algebraic loop.

else
out0 := interpolate(points , values , 0 - (x - x0));
out1 := values[end]; // Similar to in1 but avoiding algebraic loop.

end if;
when <acceptedStep > then

if x > x0 then
m := size(points , 1);
while m > 0 <and then > points[m] + (x - x0) >= 1 loop
m := m - 1;

end while;
values := cat(1,

{in0},
values [1:m],
{interpolate(points , values , 1 - (x - x0))});

points := cat(1, {0}, points [1:m] .+ (x-x0), {1});
elseif x < x0 then
m := 1;
while m < size(points , 1) <and then > points[m] + (x - x0) <= 0 loop
m := m + 1;

end while;
values := cat(1,

{interpolate(points , values , 0 - (x - x0))},
values[m:end],
{in1});

points := cat(1, {0}, points[m:end] .+ (x - x0), {1});
end if;
x0 := x;

end when;
initial algorithm
x0 := x;
points := initialPoints;
values := initialValues;

end spatialDistribution;

[Note that the implementation has an internal state and thus cannot be described as a function in Mod-
elica; initialPoints and initialValues are declared as parameters to indicate that they are only used
during initialization.

The infinite-dimensional problem stated above can then be formulated in the following way:

der(x) = v;
(out0 , out1) = spatialDistribution(in0 , in1 , x, v >= 0,

initialPoints , initialValues);

29

Modelica Language Specification 3.7-dev
3.7. Built-in Operators and Functions

Events are generated at the exact instants when the velocity changes sign – if this is not needed, noEvent
can be used to suppress event generation.

If the velocity is known to be always positive, then out0 can be omitted, e.g.:

der(x) = v;
(, out1) = spatialDistribution(in0 , 0, x, true , initialPoints , initialValues);

Technically relevant use cases for the use of spatialDistribution are modeling of electrical trans-
mission lines, pipelines and pipeline networks for gas, water and district heating, sprinkler systems,
impulse propagation in elongated bodies, conveyor belts, and hydraulic systems. Vectorization is needed
for pipelines where more than one quantity is transported with velocity v in the example above.]

3.7.4.2 cardinality (deprecated)

[cardinality is deprecated for the following reasons and will be removed in a future release:

� Reflective operator may make early type checking more difficult.

� Almost always abused in strange ways

� Not used for Bond graphs even though it was originally introduced for that purpose.

]

[cardinality allows the definition of connection dependent equations in a model, for example:

connector Pin
Real v;
flow Real i;

end Pin;
model Resistor
Pin p, n;

equation
assert(cardinality(p) > 0 and cardinality(n) > 0,

"Connectors p and n of Resistor must be connected");
// Equations of resistor
. . .

end Resistor;

]

The cardinality is counted after removing conditional components, and shall not be applied to expandable
connectors, elements in expandable connectors, or to arrays of connectors (but can be applied to the
scalar elements of array of connectors). cardinality should only be used in the condition of assert and
if-statements that do not contain connect and similar operators, see section 8.3.3). The operator is not
allowed inside function classes.

3.7.4.3 homotopy

[During the initialization phase of a dynamic simulation problem, it often happens that large nonlinear
systems of equations must be solved by means of an iterative solver. The convergence of such solvers
critically depends on the choice of initial guesses for the unknown variables. The process can be made
more robust by providing an alternative, simplified version of the model, such that convergence is possible
even without accurate initial guess values, and then by continuously transforming the simplified model
into the actual model. This transformation can be formulated using expressions of this kind:

λ · actual+ (1− λ) · simplified

in the formulation of the system equations, and is usually called a homotopy transformation. If the
simplified expression is chosen carefully, the solution of the problem changes continuously with λ, so by
taking small enough steps it is possible to eventually obtain the solution of the actual problem.

The operator can be called with ordered arguments or preferably with named arguments for improved
readability.

30

Modelica Language Specification 3.7-dev
3.7. Built-in Operators and Functions

It is recommended to perform (conceptually) one homotopy iteration over the whole model, and not
several homotopy iterations over the respective non-linear algebraic equation systems. The reason is that
the following structure can be present:

w = f1(x) // has homotopy
0 = f2(der(x), x, z, w)

Here, a non-linear equation system f2 is present. homotopy is, however used on a variable that is an
“input” to the non-linear algebraic equation system, and modifies the characteristics of the non-linear
algebraic equation system. The only useful way is to perform the homotopy iteration over f1 and f2
together.

The suggested approach is “conceptual”, because more efficient implementations are possible, e.g., by
determining the smallest iteration loop, that contains the equations of the first BLT block in which
homotopy is present and all equations up to the last BLT block that describes a non-linear algebraic
equation system.

A trivial implementation of homotopy is obtained by defining the following function in the global scope:

function homotopy
input Real actual;
input Real simplified;
output Real y;

algorithm
y := actual;
annotation(Inline = true);

end homotopy;

]

[Example 1: In electrical systems it is often difficult to solve non-linear algebraic equations if switches are
part of the algebraic loop. An idealized diode model might be implemented in the following way, by starting
with a “flat” diode characteristic and then move with homotopy to the desired “steep” characteristic:

model IdealDiode
. . .
parameter Real Goff = 1e-5;

protected
Real Goff_flat = max (0.01, Goff);
Real Goff2;

equation
off = s < 0;
Goff2 = homotopy(actual = Goff , simplified = Goff_flat);
u = s * (if off then 1 else Ron2) + Vknee;
i = s * (if off then Goff2 else 1) + Goff2*Vknee;
. . .

end IdealDiode;

]

[Example 2: In electrical systems it is often useful that all voltage sources start with zero voltage and all
current sources with zero current, since steady state initialization with zero sources can be easily obtained.
A typical voltage source would then be defined as:

model ConstantVoltageSource
extends Modelica.Electrical.Analog.Interfaces.OnePort;
parameter Modelica.Units.SI.Voltage V;

equation
v = homotopy(actual = V, simplified = 0.0);

end ConstantVoltageSource;

]

[Example 3: In fluid system modelling, the pressure/flowrate relationships are highly nonlinear due to
the quadratic terms and due to the dependency on fluid properties. A simplified linear model, tuned on

31

Modelica Language Specification 3.7-dev
3.7. Built-in Operators and Functions

the nominal operating point, can be used to make the overall model less nonlinear and thus easier to solve
without accurate start values. Named arguments are used here in order to further improve the readability.

model PressureLoss
import Modelica.Units.SI;
. . .
parameter SI.MassFlowRate m_flow_nominal "Nominal mass flow rate";
parameter SI.Pressure dp_nominal "Nominal pressure drop";
SI.Density rho "Upstream density";
SI.DynamicViscosity lambda "Upstream viscosity";

equation
. . .
m_flow = homotopy(actual = turbulentFlow_dp(dp , rho , lambda),

simplified = dp/dp_nominal*m_flow_nominal);
. . .

end PressureLoss;

]

[Example 4: Note that homotopy shall not be used to combine unrelated expressions, since this can
generate singular systems from combining two well-defined systems.

model DoNotUse
Real x;
parameter Real x0 = 0;

equation
der(x) = 1-x;

initial equation
0 = homotopy(der(x), x - x0);

end DoNotUse;

The initial equation is expanded into

0 = λ ∗ der(x) + (1− λ)(x− x0)

and you can solve the two equations to give

x =
λ+ (λ− 1)x0

2λ− 1

which has the correct value of x0 at λ = 0 and of 1 at λ = 1, but unfortunately has a singularity at
λ = 0.5.]

3.7.4.4 semiLinear

(See definition of semiLinear in section 3.7.4). In some situations, equations with semiLinear become
underdetermined if the first argument (x) becomes zero, i.e., there are an infinite number of solutions.
It is recommended that the following rules are used to transform the equations during the translation
phase in order to select one meaningful solution in such cases:

� The equations

y = semiLinear(x, sa, s1);
y = semiLinear(x, s1, s2);
y = semiLinear(x, s2, s3);
. . .
y = semiLinear(x, sN, sb);
. . .

may be replaced by

s1 = if x >= 0 then sa else sb
s2 = s1;
s3 = s2;
. . .
sN = sN−1;
y = semiLinear(x, sa, sb);

32

Modelica Language Specification 3.7-dev
3.7. Built-in Operators and Functions

� The equations

x = 0;
y = 0;
y = semiLinear(x, sa, sb);

may be replaced by

x = 0
y = 0;
sa = sb;

[For symbolic transformations, the following property is useful (this follows from the definition):

semiLinear(m_flow , port_h , h);

is identical to:

-semiLinear(-m_flow , h, port_h);

The semiLinear function is designed to handle reversing flow in fluid systems, such as

H_flow = semiLinear(m_flow , port.h, h);

i.e., the enthalpy flow rate H_flow is computed from the mass flow rate m_flow and the upstream specific
enthalpy depending on the flow direction.]

3.7.4.5 getInstanceName

Returns a string with the name of the model/block that is simulated, appended with the fully qualified
name of the instance in which this function is called.

[Example:

package MyLib
model Vehicle
Engine engine;
. . .

end Vehicle;
model Engine
Controller controller;
. . .

end Engine;
model Controller
equation
Modelica.Utilities.Streams.print("Info from: " + getInstanceName ());

end Controller;
end MyLib;

If MyLib.Vehicle is simulated, the call of getInstanceName() returns "Vehicle.engine.controller
".]

If this function is not called inside a model or block (e.g., the function is called in a function or in a
constant of a package), the return value is not specified.

The simulation result should not depend on the return value of this function.

3.7.5 Event-Related Operators with Function Syntax

The operators listed below are event-related operators with function syntax. The operators noEvent,
pre, edge, and change, are vectorizable according to section 12.4.6.

33

Modelica Language Specification 3.7-dev
3.7. Built-in Operators and Functions

Expression Description Details

initial() Predicate for the initialization phase Operator 3.19
terminal() Predicate for the end of a successful analysis Operator 3.20
noEvent(expr) Evaluate expr without triggering events Operator 3.21
smooth(p, expr) Treat expr as p times continuously differentiable Operator 3.22
sample(start, interval) Periodic triggering of events Operator 3.23
pre(y) Left limit y(t−) of variable y(t) Operator 3.24
edge(b) Expands into (b and not pre(b)) Operator 3.25
change(v) Expands into (v <> pre(v)) Operator 3.26
reinit(x, expr) Reinitialize x with expr Operator 3.27

Operator 3.19 initial

initial ()

Returns true during the initialization phase and false otherwise. The operator is not allowed
inside function classes.

[Hereby, initial() triggers a time event at the beginning of a simulation.]

Operator 3.20 terminal

terminal ()

Returns true at the end of a successful analysis. The operator is not allowed inside function
classes.

[Hereby, terminal() ensures an event at the end of successful simulation.]

Operator 3.21 noEvent

noEvent(expr)

Real elementary relations within expr are taken literally, i.e., no state or time event is triggered.
No zero crossing functions shall be used to monitor any of the normally event-generating subex-
pressions inside expr . Inside functions, noEvent only makes a difference in combination with the
function annotation GenerateEvents = true (see annotation 12.7). See also operator 3.22 smooth
and section 8.5.

Operator 3.22 smooth

smooth(p, expr)

If p ≥ 0 smooth(p, expr) returns expr and states that expr is p times continuously differentiable,
i.e., expr is continuous in all Real variables appearing in the expression and all partial derivatives
with respect to all appearing real variables exist and are continuous up to order p. The argument
p should be a scalar Integer parameter expression. The only allowed types for expr in smooth
are: Real expressions, arrays of allowed expressions, and records containing only components of
allowed expressions.

smooth should be used instead of noEvent in order to avoid events for efficiency reasons. A tool
is free to not generate events for expressions inside smooth. However, smooth does not guarantee
that no events will be generated, and thus it can be necessary to use noEvent inside smooth.

[Note that smooth does not guarantee a smooth output if any of the occurring variables change
discontinuously.]

[Example:

Real x, y, z;
equation
x = if time < 1 then 2 else time - 2;
z = smooth(0, if time < 0 then 0 else time);
y = smooth(1,

noEvent(if x < 0 then 0 else sqrt(x) * x)); // Needs noEvent.

]

34

Modelica Language Specification 3.7-dev
3.7. Built-in Operators and Functions

Operator 3.23 sample

sample(start , interval)

Returns true and triggers time events at time instants start + i · interval for i = 0, 1 . . ., and
is only true during the first event iteration at those times. At event iterations after the first
one at each event and during continuous integration the operator always returns false. The
starting time start and the sample interval interval must be parameter expressions and need to
be a subtype of Real or Integer. The sample interval interval must be a positive number. The
operator is not allowed inside function classes.

Operator 3.24 pre

pre(y)

Returns the left limit y(t−) of variable y(t) at a time instant t. At an event instant, y(t−) is the
value of y after the last event iteration at time instant t (see comment below). Any subscripts in
the component expression y must be parameter expressions. The operator is not allowed inside
function classes. pre can be applied to the variable y only if y is a discrete-time expression and
y is either a subtype of a simple type or is a record component.

[This can be applied to continuous-time variables in when-clauses, see section 3.8.5 for the defini-
tion of discrete-time expression.]

The first value of pre(y) is determined in the initialization phase.

A new event is triggered if there is at least for one variable v such that pre(v) <> v after the
active model equations are evaluated at an event instant. In this case the model is at once
reevaluated. This evaluation sequence is called event iteration. The integration is restarted once
pre(v) == v for all v appearing inside pre(. . .).

[If v and pre(v) are only used in when-clauses, the translator might mask event iteration for
variable v since v cannot change during event iteration. It is a quality of implementation to find
the minimal loops for event iteration, i.e., not all parts of the model need to be reevaluated.

The language allows mixed algebraic systems of equations where the unknown variables are of
type Real, Integer, Boolean, or an enumeration. These systems of equations can be solved by a
global fix point iteration scheme, similarly to the event iteration, by fixing the Boolean, Integer,
and/or enumeration unknowns during one iteration. Again, it is a quality of implementation to
solve these systems more efficiently, e.g., by applying the fix point iteration scheme to a subset of
the model equations.]

Operator 3.25 edge

edge(b)

Expands into (b and not pre(b)) for Boolean variable b. The same restrictions as for pre apply
(e.g., not to be used in function classes).

Operator 3.26 change

change(v)

Expands into (v <> pre(v)). The same restrictions as for pre apply (e.g., not to be used in
function classes).

Operator 3.27 reinit

reinit(x, expr)

In the body of a when-clause, reinitializes x with expr at an event instant. x is a scalar or array
Real variable that is implicitly defined to have StateSelect.always.

[It is an error if the variable cannot be selected as a state.]

expr needs to be type-compatible with x. reinit can only be applied once for the same variable
– either as an individual variable or as part of an array of variables. It can only be applied in the
body of a when-clause in an equation section. See also section 8.3.6.

35

Modelica Language Specification 3.7-dev
3.8. Variability of Expressions

3.8 Variability of Expressions

The concept of variability of an expression indicates to what extent the expression can vary over time.
See also section 4.5 regarding the concept of variability. There are five levels of variability of expressions,
starting from the least variable:

� constant variability

� evaluable variability

� parameter variability

� discrete-time variability

� continuous-time variability

While many invalid models can be rejected based on the declared variabilities of variables alone (without
the concept of expression variability), the following rules both help enforcing compliance of computed
solutions to declared variability, and impose additional restrictions that simplify reasoning and reporting
of errors:

� For an assignment v := expr or binding equation v = expr, v must be declared to be at least as
variable as expr.

� For multiple return assignment (x1, . . ., xn) := expr (see section 11.2.1.1), all of x1, . . . , xn
must be declared to be at least as variable as expr.

� When determining whether an equation can contribute to solving for a variable v (for instance,
when applying the perfect matching rule, see section 8.4), the equation can only be considered
contributing if the resulting solution would be at most as variable as v.

[Example: The (underdetermined) model Test below illustrates two kinds of consequences due to variabil-
ity constraints. First, it contains variability errors for declaration equations and assignments. Second,
it illustrates the impact of variability on the matching of equations to variables, which can lead to vio-
lation of the perfect matching rule. Details of how variabilities are determined are given in the sections
below. The discrete-valued equation variability rule mentioned in the comments below refer to the rule
in section 3.8.5 that requires both sides of the Boolean equation to be discrete-time.

model Constants
parameter Real p1 = 1;
constant Real c1 = p1 + 2; // Error , not a constant expression.
parameter Real p2 = p1 + 2; // Fine.

end Constants;
model Test
Constants c1(p1 = 3); // Fine.
Constants c2(p2 = 7); // Fine , declaration equation can be modified.
Real x;
Boolean b1 = noEvent(x > 1); // Error , since b1 is a discrete -time variable

// and noEvent(x > 1) is not discrete -time.
Boolean b2;
Integer i1;
Integer i2;

algorithm
i1 := x; // Error , assignment to variable of lesser variability.

equation
/* The equation below can be rejected for two reasons:
* 1. Discrete -valued equation variability rule requires both sides to be
* discrete -time.
* 2. It violates the perfect matching rule , as no variable can be solved
* with correct variability using this equation.
*/
b2 = noEvent(x > 1); // Error , see above.
i2 = x; // No variability error , and can be matched to x.

end Test;

]

36

Modelica Language Specification 3.7-dev
3.8. Variability of Expressions

3.8.1 Function Variability

The variability of function calls needs to consider both the variability of arguments directly given in
the function and the variability of the used default arguments, if any. This is especially a concern for
functions given as a short class, see section 12.1.3. This has additional implications for redeclarations,
see definition 6.8. The purity of the function, see section 12.3, does not influence the variability of the
function call.

[The restrictions for calling functions declared as impure serve a similar purpose as the variability re-
strictions, see section 12.3, and thus it is not necessary to consider purity in the definition of variability.
Consider a function reading an external file and returning some value from that file. Different uses can
have the file updated before the simulation (as a parameter-expression), or during the simulation (as a
discrete-time expression). Thus it depends on the use case and the specific file, not the function itself,
and it would even be possible to update the file in continuous time (as part of an algorithm) and still use
the same function.]

3.8.2 Constant Expressions

Constant expressions are:

� Real, Integer, Boolean, String, and enumeration literals.

� Constant variables, see section 4.5.

� Except for the special built-in operators initial, terminal, der, edge, change, sample, and pre,
a function or operator with constant subexpressions as argument (and no parameters defined in
the function) is a constant expression.

� Some function calls are constant expressions regardless of the arguments:

– ndims(A)

� Some function calls are constant expressions even if one or more arguments are not:

– delay(x, . . .) where x is a constant expression.

3.8.3 Evaluable Expressions

Evaluable expressions are:

� Constant expressions.

� Evaluable parameter variables, see section 4.5.

� Input variables in functions not having annotation GenerateEvents = true (annotation 12.7)
behave as though they were evaluable expressions.

� Except for the special built-in operators initial, terminal, der, edge, change, sample, and pre,
a function or operator with evaluable subexpressions is an evaluable expression.

� The sub-expression end used in A[. . . end . . .] if A is a variable declared in a non-function class.

� Some function calls are evaluable expressions even if one or more arguments are not:

– size(A) if A is variable declared in a non-function class.

– delay(x, . . .) where x is an evaluable expression.

– Connections.isRoot(A.R)

– Connections.rooted(A.R)

– cardinality(c), see restrictions for use in section 3.7.4.2.

3.8.4 Parameter Expressions

Parameter expressions are:

� Evaluable expressions.

37

Modelica Language Specification 3.7-dev
3.8. Variability of Expressions

� Non-evaluable parameter variables, see section 4.5.

� Except for the special built-in operators initial, terminal, der, edge, change, sample, and pre,
a function or operator with parameter subexpressions is a parameter expression.

� Some function calls are parameter expressions even if one or more arguments are not:

– delay(x, . . .) where x is a parameter expression.

3.8.5 Discrete-Time Expressions

Discrete-time expressions are:

� Parameter expressions.

� Discrete-time variables, see section 4.5.

� Function calls where all input arguments of the function are discrete-time expressions.

� Expressions where all the subexpressions are discrete-time expressions.

� Expressions in the body of a when-clause, initial equation, or initial algorithm.

� Expressions in a clocked discrete-time partition, see section 16.8.1.

� Unless inside noEvent: Ordered relations (>, <, >=, <=) and the event generating functions ceil,
floor, div, and integer, if at least one argument is non-discrete-time expression and subtype of
Real.

[These will generate events, see section 8.5. Note that rem and mod generate events but are not
discrete-time expressions. In other words, relations inside noEvent, such as noEvent(x>1), are
not discrete-time expressions.]

� Unless inside noEvent: delay(x, . . .), if x is a discrete-time expression.

� Unless inside noEvent: Function calls where the function has annotation GenerateEvents = true
(annotation 12.7), the output does not contain a subtype of Real, and any non-Real inputs have
discrete-time variability. For a function call returning multiple return values (see section 12.4.3)
the variability is decided separately for each output.

� The functions pre, edge, and change result in discrete-time expressions.

� Expressions in functions not having annotation GenerateEvents = true (annotation 12.7), behave
as though they were discrete-time expressions.

Inside an if-expression, if-clause, while-statement or for-clause, that is controlled by a non-discrete-
time (that is continuous-time, but not discrete-time) switching expression and not in the body of a
when-clause, it is not legal to have assignments to discrete-time variables, equations between discrete-
time expressions, or real elementary relations/functions that should generate events.

[The restriction above is necessary in order to guarantee that all equations for discrete-time variable are
discrete-time expressions, and to ensure that crossing functions do not become active between events.]

For a scalar or array equation expr1 = expr2 where neither expression is of base type Real, both
expressions must be discrete-time expressions. For a record equation, the rule applies recursively to each
of the components of the record. This is called the discrete-valued equation variability rule.

[For a scalar equation, the rule follows from the observation that a discrete-valued equation does not
provide sufficient information to solve for a continuous-valued variable. Hence, and according to the
perfect matching rule (see section 8.4), such an equation must be used to solve for a discrete-valued
variable. By the interpretation of (B.1c) in appendix B, it follows that one of expr1 and expr2 must
be the variable, and the other expression its solution. Since a discrete-valued variable is a discrete-time
expression, it follows that its solution on the other side of the equation must have at most discrete-time
variability. That is, both sides of the equation are discrete-time expressions.

For example, this rule shows that (outside of a when-clause) noEvent cannot be applied to either side
of a Boolean, Integer, String, or enumeration equation, as this would result in a non-discrete-time
expression.

38

Modelica Language Specification 3.7-dev
3.8. Variability of Expressions

For an array equation, note that each array can have only one element type, so if one element is Real,
then all other entries must also be Real, possibly making use of standard type coercion, section 10.6.13.
Hence, if the base type is not Real, all elements of the array are discrete-valued, allowing the argument
above for a scalar equation to be applied elementwise to the array equation. That is, all array elements
on both sides of the array equation will have discrete-time variability, showing that also the entire arrays
expr1 and expr2 are discrete-time expressions.

For a record equation, the components of the record have independent types, and the equation is seen as
a collection of equations for the individual components of the record. In order to support records with
components of mixed variability, a record equation with sides given by either record variables or record
constructors is conceptually split before variability is determined.]

[Example: Discrete-valued equation variability rule applied to record equations. In the first of the equa-
tions below, having a record constructor on both sides of the equation, the equation is conceptually split,
and variabilities of time and true are considered separately. In the second equation, the makeR function
call – regardless of inlining – means that the equation cannot be conceptually split into individual com-
ponents of the record. The variability of the makeR call is continuous-time due to the time argument,
which also becomes the variability of the b member of the call.

record R
Real x;
Boolean b;

end R;

function makeR "Function wrapper around record constructor"
input Real xx;
input Boolean bb;
output R r = R(xx , bb);
annotation(Inline = true); // Inlining doesn 't help.

end makeR;

model Test
R r1, r2;

equation
r1 = R(time , true); // OK: Discrete -time Boolean member.
r2 = makeR(time , true); // Error: Continuous -time Boolean member.

end Test;

]

3.8.6 Continuous-Time and Non-Discrete-Time Expressions

All expressions are continuous-time expressions including constant, parameter and discrete-time expres-
sions. The term non-discrete-time expression refers to expressions that are neither constant, parameter
nor discrete-time expressions. For example, time is a continuous-time built-in variable (see section 4.5)
and time + 1 is a non-discrete-time expression. Note that plain time may, depending on context, refer
to the continuous-time variable or the non-discrete-time expression.

39

Chapter 4

Classes, Predefined Types, and

Declarations

The fundamental structuring unit of modeling in Modelica is the class. Classes provide the structure
for objects, also known as instances. Classes can contain equations which provide the basis for the
executable code that is used for computation in Modelica. Conventional algorithmic code can also be
part of classes. All data objects in Modelica are instantiated from classes, including the basic data types
– Real, Integer, String, Boolean – and enumeration types, which are built-in classes or class schemata.

Declarations are the syntactic constructs needed to introduce classes and objects (i.e., components).

4.1 Access Control – Public and Protected Elements

Members of a Modelica class can have two levels of visibility: public or protected. The default is
public if nothing else is specified.

A protected element, P, in classes and components shall not be accessed via dot notation (e.g., A.P, a.P,
a[1].P, a.b.P, .A.P; but there is no restriction on using P or P.x for a protected element P). They
shall not be modified or redeclared except for modifiers applied to protected elements in a base class
modification (not inside any component or class) and the modifier on the declaration of the protected
element.

[Example:

package A
model B
protected
parameter Real x;

end B;
protected

model C end C;
public

model D
C c; // Legal use of protected class C from enclosing scope
extends A.B(x=2); // Legal modifier for x in derived class

// also x.start=2 and x(start =2) are legal.
Real y=x; // Legal use of x in derived class

end D;
model E
A.B a(x=2); // Illegal modifier , also x.start =2 and x(start =2) are illegal
A.C c; // Illegal use of protected class C
model F=A.C; // Illegal use of protected class C

end E;
end A;

]

40

Modelica Language Specification 3.7-dev
4.2. Double Declaration not Allowed

All elements defined under the heading protected are regarded as protected. All other elements (i.e.,
defined under the heading public, without headings or in a separate file) are public (i.e., not protected).
Regarding inheritance of protected and public elements, see section 7.1.2.

4.2 Double Declaration not Allowed

The name of a declared element shall not have the same name as any other element in its partially
flattened enclosing class. However, the internal flattening of a class can in some cases be interpreted as
having two elements with the same name; these cases are described in section 5.5, and section 7.3.

[Example:

record R
Real x;

end R;
model M // wrong Modelica model
R R; // not correct , since component name and type specifier are identical

equation
R.x = 0;

end M;

]

4.3 Declaration Order

Variables and classes can be used before they are declared.

[In fact, declaration order is only significant for:

� Functions with more than one input variable called with positional arguments, section 12.4.1.

� Functions with more than one output variable, section 12.4.3.

� Records that are used as arguments to external functions, section 12.9.1.3.

� Enumeration literal order within enumeration types, section 4.9.5.

]

4.4 Component Declarations

Component declarations are described in this section.

A component declaration is an element of a class definition that generates a component. A component
declaration specifies (1) a component name, i.e., an identifier, (2) the class to be flattened in order
to generate the component, and (3) an optional Boolean parameter expression. Generation of the
component is suppressed if this parameter expression evaluates to false. A component declaration may
be overridden by an element-redeclaration.

A component or variable is an instance (object) generated by a component declaration. Special kinds of
components are scalar, array, and attribute.

4.4.1 Syntax

The formal syntax of a component declaration clause is given by the following syntactic rules:

component-clause :
type-prefix type-specifier [array-subscripts] component-list

type-prefix :
[flow | stream]
[discrete | parameter | constant]
[input | output]

41

Modelica Language Specification 3.7-dev
4.4. Component Declarations

type-specifier :
["."] name

component-list :
component-declaration { "," component-declaration }

component-declaration :
declaration [condition-attribute] description

condition-attribute :
if expression

declaration :
IDENT [array-subscripts] [modification]

[The declaration of a component states the type, access, variability, data flow, and other properties of
the component. A component-clause, i.e., the whole declaration, contains type prefixes followed by a
type-specifier with optional array-subscripts followed by a component-list.

There is no semantic difference between variables declared in a single declaration or in multiple declara-
tions. For example, regard the following single declaration (component-clause) of two matrix variables:

Real [2,2] A, B;

That declaration has the same meaning as the following two declarations together:

Real [2,2] A;
Real [2,2] B;

The array dimension descriptors may instead be placed after the variable name, giving the two declarations
below, with the same meaning as in the previous example:

Real A[2,2];
Real B[2,2];

The following declaration is different, meaning that the variable a is a scalar but B is a matrix as above:

Real a, B[2,2];

]

4.4.2 Static Semantics

If the type-specifier of the component declaration denotes a built-in type (RealType, IntegerType,
etc.), the flattened or instantiated component has the same type.

A class defined with partial in the class-prefixes is called a partial class. Such a class is allowed
to be incomplete, and cannot be instantiated in a simulation model; useful, e.g., as a base class. See
section 4.6.1 regarding short class definition semantics of propagating partial.

If the type-specifier of the component does not denote a built-in type, the name of the type is looked up
(section 5.3). The found type is flattened with a new environment and the partially flattened enclosing
class of the component. It is an error if the type is partial in a simulation model, or if a simulation model
itself is partial. The new environment is the result of merging

� the modification of enclosing class element-modification with the same name as the component

� the modification of the component declaration

in that order.

Array dimensions shall be scalar non-negative evaluable expressions of type Integer, a reference to a
type (which must be an enumeration type or Boolean, see section 4.9.5), or the colon operator denoting
that the array dimension is left unspecified (see section 10.1). All variants can also be part of short class
definitions.

42

Modelica Language Specification 3.7-dev
4.4. Component Declarations

[Example: Variables with array dimensions:

model ArrayVariants
type T = Real [:]; // Unspecified size for type
parameter T x = ones (4);
parameter T y[3] = ones(3, 4);
parameter Real a[2] = ones (2); // Specified using Integer
parameter Real b[2, 0] = ones(2, 0); // Size 0 is allowed
parameter Real c[:] = ones (0); // Unspecified size for variable
parameter Integer n = 0;
Real z[n*2] = cat(1, ones(n), zeros(n));// Parameter expressions are allowed
Boolean notV[Boolean] = {true , false}; // Indexing with type

end ArrayVariants;

]

The rules for components in functions are described in section 12.2.

Conditional declarations of components are described in section 4.4.5.

4.4.2.1 Declaration Equations

An environment that defines the value of a component of built-in type is said to define a declaration
equation associated with the declared component. These are a subset of the binding equations, see
section 8.1. The declaration equation is of the form x = expression defined by a component declaration,
where expression must not have higher variability than the declared component x (see section 3.8).
Unlike other equations, a declaration equation can be overridden (replaced or removed) by an element
modification.

For declarations of vectors and matrices, declaration equations are associated with each element.

Only components of the specialized classes type, record, operator record, and connector, or com-
ponents of classes inheriting from ExternalObject may have declaration equations. See also the corre-
sponding rule for algorithms, section 11.2.1.2.

4.4.2.2 Prefix Rules

A prefix is property of an element of a class definition which can be present or not be present, e.g.,
final, public, flow.

Type prefixes (that is, flow, stream, discrete, parameter, constant, input, output) shall only be
applied for type, record, operator record, and connector components – see also record specialized class,
section 4.7. This is further restricted below; some of these combinations of type prefixes and specialized
classes are not legal.

An exception is input for components whose type is of the specialized class function (these can only be
used for function formal parameters and has special semantics, see section 12.4.2). In this case, the input
prefix is not applied to the elements of the component, and the prefix is allowed even if the elements of
the component have input or output prefix.

In addition, instances of classes extending from ExternalObject may have type prefixes parameter and
constant, and in functions also type prefixes input and output, see section 12.9.7.

Variables declared with the stream type prefix shall be a subtype of Real, or a record component where
all the primitive elements shall be a subtype of Real. The members of the record may not have the
stream type prefix. This is further restricted in section 15.1.

Variables declared with the input type prefix must not also have the prefix parameter or constant.

The type prefix flow of a component that is not a primitive element (see definition 9.1), is also applied to
the elements of the component (this is done after verifying that the type prefixes occurring on elements
of the component are correct). Primitive elements with the flow type prefix shall be a subtype of Real,
Integer, or an operator record defining an additive group, see section 9.2.

43

Modelica Language Specification 3.7-dev
4.4. Component Declarations

The type prefixes input and output of a structured component (except as described above) are also
applied to the elements of the component (this is done after verifying that the type prefixes occurring
on elements of the component are correct).

When any of the type prefixes flow, input and output are applied for a structured component, no
element of the component may have any of these type prefixes, nor can they have stream prefix. The cor-
responding rules for the type prefixes discrete, parameter and constant are described in section 4.5.5
for structured components.

[The prefixes flow, stream, input and output could be treated more uniformly above, and instead rely
on other rules forbidding combinations. The type prefix stream can be applied to structured components,
specifically records. The type prefix flow can be applied to structured components, see section 9.2. Note
that there are no specific restrictions if an operator record component has the type prefix flow, since the
members of an operator record cannot have any of the prefixes flow, stream, input or output.]

[Example: input can only be used, if none of the elements has a flow, stream, input or output type
prefix.]

The prefixes input and output have a slightly different semantic meaning depending on the context
where they are used:

� In functions, these prefixes define the computational causality of the function body, i.e., given the
variables declared as input, the variables declared as output are computed in the function body,
see section 12.4.

� In simulation models and blocks (i.e., on the top level of a model or block that shall be simulated),
these prefixes define the interaction with the environment where the simulation model or block is
used. Especially, the input prefix defines that values for such a variable have to be provided from
the simulation environment and the output prefix defines that the values of the corresponding
variable can be directly utilized in the simulation environment, see the notion of globally balanced
in section 4.8.

� In componentmodels and blocks, the input prefix defines that a binding equation has to be provided
for the corresponding variable when the component is utilized in order to guarantee a locally
balanced model (i.e., the number of local equations is identical to the local number of unknowns),
see section 4.8.

[Example:

block FirstOrder
input Real u;
. . .

end FirstOrder;
model UseFirstOrder
FirstOrder firstOrder(u=time); // binding equation for u
. . .

end UseFirstOrder;

]

The output prefix does not have a particular effect in a model or block component and is ignored.

� In connectors, prefixes input and output define that the corresponding connectors can only be
connected according to block diagram semantics, see section 9.1 (e.g., a connector with an output
variable can only be connected to a connector where the corresponding variable is declared as
input). There is the restriction that connectors which have at least one variable declared as input
must be externally connected, see section 4.8 (in order to get a locally balanced model, where the
number of local unknowns is identical to the number of unknown equations). Together with the
block diagram semantics rule this means, that such connectors must be connected exactly once
externally.

� In records, prefixes input and output are not allowed, since otherwise a record could not be, e.g.,
passed as input argument to a function.

44

Modelica Language Specification 3.7-dev
4.4. Component Declarations

4.4.3 Component Variability Prefixes

The prefixes discrete, parameter, constant of a component declaration are called variability prefixes
and are the basis for defining in which situation the variable values of a component are initialized (see
section 8.5 and section 8.6) and when they are changed during simulation. Further details on how the
prefixes relate to component variability, as well as rules applying to components the different variabilities,
are given in section 4.5.

4.4.4 Acyclic Bindings of Constants and Parameters

For a constant or parameter v with declaration equation, the expression of the declaration equation in
the flattended model must not depend on v itself, neither directly nor indirectly via other variables’
declaration equations. To satisfy this condition, dependencies shall be removed as needed by applying
simplifications based on values of constants (except with Evaluate = false) and all other evaluable
parameters (section 4.5) that don’t depend on v. It is not permitted to expand a record and/or non-
scalar declaration equation into scalar equations to satisfy the condition.

That the value of an evaluable parameter is used for these simplifications does not mean that it has to
be determined during translation, but if v is found to be an evaluable parameter, then a Modelica tool
will be able to break all cycles involving v by making some (possibly none or all) of the other evaluable
parameters determined during translation. Hence, evaluation of a constant or evaluable parameter can
never require solving systems of equations; they can always be sorted so that they can be solved one at
a time with the natural causality (i.e., the declaration equation is used to determine the value of the
component to which it belongs).

[Example: Direct and indirect cyclic dependency:

/* All of the following are illegal: */
parameter Real r = 2 * sin(r); // Depends directly on r.
parameter Real p = 2 * q; // Indirect dependency on p via q = sin(p).
parameter Real q = sin(p); // Indirect dependency on q via p = 2 * q.

]

[Example: While declaration equations must not be cyclical, the use of initial equations can still introduce
valid cyclic dependencies between parameters:

parameter Real p = 2 * q; // This is the only declaration equation.
parameter Real q(fixed = false);

initial equation
q = sin(p); // OK, not a declaration equation.

]

[Example: Breaking cyclic dependency.

model ABCD
parameter Real A[n, n];
parameter Integer n = size(A, 1);

end ABCD;

final ABCD a;
// Illegal cyclic dependency between size(a.A, 1) and a.n.

ABCD b(redeclare Real A[2, 2] = [1, 2; 3, 4]);
// Legal since size of A is no longer dependent on n.

ABCD c(n = 2); // Legal since n is no longer dependent on the size of A.

partial model PartialLumpedVolume
parameter Boolean use_T_start = true "= true , use T_start , otherwise h_start"

annotation(Dialog(tab = "Initialization"), Evaluate = true);
parameter Medium.Temperature T_start=if use_T_start then system.T_start else

Medium.temperature_phX(p_start ,h_start ,X_start)
annotation(Dialog(tab = "Initialization", enable = use_T_start));

45

Modelica Language Specification 3.7-dev
4.4. Component Declarations

parameter Medium.SpecificEnthalpy h_start=if use_T_start then
Medium.specificEnthalpy_pTX(p_start , T_start , X_start) else Medium.

h_default
annotation(Dialog(tab = "Initialization", enable = not use_T_start));

end PartialLumpedVolume;
// Cycle for T_start and h_start , but still valid since cycle disappears
// when evaluating use_T_start

// The unexpanded bindings have illegal cycles for both x and y
// (even if they would disappear if bindings were expanded).
model HasCycles
parameter Integer n = 10;
final constant Real A[3, 3] = [0, 0, 0; 1, 0, 0; 2, 3, 0];
parameter Real y[3] = A * y + ones (3);
parameter Real x[n] = cat(1, {3.4} , x[1:(n-1)]);

end HasCycles;

]

4.4.5 Conditional Component Declaration

A component declaration can have a condition-attribute: if expression.

[Example:

parameter Boolean electric = true;
parameter Boolean heatPort = false;
Motor motor;
Level1 component1(J=J) if electric "Conditional component";
Level2 component2(J=component1.J) if not electric "Conditional component";
// Illegal modifier on component2 since component1.J does not exist when
component2 exists.
Level3 component3(J=component1.J) if electric and heatPort "Conditional
component";
// Legal modifier since component1 always exists if component3 exists

equation
connect(component1 . . ., . . .) "Connection to conditional component 1";
connect(component2.n, motor.n) "Connection to conditional component 2";
connect(component3.n, motor.n) "Connection to conditional component 3";
component1.u=0; // Not a good idea , is illegal if electric is false

]

The expression must be a Boolean scalar expression, and must be an evaluable expression.

[An evaluable expression is required since it shall be evaluated at compile time.]

A redeclaration of a component shall not include a condition attribute; and the condition attribute is
kept from the original declaration (see section 6.4).

If the Boolean expression is false, the component (including its modifier) is removed from the flattened
DAE, and connections to/from the component are removed. Such a component can only be modified,
used in connections, and/or used in a modifier of another conditional component with a false condition.

There are no restrictions on the component if the Boolean expression is true.

[Adding the component and then removing it ensures that the component is valid.

If a connect-equation defines the connection of a non-conditional component c1 with a conditional com-
ponent c2 and c2 is de-activated, then c1 must still be a declared element.

There are annotations to handle the case where the connector should be connected when activated, see
annotation 18.6.]

46

Modelica Language Specification 3.7-dev
4.5. Component Variability

4.5 Component Variability

As briefly mentioned in section 4.4.3, the component variability prefixes are the basis for defining compo-
nent variability . Combined with some other information about the components and analysis of expression
variability (section 3.8), they define the component variabilities as follows:

� A variable vc declared with constant prefix does not change during simulation, with a value that
is unaffected even by the initialization problem (i.e., determined during translation). This is called
a constant , or constant variable. For further details, see 4.5.1.

� A variable ep is called an evaluable parameter variable if all of the following applies:

– It is declared with the parameter prefix.

– It has fixed = true.

– It does not have annotation Evaluate = false.

– The declaration equation – or start-attribute if no declaration equation is given (see sec-
tion 8.6) – is given by an evaluable expression (section 3.8.3).

It is also simply called an evaluable parameter . An evaluable parameter does not change during
transient analysis, with a value either determined during translation (similar to having prefix
constant, and is then called an evaluated parameter) or by the initialization problem (similar to a
non-evaluable parameter , see item below). At which of these stages the value is determined is tool
dependent. For further details, see 4.5.2.

� A variable np declared with the parameter prefix, is called a non-evaluable parameter variable
unless it is an evaluable parameter. It is also simply called a non-evaluable parameter . It does
not change during transient analysis, with a value determined by the initialization problem. For
further details, see 4.5.2.

� A discrete-time variable vd is a variable that is discrete-valued (that is, not of Real type) or assigned
in a when-clause. The discrete prefix may be used to clarify that a variable is discrete-time. During
transient analysis the variable can only change its value at event instants (see section 8.5). For
further details, see 4.5.3.

� A continuous-time variable is a Real variable without any prefix that is not assigned in a when-
clause. The variable can change both continuously and discontinuously at any time. For further
details, see 4.5.4.

The term parameter variable or just parameter refers to a variable that is either an evaluable or non-
evaluable parameter variable.

The variability of expressions and restrictions on variability for declaration equations is given in sec-
tion 3.8.

[Note that discrete-time expressions include parameter expressions, whereas discrete-time variables do
not include parameter variables. The reason can intuitively be explained as follows:

� When discussing variables we also want to consider them as left-hand-side variables in assignments,
and thus a lower variability would be a problem.

� When discussing expressions we only consider them as right-hand-side expressions in those as-
signment, and thus a lower variability can automatically be included; and additionally we have
sub-expressions where lower variability is not an issue.

For Real variables we can distinguish two subtly different categories: discrete-time and piecewise con-
stant, where the discrete-time variables are a subset of all piecewise constant variables. The Real variables
declared with the prefix discrete is a subset of the discrete-time Real variables. For a Real variable,
being discrete-time is equivalent to being assigned in a when-clause. A variable used as argument to pre
outside a when-clause must be discrete-time.

model PiecewiseConstantReals
discrete Real xd1 "Must be assigned in a when -clause , discrete -time";
Real xd2 "Assigned in a when -clause (below) and thus discrete -time";
Real xc3 "Not discrete -time , but piecewise constant";

47

Modelica Language Specification 3.7-dev
4.5. Component Variability

Real x4 "Piecewise constant , but changes between events";
equation

when sample(1, 1) then
xd1 = pre(xd1) + 1;
xd2 = pre(xd2) + 1;

end when;
// It is legal to use pre for a discrete -time variable outside of when
xc3 = xd1 + pre(xd2);
// But pre(xc3) would not be legal
x4 = if noEvent(cos(time) > 0.5) then 1.0 else -1.0;

end PiecewiseConstantReals;

Tools may optimize code to only compute and store discrete-time variables at events. Tools may extend
that optimization to piece-wise constant variables that only change at events (in the example above xc3).
As shown above variables can be piecewise constant, but change at times that are not events (in the
example above x4). It is not clear how a tool could detect and optimize the latter case.

A parameter variable is constant during simulation. This prefix gives the library designer the possibility
to express that the physical equations in a library are only valid if some of the used components are
constant during simulation. The same also holds for discrete-time and constant variables. Additionally,
the parameter prefix allows a convenient graphical user interface in an experiment environment, to
support quick changes of the most important constants of a compiled model. In combination with an
if-equation, a parameter prefix allows removing parts of a model before the symbolic processing of a
model takes place in order to avoid variable causalities in the model (similar to #ifdef in C). Class
parameters can be sometimes used as an alternative.

Example:

model Inertia
parameter Boolean state = true;
. . .

equation
J * a = t1 - t2;
if state then // code which is removed during symbolic
der(v) = a; // processing , if state=false
der(r) = v;

end if;
end Inertia;

A constant variable is similar to a parameter with the difference that constants cannot be changed after
translation and usually not changed after they have been given a value. It can be used to represent
mathematical constants, e.g.:

final constant Real PI = 4 * atan (1);

There are no continuous-time Boolean, Integer or String variables. In the rare cases they are needed
they can be faked by using Real variables, e.g.:

Boolean off1 , off1a;
Real off2;

equation
off1 = s1 < 0;
off1a = noEvent(s1 < 0); // error , since off1a is discrete
off2 = if noEvent(s2 < 0) then 1 else 0; // possible
u1 = if off1 then s1 else 0; // state events
u2 = if noEvent(off2 > 0.5) then s2 else 0; // no state events

Since off1 is a discrete-time variable, state events are generated such that off1 is only changed at event
instants. Variable off2 may change its value during continuous integration. Therefore, u1 is guaranteed
to be continuous during continuous integration whereas no such guarantee exists for u2.]

48

Modelica Language Specification 3.7-dev
4.5. Component Variability

4.5.1 Constants

Constant variables (defined in section 4.5) shall have an associated declaration equation with a constant
expression, if the constant is directly in the simulation model, or used in the simulation model. The
value of a constant can be modified after it has been given a value, unless the constant is declared final
or modified with a final modifier. A constant without an associated declaration equation can be given
one by using a modifier.

By the acyclic binding rule in section 4.4.4, it follows that the value of a constant (or evaluable parameter,
see below) to be used in simplifications is possible to obtain by evaluation of an evaluable expression
where values are available for all component subexpressions.

4.5.2 Parameters

Parameter variables are divided into evaluable parameter variables and non-evaluable parameter vari-
ables, both defined in section 4.5.

By the acyclic binding rule in section 4.4.4, it follows that a value for an evaluable parameter is possible
to obtain during translation, compare section 4.5.1. Making use of that value during translation turns
the evaluable parameter into an evaluated parameter, and it must be ensured that the parameter cannot
be assigned a different value after translation, as this would invalidate the use of the original value during
translation.

[Example: A particularly demanding aspect of this evaluation is the potential presence of external func-
tions. Hence, if it is known that a parameter won’t be used by an evaluable expression, a user can make
it clear that the external function is not meant to be evaluated during translation by using Evaluate =
false:

import length = Modelica.Utilities.Strings.length; // Pure external function
parameter Integer n = length("Hello"); // Evaluable parameter
parameter Integer p = length("Hello")

annotation(Evaluate = false); // Non -evaluable parameter
parameter Boolean b = false; // Evaluable parameter

/* Fulfillment of acyclic binding rule might cause evaluation of n;
* to break the cycle , a tool might evaluate either b, n, or both:
*/
parameter Real x = if b and n < 3 then 1 - x else 0;

/* Fulfillment of acyclic binding rule cannot cause evaluation of p;
* to break the cycle , evaluation of b is the only option:
*/
parameter Real y = if b and p < 3 then 1 - y else 0;

]

[For a parameter in a valid model, presence of Evaluate (annotation 18.1) makes it possible to tell im-
mediately whether it is an evaluable or non-evaluable parameter, at least as long as the warning described
in annotation 18.1 isn’t triggered. To see this, note that Evaluate = false makes it a non-evaluable
parameter by definition, and that Evaluate = true would trigger the warning if the parameter is non-
evaluable.]

[With every non-evaluable parameter, there is at least one reason why it isn’t an evaluable parameter.
This information is useful to maintain in tools, as it allows generation of informative error messages
when a violation of evaluable expression variability is detected. For example:

parameter Integer n =
if b then 1 else 2; // Non -evaluable parameter due to variability of b.

parameter Boolean b(fixed = false);
// Non -evaluable parameter due to fixed = false.

Real[n] x; // Variability error: n must be evaluable.
initial equation
b = n > 3;

49

Modelica Language Specification 3.7-dev
4.5. Component Variability

Here, a good error message for the variability error can include the information that the reason for n
being a non-evaluable parameter is that it has a dependency on the non-evaluable parameter b.]

[Related to evaluable parameters, the term structural parameter is also used in the Modelica community.
This term has no meaning defined by the specification, and the meaning may vary from one context to
another. One common meaning, however, is that in the context of a given tool, a parameter is called
structural if the tool has decided to evaluate it because it controls some variation of the equation structure
that the tool is unable to leave undecided during translation. With this interpretation of structural
parameter, it follows that such a structural parameter must also be an evaluable parameter, while there
are typically many evaluable parameters that are not structural.]

4.5.3 Discrete-Time Variables

A discrete-time variable (defined in section 4.5) has a vanishing time derivative between events. Note
that this is not the same as saying that der(vd) = 0 almost everywhere, as the derivative is not even
defined at the events. It is not allowed to apply der to discrete-time variables.

If a Real variable in a simulation model is declared with the prefix discrete, it must be assigned in a
when-clause, either by an assignment or an equation. The variable assigned in a when-clause shall not
be defined in a sub-component of model or block specialized class. (This is to keep the property of
balanced models.)

A Real variable assigned in a when-clause is a discrete-time variable, even though it was not declared
with the prefix discrete. A Real variable not assigned in any when-clause and without any type prefix
is a continuous-time variable.

The determination of whether a variable is assigned in when-clause requires evaluating the controlling
conditions of any enclosing if-equations and for-equations, section 8.3.5.2.

[It is a quality of implementation to check that a variable declared as discrete is assigned in a when-
clause also for other valid values of controlling conditions.]

The default variability for Integer, String, Boolean, or enumeration variables is discrete-time, and it
is not possible to declare continuous-time Integer, String, Boolean, or enumeration variables.

[The restriction that discrete-valued variables (of type Boolean, etc) cannot be declared with continuous-
time variability is one of the foundations of the expression variability rules that will ensure that any
discrete-valued expression has at most discrete-time variability, see section 3.8.]

4.5.4 Continuous-Time Variables

A continuous-time variable (defined in section 4.5) vnmay have a non-vanishing time derivative (provided
der(vn) is allowed this can be expressed as der(vn) <> 0) and may also change its value discontinuously
at any time during transient analysis (see section 8.5). It may also contain a combination of these effects.
Regarding existence of der(vn), see operator 3.11.

4.5.5 Variability of Structured Entities

For elements of structured entities with variability prefixes the most restrictive of the variability prefix
and the variability of the component wins (using the default variability for the component if there is no
variability prefix on the component).

[Example:

record A
constant Real pi = 3.14;
Real y;
Integer i;

end A;

parameter A a;
// a.pi is a constant
// a.y and a.i are parameters

50

Modelica Language Specification 3.7-dev
4.6. Class Declarations

A b;
// b.pi is a constant
// b.y is a continuous -time variable
// b.i is a discrete -time variable

]

4.6 Class Declarations

Essentially everything in Modelica is a class, from the predefined classes Integer and Real, to large
packages such as the Modelica standard library. The description consists of a class definition, a modi-
fication environment that modifies the class definition, an optional list of dimension expressions if the
class is an array class, and a lexically enclosing class for all classes.

The object generated by a class is called an instance. An instance contains zero or more components
(i.e., instances), equations, algorithms, and local classes. An instance has a type (section 6.3).

[Example: A rather typical structure of a Modelica class is shown below. A class with a name, containing
a number of declarations followed by a number of equations in an equation section.

class ClassName
Declaration1
Declaration2
. . .

equation
equation1
equation2
. . .

end ClassName;

]

The following is the formal syntax of class definitions, including the special variants described in later
sections.

An element is part of a class definition, and is one of: class definition, component declaration, or extends
-clause. Component declarations and class definitions are called named elements. An element is either
inherited from a base class or local.

class-definition :
[encapsulated] class-prefixes class-specifier

class-prefixes :
[partial]
(class | model | [operator] record | block | [expandable] connector |
type |
package | [(pure | impure)] [operator] function | operator)

class-specifier :
long-class-specifier | short-class-specifier | der-class-specifier

long-class-specifier :
IDENT description-string composition end IDENT
| extends IDENT [class-modification] description-string composition
end IDENT

short-class-specifier :
IDENT "=" base-prefix type-specifier [array-subscripts]
[class-modification] description
| IDENT "=" enumeration "(" ([enum-list] | ":") ")" description

der-class-specifier :
IDENT "=" der "(" type-specifier "," IDENT { "," IDENT } ")" description

51

Modelica Language Specification 3.7-dev
4.6. Class Declarations

base-prefix :
[input | output]

enum-list : enumeration-literal { "," enumeration-literal}

enumeration-literal : IDENT description

composition :
element-list
{ public element-list |
protected element-list |
equation-section |
algorithm-section

}
[external [language-specification]
[external-function-call] [annotation-clause] ";"

]
[annotation-clause ";"]

4.6.1 Short Class Definitions

A short class definition is a class definition in the form

class IDENT1 = type -specifier class -modification;

Except that type-specifier (the base-class) may be replaceable, and that the short class definition
does not introduce an additional lexical scope for modifiers, it is identical to the longer form

class IDENT1
extends type -specifier class -modification;

end IDENT1;

An exception to the above is that if the short class definition is declared as encapsulated, then the
type-specifier and modifiers follow the rules for encapsulated classes and cannot be looked up in the
enclosing scope.

[Example: Demonstrating the difference in scopes:

model Resistor
parameter Real R;
. . .

end Resistor;
model A
parameter Real R;
replaceable model Load=Resistor(R=R) constrainedby TwoPin;
// Correct , sets the R in Resistor to R from model A.
replaceable model LoadError

extends Resistor(R=R);
// Gives the singular equation R=R, since the right -hand side R
// is searched for in LoadError and found in its base class Resistor.

end LoadError constrainedby TwoPin;
encapsulated model Load2 =. Resistor(R=2); // Ok
encapsulated model LoadR =. Resistor(R=R); // Illegal
Load a,b,c;
ConstantSource . . .;
. . .

end A;

The type-specifiers .Resistor rely on global name lookup (see 5.3.2), due to the encapsulated restriction.]

A short class definition of the form

type TN = T[N] (optional modifier);

where N represents arbitrary array dimensions, conceptually yields an array class

52

Modelica Language Specification 3.7-dev
4.6. Class Declarations

'array ' TN
T[n] _ (optional modifiers);

'end' TN;

Such an array class has exactly one anonymous component (_); see also section 4.6.2. When a component
of such an array class type is flattened, the resulting flattened component type is an array type with the
same dimensions as _ and with the optional modifier applied.

[Example: The types of f1 and f2 are identical:

type Force = Real [3](unit={"Nm","Nm","Nm"});
Force f1;
Real f2[3](unit={"Nm","Nm","Nm"});

]

If a short class definition inherits from a partial class the new class definition will be partial, regardless
of whether it is declared with the prefix partial or not.

[Example:

replaceable model Load=TwoPin;
Load R; // Error unless Load is redeclared since TwoPin is a partial class.

]

If a short class definition does not specify any specialized class the new class definition will inherit the
specialized class (this rule applies iteratively and also for redeclare).

A base-prefix applied in the short-class-definition does not influence its type, but is applied to
components declared of this type or types derived from it; see also section 4.6.2.

[Example:

type InArgument = input Real;
type OutArgument = output Real [3];

function foo
InArgument u; // Same as: input Real u
OutArgument y; // Same as: output Real [3] y

algorithm
y:=fill(u,3);

end foo;

Real x[:]= foo(time);

]

4.6.2 Combining Base Classes and Other Elements

It is not legal to combine equations, algorithms, components, non-empty base classes (see below), or
protected elements with an extends from an array class, a class with non-empty base-prefix, a simple
type (Real, Boolean, Integer, String and enumeration types), or any class transitively extending from
an array class, a class with non-empty base-prefix, or a simple type.

Definition 4.1. Empty class. A class without equations, algorithms, or components, and where any
base-classes are themselves empty.

[An empty class may contain annotations, such as graphics, and can be used more freely as base-class
than other classes.]

[Example:

model Integrator
input Real u;
output Real y = x;
Real x;

53

Modelica Language Specification 3.7-dev
4.7. Specialized Classes

equation
der(x) = u;

end Integrator;

model Integrators = Integrator [3]; // Legal

model IllegalModel
extends Integrators;
Real x; // Illegal combination of component and array class

end IllegalModel;

connector IllegalConnector
extends Real;
Real y; // Illegal combination of component and simple type

end IllegalConnector;

]

4.6.3 Local Class Definitions – Nested Classes

The local class should be statically flattenable with the partially flattened enclosing class of the local class
apart from local class components that are partial or outer. The environment is the modification of
any enclosing class element modification with the same name as the local class, or an empty environment.

The unflattened local class together with its environment becomes an element of the flattened enclosing
class.

[Example: The following example demonstrates parameterization of a local class:

model C1
type Voltage = Real(nominal =1);
Voltage v1 , v2;

end C1;

model C2
extends C1(Voltage(nominal =1000));

end C2;

Flattening of class C2 yields a local class Voltage with nominal modifier 1000. The variables v1 and v2
are instances of this local class and thus have a nominal value of 1000.]

4.7 Specialized Classes

Specialized kinds of classes (earlier known as restricted classes) record, type, model, block, package,
function and connector have the properties of a general class, apart from restrictions. Moreover, they
have additional properties called enhancements. The definitions of the specialized classes are given below
(additional restrictions on inheritance are in section 7.1.3):

� record – Only public sections are allowed in the definition or in any of its components (i.e.,
equation, algorithm, initial equation, initial algorithm and protected sections are not
allowed). The elements of a record shall not have prefixes input, output, inner, outer, stream,
or flow. Enhanced with implicitly available record constructor function, see section 12.6. The
components directly declared in a record may only be of specialized class record or type.

� type – May only be predefined types, enumerations, array of type, or classes extending from type.

� model – The normal modeling class in Modelica.

� block – Same as model with the restriction that each public connector component of a block
must have prefixes input and/or output for all connector variables that are neither parameter
nor constant.

[The purpose is to model input/output blocks of block diagrams. Due to the restrictions on input and
output prefixes, connections between blocks are only possible according to block diagram semantic.]

54

Modelica Language Specification 3.7-dev
4.7. Specialized Classes

� function – See section 12.2 for restrictions and enhancements of functions. Enhanced to allow the
function to contain an external function interface.

[Non-function specialized classes do not have this property.]

� connector – Only public sections are allowed in the definition or in any of its components (i.e.,
equation, algorithm, initial equation, initial algorithm and protected sections are not
allowed).

Enhanced to allow connect to components of connector classes. The elements of a connector shall
not have prefixes inner, or outer. May only contain components of specialized class connector,
record and type.

� package – May only contain declarations of classes and constants. Enhanced to allow import of
elements of packages. (See also chapter 13 on packages.)

� operator record – Similar to record; but operator overloading is possible, and due to this the
typing rules are different, see chapter 6. It is not legal to extend from an operator record (or
connector inheriting from operator record), except if the new class is an operator record
or connector that is declared as a short class definition, whose modifier is either empty or only
modify the default attributes for the component elements directly inside the operator record.
An operator record can only extend from an operator record. It is not legal to extend from
any of its enclosing scopes. (See chapter 14).

� operator – May only contain declarations of functions. May only be placed directly in an operator
record. (See also chapter 14).

� operator function – Shorthand for an operator with exactly one function; same restriction as
function class and in addition may only be placed directly in an operator record.

[A function declaration

operator function foo . . . end foo;

is conceptually treated as

operator foo function foo1
. . .

end foo1; end foo;

]

Additionally only components which are of specialized classes record, type, operator record, and
connector classes based on any of those can be used as component references in normal expressions and
in the left-hand side of assignments, subject to normal type compatibility rules. Additionally components
of connectors may be arguments of connect-equations, and any component can be used as argument
to the ndims and size-functions, or for accessing elements of that component (possibly in combination
with array indexing).

[Example: Use of operator:

operator record Complex
Real re;
Real im;
. . .
encapsulated operator function '*'

import Complex;
input Complex c1;
input Complex c2;
output Complex result;

algorithm
result := Complex(re=c1.re*c2.re - c1.im*c2.im ,

im=c1.re*c2.im + c1.im*c2.re);
end '*';

end Complex;
record MyComplex

extends Complex; // Error; extending from enclosing scope.

55

Modelica Language Specification 3.7-dev
4.8. Balanced Models

Real k;
end MyComplex;
operator record ComplexVoltage = Complex(re(unit="V"),im(unit="V")); // allowed

]

4.8 Balanced Models

[In this section restrictions for model and block classes are present, in order that missing or too many
equations can be detected and localized by a Modelica translator before using the respective model or block
class. A non-trivial case is demonstrated in the following example:

partial model BaseCorrelation
input Real x;
Real y;

end BaseCorrelation;

model SpecialCorrelation // correct in Modelica 2.2 and 3.0
extends BaseCorrelation(x=2);

equation
y=2/x;

end SpecialCorrelation;

model UseCorrelation // correct according to Modelica 2.2
// not valid according to Modelica 3.0
replaceable model Correlation=BaseCorrelation;
Correlation correlation;

equation
correlation.y=time;

end UseCorrelation;

model Broken // after redeclaration , there is 1 equation too much in Modelica
2.2
UseCorrelation example(redeclare Correlation=SpecialCorrelation);

end Broken;

In this case one can argue that both UseCorrelation (adding an acausal equation) and SpecialCorrelation
(adding a default to an input) are correct. Still, when combined they lead to a model with too many
equations, and it is not possible to determine which model is incorrect without strict rules – as the ones
defined here.

In Modelica 2.2, model Broken will work with some models. However, by just redeclaring it to model
SpecialCorrelation, an error will occur and it will be very difficult in a larger model to figure out the
source of this error.

In Modelica 3.0, model UseCorrelation is no longer allowed and the translator will give an error. In
fact, it is guaranteed that a redeclaration cannot lead to an unbalanced model any more.]

The restrictions below apply after flattening – i.e., inherited components are included – possibly modified.
The corresponding restrictions on connectors and connections are in section 9.3.

Definition 4.2. Local number of unknowns. The local number of unknowns of a model or block
class is the sum based on the components:

� For each declared component of specialized class type (Real, Integer, String, Boolean, enumer-
ation and arrays of those, etc.) or record, or operator record not declared as outer, it is the
number of unknown variables inside it (i.e., excluding parameters and constants and counting the
elements after expanding all records, operator record, and arrays to a set of scalars of primitive
types).

� Each declared component of specialized class type or record declared as outer is ignored.

[I.e., all variables inside the component are treated as known.]

56

Modelica Language Specification 3.7-dev
4.8. Balanced Models

� For each declared component of specialized class connector component, it is the number of un-
known variables inside it (i.e., excluding parameters and constants and counting the elements after
expanding all records and arrays to a set of scalars of primitive types).

� For each declared component of specialized class block or model, it is the sum of the number
of inputs and flow variables in the (top level) public connector components of these components
(and counting the elements after expanding all records and arrays to a set of scalars of primitive
types). If these public connector components contain overdetermined connectors each instance of
an overdetermined type or record in that connector is assumed to be a separate root.

Definition 4.3. Local equation size. The local equation size of a model or block class is the sum of
the following numbers:

� The number of equations defined locally (i.e., not in any model or block component), including
binding equations, and equations generated from connect-equations. Similar to variable counting,
the counting is done after expanding to scalars of primitive types. For calls of functions with
multiple outputs, section 12.4.3 the number of equations is the total number of scalar primitive
elements of the component references in the left hand side. For assert and other empty functions
calls section 12.4.7 the size is zero.

[This includes the proper count for when-clauses (see section 8.3.5), and algorithms (see sec-
tion 11.1), and is also used for the flat Hybrid DAE formulation (see appendix B).]

� The number of input and flow variables present in each (top-level) public connector component.

[This represents the number of connection equations that will be provided when the class is used,
due to the balancing restrictions for connectors, see section 9.3.1.]

� The number of (top-level) public input variables that neither are connectors nor have binding
equations.

[I.e., top-level inputs are treated as known variables. This represents the number of binding equa-
tions that will be provided when the class is used.]

� For over-determined connectors, section 9.4, each spanning tree without any root node adds the
difference between the size of the over-determined type or record and the size of the output of
equalityConstraint.

[By definition this term is zero in simulation models, but relevant for checking component models.
There are no other changes in the variable and equation count for models – but a restriction on the
size of the output of equalityConstraint, section 9.3.1.]

[To clarify top-level inputs without binding equation (for non-inherited inputs binding equation is identical
to declaration equation, but binding equations also include the case where another model extends M and
has a modifier on u giving the value):

model M
input Real u;
input Real u2=2;

end M;

Here u and u2 are top-level inputs and not connectors. The variable u2 has a binding equation, but u
does not have a binding equation. In the equation count, it is assumed that an equation for u is supplied
when using the model.]

Definition 4.4. Locally balanced . A model or block class is locally balanced if the local number of
unknowns is identical to the local equation size for all legal values of constants and parameters.

[Here, legal values must respect final bindings and min/max-restrictions. A tool shall verify the locally
balanced property for the actual values of parameters and constants in the simulation model. It is a
quality of implementation for a tool to verify this property in general, due to arrays of (locally) undefined
sizes, conditional declarations, for-loops etc.]

57

Modelica Language Specification 3.7-dev
4.8. Balanced Models

Definition 4.5. Globally balanced . Similar to locally balanced, but including all unknowns and
equations from all components. The global number of unknowns is computed by expanding all unknowns
(i.e., excluding parameters and constants) into a set of scalars of primitive types. This should match the
global equation size defined as:

� The number of equations defined (included in any model or block component), including equations
generated from connect-equations.

� The number of input and flow variables present in each (top-level) public connector component.

� The number of (top-level) public input variables that neither are connectors nor have binding
equations.

[I.e., top-level inputs are treated as known variables.]

The following restrictions hold:

� In a non-partial model or block, all non-connector inputs of model or block components must
have binding equations.

[E.g., if the model contains a component, firstOrder (of specialized class model) and firstOrder
has input Real u then there must be a binding equation for firstOrder.u. Note that this also
applies to components inherited from a partial base-class provided the current class is non-partial.]

� A component declared with the inner or outer prefix shall not be of a class having top-level public
connectors containing inputs.

� In a declaration of a component of a record, connector, or simple type, modifiers can be applied to
any element, and these are also considered for the equation count.

[Example:

Flange support(phi=phi , tau=torque1+torque2) if use_support;

If use_support=true, there are two additional equations for support.phi and support.tau via
the modifier.]

� In a declarations of a component of a model or block class, modifiers shall only contain redec-
larations of replaceable elements and binding equations. The binding equations in modifiers for
components may in these cases only be for parameters, constants, non-connector inputs and vari-
ables having a default binding equation. For the latter case of variables having a default binding
equation the modifier may not remove the binding equation using break, see section 7.2.7.

� Modifiers of base-classes (on extends and short class definitions) shall only contain redeclarations
of replaceable elements and binding equations. The binding equations follow the corresponding
rules above, as if they were applied to the inherited component.

� The arguments of Connections.branch, Connections.root, and Connections.potentialRoot
are part of outside connectors, to fulfil the requirement in section 8.3.3.

� All non-partial model and block classes must be locally balanced.

[This means that the local number of unknowns equals the local equation size.]

Based on these restrictions, the following strong guarantee can be given:

� All simulation models and blocks are globally balanced.

[Therefore the number of unknowns equal to the number of equations of a simulation model or block,
provided that every used non-partial model or block class is locally balanced.]

[Example: Example 1:

connector Pin
Real v;
flow Real i;

end Pin;

58

Modelica Language Specification 3.7-dev
4.8. Balanced Models

model Capacitor
parameter Real C;
Pin p, n;
Real u;

equation
0 = p.i + n.i;
u = p.v - n.v;
C*der(u) = p.i;

end Capacitor;

Model Capacitor is a locally balanced model according to the following analysis:

Locally unknown variables: p.i, p.v, n.i, n.v, u

Local equations:

0 = p.i+ n.i;

u = p.v − n.v;

C · der(u) = p.i;

and 2 equations corresponding to the 2 flow variables p.i and n.i.

These are 5 equations in 5 unknowns (locally balanced model). A more detailed analysis would reveal that
this is structurally non-singular, i.e., that the hybrid DAE will not contain a singularity independent of
actual values.

If the equation u = p.v - n.v would be missing in the Capacitor model, there would be 4 equations in
5 unknowns and the model would be locally unbalanced and thus simulation models in which this model
is used would be usually structurally singular and thus not solvable.

If the equation u = p.v - n.v would be replaced by the equation u = 0 and the equation C*der(u) =
p.i would be replaced by the equation C*der(u) = 0, there would be 5 equations in 5 unknowns (locally
balanced), but the equations would be singular, regardless of how the equations corresponding to the flow
variables are constructed because the information that u is constant is given twice in a slightly different
form.]

[Example: Example 2:

connector Pin
Real v;
flow Real i;

end Pin;

partial model TwoPin
Pin p,n;

end TwoPin;

model Capacitor
parameter Real C;
extends TwoPin;
Real u;

equation
0 = p.i + n.i;
u = p.v - n.v;
C*der(u) = p.i;

end Capacitor;

model Circuit
extends TwoPin;
replaceable TwoPin t;
Capacitor c(C=12);

equation
connect(p, t.p);
connect(t.n, c.p);
connect(c.n, n);

59

Modelica Language Specification 3.7-dev
4.8. Balanced Models

end Circuit;

Since t is partial we cannot check whether this is a globally balanced model, but we can check that Circuit
is locally balanced.

Counting on model Circuit results in the following balance sheet:

Locally unknown variables (8): p.i, p.v, n.i, n.v, and 2 flow variables for t (t.p.i, t.n.i), and 2
flow variables for c (c.p.i, c.n.i).

Local equations:

p.v = t.p.v;

0 = p.i− t.p.i;

c.p.v = t.n.v;

0 = c.p.i+ t.n.i;

n.v = c.n.v;

0 = n.i− c.n.i;

and 2 equation corresponding to the flow variables p.i, n.i.

In total we have 8 scalar unknowns and 8 scalar equations, i.e., a locally balanced model (and this feature
holds for any models used for the replaceable component t).

Some more analysis reveals that this local set of equations and unknowns is structurally non-singular.
However, this does not provide any guarantees for the global set of equations, and specific combinations
of models that are locally non-singular may lead to a globally singular model.]

[Example: Example 3:

import Modelica.Units.SI;

partial model BaseProperties "Interface of medium model"
parameter Boolean preferredStates = false;
constant Integer nXi "Number of independent mass fractions";
InputAbsolutePressure p;
InputSpecificEnthalpy h;
InputMassFraction Xi[nXi];
SI.Temperature T;
SI.Density d;
SI.SpecificInternalEnergy u;

connector InputAbsolutePressure = input SI.AbsolutePressure;
connector InputSpecificEnthalpy = input SI.SpecificEnthalpy;
connector InputMassFraction = input SI.MassFraction;

end BaseProperties;

The model BaseProperties together with its use in derived classes and as component relies on a special
design pattern defined below. The variables p, h, Xi are marked as input to get correct equation count.
Since they are connectors they should neither be given binding equations in derived classes nor when
using the model. The design pattern, which is used in this case, is to give textual equations for them (as
below); using connect-equations for these connectors would be possible (and would work) but is not part
of the design pattern.

This partial model defines that T, d, u can be computed from the medium model, provided p, h, Xi are
given. Every medium with one or multiple substances and one or multiple phases, including incompress-
ible media, has the property that T, d, u can be computed from p, h, Xi. A particular medium may
have different “independent variables” from which all other intrinsic thermodynamic variables can be
recursively computed. For example, a simple air model could be defined as:

model SimpleAir "Medium model of simple air. Independent variables: p, T"
extends BaseProperties(
nXi = 0,
p(stateSelect =

60

Modelica Language Specification 3.7-dev
4.8. Balanced Models

if preferredStates then StateSelect.prefer else StateSelect.default),
T(stateSelect =

if preferredStates then StateSelect.prefer else StateSelect.default));
constant SI.SpecificHeatCapacity R = 287;
constant SI.SpecificHeatCapacity cp = 1005.45;
constant SI.Temperature T0 = 298.15

equation
d = p/(R*T);
h = cp*(T-T0);
u = h - p/d;

end SimpleAir;

The local number of unknowns in model SimpleAir (after flattening) is:

� 3 (T, d, u: variables defined in BaseProperties and inherited in SimpleAir), plus

� 2+nXi (p, h, Xi: variables inside connectors defined in BaseProperties and inherited in SimpleAir
)

resulting in 5 + nXi unknowns. The local equation size is:

� 3 (equations defined in SimpleAir), plus

� 2 + nXi (input variables in the connectors inherited from BaseProperties)

Therefore, the model is locally balanced.

The generic medium model BaseProperties is used as a replaceable model in different components,
like a dynamic volume or a fixed boundary condition:

import Modelica.Units.SI;

connector FluidPort
replaceable model Medium = BaseProperties;
SI.AbsolutePressure p;
flow SI.MassFlowRate m_flow;
SI.SpecificEnthalpy h;
flow SI.EnthalpyFlowRate H_flow;
SI.MassFraction Xi [Medium.nXi] "Independent mixture mass fractions";
flow SI.MassFlowRate mXi_flow[Medium.nXi]
"Independent subst. mass flow rates";

end FluidPort;

model DynamicVolume
parameter SI.Volume V;
replaceable model Medium = BaseProperties;
FluidPort port(redeclare model Medium = Medium);
Medium medium(preferredStates = true); // No modifier for p, h, Xi
SI.InternalEnergy U;
SI.Mass M;
SI.Mass MXi[medium.nXi];

equation
U = medium.u*M;
M = medium.d*V;
MXi = medium.Xi*M;
der(U) = port.H_flow; // Energy balance
der(M) = port.m_flow; // Mass balance
der(MXi) = port.mXi_flow; // Substance mass balance

// Equations binding to medium (inputs)
medium.p = port.p;
medium.h = port.h;
medium.Xi = port.Xi;

end DynamicVolume;

The local number of unknowns of DynamicVolume is:

� 4 + 2 · nXi (inside the port connector), plus

61

Modelica Language Specification 3.7-dev
4.9. Predefined Types and Classes

� 2 + nXi (variables U, M and MXi), plus

� 2 + nXi (the input variables in the connectors of the medium model)

resulting in 8 + 4 · nXi unknowns; the local equation size is

� 6 + 3 · nXi from the equation section, plus

� 2 + nXi flow variables in the port connector.

Therefore, DynamicVolume is a locally balanced model.

Note, when the DynamicVolume is used and the Medium model is redeclared to SimpleAir, then a tool
will try to select p, T as states, since these variables have StateSelect.prefer in the SimpleAir model
(this means that the default states U, M are derived quantities). If this state selection is performed, all
intrinsic medium variables are computed from medium.p and medium.T, although p and h are the input
arguments to the medium model. This demonstrates that in Modelica input/output does not define the
computational causality. Instead, it defines that equations have to be provided here for p, h, Xi, in
order that the equation count is correct. The actual computational causality can be different as it is
demonstrated with the SimpleAir model.

model FixedBoundary_pTX
parameter SI.AbsolutePressure p "Predefined boundary pressure";
parameter SI.Temperature T "Predefined boundary temperature";
parameter SI.MassFraction Xi[medium.nXi]
"Predefined boundary mass fraction";

replaceable model Medium = BaseProperties;
FluidPort port(redeclare model Medium = Medium);
Medium medium;

equation
port.p = p;
port.H_flow = semiLinear(port.m_flow , port.h , medium.h);
port.MXi_flow = semiLinear(port.m_flow , port.Xi , medium.Xi);

// Equations binding to medium (note: T is not an input).
medium.p = p;
medium.T = T;
medium.Xi = Xi;

end FixedBoundary_pTX;

The number of local variables in FixedBoundary_pTX is:

� 4 + 2 · nXi (inside the port connector), plus

� 2 + nXi (the input variables in the connectors of the medium model)

resulting in 6 + 3 · nXi unknowns, while the local equation size is

� 4 + 2 · nXi from the equation section, plus

� 2 + nXi flow variables in the port connector.

Therefore, FixedBoundary_pTX is a locally balanced model. The predefined boundary variables p and
Xi are provided via equations to the input arguments medium.p and medium.Xi, in addition there is an
equation for T in the same way – even though T is not an input. Depending on the flow direction, either
the specific enthalpy in the port (port.h) or h is used to compute the enthalpy flow rate H_flow. h
is provided as binding equation to the medium. With the equation medium.T = T, the specific enthalpy
h of the reservoir is indirectly computed via the medium equations. Again, this demonstrates, that an
input just defines the number of equations have to be provided, but that it not necessarily defines the
computational causality.]

4.9 Predefined Types and Classes

The attributes of the predefined variable types (Real, Integer, Boolean, String) and enumeration types
are described below with Modelica syntax although they are predefined. All attributes are predefined and
attribute values can only be defined using a modification, such as in Real x(unit = "kg"). Attributes
cannot be accessed using dot notation, and are not constrained by equations and algorithm sections.

62

Modelica Language Specification 3.7-dev
4.9. Predefined Types and Classes

The ⟨value⟩ in the definitions of the predefined types represents the value of an expresion of that type.
Unlike attributes, the ⟨value⟩ of a component cannot be referred to by name; both access and modification
of the value is made directly on the component.

[Example: Accessing and modifying a variable value, using Real as example of a predefined type:

model M
record R
Real u;
Real v;

end R;
Real x = sin(time); // Value modification.
Real y(unit = "kg") = x; // Access value of x, and modify value of y.
R r(u = y); // Value modification of r.u.

equation
r.v + x * x = 0; // Access values of r.v and x.

end M;

Note that only the values of x and y are declared to be equal, but not their unit-attributes, nor any other
attribute of x and y]

It is not possible to combine extends from the predefined types, enumeration types, or this Clock type
with other components.

The names Real, Integer, Boolean and String have restrictions similar to keywords, see section 2.3.3.

[Hence, it is possible to define a normal class called Clock in a package and extend from it.]

[It also follows that the only way to declare a subtype of, e.g., Real is to use the extends mechanism.]

The definitions use RealType, IntegerType, BooleanType, StringType, EnumType as mnemonics corre-
sponding to machine representations. These are called the primitive types.

Definition 4.6. Fallback value. In situations where the start-attribute would apply if provided, but
the attribute is not provided, the fallback value shall be used instead. Tools are recommended to give
diagnostics when the fallback value is used. The fallback values for variables of the different predefined
types are defined below.

4.9.1 Real Type

The following is the predefined Real type:

type Real // Note: Defined with Modelica syntax although predefined
RealType ⟨value⟩; // Not an attribute; only accessed without dot -notation
parameter StringType quantity = "";
parameter StringType unit = "" "Unit used in equations";
parameter StringType displayUnit = "" "Default display unit";
parameter RealType min = . . .; // Lower bound for ⟨value⟩
parameter RealType max = . . .; // Upper bound for ⟨value⟩
parameter RealType start; // Initial value
parameter BooleanType fixed = . . .; // Enforce exact value of 'start '
parameter RealType nominal; // Nominal value
parameter BooleanType unbounded = false; // For error control
parameter StateSelect stateSelect = StateSelect.default;

equation
assert(min <= ⟨value⟩ and ⟨value⟩ <= max , "Variable value out of limit");

end Real;

The default min- and max-attributes are the minimum and maximum representable finite floating point
numbers of RealType. The ⟨value⟩ must be a finite floating point number, and thus the default min- and
max-attributes do not impose any further constraints.

[Of the representable floating point numbers, the minimum number is usually the negation of the maximum
number, and should not be confused with the minimum positive number.]

The default fixed-attribute is true for parameters and constants, and false for other variables.

63

Modelica Language Specification 3.7-dev
4.9. Predefined Types and Classes

The following attributes shall be evaluable: quantity, unit, displayUnit, fixed, and stateSelect.

The quantity-attribute is used to impose a constraint on connection sets, see section 9.3.

The unit- and displayUnit-attributes may be either the empty string or a string matching unit-expression
in chapter 19. The meaning of the empty string depends on the context. For the input and output com-
ponents of a function, the empty string allows different units to be used in different calls to the function.
For a non-function component, the empty string allows the unit (or display unit) to be inferred by the
tool.

[That displayUnit is evaluable allows tools to verify that the default display unit is consistent with the
unit. Unlike the unit, displayUnit is just a default, tools may allow using other compatible display
units for a translated model.]

The nominal-attribute is meant to be used for scaling purposes and to define tolerances in relative terms,
see section 4.9.6.

The fallback value is the closest value to 0.0 consistent with the min and max bounds.

[For external functions in C89, RealType maps to double. In the mapping proposed in Annex F of the
C99 standard, RealType/double matches the IEC 60559:1989 (ANSI/IEEE 754-1985) double format.]

4.9.2 Integer Type

The following is the predefined Integer type:

type Integer // Note: Defined with Modelica syntax although predefined
IntegerType ⟨value⟩; // Not an attribute; only accessed without dot -notation
parameter StringType quantity = "";
parameter IntegerType min = . . .; // Lower bound for ⟨value⟩
parameter IntegerType max = . . .; // Upper bound for ⟨value⟩
parameter IntegerType start; // Initial value
parameter BooleanType fixed = . . .; // Enforce exact value of 'start '

equation
assert(min <= ⟨value⟩ and ⟨value⟩ <= max , "Variable value out of limit");

end Integer;

The following attributes shall be evaluable: quantity, and fixed.

The quantity-attribute is used to impose a constraint on connection sets, see section 9.3.

The default min- and max-attributes are the minimum and maximum numbers of IntegerType. The min-
imal recommended number range for IntegerType is from -2147483648 to +2147483647, corresponding
to a two’s-complement 32-bit integer implementation.

[Note that -2147483648 as a Modelica expression is the negation of a number above the minimal rec-
ommended number range. To express the lower limit with all intermediate results within the minimal
recommended number range, one may write -2147483647 - 1 instead.]

The fallback value is the closest value to 0 consistent with the min and max bounds.

The default fixed-attribute is true for parameters and constants, and false for other variables.

4.9.3 Boolean Type

The following is the predefined Boolean type:

type Boolean // Note: Defined with Modelica syntax although predefined
BooleanType ⟨value⟩; // Not an attribute; only accessed without dot -notation
parameter StringType quantity = "";
parameter BooleanType start; // Initial value
parameter BooleanType fixed = . . .; // Enforce exact value of 'start '

end Boolean;

The following attributes shall be evaluable: quantity, and fixed.

The quantity-attribute is used to impose a constraint on connection sets, see section 9.3.

64

Modelica Language Specification 3.7-dev
4.9. Predefined Types and Classes

The fallback value is false.

The default fixed-attribute is true for parameters and constants, and false for other variables.

4.9.4 String Type

The following is the predefined String type:

type String // Note: Defined with Modelica syntax although predefined
StringType ⟨value⟩; // Not an attribute; only accessed without dot -notation
parameter StringType quantity = "";
parameter StringType start; // Initial value
parameter BooleanType fixed = . . .; // Enforce exact value of 'start '

end String;

The following attributes shall be evaluable: quantity, and fixed.

The quantity-attribute is used to impose a constraint on connection sets, see section 9.3.

A StringType value (such as ⟨value⟩ or other textual attributes of built-in types) may contain any
Unicode data (and nothing else).

The fallback value is "".

The default fixed-attribute is true for parameters and constants, and false for other variables.

4.9.5 Enumeration Types

A declaration of the form

type E = enumeration ([enum -list]);

defines an enumeration type E and the associated enumeration literals of the enum-list. The enumeration
literals shall be distinct within the enumeration type. The names of the enumeration literals are defined
inside the scope of E. Each enumeration literal in the enum-list has type E.

[Example:

type Size = enumeration(small , medium , large , xlarge);
Size t_shirt_size = Size.medium;

]

An optional description string can be specified with each enumeration literal.

[Example:

type Size2 = enumeration(small "1st", medium "2nd", large "3rd", xlarge "4th");

]

An enumeration type is a simple type and the attributes are defined in section 4.9.5.1. The Boolean
type name or an enumeration type name can be used to specify the dimension range for a dimension in
an array declaration and to specify the range in a for-loop range expression; see section 11.2.2.2. An
element of an enumeration type can be accessed in an expression.

[Uses of elements of enumeration type in expressions include indexing into an array.]

[Example:

type DigitalCurrentChoices = enumeration(zero , one);
// Similar to Real , Integer

Setting attributes:

type DigitalCurrent = DigitalCurrentChoices(quantity="Current",
start = DigitalCurrentChoices.one , fixed = true)

;
DigitalCurrent c(start = DigitalCurrent.one , fixed = true);

65

Modelica Language Specification 3.7-dev
4.9. Predefined Types and Classes

DigitalCurrentChoices c(start = DigitalCurrentChoices.one , fixed = true);

Using enumeration types as expressions:

Real x[DigitalCurrentChoices];

// Example using the type name to represent the range

for e in DigitalCurrentChoices loop
x[e] := 0.;

end for;

for e loop // Equivalent example using short form
x[e] := 0.;

end for;

// Equivalent example using the colon range constructor
for e in DigitalCurrentChoices.zero : DigitalCurrentChoices.one loop
x[e] := 0.;

end for;

model Mixing1 "Mixing of multi -substance flows , alternative 1"
replaceable type E=enumeration (:)"Substances in Fluid";
input Real c1[E], c2[E], mdot1 , mdot2;
output Real c3[E], mdot3;

equation
0 = mdot1 + mdot2 + mdot3;
for e in E loop
0 = mdot1*c1[e] + mdot2*c2[e]+ mdot3*c3[e];

end for;
/* Array operations on enumerations are NOT (yet) possible:

zeros(n) = mdot1*c1 + mdot2*c2 + mdot3*c3 // error
*/

end Mixing1;

model Mixing2 "Mixing of multi -substance flows , alternative 2"
replaceable type E=enumeration (:)"Substances in Fluid";
input Real c1[E], c2[E], mdot1 , mdot2;
output Real c3[E], mdot3;

protected
// No efficiency loss , since cc1 , cc2 , cc3
// may be removed during translation
Real cc1 [:]=c1 , cc2 [:]=c2 , cc3 [:]=c3;
final parameter Integer n = size(cc1 ,1);

equation
0 = mdot1 + mdot2 + mdot3;
zeros(n) = mdot1*cc1 + mdot2*cc2 + mdot3*cc3

end Mixing2;

]

4.9.5.1 Attributes of Enumeration Types

For each enumeration:

type E = enumeration(e1 , e2 , . . ., en);

a new simple type is conceptually defined as

type E // Note: Defined with Modelica syntax although predefined
EnumType ⟨value⟩; // Not an attribute; only accessed without dot -notation
parameter StringType quantity = "";
parameter EnumType min = e1, max = en;
parameter EnumType start; // Initial value
parameter BooleanType fixed = true , // default for parameter/constant;

66

Modelica Language Specification 3.7-dev
4.9. Predefined Types and Classes

= false; // default for other variables
constant EnumType e1 = . . .;
. . .
constant EnumType en = . . .;

equation
assert(min <= ⟨value⟩ and ⟨value⟩ <= max , "Variable value out of limit");

end E;

The following attributes shall be evaluable: quantity, and fixed.

The quantity-attribute is used to impose a constraint on connection sets, see section 9.3.

The fallback value is the min bound.

[Since the attributes and enumeration literals are on the same level, it is not possible to use the enumer-
ation attribute names (quantity, min, max, start, fixed) as enumeration literals.]

4.9.5.2 Conversion of Enumeration to String or Integer

The type conversion function Integer(⟨expression of enumeration type⟩) returns the ordinal num-
ber of the enumeration value E.enumvalue, to which the expression is evaluated, where Integer(E.e1) =
1, Integer(E.en) = n, for an enumeration type E = enumeration(e1, . . ., en).

String(E.enumvalue) gives the String representation of the enumeration value.

[Example: String(E.Small) gives "Small".]

See also section 3.7.1.

4.9.5.3 Conversion of Integer to Enumeration

Whenever an enumeration type is defined, a type conversion function with the same name and in the
same scope as the enumeration type is implicitly defined. This function can be used in an expression to
convert an integer value to the corresponding (as described in section 4.9.5.2) enumeration value.

For an enumeration type named EnumTypeName, the expression EnumTypeName(⟨Integer expression⟩)
returns the enumeration value EnumTypeName.e such that Integer(EnumTypeName.e) is equal to the
original integer expression.

Attempting to convert an integer argument that does not correspond to a value of the enumeration type
is an error.

[Example:

type Colors = enumeration (RED , GREEN , BLUE , CYAN , MAGENTA , YELLOW);

Converting from Integer to Colors:

c = Colors(i);
c = Colors (10); // An error

]

4.9.5.4 Unspecified Enumeration

An enumeration type defined using enumeration(:) is unspecified and can be used as a replaceable
enumeration type that can be freely redeclared to any enumeration type. There can be no enumeration
variables declared using enumeration(:) in a simulation model.

4.9.6 Attributes start, fixed, nominal, and unbounded

The attributes start and fixed define the initial conditions for a variable. fixed = false means an
initial guess, i.e., value may be changed by static analyzer. fixed = true means a required value. The
resulting consistent set of values for all model variables is used as initial values for the analysis to be
performed.

67

Modelica Language Specification 3.7-dev
4.9. Predefined Types and Classes

The attribute nominal gives the nominal value for the variable. The user need not set it even though the
standard does not define a default value. The lack of default allows the tool to propagate the nominal
attribute based on equations, and if there is no value to propagate the tool should use a non-zero value,
it may use additional information (e.g., min-attribute) to find a suitable value, and as last resort use
1. If unbounded = true it indicates that the state may grow without bound, and the error in absolute
terms shall be controlled.

[The nominal value can be used by an analysis tool to determine appropriate tolerances or epsilons, or
may be used for scaling. For example, the tolerance for an integrator could be computed as tol * (abs
(nominal) + (if x.unbounded then 0 else abs(x))). A default value is not provided in order that
in cases such as a = b, where b has a nominal value but not a, the nominal value can be propagated to
the other variable).]

4.9.7 Other Predefined Types

4.9.7.1 StateSelect

The predefined StateSelect enumeration type is the type of the stateSelect-attribute of the Real
type. It is used to explicitly control state selection.

type StateSelect = enumeration(
never "Do not use as state at all.",
avoid "Use as state , if it cannot be avoided (but only if variable appears
"

+ "differentiated and no other potential state with attribute "
+ "default , prefer , or always can be selected).",

default "Use as state if appropriate , but only if variable appears "
+ "differentiated.",

prefer "Prefer it as state over those having the default value "
+ "(also variables can be selected , which do not appear "
+ "differentiated).",

always "Do use it as a state."
);

4.9.7.2 AssertionLevel

The predefined AssertionLevel enumeration type is used together with assert, section 8.3.7.

type AssertionLevel = enumeration(warning , error);

4.9.7.3 Connections

The package Connections is used for over-constrained connection graphs, section 8.3.9.

4.9.7.4 ExternalObject

See section 12.9.7 for information about the predefined type ExternalObject.

4.9.7.5 Clock Types

See section 16.2.1 and section 16.3.

4.9.7.6 Graphical Annotation Types

A number of “predefined” record types and enumeration types for graphical annotations are described in
chapter 18. These types are not predefined in the usual sense since they cannot be referenced in ordinary
Modelica code, only within annotations, see section 18.3.1.

68

Chapter 5

Scoping, Name Lookup, and Flattening

This chapter describes the scope rules, and most of the name lookup and flattening of Modelica.

5.1 Flattening Context

Flattening is made in a context which consists of a modification environment (section 7.2.2) and an
ordered set of enclosing classes.

5.2 Enclosing Classes

The classes lexically enclosing an element form an ordered set of enclosing classes. A class defined inside
another class definition (the enclosing class) precedes its enclosing class definition in this set.

Enclosing all class definitions is an unnamed enclosing class that contains all top-level class definitions,
and not-yet read classes defined externally as described in section 13.4. The order of top-level class
definitions in the unnamed enclosing class is undefined.

During flattening, the enclosing class of an element being flattened is a partially flattened class.

[For example, this means that a declaration can refer to a name inherited through an extends-clause.]

[Example:

class C1 . . . end C1;
class C2 . . . end C2;
class C3
Real x = 3;
C1 y;
class C4
Real z;

end C4;
end C3;

The unnamed enclosing class of class definition C3 contains C1, C2, and C3 in arbitrary order. When
flattening class definition C3, the set of enclosing classes of the declaration of x is the partially flattened
class C3 followed by the unnamed enclosing class with C1, C2, and C3. The set of enclosing classes of z
is C4, C3 and the unnamed enclosing class in that order.]

5.3 Static Name Lookup

Names are looked up at class flattening to find names of base classes, component types, etc. Implicitly
defined names of record constructor functions and enumeration type conversion functions are ignored
during type name lookup. Names of record classes and enumeration types are ignored during function
name lookup.

69

Modelica Language Specification 3.7-dev
5.3. Static Name Lookup

[The reason to ignore the implicitly defined names is that a record and the implicitly created record
constructor function, see section 12.6, and an enumeration type and the implicitly created conversion
function (section 4.9.5.3), have the same name.]

5.3.1 Simple Name Lookup

A class declared with the keyword encapsulated (see class-definition in the grammar) is called an
encapsulated class. By restricting name lookup inside a restricted class in ways defined in this chapter,
the meaning of the class is made independent of where it is placed in a package hierarchy.

When an element, equation, or section is flattened, any simple name (not composed using dot notation) is
first looked up sequentially among iteration variables (if any; see below), and then looked up sequentially
in each member of the ordered set of instance scopes (see section 5.6.1.1) corresponding to lexically
enclosing classes until a match is found or an enclosing class is encapsulated. In the latter case the
lookup stops except for the predefined types, functions and operators defined in this specification. For
these cases the lookup continues in the global scope, where they are defined.

The iteration variables are the implicitly declared iteration variable(s) if inside the body of a for-loop,
section 8.3.2 and section 11.2.2, or the body of a reduction expression, section 10.3.4.

Reference to variables successfully looked up in an enclosing class is only allowed for variables declared as
constant. The values of modifiers are thus resolved in the instance scope of which the modifier appears;
if the use is in a modifier on a short class definition, see section 4.6.1.

This lookup in each instance scope is performed as follows:

� Among declared named elements (class-definition and component-declaration) of the class
(including elements inherited from base classes).

� Among the import names of qualified import-clauses in the instance scope. The import name of
import A.B.C; is C and the import name of import D = A.B.C; is D.

� Among the public members of packages imported via unqualified import-clauses in the instance
scope. It is an error if this step produces matches from several unqualified imports.

The import-clauses defined in inherited classes are ignored for the lookup, i.e., import-clauses are not
inherited.

5.3.2 Composite Name Lookup

For a composite name of the form A.B or A.B.C, etc. lookup is performed as follows:

� The first identifier (A) is looked up as defined above.

� If the first identifier denotes a component, the rest of the name (e.g., B or B.C) is looked up among
the declared named component elements of the component.

� If not found, and if the first identifier denotes a component and the composite name is used as a
function call, the lookup is also performed among the declared elements of the component, and
must find a non-operator function. Each leading element, including the first one, must in this case
be a scalar component, or component[j] where component is an array of components and the
indices j are evaluable expressions and component[j] is a scalar. All identifiers of the rest of the
name (e.g., B and B.C) must be classes. That is, the composite name is comprised of one or more
component names (optionally with indexing), followed by one or more class names.

� If the identifier denotes a class, that class is temporarily flattened (as if instantiating a component
without modifiers of this class, see section 7.2.2 and using the enclosing classes of the denoted
class). The rest of the name (e.g., B or B.C) is looked up among the declared named elements of
the temporary flattened class. The lookup will only find the element (assuming it exists) in the
following cases:

– If the class is declared as package or operator (but not operator record or operator
function) all elements can be found.

– An element can be found if it is declared as encapsulated.

70

Modelica Language Specification 3.7-dev
5.4. Inner Declarations - Instance Hierarchy Name Lookup

– A deprecated case is that if the class satisfies the requirements for a package (without being
declared as such), it is still treated as a package.

The class we look inside shall not be partial in a simulation model.

[The temporary class flattening performed for composite names follow the same rules as class flattening
of the base class in an extends-clause, local classes and the type in a component-clause, except that the
environment is empty. See also MoistAir2 example in section 7.3 for further explanations regarding
looking inside partial packages.]

[Example: Components and classes are part of the same name-space and thus a component cannot have
the same name as its class or the first part of the class-name as that would prevent lookup of the class
name.

model A
M M; // Illegal , component 'M' prevents finding class 'M'
P.Q P; // Illegal , component 'P' prevents finding package 'P'
.R R; // Legal , see next section
S.Q Q; // Legal

Y a; // Illegal , component 'Y' (below) prevents finding class 'Y'
Y.X b; // Illegal , component 'Y' (below) prevents finding package 'Y'
.Y c; // Legal , see next section
Real Y;

end A;

]

[Note that an operator class may only contain declarations of functions and thus fulfills the requirements
for a package (see section 4.7). In practice, the non-deprecated rules imply that we can call Complex.
'-'.negate and Complex.'+' for the example in section 14.7. This requires that operator '-' and
operator function '+' are declared as encapsulated as in the example.]

5.3.3 Global Name Lookup

For a name starting with dot, e.g., .A (or .A.B, .A.B.C etc.) lookup is performed as follows:

� The first identifier (A) is looked up in the global scope. This is possible even if the class is encap-
sulated and import-clauses are not used for this. If there does not exist a class A in global scope
this is an error.

� If the name is simple then the class A is the result of lookup.

� If the name is a composite name then the class A is temporarily flattened with an empty environment
(i.e., no modifiers, see section 7.2.2 and using the enclosing classes of the denoted class). The rest
of the name (e.g., B or B.C) is looked up among the declared named elements of the temporary
flattened class. If the class does not satisfy the requirements for a package, the lookup is restricted
to encapsulated elements only. The class we look inside shall not be partial.

[The package-restriction ensures that global name lookup of component references can only find global
constants.]

5.3.4 Lookup of Imported Names

See section 13.2.1.

5.4 Inner Declarations - Instance Hierarchy Name Lookup

An element declared with the prefix outer references an element instance with the same name but using
the prefix inner which is nearest in the enclosing instance hierarchy of the outer element declaration.

Outer component declarations shall not have modifications (including binding equations). Outer class
declarations should be defined using short-class definitions without modifications. However, see also
section 5.5.

71

Modelica Language Specification 3.7-dev
5.4. Inner Declarations - Instance Hierarchy Name Lookup

If the outer component declaration is a disabled conditional component (section 4.4.5) it is also ignored
for the automatic creation of inner component (neither causing it; nor influencing the type of it).

An outer element reference in a simulation model requires that one corresponding inner element dec-
laration exists or can be created in a unique way:

� If there are two (or more) outer declarations with the same name, both lacking matching inner
declarations, and the outer declarations are not of the same class it is an error.

� If there is one (or more) outer declarations of a partial class it is an error.

� In other cases, i.e., if a unique non-partial class is used for all outer declarations of the same name
lacking a matching inner declaration, then an inner declaration of that class is automatically added
at the top of the model and a diagnostic is given.

� The annotations defined in section 18.10 does not affect this process, other than that missingInnerMessage
can be used for the diagnostic (and possibly error messages).

An outer element component may be of a partial class (but the referenced inner component must be
of a non-partial class).

[inner/outer components may be used to model simple fields, where some physical quantities, such as
gravity vector, environment temperature or environment pressure, are accessible from all components
in a specific model hierarchy. Inner components are accessible throughout the model, if they are not
“shadowed” by a corresponding inner declaration in a more deeply nested level of the model hierarchy.]

[Example: Simple Example:

class A
outer Real T0;
. . .

end A;
class B

inner Real T0=1;
A a1, a2; // B.T0, B.a1.T0 and B.a2.T0 will have the same value
A a3(T0=4); // Illegal as T0 is an outer variable.
. . .

end B;

More complicated example:

class A
outer Real TI;
class B
Real TI;
class C
Real TI;
class D

outer Real TI;
end D;
D d;

end C;
C c;

end B;
B b;

end A;

class E
inner Real TI;
class F

inner Real TI;
class G
Real TI;
class H
A a;

end H;

72

Modelica Language Specification 3.7-dev
5.4. Inner Declarations - Instance Hierarchy Name Lookup

H h;
end G;
G g;

end F;
F f;

end E;

class I
inner Real TI;
E e;
// e.f.g.h.a.TI , e.f.g.h.a.b.c.d.TI , and e.f.TI is the same variable
// But e.f.TI , e.TI and TI are different variables
A a; // a.TI, a.b.c.d.TI, and TI is the same variable

end I;

]

The inner component shall be a subtype of the corresponding outer component.

[If the two types are not identical, the type of the inner component defines the instance and the outer
component references just part of the inner component.]

[Example:

class A
inner Real TI;
class B

outer Integer TI; // error , since A.TI is no subtype of A.B.TI
end B;

end A;

]

5.4.1 Field Functions Using Inner/Outer

[Inner declarations can be used to define field functions, such as position dependent gravity fields, e.g.:

partial function A
input Real u;
output Real y;

end A;

function B // B is a subtype of A
extends A;

algorithm
. . .

end B;

class D
outer function fc = A;
. . .

equation
y = fc(u);

end D;

class C
inner function fc = B; // define function to be actually used
D d; // The equation is now treated as y = B(u)

end C;

]

73

Modelica Language Specification 3.7-dev
5.5. Simultaneous Inner/Outer Declarations

5.5 Simultaneous Inner/Outer Declarations

An element declared with both the prefixes inner and outer conceptually introduces two declarations
with the same name: one that follows the above rules for inner and another that follows the rules for
outer.

[Local references for elements with both the prefix inner and outer references the outer element. That
in turn references the corresponding element in an enclosing scope with the prefix inner.]

Modifications of elements declared with both the prefixes inner and outer may have modifications,
those modifications are only applied to the inner declaration.

[Example:

class A
outer parameter Real p=2; // error , since modification

end A;

Intent of the following example: Propagate enabled through the hierarchy, and also be able to disable
subsystems locally.

model ConditionalIntegrator "Simple differential equation if isEnabled"
outer Boolean isEnabled;
Real x(start = 1);

equation
der(x) = if isEnabled then -x else 0;

end ConditionalIntegrator;

model SubSystem "Subsystem that enables its conditional integrators"
Boolean enableMe = time <= 1;
// Set inner isEnabled to outer isEnabled and enableMe
inner outer Boolean isEnabled = isEnabled and enableMe;
ConditionalIntegrator conditionalIntegrator;
ConditionalIntegrator conditionalIntegrator2;

end SubSystem;

model System
SubSystem subSystem;
inner Boolean isEnabled = time >= 0.5;
// subSystem.conditionalIntegrator.isEnabled will be
// 'isEnabled and subSystem.enableMe '

end System;

]

5.6 Flattening Process

In order to guarantee that elements can be used before they are declared and that elements do not
depend on the order of their declaration (section 4.3) in the enclosing class, the flattening proceeds in
the following two major steps:

1. Instantiation process

2. Generation of the flat equation system

The result is an equation system of all equations/algorithms, initial equations/algorithms and instances
of referenced functions. Modifications of constants, parameters and variables are included in the form of
equations.

The constants, parameters and variables are defined by globally unique identifiers and all references are
resolved to the identifier of the referenced variable. No other transformations are performed.

74

Modelica Language Specification 3.7-dev
5.6. Flattening Process

5.6.1 Instantiation

The instantiation is performed in two steps. First a class tree is created and then from that an instance
tree for a particular model is built up. This forms the basis for derivation of the flat equation system.

An implementation may delay and/or omit building parts of these trees, which means that the different
steps can be interleaved. If an error occurs in a part of the tree that is not used for the model to be
instantiated the corresponding diagnostics can be omitted (or be given). However, errors that should
only be reported in a simulation model must be omitted there, since they are not part of the simulation
model.

5.6.1.1 The Class Tree

All necessary libraries including the model which is to be instantiated are loaded (e.g., from a file system)
and form a so called class tree. This tree represents the syntactic information from the class definitions.
It contains also all modifications at their original locations in syntactic form. The built-in classes are
put into the unnamed root of the class tree.

[The class tree is built up directly during parsing of the Modelica texts. For each class a local tree is
created which is then merged into the one big tree, according to the location of the class in the class
hierarchy. This tree can be seen as the abstract syntax tree (AST) of the loaded libraries.]

5.6.1.2 The Instance Tree

The output of the instantiation process is an instance tree. The instance tree consists of nodes repre-
senting the elements of a class definition from the class tree. For a component the subtree of a particular
node is created using the information from the class of the component-clause and a new modification
environment as result of merging the current modification environment with the modifications from the
current element declaration (see section 7.2.3).

The instance tree has the following properties:

� It contains the instantiated elements of the class definitions, with redeclarations taken into account
and merged modifications applied.

� Each instance knows its source class definition from the class tree and its modification environment.

� Each modification knows its instance scope.

The instance tree is used for lookup during instantiation. To be prepared for that, it has to be based on
the structure of the class tree with respect to the class definitions. The built-in classes are instantiated
and put in the unnamed root prior to the instantiation of the user classes, to be able to find them.

[The existence of the two separate trees (instance tree and class tree) is conceptual. Whether they really
exist or are merged into only one tree or the needed information is held completely differently is an
implementation detail. It is also a matter of implementation to have only these classes instantiated
which are needed to instantiate the class of interest.]

A node in the instance tree is the instance scope for the modifiers and elements syntactically defined in
the class it is instantiated from. The instance scope is the starting point for name lookup.

[If the name is not found the lookup is continued in the instance scope corresponding to the lexically
enclosing class. extends-clauses are treated as unnamed nodes in the instance tree – when searching for
an element in an instance scope the search also recursively examines the elements of the extends-clauses.
Except that inherited import-clauses are ignored.]

5.6.1.3 The Instantiation Procedure

The instantiation is a recursive procedure with the following inputs:

� the class to be instantiated (current class)

� the modification environment with all applicable redeclarations and merged modifications (initially
empty)

� a reference to the node of the instance tree, which the new instance should go into (parent instance)

75

Modelica Language Specification 3.7-dev
5.6. Flattening Process

The instantiation starts with the class to be instantiated, an empty modification environment, and an
unnamed root node as parent node.

During instantiation all lookup is performed using the instance tree, starting from the instance scope of
the current element. References in modifications and equations are resolved later (during generation of
flat equation system) using the same lookup.

5.6.1.4 Steps of Instantiation

The element itself A partially instantiated class or component is an element that is ready to be
instantiated; a partially instantiated element (i.e., class or component) is comprised of a reference to the
original element (from the class tree) and the modifiers for that element (including a possible redeclara-
tion).

The possible redeclaration of the element itself takes effect.

The class of a partially instantiated component is found in the instance tree (using the redeclaration if
any), modifiers merged to that class forming a new partially instantiated class that is instantiated as
below.

The local contents of the element For local classes and components in the current class, instance
nodes are created and inserted into the current instance. Modifiers (including class redeclarations) are
merged and associated with the instance and the element is partially instantiated.

[The partially instantiated elements are used later for lookup during the generation of the flat equation
system and are instantiated fully, if necessary, using the stored modification environment.]

Equations, algorithms, and annotations of the class and the component declaration are copied to the
instance without merging.

[The annotations can be relevant for simulations, e.g., annotations for symbolic processing (annota-
tion 18.1), simulation experiments (annotation 18.2) or functions (section 12.7 and section 12.9).]

The extends-clauses are not looked up, but empty extends-clause nodes are created and inserted into
the current instance (to be able to preserve the declaration order of components).

The inherited contents of the element Classes of extends-clauses of the current class are looked
up in the instance tree, modifiers (including redeclarations) are merged, the contents of these classes are
partially instantiated using the new modification environment, and are inserted into an extends-clause
node, which is an unnamed node in the current instance that only contains the inherited contents from
that base class.

The classes of extends-clauses are looked up before and after handling extends-clauses; and it is an
error if those lookups generate different results.

At the end, the current instance is checked whether their children (including children of extends-clauses)
with the same name are identical and only the first one of them is kept. It is an error if they are not
identical.

[Only keeping the first among the children with the same name is important for function arguments where
the order matters.]

Recursive instantiation of components Components (local and inherited) are recursively instan-
tiated.

[Example: As an example, consider:

model M
model B
A a;
replaceable model A = C;
type E = Boolean;

end B;
B b(redeclare model A = D (p=1));
partial model C

76

Modelica Language Specification 3.7-dev
5.6. Flattening Process

E e;
end C;

model D
extends C;
parameter E p;
type E = Integer;

end D;

type E = Real;
end M;

To recursively instantiate M allowing the generation of flat equation system we have the following steps
(not including checks):

1. Instantiate M, which partially instantiates B, b, C, D, and E.

2. Instantiate M.b:

2.1. First find the class B in M (the partially instantiated elements have correct name allowing
lookup)

2.2. Instantiate the partially instantiated M.B with the modifier redeclare model A=D(p=1).

2.3. Partially instantiate M.b.a (no modifier), and M.b.A (with modifier =D(p=1)).

3. Instantiate M.b.a:

3.1. First find the class A in M.b (the partially instantiated elements have correct name allowing
lookup).

3.2. Instantiate the partially instantiated M.b.A with the modifier =D(p=1).

3.2.1. Find the base class =D from the modifier. This performs lookup for D in M, and finds the
partially instantiated class D.

3.2.2. Instantiate the base class M.D with modifier p=1, and insert as unnamed node in M.b.A.

3.2.2.1. Partially instantiate the component p with modifier =1.

3.2.2.2. Find the base class C in M.D. Since there is no local element called C the search is
then continued in M and finds the partially instantiated class M.C.

3.2.2.3. Instantiate the base class M.C as below.

4. Instantiate the base class M.C inserting the result into unnamed node in M.b.a:

4.1. Partially instantiate e.

4.2. Instantiate e which requires finding E. First looking for E in the un-named node for extends
M.C, and, since there is no local element E the search is then continued in M (which lexically
encloses M.C) and finds E class inheriting from Real. The e is then instantiated using class E
inheriting from Real.

5. Instantiate M.b.a.p:

5.1. First the class E in M.b.a finding E class inheriting from Integer.

5.2. Instantiate the M.b.a.p using the class E inheriting from Integer with modifier =1.

5.3. Instantiate the base class Integer with modifier =1, and insert as unnamed node in M.b.a.p.

An implementation can use different heuristics to be more efficient by re-using instantiated elements as
long as the resulting flat equation system is identical.

Note that if D was consistently replaced by A in the example above the result would be identical (but harder
to read due to two different classes called A).]

77

Modelica Language Specification 3.7-dev
5.6. Flattening Process

5.6.2 Generation of the Flat Equation System

During this process, all references by name in conditional declarations, modifications, dimension defini-
tions, annotations, equations and algorithms are resolved to the real instance to which they are referring
to, and the names are replaced by the global unique identifier of the instance.

[This identifier is normally constructed from the names of the instances along a path in the instance tree
(and omitting the unnamed nodes of extends-clauses), separated by dots. Either the referenced instance
belongs to the model to be simulated the path starts at the model itself, or if not, it starts at the unnamed
root of the instance tree, e.g., in case of a constant in a package.]

[To resolve the names, a name lookup using the instance tree is performed, starting at the instance scope
(unless the name is fully qualified) of the modification, algorithm or equation. If it is not found locally the
search is continued at the instance of the lexically enclosing class of the scope (this is normally not equal
to the parent of the current instance), and then continued with their parents as described in section 5.3.
If the found component is an outer declaration, the search is continued using the direct parents in the
instance tree (see section 5.4). If the lookup has to look into a class which is not instantiated yet (or
only partially instantiated), it is instantiated in place.]

The flat equation system consists of a list of variables with dimensions, flattened equations and algo-
rithms, and a list of called functions which are flattened separately. A flattened function consists of an
algorithm or external-clause and top-level variables (variables directly declared in the function or one
of its base classes) – which recursively can contain other variables; the list of non-top-level variables is
not needed.

The instance tree is recursively walked through as follows for elements of the class (if necessary a partially
instantiated component is first instantiated):

� At each visited component instance, the name is inserted into the variables list. Then the condi-
tional declaration expression is evaluated if applicable.

– The variable list is updated with the actual instance

– The variability information and all other properties from the declaration are attached to this
variable.

– Dimension information from the declaration and all enclosing instances are resolved and at-
tached to the variable to define their complete dimension.

– If it is of record or simple type (Boolean, Integer, enumeration, Real, String, Clock,
ExternalObject):

* In the modifications of value attribute references are resolved using the instance scope of
the modification. An equation is formed from a reference to the name of the instance and
the resolved modification value of the instance, and included into the equation system.
Except if the value for an element of a record is overridden by the value for an entire
record; section 7.2.3.

– If it is of simple type (Boolean, Integer, enumeration, Real, String, Clock, ExternalObject
):

* In the modifications of non-value attributes, e.g., start, fixed etc. references are resolved
using the instance scope of the modification. An equation is formed from a reference to
the name of the instance appended by a dot and the attribute name and the resolved
modification value of the instance, and included into the equation system.

– If it is of a non-simple type the instance is recursively handled.

� If there are equation or algorithm sections in the class definition of the instance, references are
resolved using the instance scope of the instance and are included in the equation system. Some
references – in particular to non simple, non record objects like connectors in connect-equations
and states in transition-equations are not resolved yet and handled afterwards.

� Instances of local classes are ignored.

� The unnamed nodes corresponding to extends-clauses are recursively handled.

78

Modelica Language Specification 3.7-dev
5.6. Flattening Process

� If there are function calls encountered during this process, the call is filled up with default arguments
as defined in section 12.4.1. These are built from the modifications of input arguments which are
resolved using their instance scope. The called function itself is looked up in the instance tree. All
used functions are flattened and put into the list of functions.

� Conditional components with false condition are removed afterwards and they are not part of the
simulation model.

[Thus, e.g., parameters don’t need values in them. However, type-error can be detected.]

� Each reference is checked, whether it is a valid reference, e.g., the referenced object belongs to
or is an instance, where all existing conditional declaration expressions evaluate to true or it is a
constant in a package.

[Conditional components can be used in connect-equations, and if the component is conditionally
disabled the connect-equation is removed.]

This leads to a flattened equation system, except for connect- and transition-equations. These have
to be transformed as described in chapter 9 and chapter 17. This may lead to further changes in the
instance tree (e.g., from expandable connectors (section 9.1.3)) and additional equations in the flattened
equation system (e.g., connection equations (section 9.2), generated equations for state machine semantics
(section 17.3.4)).

[After flattening, the resulting equation system is self contained and covers all information needed to
transform it to a simulatable model, but the class and instance trees are still needed: in the transformation
process, there might be the need to instantiate further functions, e.g., from derivative annotation or
from inverse annotation etc., on demand.]

79

Chapter 6

Interface or Type Relationships

A class or component, e.g., denoted A, can in some cases be used at a location designed for another class
or component, e.g., denoted B. In Modelica this is the case for replaceable classes (see section 7.3) and
for inner/outer elements (see section 5.4). Replaceable classes are the primary mechanism to create
very flexible models. In this chapter, the precise rules are defined when A can be used at a location
designed for B. The restrictions are defined in terms of compatibility rules (section 6.4 and section 6.5)
between “interfaces” (section 6.2); this can also be viewed as sub-typing (section 6.2).

6.1 Interface Terminology

In this chapter, two kinds of terminology are used for identical concepts to get better understanding
(e.g., by both engineers and computer scientists). A short summary of the terms is given in the following
table. The details are defined in the rest of this chapter.

Definition 6.1. Type or interface. The “essential” part of the public declaration sections of a class
that is needed to decide whether A can be used instead of B.

[E.g., a declaration Real x is part of the type (also called interface), but import A is not.]

Definition 6.2. Class type or inheritance interface. The “essential” part of the public and pro-
tected declaration sections of a class that is needed to decide whether A can be used instead of B. The class
type, also called inheritance interface, is needed when inheritance takes place, since then the protected
declarations have to be taken into account.

Definition 6.3. Subtype or compatible interface. A is a subtype of B, or equivalently, the interface
of A is compatible to the interface of B, if the “essential” part of the public declaration sections of B is
also available in A.

[E.g., if B has a declaration Real x, this declaration must also be present in A. If A has a declaration
Real y, this declaration may be present in B.]

If A is a subtype of B, then B is said to be a supertype of A.

Definition 6.4. Restricted subtype or plug compatible interface. A is a restricted subtype of B,
or equivalently, the interface of A is plug compatible to the interface of B, if A is a subtype of B and if
connector components in A that are not in B, are default connectable.

[E.g., it is not allowed that these connectors have variables with the input prefix, because then they must
be connected.]

A model or block A cannot be used instead of B, if the particular situation does not allow to make a
connection to these additional connectors. In such a case the stricter plug compatible is required for a
redeclaration.

Definition 6.5. Function subtype or function compatible interface. A is a function subtype of
B, or equivalently, the interface of A is function compatible to the interface of B, if A is a subtype of B

80

Modelica Language Specification 3.7-dev
6.2. The Concepts of Type, Interface and Subtype

and if the additional arguments of function A that are not in function B are defined in such a way, that
A can be called at places where B is called.

[E.g., an additional argument must have a default value.]

6.2 The Concepts of Type, Interface and Subtype

A type can conceptually be viewed as a set of values. When we say that the variable x has the type Real,
we mean that the value of x belongs to the set of values represented by the type Real, i.e., roughly the
set of floating point numbers representable by Real, for the moment ignoring the fact that Real is also
viewed as a class with certain attributes. Analogously, the variable b having Boolean type means that
the value of b belongs to the set of values {false, true}. The built-in types Real, Integer, String,
Boolean are considered to be distinct types.

The subtype relation between types is analogous to the subset relation between sets. A type A1 being a
subtype of type A means that the set of values corresponding to type A1 is a subset of the set of values
corresponding to type A.

The type Integer is not a subtype of Real in Modelica even though the set of primitive integer values is
a subset of the primitive real values since there are some attributes of Real that are not part of Integer
(section 4.9).

The concept of interface as defined in section 6.3 and used in this document is equivalent to the notion
of type based on sets in the following sense:

An element is characterized by its interface defined by some attributes (section 6.3). The type of the
element is the set of values having the same interface, i.e., the same attributes.

A subtype A1 in relation to another type A, means that the elements of the set corresponding to A1 is
a subset of the set corresponding to A, characterized by the elements of that subset having additional
properties.

[Example: A record R: record R Boolean b; Real x; end R;

Another record called R2: record R2 Boolean b; Real x; Real y; end R2;

An instance r: R r;

An instance r2: R2 r2;

The type R of r can be viewed as the set of all record values having the attributes defined by the interface
of R, e.g., the infinite set {R(b=false, x=1.2), R(b=false, x=3.4), R(b=true, x=1.2), R(b=true,
x=1.2, y=2), R(b=true, x=1.2, a=2), . . .}. The statement that r has the type (or interface) R means
that the value of r belongs to this infinite set.

The type R2 is a subtype of R since its instances fulfill the additional property of having the component
Real y; in all its values.

Type R: Records with at least
components named x and b

instance r

Type R2: Records with at least
components named x, b and y

instance r2

Figure 6.1: The type R can be defined as the set of record values containing x and b. The subtype
R2 is the subset of values that all contain x, b, and y.

81

Modelica Language Specification 3.7-dev
6.3. Interface or Type

]

6.3 Interface or Type

Based on a flattened class or component we can construct an interface for that flattened class or compo-
nent. The interface or type (the terms interface and type are equivalent and can be used interchangeably,
and are different from inheritance interface and class type) is defined as the following information about
the flattened element itself:

� Whether it is replaceable or not.

� Whether the class itself or the class of the component is transitively non-replaceable (section 6.3.1),
and if not, the reference to the replaceable class it refers to.

� Whether it is a component or a class.

� Additional information about the element:

– The flow or stream prefix.

– Declared variability (constant, parameter, discrete).

– The prefixes input and output.

– The prefixes inner and/or outer.

– Whether the declaration is final, and in that case its semantics contents.

– Array sizes (if any).

– Condition of conditional components (if any).

– Which kind of specialized class.

– For an enumeration type or component of enumeration type the names of the enumeration
literals in order.

– Whether it is a built-in type and the built-in type (RealType, IntegerType, StringType or
BooleanType).

� Only for an operator record class and classes derived from ExternalObject: the full name of
the operator record base class (i.e., the one containing the operations), or the derived class. See
chapter 14 and section 12.9.7.

The following item does not apply for an operator record class or class derived from ExternalObject
, since the type is already uniquely defined by the full name.

� For each named public element of the class or component (including both local and inherited named
elements) a tuple comprised of:

– Name of the element.

– Interface or type of the element.

[This might have been modified by modifiers and is thus not necessarily identical to the interface
of the original declaration.]

The corresponding constraining interface is constructed based on the constraining type (section 7.3.2) of
the declaration (if replaceable – otherwise same as actual type) and with the constraining interface for
the named elements.

In a class all references to elements of that class should be limited to their constraining interface.

[The constraining interface consists of only the public elements, and if the declaration is replaceable the
element is limited to the constraining interface.]

[The public interface does not contain all of the information about the class or component. When using
a class as a base class we also need protected elements, and for internal type-checking we need, e.g.,
import-elements. However, the information is sufficient for checking compatibility and for using the
class to flatten components.]

82

Modelica Language Specification 3.7-dev
6.3. Interface or Type

6.3.1 Transitively Non-Replaceable

[In several cases it is important that no new elements can be added to the interface of a class, especially
considering short class definitions. Such classes are defined as transitively non-replaceable.]

A class reference is transitively non-replaceable iff (i.e., if and only if) all parts of the name satisfy the
following:

� If the class definition is long it is transitively non-replaceable if not declared replaceable.

� If the class definition is short (i.e., class A = P.B) it is transitively non-replaceable if it is non-
replaceable and equal to class reference (P.B) that is transitively non-replaceable.

[According to section 7.1.4, for a hierarchical name all parts of the name must be transitively non-
replaceable, i.e., in extends A.B.C this implies that A.B.C must be transitively non-replaceable, as well
as A and A.B, with the exception of the class extends redeclaration mechanism see section 7.3.1.]

6.3.2 Inheritance Interface or Class Type

For inheritance, the interface also must include protected elements; this is the only change compared to
above.

Based on a flattened class we can construct an inheritance interface or class type for that flattened class.
The inheritance interface or class type is defined as the following information about the flattened element
itself:

� Whether it is replaceable or not.

� Whether the class itself or the class of the component is transitively non-replaceable (section 6.3.1),
and if not the reference to replaceable class it refers to.

� For each named element of the class (including both local and inherited named elements) a tuple
comprised of:

– Name of the element.

– Whether the element is component or a class.

– For elements that are classes: Inheritance interface or class type of the element.

[This might have been modified by modifiers and is thus not necessarily identical to the interface
of the original declaration.]

– For elements that are components: interface or type of the element.

[This might have been modified by modifiers and is thus not necessarily identical to the interface
of the original declaration.]

� Additional information about the element:

– The flow or stream prefix.

– Declared variability (constant, parameter, discrete).

– The prefixes input and output.

– The prefixes inner and/or outer.

– Whether the declaration is final, and in that case its semantics contents.

– Array sizes (if any).

– Condition of conditional components (if any).

– Which kind of specialized class.

– For an enumeration type or component of enumeration type the names of the enumeration
literals in order.

– Whether it is a built-in type and the built-in type (RealType, IntegerType, StringType or
BooleanType).

83

Modelica Language Specification 3.7-dev
6.4. Interface Compatibility or Subtyping

– Visibility (public or protected).

6.4 Interface Compatibility or Subtyping

An interface of a class or component A is compatible with an interface of a class or component B (or the
constraining interface of B), or equivalently that the type of A is a subtype of the type of B, iff:

� A is a class if and only if B is a class (and thus: A is a component if and only if B is a component).

� If A has an operator record base class then B must also have one and it must be the same. If A
does not have an operator record base class then B shall not have one. See chapter 14.

� If A is derived from ExternalObject, then B must also be derived from ExternalObject and have
the same full name. If A is not derived from ExternalObject then B shall not be derived from
ExternalObject. See section 12.9.7.

� If B is not replaceable then A shall not be replaceable.

� If B is transitively non-replaceable then A must be transitively non-replaceable (section 6.3.1). For
all elements of the inheritance interface of B there must exist a compatible element with the same
name and visibility in the inheritance interface of A. The interface of A shall not contain any other
elements.

[We might even extend this to say that A and B should have the same contents, as in the additional
restrictions below.]

� If B is replaceable then for all elements of the component interface of B there must exist a plug-
compatible element with the same name in the component interface of A.

� If B is neither transitively non-replaceable nor replaceable then A must be linked to the same class,
and for all elements of the component interface of B there must thus exist a plug-compatible element
with the same name in the component interface of A.

� Additional restrictions on the additional information. These elements should either match or have
a natural total order:

– If B is a non-replaceable long class definition A must also be a long class definition.

– The flow or stream prefix should be matched for compatibility.

– Declared variability is ordered constant < parameter < discrete < continuous-time (Real
without prefix), and A is only compatible with B if the declared variability in A is less than or
equal the variability in B.

[For a redeclaration of an element the variability prefix is as default inherited by the redecla-
ration (i.e., no need to repeat parameter when redeclaring a parameter).]

– The input and output prefixes must be matched. This ensures that the rules regarding
inputs/outputs for matching connectors and (non-connector inputs) are preserved, as well as
the restriction on blocks.

[For a redeclaration of an element the input or output prefix is inherited from the original
declaration.]

– The inner and/or outer prefixes should be matched.

[For a redeclaration of an element the inner and/or outer prefixes are inherited from the
original declaration (since it is not possible to have inner and/or outer as part of a redeclare).]

– If B is final A must also be final and have the same semantic contents.

– The number of array dimensions in A and B must be matched.

– Conditional components are only compatible with conditional components. The conditions
must have equivalent contents (similar to array sizes, except there is no : for conditional
components).

[For a redeclaration of an element the conditional part is inherited from the original.]

84

Modelica Language Specification 3.7-dev
6.5. Plug-Compatibility or Restricted Subtyping

– A function class is only compatible with a function class, a package class only compatible
with a package class, a connector class only with a connector class, a model or block class
only compatible with a model or block class, and a type or record class only compatible
with a type or record class.

– If B is an enumeration type A must also be an enumeration type and vice versa. If B is an
enumeration type not defined as (:) then A must have the same enumeration literals in the
same order; if B is an enumeration type defined as (:) then there is no restriction on the
enumeration type A.

– If B is a built-in type then A must also be of the same built-in type and vice versa.

[Intuitively, that the type A is a subtype of the type of B means that all important elements of B are be
present in A.]

Plug-compatibility is a further restriction of compatibility (subtyping) defined in section 6.5, and further
restricted for functions, see section 6.6. For a replaceable declaration or modifier the default class must
be compatible with the constraining class.

For a modifier the following must apply:

� The modified element should exist in the element being modified.

� The modifier should be compatible with the element being modified, and in most cases also plug-
compatible, section 6.5.

[If the original constraining flat class is legal (no references to unknown elements and no illegal use of
class/component), and modifiers legal as above, then the resulting flat class will be legal (no references to
unknown elements and no illegal use of class/component and compatible with original constraining class)
and references refer to similar entities.]

6.5 Plug-Compatibility or Restricted Subtyping

[If a sub-component is redeclared, see section 7.3, it is impossible to connect to any new connector. A
connector with input prefix must be connected to, and since one cannot connect across hierarchies, one
should not be allowed to introduce such a connector at a level where a connection is not possible. Therefore
all public components present in the interface A that are not present in B must be connected by default.]

Definition 6.6. Plug-compatibility (= restricted subtyping). An interface A is plug-compatible
with (a restricted subtype of) an interface B (or the constraining interface of B) iff:

� A is compatible with (subtype of) B.

� All public components present in A but not in B must be default-connectable (as defined below).

Definition 6.7. Default connectable. A component of an interface is default-connectable iff:

� All of its components are default connectable.

� A connector component must not be an input.

[Otherwise a connection to the input will be missing.]

� A connector component must not be of an expandable connector class.

[The expandable connector does potentially have inputs.]

� A parameter, constant, or non-connector input must either have a binding equation or all of its
sub-components must have binding equations.

Based on the above definitions, there are the following restrictions:

� A redeclaration of an inherited top-level component must be compatible with (subtype of) the
constraining interface of the element being redeclared.

85

Modelica Language Specification 3.7-dev
6.6. Function-Compatibility or Function-Subtyping for Functions

� In all other cases redeclarations must be plug-compatible with the constraining interface of the
element being redeclared.

[The reason for the difference is that for an inherited top-level component it is possible to connect to the
additional connectors, either in this class or in a derived class.

Example:

partial model TwoFlanges
Modelica.Mechanics.Rotational.Interfaces.Flange_a flange_a;
Modelica.Mechanics.Rotational.Interfaces.Flange_b flange_b;

end TwoFlanges;

partial model FrictionElement
extends TwoFlanges;
. . .

end FrictionElement;

model Clutch "compatible - but not plug -compatible with FrictionElement"
Modelica.Blocks.Interfaces.RealInput pressure;
extends FrictionElement;
. . .

end Clutch;

model DriveLineBase
extends TwoFlanges;
Inertia J1;
replaceable FrictionElement friction;

equation
connect(flange_a , J1.flange_a);
connect(J1.flange_b , friction.flange_a);
connect(friction.flange_b , flange_b);

end DriveLineBase;

model DriveLine
extends DriveLineBase(redeclare Clutch friction);
Constant const;

equation
connect(const.y, frition.pressure);
// Legal connection to new input connector.

end DriveLine;

model UseDriveLine "illegal model"
DriveLineBase base(redeclare Clutch friction);
// Cannot connect to friction.pressure

end UseDriveLine;

If a subcomponent is redeclared, it is impossible to connect to any new connector. Thus any new con-
nectors must work without being connected, i.e., the default connection of flow variables. That fails for
inputs (and expandable connectors may contain inputs). For parameters and non-connector inputs it
would be possible to provide bindings in a derived class, but that would require hierarchical modifiers and
it would be bad modeling practice that a hierarchical modifier must be used in order to make a model
valid. A replaceable class might be used as the class for a sub-component, therefore plug-compatibility is
required not only for replaceable sub-components, but also for replaceable classes.]

6.6 Function-Compatibility or Function-Subtyping for Functions

[Functions may be called with either named or positional arguments, and thus both the name and order
is significant. If a function is redeclared, see section 7.3, any new arguments must have defaults (and be
at the end) in order to preserve the meaning of existing calls.]

Definition 6.8. Function-compatibility or function-subtyping for functions. A function class
A is function-compatible with or a function subtype of function class B iff (the terms function-compatible

86

Modelica Language Specification 3.7-dev
6.6. Function-Compatibility or Function-Subtyping for Functions

and function subtype of are synonyms and used interchangeably):

� A is compatible to (subtype of) B.

� All public input components of B have correspondingly named public input components of A in the
same order and preceding any additional public input components of A.

� All public output components of B have correspondingly named public output components of A in
the same order and preceding any additional public output components of A.

� A public input component of A must have a binding assignment if the corresponding named element
has a binding assignment in B.

� A public input component of A not present in B must have a binding assignment.

� If A is impure, then B must also be impure, compare section 12.3.

Based on the above definition the following restriction holds:

� The interface of a redeclared function must be function-compatible with or a function subtype of
the constraining interface of the function being redeclared.

Note that variability of function calls, see section 3.8.1, cannot be determined using just the interface
of a function, as the variabilities of default argument expressions are not expressed by the interface.
Hence a function redeclaration being function-compatible does not ensure that function calls will fulfill
variability requirements, and tools must therefore check variability requirements separately.

[Example: Demonstrating a redeclaration using a function-compatible function

function GravityInterface
input Modelica.Units.SI.Position position [3];
output Modelica.Units.SI.Acceleration acceleration [3];

end GravityInterface;

function PointMassGravity
extends GravityInterface;
input Modelica.Units.SI.Mass m;

algorithm
acceleration := -Modelica.Constants.G*m*position /(position*position)^1.5;

end PointMassGravity;

model Body
Modelica.Mechanics.MultiBody.Interface.Frame_a frame_a;
replaceable function gravity = GravityInterface;
constant Real failed [:] = gravity ({1, 0, 0}); // May fail

equation
frame_a.f = gravity(frame_a.r0);
// or gravity(position = frame_a.r0);
frame_a.t = zeros (3);

end Body;

model PlanetSimulation
parameter Modelica.Units.SI.Mass mSun = 2e30;
function sunGravity = PointMassGravity(m = mSun);
Body planet1(redeclare function gravity = sunGravity);
Body planet2(redeclare function gravity = PointMassGravity(m = 2e30));
. . .

end PlanetSimulation;

Note: PointMassGravity is not function-compatible with GravityInterface (no default for m), but
sunGravity inside PlanetSimulation is function-compatible with GravityInterface.

The constant failed in planet1, will violate variability constraints, whereas it will work in planet2.
The call gravity(frame_a.r0) will work in both of them.]

87

Modelica Language Specification 3.7-dev
6.7. Type Compatible Expressions

6.7 Type Compatible Expressions

Certain expressions consist of an operator applied to two or more subexpressions (A and B). This includes:

� if-expressions, e.g., if x then A else B.

� Array expressions, e.g., {A, B}

� Binary operators if both operands are of simple types, e.g., A + B. Binary operators for other
types are only defined for operator records, section 14.5, and do not necessarily require that the
operands are type compatible with each other.

If the subexpressions satisfy the following restrictions they are called type compatible expressions. Oth-
erwise the expression is illegal. The type of the full expression (e.g., if x then A else B) is also defined
below.

� If A is a record expression, B must also be a record expression with the same named elements. In
an expression that is not an array expression those elements must be type compatible. In an array
expression the two records may contain elements with different sizes, but apart from that they
must be type compatible. That generates a heterogenous array of records, see chapter 10. The
type of the full expression is a record comprised of named elements that are type compatible with
the corresponding named elements of both A and B.

� The rules for array expressions depend on the operation (the rules for binary operators are given
in section 10.6 and for array concatenation in section 10.4.2). The rules for the remaining case of
if-expressions and array-expressions are:

– If A is an array expression then B must also be an array expression, and ndims(A) = ndims(
B). The type of the full expression is an array expression with elements compatible with the
elements of both A and B. If both size(A) and size(B) are known and size(A) = size(B)
then this defines the size of the full expression, otherwise the size of the full expression is not
known until the expression is about to be evaluated. In case of an if-expression the size of
the full expression is defined based on the branch selected, and for other cases size(A) =
size(B) must hold at this point.

– If A is a scalar expression of a simple type B must also be a scalar expression of a simple type.

� If A is a Real expression then B must be a Real or Integer expression. The type of the full
expression is Real, compare section 10.6.13, unless the operator is a relational operator (section 3.5)
where the type of the full expression is Boolean.

� If A is an Integer expression then B must be a Real or Integer expression. For exponentiation and
division the type of the full expression is Real (even if both A and B are Integer) see section 10.6.7
and section 10.6.5, for relational operators the type of the full expression is Boolean. In other cases
the type of the full expression is Real or Integer (same as B), compare section 10.6.13.

� If A is a Boolean expression then B must be a Boolean expression and the type of the full expression
is Boolean.

� If A is a String expression then B must be a String expression and the type of the full expression
is String, unless the operator is a relational operator (section 3.5) where the type of the full
expression is Boolean.

� If A is an enumeration expression then B must be an enumeration expression and the type of the
full expression is enumeration expression, unless the operator is a relational operator (section 3.5)
where the type of the full expression is Boolean. The enumeration expressions must be defined in
terms of an enumeration type with the same enumeration literals in the same order.

� For array and if-expressions, if A has an operator record base class then B must also have an
operator record base class, and it must be the same, and otherwise neither A nor B may have an
operator record base class. This is also the operator record base class for the full expression,
e.g., for if (cond) then A else B.

� If A is derived from ExternalObject then B must also be derived from ExternalObject and they
must have the same full name; and otherwise neither A nor B may be derived from ExternalObject.

88

Modelica Language Specification 3.7-dev
6.7. Type Compatible Expressions

The common full name also defines the type of the full expression, e.g., for if (cond) then A
else B.

89

Chapter 7

Inheritance, Modification, and

Redeclaration

One of the major benefits of object-orientation is the ability to extend the behavior and properties of
an existing class. The original class, known as the base class, is extended to create a more specialized
version of that class, known as the derived class. In this process, the data and behavior of the original
class in the form of variable declarations, equations, and certain other contents are reused, or inherited,
by the derived class. In fact, the inherited contents is copied from the superclass into the derived class,
but before copying certain operations, such as type expansion, checking, and modification, are performed
on the inherited contents when appropriate. This chapter describes the inheritance concept in Modelica,
together with the related concepts modification and redeclaration.

7.1 Inheritance – Extends Clause

The class A is called a base class of B, if B extends A. The converse relation is then expressed as B being
a derived class of A, or as B being derived from A. This relation is specified by an extends-clause in B or
in one of B’s base classes. A class inherits all elements from its base classes, and may modify all non-final
elements inherited from base classes, as explained below.

The extends-clause is used to specify inheritance from a base class into an (enclosing) class containing
the extends-clause. It is an unnamed element of a class definition that uses a name and an optional
modification to specify a base class of the class defined using the class definition. The syntax of the
extends-clause is as follows:

extends-clause :
extends name [class-or-inheritance-modification] [annotation-clause]

The name of the base class is looked up in the partially flattened enclosing class (section 5.2) of the
extends-clause. If the optional class-or-inheritance-modification contains any inheritance-modification
the base class is then modified as described in section 7.4. The possibly modified found base class is
flattened with a new environment and the partially flattened enclosing class of the extends-clause. The
new environment is the result of merging

� arguments of all enclosing class environments that match names in the flattened base class

� a class-modification constructed from all argument of the inheritance-modification

in that order.

[Example:

class A
parameter Real a, b;

end A;

class B

90

Modelica Language Specification 3.7-dev
7.1. Inheritance – Extends Clause

extends A(b = 2);
end B;

class C
extends B(a = 1);

end C;

]

The elements of the flattened base class become elements of the flattened enclosing class, and are added
at the place of the extends-clause: specifically components and classes, the equation sections, algorithm
sections, optional external-clause, and the contents of the annotation at the end of the class, but
excluding import-clauses.

[From the example above we get the following flattened class:

class Cinstance
parameter Real a = 1;
parameter Real b = 2;

end Cinstance;

The ordering of the merging rules ensures that, given classes A and B defined above,

class C2
B bcomp(b = 3);

end C2;

yields an instance with bcomp.b = 3, which overrides b = 2.]

The declaration elements of the flattened base class shall either:

� Not already exist in the partially flattened enclosing class (i.e., have different names).

� The new element is a long form of redeclare or uses the class extends A syntax, see section 7.3.

� Be exactly identical to any element of the flattened enclosing class with the same name and the
same level of protection (public or protected) and same contents. In this case, the first element in
order (can be either inherited or local) is kept. It is recommended to give a warning for this case;
unless it can be guaranteed that the identical contents will behave in the same way.

Otherwise the model is incorrect.

[Clarifying order:

function A
input Real a;
input Real b;

end A;

function B
extends A;
input Real a;

end B;

The inputs of B are {a, b} in that order; the input Real a; is ignored.]

Equations of the flattened base class that are syntactically equivalent to equations in the flattened
enclosing class are discarded. This feature is deprecated, and it is recommended to give a warning
when discarding them and for the future give a warning about all forms of equivalent equations due to
inheritance.

[Equations that are mathematically equivalent but not syntactically equivalent are not discarded, hence
yield an overdetermined system of equations.]

7.1.1 Multiple Inheritance

Multiple inheritance is possible since multiple extends-clauses can be present in a class.

91

Modelica Language Specification 3.7-dev
7.1. Inheritance – Extends Clause

[As stated in section 5.6.1.4, it is illegal for an extends-clause to influence the lookup of the class name
of any extends-clause in the same class definition.]

7.1.2 Inheritance of Protected and Public Elements

If an extends-clause is used under the protected heading, all elements of the base class become protected
elements of the current class. If an extends-clause is a public element, all elements of the base class are
inherited with their own protection. The eventual headings protected and public from the base class
do not affect the consequent elements of the current class (i.e., headings protected and public are not
inherited).

7.1.3 Restrictions on the Kind of Base Class

Since specialized classes of different kinds have different properties, see section 4.7, only specialized
classes that are in some sense compatible to each other can be derived from each other via inheritance.
The following table shows which kind of specialized class can be used in an extends-clause of another
kind of specialized class (the grey cells mark the few exceptional cases, where a specialized class can be
derived from a specialized class of another kind):

Base Class
Derived

package operator function
operator

type record
operator expandable

connector block model class
Class function record connector

package yes yes
operator yes yes
function yes yes
operator

yes
function

yes yes

type yes yes
record yes yes

operator
yes

record
yes

expandable
yes

connector
yes

connector yes yes yes yes yes
block yes yes yes
model yes yes yes yes
class yes

If a derived class is inherited from another type of specialized class, then the result is a specialized class
of the derived class type.

[For example, if a block inherits from a record, then the result is a block.]

All specialized classes can be derived from class, provided that the resulting class fulfills the restriction
of the specialized class. A class may only contain class definitions, annotations, and extends-clauses
(having any other contents is deprecated).

[It is recommended to use the most specific specialized class.]

The specialized classes package, operator, function, type, record, operator record, and expandable
connector can only be derived from their own kind and from class.

[E.g., a package can only be base class for packages. All other kinds of classes can use the import-clause
to use the contents of a package.]

[Example:

record RecordA
. . .

end RecordA;

package PackageA
. . .

end PackageA;

package PackageB
extends PackageA; // fine

end PackageB;

92

Modelica Language Specification 3.7-dev
7.2. Modifications

model ModelA
extends RecordA; // fine

end ModelA;

model ModelB
extends PackageA; // error , inheritance not allowed

end ModelB;

]

7.1.4 Require Transitively Non-Replaceable

The class name used after extends for base classes and for constraining classes must use a class reference
considered transitively non-replaceable, see definition in section 6.3.1. For a replaceable component
declaration without constraining-clause the class must use a class reference considered transitively
non-replaceable.

[The requirement to use a transitively non-replaceable name excludes the long form of redeclare, i.e.,
redeclare model extends M . . . where M must be an inherited replaceable class.]

[The rule for a replaceable component declaration without constraining-clause implies that constraining
classes are always transitively non-replaceable – both if explicitly given or implicitly by the declaration.]

7.2 Modifications

A modification is part of an element. It modifies the instance generated by that element. A modifica-
tion contains element modifications (e.g., vcc(unit = "V") = 1000) and element-redeclarations (e.g.,
redeclare type Voltage = Real(unit="V")).

There are three kinds of constructs in the Modelica language in which modifications can occur:

� variable declarations

� short class definitions

� extends-clauses

A modifier modifies one or more declarations (definitions) from a class by changing some aspect(s) of
the declarations (definitions). The most common kind of modifier just changes the default value or the
start-attribute in a binding equation; the value and/or start-attribute should be compatible with the
variable according to section 6.7.

An element modification overrides the declaration equation in the class used by the instance generated
by the modified element.

[Example: Modifying the default start value of the altitude variable:

Real altitude(start = 59404);

]

A modification (e.g., C1 c1(x = 5)) is called a modification equation, if the modified variable (here:
c1.x) is a non-parameter variable.

[The modification equation is created, if the modified component (here: c1) is also created (see sec-
tion 4.6). In most cases a modification equation for a non-parameter variable requires that the variable
was declared with a declaration equation, see section 4.8; in those cases the declaration equation is re-
placed by the modification equation.]

A more dramatic change is to modify the type and/or the prefixes and possibly the dimension sizes of a
declared element. This kind of modification is called an element-redeclaration (section 7.3) and requires
the special keyword redeclare to be used in the modifier in order to reduce the risk for accidental
modeling errors. In most cases a declaration that can be redeclared must include the prefix replaceable

93

Modelica Language Specification 3.7-dev
7.2. Modifications

(section 7.3). The modifier value (and class for redeclarations) is found in the context in which the
modifier occurs, see also section 5.3.1.

[Example: Scope for modifiers:

model B
parameter Real x;
package Medium = Modelica.Media.PartialMedium;

end B;

model C
parameter Real x = 2;
package Medium = Modelica.Media.PartialMedium;
B b(x = x, redeclare package Medium = Medium);
// The 'x' and 'Medium ' being modified are declared in the model B.
// The modifiers '= x' and '= Medium ' are found in the model C.

end C;

model D
parameter Real x = 3;
package Medium = Modelica.Media.PartialMedium;
C c(b(x = x, redeclare package Medium = Medium));
// The 'x' and 'Medium ' being modified are declared in the model B.
// The modifiers '= x' and '= Medium ' are found in the model D.

end D;

]

When present, the description-string of a modifier overrides the existing description.

7.2.1 Syntax of Modifications and Redeclarations

The syntax is defined in the grammar, appendix A.2.5.

7.2.2 Modification Environment

The modification environment of a class contains arguments which modify elements of the class (e.g.,
parameter changes) when the class is flattened. The modification environment is built by merging class
modifications, where outer modifications override inner modifications.

[This should not be confused with inner outer prefixes described in section 5.4.]

7.2.3 Merging of Modifications

Merging of modifiers means that outer modifiers override inner modifiers. The merging is hierarchical,
and a value for an entire non-simple component overrides value modifiers for all components, and it is an
error if this overrides a final prefix for a component, or if value for a simple component would override
part of the value of a non-simple component. When merging modifiers each modification keeps its own
each prefix.

[Example: The following larger example demonstrates several aspects:

class C1
class C11
parameter Real x;

end C11;
end C1;

class C2
class C21

. . .
end C21;

end C2;

94

Modelica Language Specification 3.7-dev
7.2. Modifications

class C3
extends C1;
C11 t(x = 3); // ok , C11 has been inherited from C1
C21 u; // ok , even though C21 is inherited below
extends C2;

end C3;

The modification environment of the declaration of t is (x = 3).

The following example demonstrates overriding part of non-simple component:

record A
parameter Real x;
parameter Real y;

end A;

model B
parameter A a = A(2, 3);

end B;

model C
B b1(a(x = 4)); // Error: Cannot override value for a.x when a has a value.

end C;

The modification environment is built by merging class modifications, as shown by:

class C1
parameter Real a;

end C1;

class C2
parameter Real b;
parameter Real c;

end C2;

class C3
parameter Real x1; // No default value
parameter Real x2 = 2; // Default value 2
parameter C1 x3; // No default value for x3.a
parameter C2 x4(b = 4); // x4.b has default value 4
parameter C1 x5(a = 5); // x5.a has default value 5
extends C1; // No default value for inherited element a
extends C2(b = 6, c = 77); // Inherited b has default value 6

end C3;

class C4
extends C3(x2 = 22, x3(a = 33), x4(c = 44), x5 = x3 , a = 55, b = 66);

end C4;

Outer modifications override inner modifications, e.g., b = 66 overrides the nested class modification of
extends C2(b = 6). This is known as merging of modifications: merge((b = 66), (b = 6)) becomes
(b = 66).

A flattening of class C4 will give an object with the following variables:

95

Modelica Language Specification 3.7-dev
7.2. Modifications

Variable Default value

x1 none
x2 22
x3.a 33
x4.b 4
x4.c 44
x5.a x3.a
a 55
b 66
c 77

]

7.2.4 Single Modification

Two arguments of a modification shall not modify the same element, attribute, or description-string.
When using qualified names the different qualified names starting with the same identifier are merged
into one modifier. This merged modifier can be described as a purely syntactic rewriting to an equivalent
modifier, except in the case of replaceable redeclarations without a constraining type, see section 7.3.
The latter is described in the example below. If a modifier with a qualified name has the each or final
prefix, that prefix is only seen as applied to the final part of the name.

[Example:

class C1
Real x[3];

end C1;
class C2 = C1(x = ones (3), x = ones (3)); // Error: x designated twice
class C3

class C4
Real x;

end C4;
C4 a(final x.unit = "V", x.displayUnit = "mV", x = 5.0);
// Ok , different attributes designated (unit , displayUnit and value)
// identical to:
C4 b(x(final unit = "V", displayUnit = "mV") = 5.0));

C4 c(final x, final x.unit = "V", x.displayUnit = "mV");
// OK , different attributes and "final x" in itself is OK ,
// identical to (the final on unit is redundant):
C4 d(final x(final unit = "V", displayUnit = "mV"));

end C3;

The following examples are incorrect:

m1(r = 1.5, r = 1.6) // Multiple modifier for r (its value)
m1(r = 1.5, r = 1.5) // Multiple modifier for r (its value) - even if identical
m1(r.start = 2, r(start = 3)) // Multiple modifier for r.start
m1(x.r = 1.5 "x", x.r(start = 2.0) "y")) // Multiple description -string for x.r
m1(r = R(), r(y = 2)) // Multiple modifier for r.y - both direct value and

// part of record

The following examples are correct:

m1(r = 1.5, r(start = 2.0))
m1(r = 1.6, r "x")
m1(r = R(), r(y(min = 2)))

Modifiers can be merged for non-replaceable redeclarations, or replaceable redeclarations with a constrain-
ing type, see section 7.3.

model Test
model A

replaceable Real x = 1;

96

Modelica Language Specification 3.7-dev
7.2. Modifications

end A;

A a(redeclare Real x, x.start = 2);
// Identical to A a(redeclare Real x(start =2));
A a(redeclare replaceable Real x constrainedby Real , x.start = 2);
// Identical to A a(redeclare Real x constrainedby Real(start =2));

end Test;

For replaceable redeclarations without a constraining type the merging is not a local syntactic rewrite as
it requires the constraining type, see section 7.3.

model Test
partial model Base
parameter Real p;

end Base;

model Implementation
extends Base;
parameter Real q;

end Implementation;

model A
replaceable Base b constrainedby Base(p=1);

end A;

A a(redeclare replaceable Implementation b, b.q=1);
// This is treated the same as
// A a(redeclare replaceable Implementation b constrainedby Base(q=1));
// This is no longer a local syntactic rewrite as the constrainedby
// references the constraining class

end Test;

]

7.2.5 Modifiers for Array Elements

The following rules apply to modifiers:

� The each keyword on a modifier requires that it is applied in an array declaration/modification,
and the modifier is applied individually to each element of the enclosing array (with regard to the
position of each). In case of nested modifiers this implies it is applied individually to each element
of each element of the enclosing array; see example. If the modified element is a vector and the
modifier does not contain the each prefix, the modification is split such that the first element in the
vector is applied to the first element of the vector of elements, the second to the second element,
until the last element of the vector is applied to the last element of the array; it is an error if these
sizes do not match. Matrices and general arrays of elements are treated by viewing those as vectors
of vectors etc.

� If a nested modifier is split, the split is propagated to all elements of the nested modifier, and
if they are modified by the each keyword the split is inhibited for those elements. If the nested
modifier that is split in this way contains re-declarations that are split, it is illegal.

[Example:

model C
parameter Real a[3];
parameter Real d;

end C;

model B
C c[5](each a = {1, 2, 3}, d = {1, 2, 3, 4, 5});
parameter Real b = 0;

end B;

97

Modelica Language Specification 3.7-dev
7.2. Modifications

This implies c[i].a[j] = j and c[i].d = i.

model D
B b(each c.a = {3, 4, 5}, c.d = {2, 3, 4, 5, 6});
// Equivalent to:
B b2(c(each a = {3, 4, 5}, d = {2, 3, 4, 5, 6}));

end D;

This implies b.c[i].a[j] = 2+j and b.c[i].d = 1+i.

model E
B b[2](each c(each a = {1, 2, 3}, d = {1, 2, 3, 4, 5}), p = {1, 2});
// Without the first each one would have to use:
B b2[2](c(each a = {1, 2, 3}, d = fill({1, 2, 3, 4, 5}, 2)), p = {1, 2});

end E;

This implies b[k].c[i].a[j] = j, b[k].c[i].d = i, and b[k].p = k. For c.a the additional (outer)
each has no effect, but it is necessary for c.d.

Specifying array dimensions after the type works the same as specifying them after the variable name.

model F
Real fail1 [2](each start = {1, 2}); // Illegal
Real work1 [2](each start = 1); // Legal
Real [2] fail2(each start = {1, 2}); // Illegal
Real [2] work2(each start = 2); // Legal

end F;

]

7.2.6 Final Element Modification Prevention

An element defined as final by the final prefix in an element modification or declaration cannot be
modified by a modification or by a redeclaration. All elements of a final element are also final.

[Setting the value of a parameter in an experiment environment is conceptually treated as a modifica-
tion. This implies that a final modification equation of a parameter cannot be changed in a simulation
environment.]

[Example: Final component modification.

type Angle =
Real(final quantity = "Angle", final unit = "rad", displayUnit = "deg");

model TransferFunction
parameter Real b[:] = {1} "numerator coefficient vector";
parameter Real a[:] = {1, 1} "denominator coefficient vector";
. . .

end TransferFunction;

model PI "PI controller"
parameter Real k = 1 "gain";
parameter Real T = 1 "time constant";
TransferFunction tf(final b = k * {T, 1}, final a = {T, 0});

end PI;

model Test
PI c1(k = 2, T = 3); // fine , will indirectly change tf.b to 2 * {3, 1}
PI c2(tf(b = {1})); // error , b is declared as final

end Test;

]

[Example: Final class declaration.

model Test2

98

Modelica Language Specification 3.7-dev
7.2. Modifications

final model MyTF = TransferFunction(b = {1, 2});
/* Equivalently:
final model MyTF = TransferFunction(final a, final b = {1, 2});
*/
MyTF tf1; // fine
MyTF tf2(a = {1, 2}); // error , all elements in MyTF are final
model M = MyTF(a = {4}); // error , all elements in MyTF are final
model TFX

extends MyTF; // fine
Real foo = 1.0;

end TFX;
TFX tfx(foo = 2.0); // fine , foo is not from MyTF
TFX tfx2(a = {1, 3}); // error , all elements from MyTF are final
model TFX3 = TFX(a = {1, 4}); // error , all elements from MyTF are final

end Test2;

]

7.2.7 Removing Modifiers – break

Modifications may contain the special keyword break instead of an expression. The intention of break
is to remove the value.

The modifiers using break are merged using the same rule as other modifications, and follow the same
restrictions so they cannot override a final modifier. During flattening of an instantiated model, remaining
break modifications (i.e., the ones that are not further overriden) are treated as if the expression was
missing. The break modifier for a variable of a simple type can be applied to the value and/or to specific
attributes. Unless final was specified, it is possible to override even if no value is present, either because
there was no expression originally or because break overrides another break.

[In a dialog, a tool may hide the keyword break and show an empty input field, without the overriden
modification. It should also be possible to remove this modifier to restore the overriden modification.

There are also other uses of the keyword break, but importantly it is not an expression and thus it cannot
be used as a sub-expression.]

[Example: Remove unwanted defaults for parameters:

partial model PartialStraightPipe
parameter Real roughness = 2.5e-5 "Average height of surface
asperities";
parameter Real height_ab (unit = "m") = 0 "Height between a and b";
. . .

end PartialStraightPipe;

model StaticPipe
extends PartialStraightPipe;
parameter Real p_a_start = system.p_start;
. . .

end StaticPipe;

model MyPipe "Without defaults"
extends StaticPipe(
p_a_start = break ,
roughness = break ,
height_ab = break);

end MyPipe;

Replace a given parameter value by an initial computation:

model A
parameter Real diameter = 1;
final parameter Real radius = diameter / 2;

99

Modelica Language Specification 3.7-dev
7.3. Redeclaration

end A;

model B "Initial equation for diameter"
extends A(final diameter(fixed = false) = break);
parameter Real square =2;

initial equation
// solving equation below for diameter
square = f(diameter);

end B;

Replace the value for an inherited variable with a value computed from an algorithm:

model A
Real x = 1;

end A;

model B "Computing x instead"
extends A(final x=break);

algorithm
x := 0;
while . . .
x := x + . . .;

end while;
end B;

Note that this is only legal because the modifier is modifying an inherited declaration. Due to section 4.8
it is not legal to construct the corresponding component declaration, A a(x=break);.]

7.3 Redeclaration

A redeclare construct in a modifier replaces the declaration of a local class or component with another
declaration. A redeclare construct as an element replaces the declaration of a local class or component
with another declaration. Both redeclare constructs work in the same way. The redeclare construct
as an element requires that the element is inherited, and cannot be combined with a modifier of the same
element in the extends-clause. For modifiers, the redeclare of classes uses the short-class-definition
construct, which is a special case of normal class definitions and semantically behaves as the corresponding
class-definition.

A modifier with the keyword replaceable is automatically seen as being a redeclare.

In redeclarations some parts of the original declaration is automatically inherited by the new declaration.
This is intended to make it easier to write declarations by not having to repeat common parts of the
declarations, and does in particular apply to prefixes that must be identical. The inheritance only applies
to the declaration itself and not to elements of the declaration.

The general rule is that if no prefix within one of the following groups is present in the new declaration
the old prefixes of that kind are preserved.

The groups that are valid for both classes and components:

� public, protected

� inner, outer

� constraining type according to rules in section 7.3.2

The groups that are only valid for components:

� flow, stream

� discrete, parameter, constant

� input, output

100

Modelica Language Specification 3.7-dev
7.3. Redeclaration

� array dimensions

Note that if the old declaration was a short class definition with array dimensions the array dimensions
are not automatically preserved, and thus have to be repeated in the few cases they are used.

Replaceable component array declarations with array sizes on the left of the component are seen as
syntactic sugar for having all arrays sizes on the right of the component; and thus can be redeclared in
a consistent way.

The presence of annotations on the redeclare construct in a modifier is deprecated, but since none of
the annotations in the specification ever had a meaning in this context it only impacts vendor-specific
annotations.

[Note: The inheritance is from the original declaration. In most cases replaced or original does not
matter. It does matter if a user redeclares a variable to be a parameter and then redeclares it without
parameter.]

[

model HeatExchanger
replaceable parameter GeometryRecord geometry;
replaceable input Real u[2];

end HeatExchanger;

HeatExchanger(
/* redeclare */ replaceable /* parameter */ GeoHorizontal geometry ,
redeclare /*input */ Modelica.Units.SI.Angle u /*[2]*/);
// The semantics ensure that parts in /*.*/ are automatically added
// from the declarations in HeatExchanger.

Example of arrays on the left of the component name:

model M
replaceable Real [4] x[2];
// Seen as syntactic sugar for "replaceable Real x[2, 4];"
// Note the order.

end M;
M m(redeclare Modelica.Units.SI.Length x[2, 4]); // Valid redeclare of the type

]

7.3.1 The “class extends” Redeclaration Mechanism

A class declaration of the type redeclare class extends B(. . .), where class as usual can be replaced
by any other specialized class, replaces the inherited class B with another declaration that extends
the inherited class where the optional class-modification is applied to the inherited class. Inherited
B here means that the class containing redeclare class extends B(. . .) should also inherit another
declaration of B from one of its extends-clauses. The new declaration should explicitly include redeclare
.

[Since the rule about applying the optional class-modification implies that all declarations are inherited
with modifications applied, there is no need to apply modifiers to the new declaration.]

For redeclare class extends B(. . .) the inherited class is subject to the same restrictions as a rede-
clare of the inherited element, and the original class B should be replaceable, and the new element is only
replaceable if the new definition is replaceable. In contrast to normal extends it is not subject to the
restriction that B should be transitively non-replaceable (since B should be replaceable).

The syntax rule for class extends construct is in the definition of the class-specifier nonterminal
(see also class declarations in section 4.6):

class-definition :
[encapsulated] class-prefixes
class-specifier

class-specifier : long-class-specifier | . . .

101

Modelica Language Specification 3.7-dev
7.3. Redeclaration

long-class-specifier : . . .
| extends IDENT [class-modification] description-string
composition end IDENT

The nonterminal class-definition is referenced in several places in the grammar, including the fol-
lowing case which is used in some examples below, including package extends and model extends:

element :
import-clause |
extends-clause |
[redeclare]
[final]
[inner] [outer]
((class-definition | component-clause) |
replaceable (class-definition | component-clause)
[constraining-clause comment])

[Example to extend from existing packages:

package PowerTrain // library from someone else
replaceable package GearBoxes

. . .
end GearBoxes;

end PowerTrain;

package MyPowerTrain
extends PowerTrain; // use all classes from PowerTrain
redeclare package extends GearBoxes // add classes to sublibrary

. . .
end GearBoxes;

end MyPowerTrain;

Example for an advanced type of package structuring with constraining types:

partial package PartialMedium "Generic medium interface"
constant Integer nX "number of substances";
replaceable partial model BaseProperties
Real X[nX];
. . .

end BaseProperties;

replaceable partial function dynamicViscosity
input Real p;
output Real eta;
. . .

end dynamicViscosity;
end PartialMedium;

package MoistAir "Special type of medium"
extends PartialMedium(nX=2);

redeclare model extends BaseProperties(T(stateSelect = StateSelect.prefer))
// replaces BaseProperties by a new implementation and
// extends from Baseproperties with modification
// note , nX = 2 (!)

equation
X = {0, 1};
. . .

end BaseProperties;

redeclare function extends dynamicViscosity
// replaces dynamicViscosity by a new implementation and
// extends from dynamicViscosity

algorithm

102

Modelica Language Specification 3.7-dev
7.3. Redeclaration

eta := 2 * p;
end dynamicViscosity;

end MoistAir;

Note, since MoistAir extends from PartialMedium, constant nX = 2 in package MoistAir and the
model BaseProperties and the function dynamicViscosity is present in MoistAir. By the following
definitions, the available BaseProperties model is replaced by another implementation which extends
from the BaseProperties model that has been temporarily constructed during the extends of package
MoistAir from PartialMedium. The redeclared BaseProperties model references constant nX which is
2, since by construction the redeclared BaseProperties model is in a package with nX = 2.

This definition is compact but is difficult to understand. At a first glance an alternative exists that is
more straightforward and easier to understand:

package MoistAir2 "Alternative definition that does not work"
extends PartialMedium(nX=2,

redeclare model BaseProperties = MoistAir_BaseProperties ,
redeclare function dynamicViscosity = MoistAir_dynamicViscosity);

model MoistAir_BaseProperties
// wrong model since nX has no value
extends PartialMedium.BaseProperties;

equation
X = {1, 0};

end MoistAir_BaseProperties;

function MoistAir_dynamicViscosity
extends PartialMedium.dynamicViscosity;

algorithm
eta := p;

end MoistAir_dynamicViscosity;
end MoistAir2;

Here, the usual approach is used to extend (here from PartialMedium) and in the modifier perform all
redeclarations. In order to perform these redeclarations, corresponding implementations of all elements of
PartialMedium have to be given under a different name, such as MoistAir2.MoistAir_BaseProperties
, since the name BaseProperties already exists due to extends PartialMedium. Then it is possible in
the modifier to redeclare PartialMedium.BaseProperties to MoistAir2.MoistAir_BaseProperties.
Besides the drawback that the namespace is polluted by elements that have different names but the same
implementation (e.g., MoistAir2.BaseProperties is identical to MoistAir2.MoistAir_BaseProperties
) the whole construction does not work if arrays are present that depend on constants in PartialMedium,
such as X[nX]: The problem is that MoistAir_BaseProperties extends from PartialMedium.BaseProperties
where the constant nX does not yet have a value. This means that the dimension of array X is unde-
fined and model MoistAir_BaseProperties is wrong. With this construction, all constant definitions
have to be repeated whenever these constants shall be used, especially in MoistAir_BaseProperties and
MoistAir_dynamicViscosity. For larger models this is not practical and therefore the only practically
useful definition is the complicated construction in the previous example with redeclare model extends
BaseProperties.

To detect this issue the rule on lookup of composite names (section 5.3.2) ensures that PartialMedium.
dynamicViscosity is incorrect in a simulation model.]

7.3.2 Constraining Type

In a replaceable declaration the optional constraining-clause defines a constraining type. Any modi-
fications following the constraining type name are applied both for the purpose of defining the actual
constraining type and they are automatically applied in the declaration and in any subsequent redecla-
ration. The precedence order is that declaration modifiers override constraining type modifiers.

If the constraining-clause is not present in the original declaration (i.e., the non-redeclared declaration):

� The type of the declaration is also used as a constraining type.

103

Modelica Language Specification 3.7-dev
7.3. Redeclaration

� If modifiers are present in the original declaration, they also become modifiers on the constraining
type.

The syntax of a constraining-clause is as follows:

constraining-clause :
constrainedby name [class-modification]

[Example: Merging of modifiers:

class A
parameter Real x;

end A;

class B
parameter Real x = 3.14, y; // B is a subtype of A

end B;

class C
replaceable A a(x = 1);

end C;

class D
extends C(redeclare B a(y = 2));

end D;

which is equivalent to defining D as

class D
B a(x = 1, y = 2);

end D;

A modification of the constraining type is automatically applied in subsequent redeclarations:

model ElectricalSource
replaceable SineSource source constrainedby MO(final n=5);
. . .

end ElectricalSource;

model TrapezoidalSource
extends ElectricalSource(
redeclare Trapezoidal source); // source.n=5

end TrapezoidalSource;

A modification of the base type without a constraining type is automatically applied in subsequent redec-
larations:

model Circuit
replaceable model NonlinearResistor = Resistor(R=100);
. . .

end Circuit;

model Circuit2
extends Circuit(

redeclare replaceable model NonlinearResistor
= ThermoResistor(T0 = 300));

// As a result of the modification on the base type ,
// the default value of R is 100

end Circuit2;

model Circuit3
extends Circuit2(
redeclare replaceable model NonlinearResistor

= Resistor(R = 200));
// The T0 modification is not applied because it did not
// appear in the original declaration

104

Modelica Language Specification 3.7-dev
7.3. Redeclaration

end Circuit3;

Circuit2 is intended to illustrate that a user can still select any resistor model (including the original
one, as is done in Circuit3), since the constraining type is kept from the original declaration if not
specified in the redeclare. Thus it is easy to select an advanced resistor model, without limiting the
possible future changes.

A redeclaration can redefine the constraining type:

model Circuit4
extends Circuit2(

redeclare replaceable model NonlinearResistor
= ThermoResistor constrainedby ThermoResistor);

end Circuit4;

model Circuit5
extends Circuit4(

redeclare replaceable model NonlinearResistor = Resistor); // illegal
end Circuit5;

]

The class or type of component shall be a subtype of the constraining type. In a redeclaration of a
replaceable element, the class or type of a component must be a subtype of the constraining type.
The constraining type of a replaceable redeclaration must be a subtype of the constraining type of the
declaration it redeclares. In an element modification of a replaceable element, the modifications are
applied both to the actual type and to the constraining type.

In an element-redeclaration of a replaceable element the modifiers of the replaced constraining type are
merged to both the new declaration and to the new constraining type, using the normal rules where
outer modifiers override inner modifiers.

When a class is flattened as a constraining type, the flattening of its replaceable elements will use the
constraining type and not the actual default types.

The number of dimension in the constraining type should correspond to the number of dimensions in
the type-part. Similarly the type used in a redeclaration must have the same number of dimensions as
the type of redeclared element.

[Example:

replaceable T1 x[n] constrainedby T2;
replaceable type T=T1[n] constrainedby T2;
replaceable T1[n] x constrainedby T2;

In these examples the number of dimensions must be the same in T1 and T2, as well as in a redeclaration.
Normally T1 and T2 are scalar types, but both could also be defined as array types (with the same number
of dimensions). Thus if T2 is a scalar type (e.g., type T2 = Real) then T1 must also be a scalar type,
and if T2 is defined as vector type (e.g., type T2 = Real[3]) then T1 must also be vector type.]

7.3.2.1 Constraining-Clause Annotations

Description and annotations on the constraining-clause are applied to the entire declaration, and it is
an error if they also appear on the definition.

[The intent is that the description and/or annotation are at the end of the declaration, but it is not
straightforward to specify this in the grammar.]

[Example:

replaceable model Load1 =
Resistor constrainedby TwoPin "The Load"; // Recommended

replaceable model Load2 =
Resistor "The Load" constrainedby TwoPin; // Identical to Load1

replaceable model Load3 =
Resistor "The Load" constrainedby TwoPin "The Load"; // Error

105

Modelica Language Specification 3.7-dev
7.3. Redeclaration

replaceable Resistor load1
constrainedby TwoPin "The Load"; // Recommended

replaceable Resistor load2
"The Load" constrainedby TwoPin; // Identical to load1

replaceable Resistor load3
"The Load" constrainedby TwoPin "The Load!"; // Error

]

See also the examples in section 7.3.4.

7.3.3 Restrictions on Redeclarations

The following additional constraints apply to redeclarations (after prefixes are inherited, section 7.3):

� Only classes and components declared as replaceable can be redeclared with a new type, which
must have an interface compatible with the constraining interface of the original declaration, and
to allow further redeclarations one must use redeclare replaceable.

[Redeclaration with the same type can be used to restrict variability and/or change array dimen-
sions.]

� An element declared as constant cannot be redeclared.

� An element declared as final shall not be modified, and thus not redeclared.

� Modelica does not allow a protected element to be redeclared as public, or a public element to be
redeclared as protected.

� Array dimensions may be redeclared; provided the sub-typing rules in section 6.4 are satisfied.

[This is one example of redeclaration of non-replaceable elements.]

7.3.4 Annotations for Redeclaration and Modification

The annotations listed below are used to suggest certain redeclarations and modifications that should be
made conveniently available in tools.

Annotation Description Details

choices List suggested redeclarations and modifications Annotation 7.1
choicesAllMatching Automatically generated list of redeclarations Annotation 7.2

Annotation 7.1 choices

"choices" "(" [choices-argument { "," choice }] ")"

choices-argument :
"choice" modification
| "checkBox" "=" true

A declaration can have a choices annotation containing modifiers for choice, where each of them
indicates a suitable redeclaration or modification of the element. This is a hint for users of the
model, and can also be used by the user interface to suggest reasonable redeclarations, where
the string comment on each choice modifier can be used as explanation of that choice. The
annotation is not restricted to replaceable elements but can also be applied to non-replaceable
elements, enumeration types, and simple variables.

The string comments for the choice modifiers shall not automatically be copied to the modifier.

The semantic restrictions in section 18.2 are not enforced for the choice modifiers. For instance,
several examples of using redeclare inside choice(. . .) will be given below.

Lookup inside a choice modifier is performed in the context of the annotation, meaning that
references may need to be transformed to preserve the meaning when a choice is applied in a
different context.

106

Modelica Language Specification 3.7-dev
7.3. Redeclaration

[It is recommended to avoid expressions with references to elements that are not globally accessible,
such as contents within a protected section of a class. By starting names with a dot it can be
ensured that no transformation of references will be needed when a choice is applied, and that
applicability of a choice does not depend on context, see section 5.3.3.]

It is allowed to include choices that are invalid in some contexts, e.g., a value might violate a
min-attribute. (Options for tools encountering such choices include not showing them, marking
them as invalid, or detecting the violations later.)

For a Boolean variable, a choices annotation may contain the annotation checkBox = true,
meaning to display a checkbox to input the values false or true in the graphical user interface.

[Example: Using choices to suggest suitable redeclarations:

replaceable model MyResistor = Resistor
annotation(choices(
choice(redeclare model MyResistor = lib2.Resistor(a = {2}) ". . ."),
choice(redeclare model MyResistor = lib2.Resistor2 ". . .")

));

replaceable Resistor Load(R = 2) constrainedby TwoPin
annotation(choices(
choice(redeclare lib2.Resistor Load(a = {2}) ". . ."),
choice(redeclare Capacitor Load(L = 3) ". . .")

));

replaceable FrictionFunction a(func = exp) constrainedby Friction
annotation(choices(
choice(redeclare ConstantFriction a(c = 1) ". . ."),
choice(redeclare TableFriction a(table = ". . .") ". . ."),
choice(redeclare FunctionFriction a(func = exp) ". . .")

));

]

[Example: Using choices to suggest suitable value modifications for a non-replaceable declaration:

type KindOfController = Integer(min = 1, max = 3)
annotation(choices(
choice = 1 "P",
choice = 2 "PI",
choice = 3 "PID"

));

model A
parameter KindOfController x;

end A;

A a(x = 3);

Note that "PID" was not copied here.]

[Example: Using choices to request that a checkbox is used to select modification for a Boolean variable:

parameter Boolean useHeatPort = false annotation(choices(checkBox = true));

]

Annotation 7.2 choicesAllMatching

/* literal */ constant Boolean choicesAllMatching

The annotation choicesAllMatching = true on the following kinds of elements indicates that
tools should automatically construct a menu with appropriate choices.

� For a replaceable element the included elements should be usable for replacing it. Exact
criteria for inclusion in such a menu are not defined, but there shall be a a way to at least get

107

Modelica Language Specification 3.7-dev
7.4. Selective Model Extension

a selection of classes, A.B.. . ..X.Z, that are either directly or indirectly derived by inheritance
from the constraining class of the declaration, where A to X are non-partial packages, and Z
is non-partial.

� For a record variable the included elements shall include matching record constants and calls
of matching record constructors (matching classes as for replaceable elements).

This menu can be disabled using annotation choicesAllMatching = false. It is possible for a
single declaration to combine choicesAllMatching with the choices annotation, and tools may
avoid generating duplicate menu entries in that case.

[When choicesAllMatching is not specified the following behavior is recommended for replaceable
elements. A tool could ideally present (at least) the same choices as for choicesAllMatching =
true, but if it takes (too long) time to present the list it might be better to use the choicesAllMatching
= false behavior instead.]

[Example: Using choicesAllMatching for a replaceable element:

replaceable package Medium = Modelica.Media.Water.ConstantPropertyLiquidWater
constrainedby Modelica.Media.Interfaces.PartialMedium
annotation(choicesAllMatching = true);

]

[Example: Demonstrating choicesAllMatching for parameter records.

record Medium
parameter SI.Density rho "Density";
. . .

end Medium;

record Air_30degC = Medium(rho = 1.149 , . . .);
constant Medium MyAir = Medium(rho = 1.1, . . .);

model OpenTank
parameter Medium medium = Medium () annotation(choicesAllMatching = true);

end OpenTank;

The choices for medium shall include Medium(), Air_30degC(), and MyAir. If Medium() is chosen it is
necessary to also set its rho-parameter.]

7.4 Selective Model Extension

[The goal of selective model extension is to enable unforeseen structural variability without requiring
deliberately prepared base-models, Bürger (2019). This is done by deselecting specific elements from a
base class, described here, combined with adding elements as normal.]

Selective model extension is activated by using one (or more) inheritance-modification in the optional
class-or-inheritance-modification of an extends-clause.

[There is no corresponding mechanism for component modifications, short class definitions, or con-
strainedby.]

Consider a class C with an extends-clause deselecting D:

model C
extends B(. . ., break D, . . .);
. . .

end C;

The semantic rules are:

1. The deselection break D is applied before any other, non selective model extension related, mod-
ifications of B in C.

108

Modelica Language Specification 3.7-dev
7.4. Selective Model Extension

2. When adding elements from B to C the elements matched by any deselection in extends B are
excluded.

� A component deselection, break f, matches the component with that name, f, of B and all
connections with the component or its subcomponents. Matched components must be models,
blocks or connectors.

� A connection deselection, break connect(a, b), matches all syntactical equivalent connec-
tions of B. A connection connect(c, d), with c and d arbitrary but valid connection argu-
ments, is syntactically equivalent to a connection deselection break connect(a, b), if, and
only if, either, c is syntactically equivalent to a and d is syntactically equivalent to b or, vice
versa, c is syntactically equivalent to b and d is syntactically equivalent to a. Two code
fragments a and c are syntactically equivalent, if, and only if, the context-free derivations of
a and lstinline!c! according to the grammar given in appendix A.2.7 are the same.

3. Conditionally declared components of B are assumed to be declared for all purposes of matching.

4. The deselected component may be of a partial class even in a simulation model.

5. The deselection break D must match at least one element of B.

6. The component deselection are applied before the connection deselections of the same extends-
clause.

[Example: The following gives three typical use cases: adding a component on a connection, replacing a
non-replaceable component, and finally constructing a reusable model from an example.

model System "An example model"
Plant plant;
BearingFriction friction;
Controller controller;
StepReference reference;

equation
connect(reference.y, controller.u_s);
connect(plant.y, controller.u_m);
connect(controller.y, plant.u);
connect(friction.flange_a , plant.flange_a);

end System;

model FilterMeasurement "Component on a connection"
extends System(break connect(plant.y, controller.u_m));
BesselFilter filter;

equation
connect(plant.y, filter.u);
connect(filter.y, controller.u_m);

end FilterMeasurement;

model SampledControllerSystem "Replacing non -replaceable"
extends System(break controller);
SampledController controller;

equation
connect(reference.y, controller.u1); // Note: Different name
connect(plant.y, controller.u_m);
connect(controller.y, plant.u);

end FilterMeasurement;

model NewPlant "Reusable model from example"
extends System(break controller , break reference);
RealInput u;
RealOutput y;

equation
connect(u, plant.u);
connect(plant.y, y);

end NewPlant;

109

Modelica Language Specification 3.7-dev
7.4. Selective Model Extension

In these examples it would be possible to modify the System model instead, but in many cases that is not
realistic. For instance, it may not be possible to modify the System and the controlled system may be
comprised of a large number of components in System – instead of only two.]

[Some consequences of the rules are listed below:

The syntax ensures that nested components cannot be deselected.

Deselected components cannot be modified, neither in the extends-clause nor when using C. However, C
may add a component with same name as a deselected component (directly or through another extends
-clause) and that new component can be modified when using C.

A class using selective model extension is not necessarily a sub-type of its base class.

Deselection is designed to be light-weight in particular:

� Deselection is independent of any modification.

� What is deselected can be determined without considering any modifications, neither of the extending
class C nor its base class B.

� There is no need to instantiate any classes to know that some component is deselected (i.e., not
there) for every possible instance of the model with the deselection. An instance tree is not required.

� Selective model extension operates on the syntactic level only.

� Conditional components can be deselected without evaluating whether they are disabled or not. In
particular deselecting a disabled conditional component is not an error. Connections involving the
deselected conditional component are by the deselection removed as for a disabled component.

� No need to check whether the class of the deselected component was partial.

� Assuming the deselections are semantically valid they can be handled in any order. Handling
component deselections before connection deselections is only necessary to semantically check that
a connection deselection does not involve a deselected component.

[Example: The syntactic equivalence of connection deselection ensures that connect-statements in for-
loops can be deselected:

model B
. . .

equation
if b then

for i in 2:10 loop
connect(// This comment does not impact syntactic equivalence.
a[i],
b[2*i] /* Without whitespace in the indexing expression. */);

end for;
else

for i in 20:30 loop
connect(b[i], a[2*i]);

end for;
end for;

end B;
model C

extends B(break connect(b[2 * i], a[i]);
end C;

In this case the deselection removes all of the connect-statements.]

]

110

Chapter 8

Equations

An equation is part of a class definition. A scalar equation relates scalar variables, i.e., constrains
the values that these variables can take simultaneously. When n-1 variables of an equation containing
n variables are known, the value of the nth variable can be inferred (solved for). In contrast to an
algorithm section, there is no order between the equations in an equation section and they can be solved
separately.

8.1 Equation Categories

Equations in Modelica can be classified into different categories depending on the syntactic context in
which they occur:

� Normal equality equations occurring in equation sections, including connect-equations and other
equation types of special syntactic form (section 8.3).

� Declaration equations, which are part of variable, parameter, or constant declarations (section 4.4.2.1).

� Modification equations, which are commonly used to modify attributes of classes (section 7.2).

� Binding equations, which include both declaration equations and element modification for the value
of the variable itself. These are considered equations when appearing outside functions, and then
a component with a binding equation has its value bound to some expression. (Binding equations
can also appear in functions, see section 12.4.4.)

� Initial equations, which are used to express equations for solving initialization problems (sec-
tion 8.6).

8.2 Flattening and Lookup in Equations

A flattened equation is identical to the corresponding nonflattened equation.

Names in an equation shall be found by looking up in the partially flattened enclosing class of the
equation.

8.3 Equations in Equation Sections

An equation section is comprised of the keyword equation followed by a sequence of equations. The
formal syntax is as follows:

equation-section :
[initial] equation { some-equation ";" }

The following kinds of equations may occur in equation sections. The syntax is defined as follows:

111

Modelica Language Specification 3.7-dev
8.3. Equations in Equation Sections

some-equation :
(simple-expression "=" expression
| if-equation
| for-equation
| connect-equation
| when-equation
| component-reference function-call-args

)
description

No statements are allowed in equation sections, including the assignment statement using the := operator.

8.3.1 Simple Equality Equations

Simple equality equations are the traditional kinds of equations known from mathematics that express an
equality relation between two expressions. There are two syntactic forms of such equations in Modelica.
The first form below is equality equations between two expressions, whereas the second form is used
when calling a function with several results. The syntax for simple equality equations is as follows:

simple-expression "=" expression

The types of the left-hand-side and the right-hand-side of an equation need to be compatible in the same
way as two arguments of binary operators (section 6.7).

Three examples:

� simple_expr1 = expr2;

� (if pred then alt1 else alt2) = expr2;

� (out1, out2, out3) = function_name(inexpr1, inexpr2);

[Note: According to the grammar the if-then-else expression in the second example needs to be enclosed
in parentheses to avoid parsing ambiguities. Also compare with section 11.2.1.1 about calling functions
with several results in assignment statements.]

8.3.2 For-Equations – Repetitive Equation Structures

The syntax of a for-equation is as follows:

for for-indices loop
{ some-equation ";" }

end for ";"

A for-equation may optionally use several iterators (for-indices), see section 11.2.2.3 for more infor-
mation:

for-indices:
for-index { "," for-index }

for-index:
IDENT [in expression]

The following is one example of a prefix of a for-equation:

for IDENT in expression loop

8.3.2.1 Explicit Iteration Ranges of For-Equations

The expression of a for-equation shall be a vector expression, where more general array expressions
are treated as vector of vectors or vector of matrices. It is evaluated once for each for-equation, and
is evaluated in the scope immediately enclosing the for-equation. The expression of a for-equation
shall be evaluable. The iteration range of a for-equation can also be specified as Boolean or as an
enumeration type, see section 11.2.2.2 for more information. The loop-variable (IDENT) is in scope inside

112

Modelica Language Specification 3.7-dev
8.3. Equations in Equation Sections

the loop-construct and shall not be assigned to. For each element of the evaluated vector expression, in
the normal order, the loop-variable gets the value of that element and that is used to evaluate the body
of the for-loop.

[Example:

for i in 1 : 10 loop // i takes the values 1, 2, 3, . . ., 10
for r in 1.0 : 1.5 : 5.5 loop // r takes the values 1.0, 2.5, 4.0, 5.5
for i in {1, 3, 6, 7} loop // i takes the values 1, 3, 6, 7
for i in TwoEnums loop // i takes the values TwoEnums.one , TwoEnums.two

// for TwoEnums = enumeration(one , two)

The loop-variable may hide other variables as in the following example. Using another name for the
loop-variable is, however, strongly recommended.

constant Integer j = 4;
Real x[j]

equation
for j in 1:j loop // j takes the values 1, 2, 3, 4
x[j] = j; // Uses the loop -variable j

end for;

]

8.3.2.2 Implicit Iteration Ranges of For-Equations

The iteration range of a loop-variable may sometimes be inferred from its use as an array index. See
section 11.2.2.1 for more information.

[Example:

Real x[n], y[n];
equation

for i loop // Same as: for i in 1:size(x, 1) loop
x[i] = 2 * y[i];

end for;

]

8.3.3 Connect-Equations

A connect-equation has the following syntax:

connect "(" component-reference "," component-reference ")" ";"

These can be placed inside for-equations and if-equations; provided the indices of the for-loop and
conditions of the if-equation are evaluable expressions that do not depend on cardinality, rooted,
Connections.rooted, or Connections.isRoot. The for-equations/if-equations are expanded. connect
-equations are described in detail in section 9.1.

The same restrictions apply to Connections.branch, Connections.root, and Connections.potentialRoot
; which after expansion are handled according to section 9.4.

8.3.4 If-Equations

The if-equations have the following syntax:

if expression then
{ some-equation ";" }

{ elseif expression then
{ some-equation ";" }

}
[else
{ some-equation ";" }

]
end if ";"

113

Modelica Language Specification 3.7-dev
8.3. Equations in Equation Sections

The expression of an if- or elseif-clause must be a scalar Boolean expression. One if-clause, and
zero or more elseif-clauses, and an optional else-clause together form a list of branches. One or zero of
the bodies of these if-, elseif- and else-clauses is selected, by evaluating the conditions of the if- and
elseif-clauses sequentially until a condition that evaluates to true is found. If none of the conditions
evaluate to true the body of the else-clause is selected (if an else-clause exists, otherwise no body is
selected). In an equation section, the equations in the body are seen as equations that must be satisfied.
The bodies that are not selected have no effect on that model evaluation.

The if-equations which do not have exclusively evaluable expressions as switching conditions shall satisfy
the following:

� Have the same number of equations in each branch, where the number of equations is defined as
in definition 4.3. Absence of an else-branch is treated as having a branch with zero equations.

� Non-Real simple equality equations (see section 8.3.1) in the if-equation branches shall have
component-references (or a list of them) as their left-hand-side. Any subscripts for such component-
references must be evaluable. Any for- and if-equations in the if-equation branches shall have
evaluable controlling conditions, and contain equations which fullfil these requirements recursively.
All branches shall have the same set of variables in the non-Real equations.

Additional restrictions apply in combination with when-equations, see section 8.3.5.2 and section 8.3.5.3.

[If the first condition is violated, the single assignment rule would not hold, because the number of equa-
tions may change during simulation although the number of unknowns remains the same. The second
condition provides the generalization of (B.1c) to if-equations.]

8.3.5 When-Equations

The when-equations have the following syntax:

when expression then
{ some-equation ";" }

{ elsewhen expression then
{ some-equation ";" }

}
end when ";"

The expression of a when-equation shall be a discrete-time Boolean scalar or vector expression. If
expression is a clocked expression, the equation is referred to as a clocked when-clause (section 16.6)
rather than a when-equation, and is handled differently. The equations within a when-equation are
activated only at the instant when the scalar expression or any of the elements of the vector expression
becomes true.

[Example: The order between the equations in a when-equation does not matter, e.g.:

equation
when x > 2 then
y3 = 2*x + y1 + y2; // Order of y1 and y3 equations does not matter
y1 = sin(x);

end when;
y2 = sin(y1);

]

8.3.5.1 Defining When-Equations by If-Expressions in Equality Equations

A when-equation:

equation
when x > 2 then
v1 = expr1;
v2 = expr2;

end when;

is conceptually equivalent to the following equations containing special if-expressions

114

Modelica Language Specification 3.7-dev
8.3. Equations in Equation Sections

// Not correct Modelica
Boolean b(start = x.start > 2);

equation
b = x > 2;
v1 = if edge(b) then expr1 else pre(v1);
v2 = if edge(b) then expr2 else pre(v2);

[The equivalence is conceptual since pre(. . .) of a non discrete-time Real variable or expression can only
be used within a when-clause. Example:

/* discrete */ Real x;
input Real u;
output Real y;

equation
when sample () then
x = a * pre(x) + b * pre(u);

end when;
y = x;

Here, x is a discrete-time variable (whether it is declared with the discrete prefix or not), but u and
y cannot be discrete-time variables (since they are not assigned in when-clauses). However, pre(u) is
legal within the when-clause, since the body of the when-clause is only evaluated at events, and thus all
expressions are discrete-time expressions.]

The start values of the introduced Boolean variables are defined by the taking the start value of the
when-condition, as above where b is a parameter variable. The start value of the special functions
initial, terminal, and sample is false.

8.3.5.2 Where a When-Equation May Occur

� when-equations shall not occur inside initial equations.

� when-equations cannot be nested.

� when-equations can only occur within if-equations and for-equations if the controlling expressions
are exclusively evaluable expressions.

[Example: The following when-equation is invalid:

when x > 2 then
when y1 > 3 then
y2 = sin(x);

end when;
end when;

]

8.3.5.3 Equations within When-Equations

The equations within the when-equation must have one of the following forms:

� v = expr;

� (out1, out2, out3, . . .) = function_call_name(in1, in2, . . .);

� Operators assert, terminate, reinit.

� The for- and if-equations if the equations within the for- and if-equations satisfy these require-
ments.

Additionally,

� The different branches of when/elsewhen must have the same set of component references on the
left-hand side. Here, the destination variable of a reinit (including when inside a when-clause
activated with initial()) is not considered a left-hand side, and hence reinit is unaffected by
this requirement (as are assert and terminate).

115

Modelica Language Specification 3.7-dev
8.3. Equations in Equation Sections

� The branches of an if-equation inside when-equations must have the same set of component ref-
erences on the left-hand side, unless all switching conditions of the if-equation are parameter
expressions.

� Any left-hand side reference, (v, out1, . . .), in a when-clause must be a component reference, and
any indices must be evaluable expressions.

[The needed restrictions on equations within a when-equation becomes apparent with the following example:

Real x, y;
equation
x + y = 5;
when condition then
2 * x + y = 7; // error: not valid Modelica

end when;

When the equations of the when-equation are not activated it is not clear which variable to hold constant,
either x or y. A corrected version of this example is:

Real x,y;
equation
x + y = 5;
when condition then
y = 7 - 2 * x; // fine

end when;

Here, variable y is held constant when the when-equation is deactivated and x is computed from the first
equation using the value of y from the previous event instant. Note that during event iterations y will be
solved from a system of two equations.]

[Example: The restrictions for if-equations mean that both of the following variants are illegal:

Real x, y;
equation

if time < 1 then
when sample(1, 2) then
x = time;

end when;
else

when sample(1, 3) then
y = time;

end when;
end if;

when sample(1, 2) then
if time < 1 then
y = time;

else
x = time;

end if;
end when;

whereas the restriction to an evaluable expression is intended to allow:

parameter Boolean b = true;
parameter Integer n = 3;
Real x[n];

equation
if b then

for i in 1 : n loop
when sample(i, i) then
x[i] = time;

end when;
end for;

end if;

116

Modelica Language Specification 3.7-dev
8.3. Equations in Equation Sections

]

8.3.5.4 Single Assignment Rule Applied to When-Equations

The Modelica single-assignment rule (section 8.4) has implications for when-equations:

� Two when-equations shall not define the same variable.

[Without this rule this may actually happen for the erroneous model DoubleWhenConflict below,
since there are two equations (close = true; close = false;) defining the same variable close.
A conflict between the equations will occur if both conditions would become true at the same time
instant.

model DoubleWhenConflict
Boolean close; // Erroneous model: close defined by two equations!

equation
. . .
when condition1 then

. . .
close = true;

end when;
when condition2 then
close = false;

end when;
. . .

end DoubleWhenConflict;

One way to resolve the conflict would be to give one of the two when-equations higher priority. This
is possible by rewriting the when-equation using elsewhen, as in the WhenPriority model below or
using the statement version of the when-construct, see section 11.2.7.]

� A when-equation involving elsewhen-parts can be used to resolve assignment conflicts since the first
of the when/elsewhen parts are given higher priority than later ones:

[Below it is well defined what happens if both conditions become true at the same time instant since
condition1 with associated conditional equations has a higher priority than condition2.

model WhenPriority
Boolean close; // Correct model: close defined by two equations!

equation
. . .
when condition1 then
close = true;

elsewhen condition2 then
close = false;

end when;
. . .

end WhenPriority;

An alternative to elsewhen (in an equation or algorithm) is to use an algorithm with multiple
when-statements. However, both statements will be executed if both conditions become true at the
same time. Therefore they must be in reverse order to preserve the priority, and any side-effect
would require more care.

model WhenPriorityAlg
Boolean close; // Correct model: close defined by two when -statements!

algorithm
. . .
when condition2 then
close := false;

end when;
when condition1 then
close := true;

end when;
. . .

117

Modelica Language Specification 3.7-dev
8.3. Equations in Equation Sections

end WhenPriorityAlg;

]

8.3.6 reinit

reinit can only be used in the body of a when-equation. It has the following syntax:

reinit(x, expr);

The operator reinitializes x with expr at an event instant. x is a component-reference (where any
subscripts are evaluable) referring to a Real variable (or an array of Real variables) that must be
selected as a state (resp., states), i.e., reinit on x implies stateSelect = StateSelect.always on x.
expr needs to be type-compatible with x. For any given variable (possibly an array variable), reinit
can only be applied (either to an individual variable or to a part of an array variable) in one when-
equation (applying reinit to a variable in several when- or elsewhen-clauses of the same when-equation
is allowed). If there are multiple reinit for a variable inside the same when- or elsewhen-clause, they
must appear in different branches of an if-equation (in order that at most one reinit for the variable
is active at any event). In case of reinit active during initialization (due to when initial()), see
section 8.6.

reinit does not break the single assignment rule, because reinit(x, expr) in equations evaluates expr
to a value, then at the end of the current event iteration step it assigns this value to x (this copying from
values to reinitialized state(s) is done after all other evaluations of the model and before copying x to
pre(x)).

[Example: If a higher index system is present, i.e., constraints between state variables, some state vari-
ables need to be redefined to non-state variables. During simulation, non-state variables should be chosen
in such a way that variables with an applied reinit are selected as states at least when the corresponding
when-clauses become active. If this is not possible, an error occurs, since otherwise reinit would be
applied to a non-state variable.

Example for the usage of reinit (bouncing ball):

der(h) = v;
der(v) = if flying then -g else 0;
flying = not (h <= 0 and v <= 0);
when h < 0 then
reinit(v, -e * pre(v));

end when

]

8.3.7 assert

An equation or statement of one of the following forms is an assertion:

assert(condition , message); // Uses level=AssertionLevel.error
assert(condition , message , assertionLevel);
assert(condition , message , level = assertionLevel);

Here, condition is a Boolean expression, message is a String expression, and assertionLevel is
an optional evaluable expression of the built-in enumeration type AssertionLevel. It can be used in
equation sections or algorithm sections.

[This means that assert can be called as if it were a function with three formal parameters, the third
formal parameter has the name level and the default value AssertionLevel.error.]

If the condition of an assertion is true, message is not evaluated and the procedure call is ignored. If
the condition evaluates to false, different actions are taken depending on the level input:

� level = AssertionLevel.error: The current evaluation is aborted. The simulation may continue
with another evaluation. If the simulation is aborted, message indicates the cause of the error.

118

Modelica Language Specification 3.7-dev
8.3. Equations in Equation Sections

[Ways to continue simulation with another evaluation include using a shorter step-size, or changing
the values of iterationvariables.]

Failed assertions take precedence over successful termination, such that if the model first triggers
the end of successful analysis by reaching the stop-time or explicitly with terminate, but the
evaluation with terminal()=true triggers an assert, the analysis failed.

� level = AssertionLevel.warning: The current evaluation is not aborted. message indicates the
cause of the warning.

[It is recommended to report the warning only once when the condition becomes false, and it is
reported that the condition is no longer violated when the condition returns to true. The assert
-statement shall have no influence on the behavior of the model. For example, by evaluating the
condition and reporting the message only after accepted integrator steps. condition needs to be
implicitly treated with noEvent since otherwise events might be triggered that can lead to slightly
changed simulation results.]

Tools are recommended to provide more information than just the given message of a failed assertion,
in particular the condition and the values of variables used in it.

[The AssertionLevel.error case can be used to avoid evaluating a model outside its limits of validity;
for instance, a function to compute the saturated liquid temperature cannot be called with a pressure lower
than the triple point value.

The AssertionLevel.warning case can be used when the boundary of validity is not hard: for instance,
a fluid property model based on a polynomial interpolation curve might give accurate results between
temperatures of 250 K and 400 K, but still give reasonable results in the range 200 K and 500 K. When
the temperature gets out of the smaller interval, but still stays in the largest one, the user should be
warned, but the simulation should continue without any further action. The corresponding code would
be:

assert(T > 250 and T < 400, "Medium model outside full accuracy range",
AssertionLevel.warning);

assert(T > 200 and T < 500, "Medium model outside feasible region");

It is recommended that asserts have a simple message as above, formulated with the recommended tool
behavior in mind. Writing assert(T<500, "Temperature = "+String(T)+" was above 500") is thus
not recommended, and is likely to lead to duplicated information.]

8.3.8 terminate

The terminate-equation or statement (using function syntax) successfully terminates the analysis which
was carried out, see also section 8.3.7. The termination is not immediate at the place where it is defined
since not all variable results might be available that are necessary for a successful stop. Instead, the
termination actually takes place when the current integrator step is successfully finalized or at an event
instant after the event handling has been completed before restarting the integration.

terminate takes a string argument indicating the reason for the success.

[Example: The intention of terminate is to give more complex stopping criteria than a fixed point in
time:

model ThrowingBall
Real x(start = 0);
Real y(start = 1);

equation
der(x) = . . .;
der(y) = . . .;

algorithm
when y < 0 then
terminate("The ball touches the ground");

end when;
end ThrowingBall;

]

119

Modelica Language Specification 3.7-dev
8.4. Synchronous Data-Flow Principle and Single Assignment Rule

8.3.9 Equation Operators for Overconstrained Connection-Based Equation
Systems

See section 9.4 for a description of this topic.

8.4 Synchronous Data-Flow Principle and Single Assignment Rule

Modelica is based on the synchronous data flow principle and the single assignment rule, which are
defined in the following way:

1. Discrete-time variables keep their values until these variables are explicitly changed. Differentiated
variables have der(x) corresponding to the time-derivative of x, and x is continuous, except when
reinit is triggered, see section 8.3.6. Variable values can be accessed at any time instant during
continuous integration and at event instants.

2. At every time instant, during continuous integration and at event instants, the equations express
relations between variables which have to be fulfilled concurrently.

3. Computation and communication at an event instant does not take time.

[If computation or communication time has to be simulated, this property has to be explicitly mod-
eled.]

4. There must exist a perfect matching of variables to equations after flattening, where a variable can
only be matched to equations that can contribute to solving for the variable (perfect matching rule
– previously called single assignment rule); see also globally balanced section 4.8.

8.5 Events and Synchronization

An event is something that occurs instantaneously at a specific time or when a specific condition occurs.
Events are for example defined by the condition occurring in a when-clause, if-equation, or if-expression.

The integration is halted and an event occurs whenever an event generation expression, e.g., x > 2 or
floor(x), changes its value. An event generating expression has an internal buffer, and the value of the
expression can only be changed at event instants. If the evaluated expression is inconsistent with the
buffer, that will trigger an event and the buffer will be updated with a new value at the event instant.
During continuous integration event generation expression has the constant value of the expression from
the last event instant.

[A root finding mechanism is needed which determines a small time interval in which the expression
changes its value; the event occurs at the right side of this interval.]

[Example:

y = if u > uMax then uMax else if u < uMin then uMin else u;

During continuous integration always the same if-branch is evaluated. The integration is halted whenever
u-uMax or u-uMin crosses zero. At the event instant, the correct if-branch is selected and the integration
is restarted.

Numerical integration methods of order n (n ≥ 1) require continuous model equations which are differen-
tiable up to order n. This requirement can be fulfilled if Real elementary relations are not treated literally
but as defined above, because discontinuous changes can only occur at event instants and no longer during
continuous integration.]

[It is a quality of implementation issue that the following special relations

time >= discrete expression
time < discrete expression

trigger a time event at time = discrete expression, i.e., the event instant is known in advance and no
iteration is needed to find the exact event instant.]

Relations are taken literally also during continuous integration, if the relation or the expression in which
the relation is present, are the argument of noEvent. smooth also allows relations used as argument to

120

Modelica Language Specification 3.7-dev
8.5. Events and Synchronization

be taken literally. The noEvent feature is propagated to all subrelations in the scope of the noEvent
application. For smooth the liberty to not allow literal evaluation is propagated to all subrelations, but
the smoothness property itself is not propagated.

[Example:

x = if noEvent(u > uMax) then uMax elseif noEvent(u < uMin) then uMin else u;
y = noEvent(if u > uMax then uMax elseif u < uMin then uMin else u);
z = smooth(0, if u > uMax then uMax elseif u < uMin then uMin else u);

In this case x = y = z, but a tool might generate events for z. The if-expression is taken literally
without inducing state events.

The smooth operator is useful, if, e.g., the modeler can guarantee that the used if-expressions fulfill at
least the continuity requirement of integrators. In this case the simulation speed is improved, since no
state event iterations occur during integration. The noEvent operator is used to guard against outside
domain errors, e.g., y = if noEvent(x >= 0) then sqrt(x) else 0.]

All equations and assignment statements within when-clauses and all assignment statements within
function classes are implicitly treated with noEvent, i.e., relations within the scope of these opera-
tors never induce state or time events. Clocked discrete-time partitions are also treated this way, see
section 16.8.1.

[Using state events in when-clauses is unnecessary because the body of a when-clause is not evaluated
during continuous integration.]

[Example: Two different errors caused by non-discrete-time expressions:

when noEvent(x1 > 1) or x2 > 10 then // When -condition must be discrete -time
close = true;

end when;
above1 = noEvent(x1 > 1); // Boolean equation must be discrete -time

The when-condition rule is stated in section 8.3.5, and the rule for a non-Real equation is stated in
section 3.8.5.]

Modelica is based on the synchronous data flow principle (section 8.4).

[The rules for the synchronous data flow principle guarantee that variables are always defined by a unique
set of equations. It is not possible that a variable is, e.g., defined by two equations, which would give
rise to conflicts or non-deterministic behavior. Furthermore, the continuous and the discrete parts of a
model are always automatically “synchronized”. Example:

equation // Illegal example
when condition1 then
close = true;

end when;

when condition2 then
close = false;

end when;

This is not a valid model because rule 4 is violated since there are two equations for the single unknown
variable close. If this would be a valid model, a conflict occurs when both conditions become true at the
same time instant, since no priorities between the two equations are assigned. To become valid, the model
has to be changed to:

equation
when condition1 then
close = true;

elsewhen condition2 then
close = false;

end when;

Here, it is well-defined if both conditions become true at the same time instant (condition1 has a higher
priority than condition2).]

121

Modelica Language Specification 3.7-dev
8.6. Initialization, initial equation, and initial algorithm

There is no guarantee that two different events occur at the same time instant.

[As a consequence, synchronization of events has to be explicitly programmed in the model, e.g., via
counters. Example:

Boolean fastSample , slowSample;
Integer ticks(start =0);

equation
fastSample = sample (0,1);

algorithm
when fastSample then
ticks := if pre(ticks) < 5 then pre(ticks)+1 else 0;
slowSample := pre(ticks) == 0;

end when;
algorithm

when fastSample then // fast sampling
. . .

end when;
algorithm

when slowSample then // slow sampling (5-times slower)
. . .

end when;

The slowSample when-clause is evaluated at every 5th occurrence of the fastSample when-clause.]

[The single assignment rule and the requirement to explicitly program the synchronization of events allow
a certain degree of model verification already at compile time.]

8.6 Initialization, initial equation, and initial algorithm

Before any operation is carried out with a Modelica model (e.g., simulation or linearization), initialization
takes place to assign consistent values for all variables present in the model. During this phase, called the
initialization problem, also the derivatives (der), and the pre-variables (pre), are interpreted as unknown
algebraic variables. The initialization uses all equations and algorithms that are utilized in the intended
operation (such as simulation or linearization).

The equations of a when-clause are active during initialization, if and only if they are explicitly enabled
with initial(), and only in one of the two forms when initial() then or when {. . ., initial(),
. . .} then (and similarly for elsewhen and algorithms see below). In this case, the when-clause equations
remain active during the whole initialization phase. In case of a reinit(x, expr) being active during
initialization (due to being inside when initial()) this is interpreted as adding x = expr (the reinit
-equation) as an initial equation. The reinit handling applies both if directly inside when-clause or
inside an if-equation in the when-clause. In particular, reinit(x, expr) needs to be counted as the
equation x = expr; for the purpose of balancing of if-equations inside when-clauses that are active
during initialization, see section 8.3.4.

[If a when-clause equation v = expr; is not active during the initialization phase, the equation v =
pre(v) is added for initialization. This follows from the mapping rule of when-clause equations. If the
condition of the when-clause contains initial(), but not in one of the specific forms, the when-clause
is not active during initialization: when not initial() then print("simulation started"); end
when;]

The algorithmic statements within a when-statement are active during initialization, if and only if they
are explicitly enabled with initial(), and only in one of the two forms when initial() then or when {
. . ., initial(), . . .} then. In this case, the algorithmic statements within the when-statement remain
active during the whole initialization phase.

An active when-clause inactivates the following elsewhen (similarly to when-clauses during simulation),
but apart from that the first elsewhen initial() then or elsewhen {. . ., initial(), . . .} then is
similarly active during initialization as when initial() then or when {. . ., initial(), . . .} then.

[That means that any subsequent elsewhen initial() has no effect, similarly to when false then.]

122

Modelica Language Specification 3.7-dev
8.6. Initialization, initial equation, and initial algorithm

[There is no special handling of inactive when-statements during initialization, instead variables assigned
in when-statements are initialized using v := pre(v) before the body of the algorithm (since they are
discrete), see section 11.1.2.]

Further constraints, necessary to determine the initial values of all variables (depending on the component
variability, see section 4.5 for definitions), can be defined in the following ways:

1. As equations in an initial equation section or as assignments in an initial algorithm section.
The equations and assignments in these initial sections are purely algebraic, stating constraints
between the variables at the initial time instant. It is not allowed to use when-clauses in these
sections.

2. For a continuous-time Real variable vc, the equation pre(vc) = vc is added to the initialization
equations.

[If pre(vc) is not present in the flattened model, a tool may choose not to introduce this equation,
or if it was introduced it can eliminate it (to avoid the introduction of many dummy variables
pre(vc)).]

3. Implicitly by using the start-attribute for variables with fixed = true. With start given by
startExpression:

� For a variable declared as constant or parameter, no equation is added to the initialization
equations.

� For a discrete-time variable vd, the equation pre(vd) = startExpression is added to the
initialization equations.

� For a continuous-time Real variable vc, the equation vc = startExpression is added to the
initialization equations.

Constants shall be determined by declaration equations (see section 4.5.1), and fixed = false is not
allowed. For parameters, fixed defaults to true. For other variables, fixed defaults to false.

start-values of variables having fixed = false can be used as initial guesses, in case iterative solvers
are used in the initialization phase.

[In case of iterative solver failure, it is recommended to specially report those variables for which the
solver needs an initial guess, but where the fallback value (see section 4.9) has been applied, since the
lack of appropriate initial guesses is a likely cause of the solver failure.]

If a parameter has a value for the start-attribute, does not have fixed = false, and neither has a
binding equation nor is part of a record having a binding equation, the value for the start-attribute can
be used to add a parameter binding equation assigning the parameter to that start value. In this case
a diagnostic message is recommended in a simulation model, unless the parameter has a Dialog.enable
annotation set to false.

[This is used in libraries to give rudimentary defaults so that users can quickly combine models and
simulate without setting parameters; but still easily find the parameters that should be set properly. The
enable=false case can be used to provide default values for parameters that are not used in the current
configuration, while ensuring that they are explicitly given a value when used. Note that the fallback
value handling must not be interpreted as all variables having a value for the start-attribute, so only an
explicit start-attribute can be used for a parameter binding.]

All variables declared as parameter having fixed = false are treated as unknowns during the initial-
ization phase, i.e., there must be additional equations for them – and the start-value can be used as a
guess-value during initialization.

[In the case a parameter has both a binding equation and fixed = false a diagnostic is recommended,
but the parameter should be solved from the binding equation.

Continuous-time Real variables vc have exactly one initialization value since the rules above assure that
during initialization vc = pre(vc) = vc.startExpression (if fixed = true).

Before the start of the integration, it must be guaranteed that for all variables v, v = pre(v). If this is
not the case for some variables vi, pre(vi) := vi must be set and an event iteration at the initial time
must follow, so the model is re-evaluated, until this condition is fulfilled. In detail this means that during

123

Modelica Language Specification 3.7-dev
8.6. Initialization, initial equation, and initial algorithm

initialization initial equations and normal equations are solved with v and pre(v) as unknowns without
any event iterations. Then only the normal equations are solved repeatedly (each time after v is copied
to pre(v)) until v = pre(v).

[Tools may optimize initialization by not computing unnecessary pre(v), and only performing the event
iteration if necessary.]

A Modelica translator may first transform the continuous equations of a model, at least conceptually, to
state space form. This may require to differentiate equations for index reduction, i.e., additional equations
and, in some cases, additional unknown variables are introduced. This whole set of equations, together
with the additional constraints defined above, should lead to an algebraic system of equations where the
number of equations and the number of all variables (including der and pre variables) is equal. Often,
this is a nonlinear system of equations and therefore it may be necessary to provide appropriate guess
values (i.e., start values and fixed = false) in order to compute a solution numerically.

It may be difficult for a user to figure out how many initial equations have to be added, especially if the
system has a higher index.]

These non-normative considerations are addressed as follows. A tool may add or remove initial equations
automatically according to the rules below such that the resulting system is structurally nonsingular:

� A missing initial value of a discrete-time variable (see section 4.5 – this does not include parameter
and constant variables) which does not influence the simulation result, may be automatically set
to the start value or its default without informing the user. For example, variables assigned in a
when-clause which are not accessed outside of the when-clause and where pre is not explicitly used
on these variables, do not have an effect on the simulation.

� A start-attribute that is not fixed may be treated as fixed with a diagnostic.

� A consistent start value or initial equation may be removed with a diagnostic.

[The goal is to be able to initialize the model, while satisfying the initial equations and fixed start values.]

[Example: Continuous time controller initialized in steady-state:

Real y(fixed = false); // fixed=false is redundant
equation
der(y) = a * y + b * u;

initial equation
der(y) = 0;

This has the following solution at initialization:

der(y) = 0;
y = - b / a * u;

]

[Example: Continuous time controller initialized either in steady-state or by providing a start value for
state y:

parameter Boolean steadyState = true;
parameter Real y0 = 0 "start value for y, if not steadyState";
Real y;

equation
der(y) = a * y + b * u;

initial equation
if steadyState then
der(y) = 0;

else
y = y0;

end if;

This can also be written as follows (this form is less clear):

parameter Boolean steadyState = true;
Real y (start = 0, fixed = not steadyState);

124

Modelica Language Specification 3.7-dev
8.6. Initialization, initial equation, and initial algorithm

Real der_y(start = 0, fixed = steadyState) = der(y);
equation
der(y) = a * y + b * u;

]

[Example: Discrete-time controller initialized in steady-state:

discrete Real y;
equation

when {initial (), sampleTrigger} then
y = a * pre(y) + b * u;

end when;
initial equation
y = pre(y);

This leads to the following equations during initialization:

y = a * pre(y) + b * u;
y = pre(y);

with the solution:

y := (b * u) / (1 - a);
pre(y) := y;

]

[Example: Resettable continuous-time controller initialized either in steady-state or by providing a start
value for state y:

parameter Boolean steadyState = true;
parameter Real y0 = 0 "start and reset value for y, if not steadyState";
input Boolean reset "For resetting integrator to y0";
Real y;

equation
der(y) = a * y + b * u;
when {initial (), reset} then

if not (initial () and steadyState) then
reinit(y, y0);

end if;
end when;

initial equation
if steadyState then
der(y) = 0;

end if;

If not steadyState this will add y = y0 during the initialization; if not the reinit is ignored during
initialization and the initial equation is used. This model can be written in various ways, this particular
way makes it clear that the reset is equal to the normal initialization.

During initialization this gives the following equations

if not steadyState then
y = y0;

end if;
if steadyState then
der(y) = 0;

end if;

if steadyState had not been an evaluable expression, both of those equations would have been illegal
according to the restrictions in section 8.3.4.]

8.6.1 Equations Needed for Initialization

[In general, for the case of a pure (first order) ordinary differential equation (ODE) system with n
state variables and m output variables, we will have n + m unknowns during transient analysis. The

125

Modelica Language Specification 3.7-dev
8.6. Initialization, initial equation, and initial algorithm

ODE initialization problem has n additional unknowns corresponding to the derivative variables. During
initialization of an ODE we will need to find the values of 2n +m variables, in contrast to just n +m
variables to be solved for during transient analysis.]

[Example: Consider the following simple equation system:

der(x1) = f1(x1);
der(x2) = f2(x2);
y = x1+x2+u;

Here we have three variables with unknown values: two dynamic variables that also are state variables,
x1 and x2, i.e., n = 2, one output variable y, i.e., m = 1, and one input variable u with known value.
A consistent solution of the initialization problem requires finding initial values for x1, x2, der(x1),
der(x2), and y. Two additional initial equations thus need to be provided to obtain a globally balanced
initialization problem. Additionally, those two initial equations must be chosen with care to ensure that
they, in combination with the dynamic equations, give a well-determined initialization problem.

Regarding DAEs, only that at most n additional equations are needed to arrive at 2n + m equations
in the initialization system. The reason is that in a higher index DAE problem the number of dynamic
continuous-time state variables might be less than the number of state variables n. As noted in section 8.6
a tool may add/remove initial equations to fulfill this requirement, if appropriate diagnostics are given.]

8.6.2 Start Value Recommended Priority

In general many variables have start-attributes that are not fixed and selecting a subset of these can
give a consistent set of start values close to the user-expectations. The following gives a non-normative
procedure for finding such a subset.

[A model has a hierarchical component structure. Each component of a model can be given a unique
model component hierarchy level number. The top-level model has a level number of 1. The level number
increases by 1 for each level down in the model component hierarchy. The model component hierarchy
level number is used to give start-attribute a confidence number, where a lower number means that the
start-attribute is more confident. Loosely, if the start-attribute is set or modified on level i then the
confidence number is i. If a start-attribute is set by a possibly hierarchical modifier at the top level, then
this start-attribute has the highest confidence, namely 1 irrespectively on what level, the variable itself
is declared. If the start-attribute is set equal to a parameter, which may be equal to another parameter
(etc), the lowest confidence number of these bindings are used. (In almost all cases that is the confidence
number of the last parameter binding in the chain.) Note that this is only applied if the expression is
exactly the parameter – not an expression depending on one or more parameters. In case the confidence
number considering parameter bindings is tied the confidence number of the start-attribute is used to
break the tie, if unequal.

[Example: Simplified examples showing the priority of start-values. The example M3 shows that it is
important that parameter-confidence is used directly and not only when the other priority is tied.

model M1
Real x(start = 4.0);
Real y(start = 5.0);

equation
x = y;

end M1;
model M2
parameter Real xStart = 4.0;
parameter Real yStart = 5.0;
Real x(start = xStart);
Real y(start = yStart);

equation
x = y;

end M2;
model M3

model MLocal
parameter Real xStart = 4.0;
Real x(start = xStart);

126

Modelica Language Specification 3.7-dev
8.6. Initialization, initial equation, and initial algorithm

end MLocal;
model MLocalWrapped
parameter Real xStart = 4.0;
MLocal m(xStart = xStart);

end MLocalWrapped;
MLocal mx;
MLocalWrapped my(xStart = 3.0);

equation
mx.x = my.y;

end M3;
M1 m1(x(start = 3.0));
// Using m1.x.start = 3.0 with confidence number 1
// over m1.y.start = 5.0 with confidence number 2
M2 m2(xStart = 3.0);
// Using m2.x.start = m2.xStart = 3.0 with confidence number 1
// over m2.y.start = m2.yStart = 5.0 with confidence number 2
M3 m3;
// Using m3.my.x = m3.my.xStart = 3.0 with confidence number 1
// over m3.mx.x = m3.mx.xStart = 4.0 with confidence number 2

]

]

127

Chapter 9

Connectors and Connections

This chapter covers connectors, connect-equations, and connections.

Connectors and connect-equations are designed so that different components can be connected graphi-
cally with well-defined semantics. However, the graphical part is optional and found in chapter 18.

9.1 Connect-Equations and Connectors

Connections between objects are introduced by connect-equations in the equation part of a class. A
connect-equation has the following syntax:

connect "(" component-reference "," component-reference ")" ";"

[A connector is an instance of a connector class.]

The connect-equation construct takes two references to connectors, each of which is either of the following
forms:

� c1.c2.. . . .cn, where c1 is a connector of the class, n ≥ 1 and ci+1 is a connector element of ci for
i = 1, . . . , (n− 1).

� m.c, where m is a non-connector element in the class and c is a connector element of m.

There may optionally be array subscripts on any of the components; the array subscripts shall be
evaluable expressions or the special operator :. If the connect construct references array of connectors,
the array dimensions must match, and each corresponding pair of elements from the arrays is connected
as a pair of scalar connectors.

[Example: Array usage:

connector InPort = input Real;
connector OutPort = output Real;
block MatrixGain
input InPort u[size(A, 2)];
output OutPort y[size(A, 1)];
parameter Real A[:, :] = [1];

equation
y = A * u;

end MatrixGain;
Modelica.Blocks.Sources.Sine sinSource [5];
MatrixGain gain (A = 5 * identity (5));
MatrixGain gain2(A = ones(2, 5));
OutPort x[2];

equation
connect(sinSource.y, gain.u); // Legal
connect(gain.y, gain2.u); // Legal
connect(gain2.y, x); // Legal

128

Modelica Language Specification 3.7-dev
9.1. Connect-Equations and Connectors

]

The three main tasks are to:

� Elaborate expandable connectors.

� Build connection sets from connect-equations.

� Generate equations for the complete model (connection equations).

9.1.1 Connection Sets

A connection set is a set of variables connected by means of connect-equations. A connection set shall
contain either only flow variables or only non-flow variables.

9.1.2 Inside and Outside Connectors

In an element instance M, each connector element of M is called an outside connector with respect to M.
Any other connector elements that is hierarchically inside M, but not in one of the outside connectors
of M, is called an inside connector with respect to M. This is done before resolving outer elements to
corresponding inner ones.

[Example:

m1

m2

m4

m5
m7

m3
m0

m6

c

inner d
outer d

Figure 9.1: Example for inside and outside connectors.

The figure visualizes the following connect-equations to the connector c in the models mi. Consider the
following connect-equations found in the model for component m0:

connect(m1.c, m3.c); // m1.c and m3.c are inside connectors
connect(m2.c, m3.c); // m2.c and m3.c are inside connectors

and in the model for component m3 (c.x is a sub-connector inside c):

connect(c, m4.c); // c is an outside connector , m4.c is an inside connector
connect(c.x, m5.c); // c.x is an outside connector , m5.c is an inside connector
connect(c, d); // c is an outside connector , d is an outside connector

and in the model for component m6:

connect(d, m7.c); // d is an outside connector , m7.c is an inside connector

]

9.1.3 Expandable Connectors

If the expandable qualifier is present on a connector definition, all instances of that connector are referred
to as expandable connectors. Instances of connectors that do not possess this qualifier will be referred to
as non-expandable connectors.

129

Modelica Language Specification 3.7-dev
9.1. Connect-Equations and Connectors

Before generating connection equations, non-parameter scalar variables and non-parameter array ele-
ments declared in expandable connectors are marked as only being potentially present. A non-parameter
array element may be declared with array dimensions : indicating that the size is unknown (note that
the size of such a dimension cannot be determined using size, see section 10.3.1). This applies to both
variables of simple types, and variables of structured types.

Then connections containing expandable connectors are elaborated:

1. If a connect-equation references a potentially present component as part of the argument it will
be marked as being present, which will allow a connection to an undeclared connector inside it.
The rule does not apply for the complete argument.

2. After that at least one connector in the connect-equation must reference a declared component.

3. If the other connector is undeclared it must be in a declared component and is handled as follows:

� The expandable connector instance is automatically augmented with a new component having
the used name and corresponding type.

� If the undeclared component is subscripted, an array variable is created, and a connection to
the specific array element is performed. Introducing elements in an array gives an array with
at least the specified elements, other elements are either not created or have a default value
(i.e., as if they were only potentially present, and the same note regarding the use of size
also applies here).

� If the variable on the other side of the connect-equation is input or output the new com-
ponent will be either input or output to satisfy the restrictions in section 9.3 for a non-
expandable connector. If both would be valid it shall be input to ensure that there is a
source of the signal. If the corresponding connection set contain two or more variables in
expandable connectors that are deduced to be input it is an error as there should only be one
source of the signal.

[The general rule ensures consistency for inside and outside connectors, and handles multiple
connections to the new component. In the simple case of no other connections involving
these variables and the existing side referring to an inside connector (i.e., a connector of
a component), the new variable will copy its causality (i.e., input if input and output if
output) since the expandable connector must be an outside connector.]

For an array the input/output property can be deduced separately for each array element.

Additionally:

� When two expandable connectors are connected, each is augmented with the variables that are
only declared in the other expandable connector (the new variables are neither input nor output).
This is repeated until all connected expandable connector instances have matching variables.

[I.e., each of the connector instances is expanded to be the union of all connector variables.]

� The variables introduced in the elaboration follow additional rules for generating connection sets
(given in section 9.2).

� If a variable appears as an input in one expandable connector, it should appear as a non-input in
at least one other expandable connector instance in the same augmentation set. An augmentation
set is defined as the set of connected expandable connector instances that through the elaboration
will have matching variables.

[Example:

expandable connector EngineBus
end EngineBus;

partial block Sensor
RealOutput speed; // Output , i.e., non -input

end Sensor;
partial block Actuator
RealInput speed; // Input

end Actuator;

130

Modelica Language Specification 3.7-dev
9.1. Connect-Equations and Connectors

model SensorWBus
EngineBus bus;
replaceable Sensor sensor;

equation
connect(bus.speed , sensor.speed);
// Provides 'speed'

end SensorWBus;
model ActuatorWBus
EngineBus bus;
replaceable Actuator actuator;

equation
connect(bus.speed , actuator.speed);
// Uses 'speed '

end ActuatorWBus;

model Engine
ActuatorWBus actuator;
SensorWBus sensor;
EngineBus bus;

equation
connect(bus , actuator.bus);
connect(bus , sensor.bus);

end Engine;

This small example shows how expandable connectors are normally used:

– There are a number of bus-instances all connected together. Often they have the same name,
but it is not required.

– There is one source of the signal: sensor.sensor.speed.

– There are zero or more uses of the signal: actuator.actuator.speed.

]

� All components in an expandable connector are seen as connector instances even if they are not
declared as such.

[I.e., it is possible to connect to, e.g., a Real variable.]

[Example:

expandable connector EngineBus // has predefined signals
import Modelica.Units.SI;
SI.AngularVelocity speed;
SI.Temperature T;

end EngineBus;

partial block Sensor
RealOutput speed;

end Sensor;

model Engine
EngineBus bus;
replaceable Sensor sensor;

equation
connect(bus.speed , sensor.speed);
// connection to non -connector speed is possible
// in expandable connectors

end Engine;

]

� An expandable connector shall not contain a component declared with the prefix flow, but may
contain non-expandable connector components with flow components.

131

Modelica Language Specification 3.7-dev
9.1. Connect-Equations and Connectors

[Example:

import Interfaces=Modelica.Electrical.Analog.Interfaces;
expandable connector ElectricalBus
Interfaces.PositivePin p12 , n12; // OK
flow Modelica.Units.SI.Current i; // Error

end ElectricalBus;

model Battery
Interfaces.PositivePin p42 , n42;
ElectricalBus bus;

equation
connect(p42 , bus.p42); // Adds new electrical pin
connect(n42 , bus.n42); // Adds another pin

end Battery;

]

� Expandable connectors can only be connected to other expandable connectors.

If a connect-equation references a potentially present variable, or variable element, in an expandable
connector the variable or variable element is marked as being present, and due to the paragraphs above
it is possible to deduce whether the bus variable shall be treated as input, or shall be treated as output
in the connect-equation. That input or output prefix is added if no input/output prefix is present on
the declaration.

[Example:

expandable connector EmptyBus
end EmptyBus;

model Controller
EmptyBus bus1;
EmptyBus bus2;
RealInput speed;

equation
connect(speed , bus1.speed); // OK; only one undeclared and not subscripted.
connect(bus1.pressure , bus2.pressure); // Error; both undeclared.
connect(speed , bus2.speed [2]); // Introduces speed array (with element [2]).

end Controller;

]

An expandable connector array component for which size is not defined (see section 10.3.1) is referred
to as a sizeless array component . Such a component shall not be used without subscripts, and the
subscripts must slice the array so that the sizeless dimensions are removed.

[Example: Valid and invalid uses of sizeless array components:

expandable connector EngineBus
end EngineBus;

partial block Sensor
RealOutput speed;

end Sensor;

model Engine
parameter Integer n = 1;
EngineBus bus;
replaceable Sensor sensor;
RealOutput sensorSpeeds [:];

equation
/* Comments below refer to the use of sizeless array bus.speed. */
connect(bus.speed[n], sensor.speed) ; // OK; subscript to scalar component.
connect(bus.speed , sensorSpeeds); // Error; missing subscripts.

public

132

Modelica Language Specification 3.7-dev
9.1. Connect-Equations and Connectors

Real a[:] = bus.speed; // Error; missing subscripts.
Real b[2] = bus.speed[{1, 3}]; // OK; subscript selects fixed size sub -array.

end Engine;

]

After this elaboration the expandable connectors are treated as normal connector instances, and the
connections as normal connections, and all potentially present variables and array elements that are not
actually present are undefined. It is an error if there are expressions referring to potentially present
variables or array elements that are not actually present or non-declared variables. This elaboration
implies that expandable connectors can be connected even if they do not contain the same components.

[A tool may remove undefined variables in an expandable connector, or set them to the default value,
e.g., zero for Real variables.]

[Expressions can only “read” variables from the bus that are actually declared and present in the connector,
in order that the types of the variables can be determined in the local scope.]

[Note that the introduction of variables, as described above, is conceptual and does not necessarily impact
the flattening hierarchy in any way. Furthermore, it is important to note that these elaboration rules
must consider:

1. Expandable connectors nested hierarchically. This means that both outside and inside connectors
must be included at every level of the hierarchy in this elaboration process.

2. When processing an expandable connector that possesses the inner scope qualifier, all outer in-
stances must also be taken into account during elaboration.

]

[Example: Engine system with sensors, controllers, actuator and plant that exchange information via a
bus (i.e., via expandable connectors):

import Modelica.Units.SI;
import Modelica.Blocks.Interfaces.RealInput;
// Plant Side
model SparkPlug
RealInput spark_advance;
. . .

end SparkPlug;

expandable connector EngineBus
// No minimal set

end EngineBus;

expandable connector CylinderBus
Real spark_advance;

end CylinderBus;

model Cylinder
CylinderBus cylinder_bus;
SparkPlug spark_plug;
. . .

equation
connect(spark_plug.spark_advance ,
cylinder_bus.spark_advance);

end Cylinder;

model I4
EngineBus engine_bus;
Modelica.Mechanics.Rotational.Sensors.SpeedSensor speed_sensor;
Modelica.Thermal.HeatTransfer.Sensors.TemperatureSensor temp_sensor;
parameter Integer nCylinder = 4 "Number of cylinders";
Cylinder cylinder[nCylinder];

equation
// adds engine_speed (as output)

133

Modelica Language Specification 3.7-dev
9.2. Generation of Connection Equations

connect(speed_sensor.w, engine_bus.engine_speed);
// adds engine_temp (as output)
connect(temp_sensor.T, engine_bus.engine_temp);
// adds cylinder_bus1 (a nested bus)
for i in 1: nCylinder loop
connect(cylinder[i]. cylinder_bus ,
engine_bus.cylinder_bus[i]);

end for;
end I4;

Due to the above connection, conceptually a connector consisting of the union of all connectors is intro-
duced.

The engine_bus contains the following variable declarations:

RealOutput engine_speed;
RealOutput engine_temp;
CylinderBus cylinder_bus [1];
CylinderBus cylinder_bus [2];
CylinderBus cylinder_bus [3];
CylinderBus cylinder_bus [4];

]

9.2 Generation of Connection Equations

When generating connection equations, outer elements are resolved to the corresponding inner elements
in the instance hierarchy (see instance hierarchy name lookup section 5.4). The arguments to each
connect-equation are resolved to two connector elements.

For every use of the connect-equation

connect(a, b);

a connection set is generated for each pair of corresponding primitive components of a and b together
with an indication of whether they are from an inside or an outside connector.

Definition 9.1. Primitive elements. The primitive elements are of simple types or of types defined as
operator record (i.e., a component of an operator record type is not split into sub-components).

The elements of the connection sets are tuples of primitive variables together with an indication of inside
or outside; if the same tuple belongs to two connection sets those two sets are merged, until every tuple
is only present in one set. Composite connector types are broken down into primitive components. The
outer components are handled by mapping the objects to the corresponding inner components, and
the inside indication is not influenced. The outer connectors are handled by mapping the objects to the
corresponding inner connectors, and they are always treated as outside connectors.

[Rationale: The inside/outside as part of the connection sets ensure that connections from different
hierarchical levels are treated separately. Connection sets are formed from the primitive elements and
not from the connectors; this handles connections to parts of hierarchical connectors and also makes it
easier to generate equations directly from the connection sets. All variables in one connection set will
either be flow variables or non-flow variables due to restriction on connect-equations. The mapping from
an outer to an inner element must occur before merging the sets in order to get one zero-sum equation,
and ensures that the equations for the outer elements are all given for one side of the connector, and
the inner element can define the other side.]

The following connection sets with just one member are also present (and merged):

� Each primitive flow variable as inside connector.

� Each flow variable added during augmentation of expandable connectors, both as inside and as
outside.

[Note that the flow variable is not directly in the expandable connector, but in a connector inside
the expandable connector.]

134

Modelica Language Specification 3.7-dev
9.2. Generation of Connection Equations

[Rationale: If these variables are not connected they will generate a set comprised only of this element,
and thus they will be implicitly set to zero (see below). If connected, this set will be merged and adding
this at the start has no impact.]

Each connection set is used to generate equations for potential and flow (zero-sum) variables of the form

� a1 = a2 = . . . = an (neither flow nor stream variables)

� z1 + z2 + (−z3) + . . .+ zn = 0 (flow variables)

The bold-face 0 represents an array or scalar zero of appropriate dimensions (i.e., the same size as z).

For an operator record type this uses the operator '0' – which must be defined in the operator record
– and all of the flow variables for the operator record must be of the same operator record type.
This implies that in order to have flow variables of an operator record type the operator record
must define addition, negation, and '0'; and these operations should define an additive group.

In order to generate equations for flow variables (using the flow prefix), the sign used for the connector
variable zi above is +1 for inside connectors and -1 for outside connectors (z3 in the example above).

[Example: Simple example:

model Circuit
Ground ground;
Load load;
Resistor resistor;

equation
connect(load.p , ground.p);
connect(resistor.p, ground.p);

end Circuit;

model Load
extends TwoPin;
Resistor resistor;

equation
connect(p, resistor.p);
connect(resistor.n, n);

end Load;

The connection sets are before merging (note that one part of the load and resistor is not connected):

{<load.p.i, inside>}
{<load.n.i, inside>}
{<ground.p.i, inside>}
{<load.resistor.p.i, inside>}
{<load.resistor.n.i, inside>}
{<resistor.p.i, inside>}
{<resistor.n.i, inside>}
{<resistor.p.i, inside>, <ground.p.i, inside>}
{<resistor.p.v, inside>, <ground.p.v, inside>}
{<load.p.i, inside>, <ground.p.i, inside>}
{<load.p.v, inside>, <ground.p.v, inside>}
{<load.p.i, outside>, <load.resistor.p.i, inside>}
{<load.p.v, outside>, <load.resistor.p.v, inside>}
{<load.n.i, outside>, <load.resistor.n.i, inside>}
{<load.n.v, outside>, <load.resistor.n.v, inside>}

After merging this gives:

{<load.p.i, outside>, <load.resistor.p.i, inside>}
{<load.p.v, outside>, <load.resistor.p.v, inside>}
{<load.n.i, outside>, <load.resistor.n.i, inside>}
{<load.n.v, outside>, <load.resistor.n.v, inside>}
{<load.p.i, inside>, <ground.p.i, inside>, <resistor.p.i, inside>}
{<load.p.v, inside>, <ground.p.v, inside>, <resistor.p.v, inside>}

135

Modelica Language Specification 3.7-dev
9.2. Generation of Connection Equations

{<load.n.i, inside>}
{<resistor.n.i, inside>}

And thus the equations:

load.p.v = load.resistor.p.v;
load.n.v = load.resistor.n.v;
load.p.v = ground.p.v;
load.p.v = resistor.p.v;
0 = (-load.p.i) + load.resistor.p.i;
0 = (-load.n.i) + load.resistor.n.i;
0 = load.p.i + ground.p.i + resistor.p.i;
0 = load.n.i;
0 = resistor.n.i;

]

[Example: Outer component example:

model Circuit
Ground ground;
Load load;
inner Resistor resistor;

equation
connect(load.p, ground.p);

end Circuit;

model Load
extends TwoPin;
outer Resistor resistor;

equation
connect(p, resistor.p);
connect(resistor.n, n);

end Load;

The connection sets are before merging (note that one part of the load and resistor is not connected):

{<load.p.i, inside>}
{<load.n.i, inside>}
{<ground.p.i, inside>}
{<resistor.p.i, inside>}
{<resistor.n.i, inside>}
{<load.p.i, inside>, <ground.p.i, inside>}
{<load.p.v, inside>, <ground.p.v, inside>}
{<load.p.i, outside>, <resistor.p.i, inside>}
{<load.p.v, outside>, <resistor.p.v, inside>}
{<load.n.i, outside>, <resistor.n.i, inside>}
{<load.n.v, outside>, <resistor.n.v, inside>}

After merging this gives:

{<load.p.i, outside>, <resistor.p.i, inside>}
{<load.p.v, outside>, <resistor.p.v, inside>}
{<load.n.i, outside>, <resistor.n.i, inside>}
{<load.n.v, outside>, <resistor.n.v, inside>}
{<load.p.i, inside>, <ground.p.i, inside>}
{<load.p.v, inside>, <ground.p.v, inside>}
{<load.n.i, inside>}

And thus the equations:

load.p.v = resistor.p.v;
load.n.v = resistor.n.v;
load.p.v = ground.p.v;
0 = (-load.p.i) + resistor.p.i;

136

Modelica Language Specification 3.7-dev
9.3. Restrictions of Connections and Connectors

0 = (-load.n.i) + resistor.n.i;
0 = load.p.i + ground.p.i;
0 = load.n.i;

This corresponds to a direct connection of the resistor.]

9.3 Restrictions of Connections and Connectors

� The connect-equations (and some special functions for overdetermined connectors) can only be
used in normal equations and in some if-equations and for-equations. See section 8.3.3 for details.

[The for-equations always have evaluable expressions for the array expression.]

� A connector component shall not be declared with the prefix parameter or constant. In the
connect-equation the primitive components may only connect parameter variables to parameter
variables and constant variables to constant variables.

� The connect-equation construct only accepts forms of connector references as specified in sec-
tion 9.1.

� In a connect-equation the two connectors must have the same named component elements with
the same dimensions; recursively down to the primitive components. The primitive components
with the same name are matched and belong to the same connection set.

� The matched primitive components of the two connectors must have the same primitive types,
and flow variables may only connect to other flow variables, stream variables only to other stream
variables, and causal variables (input/output) only to causal variables (input/output).

� A connection set of causal variables (input/output) may at most contain variables from one inside
output connector (for state-machines extended as specified in section 17.3.6) or one public outside
input connector.

[I.e., a connection set may at most contain one source of a signal.]

� At least one of the following must hold for a connection set containing causal variables generated
for a non-partial model or block:

1. the connection set includes variables from an outside public expandable connector,

2. the set contains variables from protected outside connectors,

3. it contains variables from one inside output connector, or

4. from one public outside input connector, or

5. the set is comprised solely of one variable from one inside input connector that is not part of
an expandable connector.

[I.e., a connection set must – unless the model or block is partial – contain one source of a signal
(item 5 covers the case where a connector of a component is left unconnected and the source given
textually).]

� Variables from a protected outside connector must be part of a connection set containing at least
one inside connector or one declared public outside connector (i.e., it shall not be an implicitly
defined part of an expandable connector).

[Otherwise it would not be possible to deduce the causality for the expandable connector element.]

� In a connection set, all variables having non-empty quantity-attribute must have the same quantity
-attribute.

[Note that variables with different quantities may be unit-compatible, as seen in the example of work
and torque. It is also possible to include medium-information in the quantity to detect connections
between different liquids.]

� A connect-equation shall not (directly or indirectly) connect two connectors of outer elements.

137

Modelica Language Specification 3.7-dev
9.3. Restrictions of Connections and Connectors

[Indirectly is similar to them being part of the same connection set. However, connections to outer
elements are “moved up” before forming connection sets. Otherwise the connection sets could
contain redundant information breaking the equation count for locally balanced models and blocks.]

� Subscripts in a connector reference shall be evaluable expressions or the special operator :.

� Constants or parameters in connected components yield the appropriate assert-statements to
check that they have the same value; connections are not generated.

� For conditional connectors, see section 4.4.5.

9.3.1 Balancing Restriction and Size of Connectors

For each non-partial non-simple non-expandable connector class the number of flow variables shall be
equal to the number of potential variables that are neither parameter, constant, input, output, stream
nor flow. The number of potential variables is the number of all elements in the connector class after
expanding all records and arrays to a set of scalars of primitive types. The number of potential variables
of an overdetermined type or record class (see section 9.4.1) is the size of the output argument of the
corresponding equalityConstraint() function. A simple connector class is not expandable, has some
time-varying variables, and has neither input, output, stream nor flow variables.

[Expandable connector classes are excluded from this, since their component declarations are only a form
of constraint.]

A component of a simple connector class must be declared as input, output, or protected.

[A simple connector class is thus always unbalanced, but since it is used with causality or not visible to
the outside it does not unbalance the model.]

[Example:

connector Pin // A physical connector of Modelica.Electrical.Analog
Real v;
flow Real i;

end Pin;

connector Plug // A hierarchical connector of Modelica.Electrical.MultiPhase
parameter Integer m = 3;
Pin p[m];

end Plug;

connector InputReal = input Real; // A causal input connector
connector OutputReal = output Real; // A causal output connector

connector Frame_Illegal
Modelica.Units.SI.Position r0[3] "Position vector of frame origin";
Real S[3, 3] "Rotation matrix of frame";
Modelica.Units.SI.Velocity v[3] "Abs. velocity of frame origin";
Modelica.Units.SI.AngularVelocity w[3] "Abs. angular velocity of frame";
Modelica.Units.SI.Acceleration a[3] "Abs. acc. of frame origin";
Modelica.Units.SI.AngularAcceleration z[3] "Abs. angular acc. of frame";
flow Modelica.Units.SI.Force f[3] "Cut force";
flow Modelica.Units.SI.Torque t[3] "Cut torque";

end Frame_Illegal;

The Frame_Illegal connector (intended to be used in a simple multi-body package without over-determined
connectors) is illegal since the number of flow and non-flow variables do not match. The solution is to
create two connector classes, where two 3-vectors (e.g., a and z) are acausal Real and the other vari-
ables are matching pairs of input and output. This ensures that the models can only be connected in a
tree-structure or require a “loop-breaker” joint for every closed kinematic loop:

connector Frame_a "correct connector"
input Modelica.Units.SI.Position r0[3];
input Real S[3, 3];
input Modelica.Units.SI.Velocity v[3];

138

Modelica Language Specification 3.7-dev
9.4. Overconstrained Connections

input Modelica.Units.SI.AngularVelocity w[3];
Modelica.Units.SI.Acceleration a[3];
Modelica.Units.SI.AngularAcceleration z[3];
flow Modelica.Units.SI.Force f[3];
flow Modelica.Units.SI.Torque t[3];

end Frame_a;

connector Frame_b "correct connector"
output Modelica.Units.SI.Position r0[3];
output Real S[3, 3];
output Modelica.Units.SI.Velocity v[3];
output Modelica.Units.SI.AngularVelocity w[3];
Modelica.Units.SI.Acceleration a[3];
Modelica.Units.SI.AngularAcceleration z[3];
flow Modelica.Units.SI.Force f[3];
flow Modelica.Units.SI.Torque t[3];

end Frame_b;

The subsequent connectors Plug_Expanded and PlugExpanded2 are correct, but Plug_Expanded_Illegal
is illegal since the number of non-flow and flow variables is different if n and m are different. It is not
clear how a tool can detect in general that connectors such as Plug_Expanded_Illegal are illegal. How-
ever, it is always possible to detect this defect after actual values of parameters and constants are provided
in the simulation model.

connector Plug_Expanded "correct connector"
parameter Integer m=3;
Real v[m];
flow Real i[m];

end Plug_Expanded;

connector Plug_Expanded2 "correct connector"
parameter Integer m=3;
final parameter Integer n=m;
Real v[m];
flow Real i[n];

end Plug_Expanded2;

connector Plug_Expanded_Illegal "connector is illegal"
parameter Integer m=3;
parameter Integer n=m;
Real v[m];
flow Real i[n];

end Plug_Expanded_Illegal;

]

9.4 Overconstrained Connections

There is a special problem regarding equation systems resulting from loops in connection graphs where the
connectors contain non-flow (i.e., potential) variables dependent on each other. When a loop structure
occurs in such a graph, the resulting equation system will be overconstrained, i.e., have more equations
than variables, since there are implicit constraints between certain non-flow variables in the connector in
addition to the connection equations around the loop. At the current state-of-the-art, it is not possible to
automatically eliminate the unneeded equations from the resulting equation system without additional
information from the model designer.

This section describes a set of equation operators for such overconstrained connection-based equation
systems, that makes it possible for the model designer to specify enough information in the model to
allow a Modelica environment to automatically remove the superfluous equations.

[Connectors may contain redundant variables. For example, the orientation between two coordinate
systems in 3 dimensions can be described by 3 independent variables. However, every description of

139

Modelica Language Specification 3.7-dev
9.4. Overconstrained Connections

orientation with 3 variables has at least one singularity in the region where the variables are defined. It
is therefore not possible to declare only 3 variables in a connector. Instead n variables (n > 3) have
to be used. These variables are no longer independent from each other and there are n − 3 constraint
equations that have to be fulfilled. A proper description of a redundant set of variables with constraint
equations does no longer have a singularity. A model that has loops in the connection structure formed by
components and connectors with redundant variables, may lead to a differential algebraic equation system
that has more equations than unknown variables. The superfluous equations are usually consistent with
the rest of the equations, i.e., a unique mathematical solution exists. Such models cannot be treated with
the currently known symbolic transformation methods. To overcome this situation, operators are defined
in order that a Modelica translator can remove the superfluous equations. This is performed by replacing
the equality equations of non-flow variables from connection sets by a reduced number of equations in
certain situations.

This section handles a certain class of overdetermined systems due to connectors that have a redundant
set of variables. There are other causes of overdetermined systems, e.g., explicit zero-sum equations for
flow variables, that are not handled by the method described below.]

9.4.1 Connection Graphs and Their Operators

A type or record declaration may have an optional definition of function equalityConstraint that shall
have the following prototype:

type Type // overdetermined type
extends ⟨base type⟩;
function equalityConstraint // non -redundant equality
input Type T1;
input Type T2;
output Real residue[n];

algorithm
residue := . . .;

end equalityConstraint;
end Type;

record Record
⟨declaration of record fields⟩;
function equalityConstraint // non -redundant equality
input Record R1;
input Record R2;
output Real residue[n];

algorithm
residue := . . .;

end equalityConstraint;
end Record;

The array dimension n of residue shall be a constant Integer expression that can be evaluated during
translation, with n ≥ 0. The equalityConstraint expresses the equality between the two type instances
T1 and T2 or the record instances R1 and R2, respectively, as the n non-redundant equation residuals
returned in residue. That is, the set of n non-redundant equations stating that R1 = R2 is given by the
equation (0 represents a vector of zeros of appropriate size):

Record R1, R2;
equation
0 = Record.equalityConstraint(R1, R2);

[If the elements of a record Record are not independent from each other, the equation R1 = R2 contains
redundant equations.]

A type class with an equalityConstraint function declaration is called overdetermined type. A record
class with an equalityConstraint function definition is called overdetermined record . A connector that
contains instances of overdetermined type and/or record classes is called overdetermined connector . An
overdetermined type or record may neither have flow components nor may be used as a type of flow
components. If an array is used as argument to any of the Connections.* functions it is treated as one
unit – unlike connect, there is no special treatment of this case, compare section 9.1.

140

Modelica Language Specification 3.7-dev
9.4. Overconstrained Connections

Every instance of an overdetermined type or record in an overdetermined connector is a node in a virtual
connection graph that is used to determine when the standard equation R1 = R2 or when the equation 0
= equalityConstraint(R1, R2) has to be used for the generation of connect-equations. The edges of
the virtual connection graph are implicitly defined by connect and explicitly by Connections.branch
, see table below. Connections is a built-in package in global scope containing built-in operators.
Additionally, corresponding nodes of the virtual connection graph have to be defined as roots or as
potential roots with functions Connections.root and Connections.potentialRoot, respectively.

The overconstrained equation operators for connection graphs are listed below. None of these operators
are allowed inside function classes. Here, a and b are connector instances that may be hierarchically
structured, e.g., a may be an abbreviation for enginePort.frame_a.

Expression Description Details

connect(a, b) Optional spanning-tree edge Operator 9.1
Connections.branch(a.R, b.R) Required spanning-tree edge Operator 9.2
Connections.root(a.R) Definite root node Operator 9.3
Connections.potentialRoot(a.R, . . .) Potential root node Operator 9.4
Connections.isRoot(a.R) Predicate for being selected as root Operator 9.5
Connections.rooted(a.R) Predicate for being closer to root Operator 9.6

Operator 9.1 connect

connect(a, b)

Except for redundant connections it defines an optional spanning-tree edge from the overdeter-
mined type or record instances in connector a to the corresponding overdetermined type or record
instances in connector b for a virtual connection graph. E.g., from a.R to b.R. The full explana-
tion will be given in section 9.4.2. The types of the corresponding overdetermined type or record
instances shall be the same.

Operator 9.2 Connections.branch

Connections.branch(a.R, b.R)

Defines a required spanning-tree edge from the overdetermined type or record instance R in connec-
tor instance a to the corresponding overdetermined type or record instance R in connector instance
b for a virtual connection graph. This function can be used at all places where a connect-equation
is allowed.

[E.g., it is not allowed to use this function in a when-clause. This definition shall be used if in a
model with connectors a and b the overdetermined records a.R and b.R are algebraically coupled
in the model, e.g., due to b.R = f(a.R, ⟨other unknowns⟩).]

Operator 9.3 Connections.root

Connections.root(a.R)

The overdetermined type or record instance R in connector instance a is a (definite) root node in
a virtual connection graph.

[This definition shall be used if in a model with connector a the overdetermined record a.R is
(consistently) assigned, e.g., from a parameter expressions.]

Operator 9.4 Connections.potentialRoot

Connections.potentialRoot(a.R)
Connections.potentialRoot(a.R, priority=p)

The overdetermined type or record instance R in connector instance a is a potential root node in a
virtual connection graph with priority p (p ≥ 0). If no second argument is provided, the priority
is zero. p shall be an evaluable expression of type Integer. In a virtual connection subgraph
without a Connections.root definition, one of the potential roots with the lowest priority number
is selected as root.

[This definition may be used if in a model with connector a the overdetermined record a.R appears
differentiated – der(a.R) – together with the constraint equations of a.R, i.e., a non-redundant

141

Modelica Language Specification 3.7-dev
9.4. Overconstrained Connections

subset of a.R maybe used as states.]

Operator 9.5 Connections.isRoot

Connections.isRoot(a.R)

Returns true, if the overdetermined type or record instance R in connector instance a is selected
as a root in the virtual connection graph.

Operator 9.6 Connections.rooted

Connections.rooted(a.R)
rooted(a.R) // deprecated!

If the operator Connections.rooted(a.R) is used, or the equivalent but deprecated operator
rooted(a.R), then there must be exactly one Connections.branch(a.R, b.R) involving a.R
(the argument of Connections.rooted must be the first argument of Connections.branch). In
that case Connections.rooted(a.R) returns true, if a.R is closer to the root of the spanning tree
than b.R; otherwise false is returned.

[This operator can be used to avoid equation systems by providing analytic inverses, see
Modelica.Mechanics.MultiBody.Parts.FixedRotation.]

[Note, that Connections.branch, Connections.root, Connections.potentialRoot do not generate
equations. They only generate nodes and edges in the virtual graph for analysis purposes.]

9.4.2 Generation of Connection Graph Equations

When generating connection graph equations, only the overdetermined components of a connector are
considered. The connection graph equations replace the equality-equations for variables that are neither
flow nor stream in section 9.2.

9.4.2.1 Handle Connect-Equation Redundancy

In order to eliminate any redundant connect-equation the following preparation is needed.

[In the common case where there is no connect-equation redundancy, a consequence of this preparation is
that a connect-equation between connectors with one overdetermined component may be directly turned
into one optional spanning-tree edge.]

1. The connection sets are built similarly to the normal way, but keeping the overdetermined compo-
nents as primitives.

2. Instead of generating the equality-equation for an overdetermined component, an optional spanning-
tree edge in the virtual connection graph is constructed.

[If a connection set contains n overdetermined components, and was built fromm connect-equations, then
the connection set has a connect-equation redundancy of m−(n−1) ≥ 0. If there is no connect-equation
redundancy (i.e., if m = n − 1), the optional spanning-tree edges can be chosen to correspond to the
connect-equations for overdetermined connectors. If there is a non-zero connect-equation redundancy,
there will always exist connect-equations without a corresponding optional spanning-tree edge.

It is called redundancy since this number of connect-equations could be removed without changing the
connection set or the generated equations. Situations with non-zero connect-equation redundancy include
connectors connected directly to themselves, duplicated connections, and having all three pair-wise con-
nections between the connectors a, b and c. The latter case can be used to consistently handle conditional
components (so that disabling b does not break the connection between a and c).]

The selected optional spanning tree edges, together with all required spanning tree edges generated
from Connections.branch, and nodes corresponding to definite and potential roots form the virtual
connection graph.

9.4.2.2 Spanning Trees

Before connection equations are generated, the virtual connection graph is transformed into a set of
spanning trees by removing optional spanning tree edges from the graph. This is performed in the

142

Modelica Language Specification 3.7-dev
9.4. Overconstrained Connections

following way:

1. Root nodes are selected as follows:

1.1. Every definite root node defined via the Connections.root-equation is a root of one spanning
tree. It is an error if two (or more) definite root nodes are connected through required spanning
tree edges.

1.2. The virtual connection graph may consist of sets of subgraphs that are not connected together.
Every subgraph in this set shall have at least one definite root node or one potential root node
in a simulation model. If a graph of this set does not contain any definite root node, then one
potential root node in this subgraph that has the lowest priority number is selected to be the
root of that subgraph. The selection can be inquired in a class with function Connections.
isRoot, see table above.

2. If there is a cycle among required spanning-tree-edges it is an error, as it is not possible to construct
a spanning tree.

3. For a subgraph with n selected roots, optional spanning-tree edges are removed such that the result
is a set of n spanning trees with the selected root nodes as roots.

9.4.2.3 Equations

After this analysis, the connection graph equations are generated in the following way:

1. For every remaining optional spanning-tree edge in any of the spanning trees, the connection equa-
tions are generated according to section 9.2. For connect(a, b) with overdetermined connector R,
this corresponds to the optional spanning-tree edge between a.R and b.R generating the equation
a.R = b.R.

2. For every remaining optional spanning-tree edge not in any of the spanning trees, the connection
equations are generated according to section 9.2, except for overdetermined type or record instances
R. Here the equations 0 = R.equalityConstraint(a.R, b.R) are generated instead of a.R = b.
R.

9.4.3 Examples

[Example:

selected root
selected root

selected (potential) root
Node

Root

Potential root
Required spanning-tree edge
(Connections.branch)

Optional spanning-tree edge
(from connection set)

Removed optional spanning-tree
edge to get spanning tree

Figure 9.2: Example of a virtual connection graph.

]

9.4.3.1 A Power Systems Overdetermined Connector

[An overdetermined connector for power systems based on the transformation theory of Park may be
defined as:

143

Modelica Language Specification 3.7-dev
9.4. Overconstrained Connections

type AC_Angle "Angle of source , e.g., rotor of generator"
extends Modelica.Units.SI.Angle; // AC_Angle is a Real number
// with unit = "rad"
function equalityConstraint
input AC_Angle theta1;
input AC_Angle theta2;
output Real residue [0] "No constraints";

algorithm
/* make sure that theta1 and theta2 from joining edges are identical */
assert(abs(theta1 - theta2) < 1.e-10, "Consistent angles");

end equalityConstraint;
end AC_Angle;

connector AC_Plug "3-phase alternating current connector"
import Modelica.Units.SI;
AC_Angle theta;
SI.Voltage v[3] "Voltages resolved in AC_Angle frame";
flow SI.Current i[3] "Currents resolved in AC_Angle frame";

end AC_Plug;

The currents and voltages in the connector are defined relatively to the harmonic, high-frequency signal
of a power source that is essentially described by angle theta of the rotor of the source. This allows much
faster simulations, since the basic high frequency signal of the power source is not part of the differential
equations. For example, when the source and the rest of the line operates with constant frequency (=
nominal case), then AC_Plug.v and AC_Plug.i are constant. In this case a variable step integrator can
select large time steps. An element, such as a 3-phase inductor, may be implemented as:

model AC_Inductor
parameter Real X[3,3], Y[3 ,3]; // component constants
AC_Plug p;
AC_Plug n;
Real omega;

equation
Connections.branch(p.theta ,n.theta); //edge in virtual graph
// since n.theta = p.theta
n.theta = p.theta; // pass angle theta between plugs
omega = der(p.theta); // frequency of source
zeros (3) = p.i + n.i;
X*der(p.i) + omega*Y*p.i = p.v - n.v;

end AC_Inductor

At the place where the source frequency, i.e., essentially variable theta, is defined, a Connections.root
must be present:

AC_Plug p;
equation
Connections.root(p.theta);
p.theta = 2* Modelica.Constants.pi*50* time; // 50 Hz

The graph analysis performed with the virtual connection graph identifies the connectors, where the
AC_Angle needs not to be passed between components, in order to avoid redundant equations.

Note that the different sources do not integrate the frequency, as that increases the risk of numerical
errors.]

9.4.3.2 A 3-Dimensional Mechanical Systems Overdetermined Connector

[An overdetermined connector for 3-dimensional mechanical systems may be defined as:

type TransformationMatrix = Real [3,3];
type Orientation "Orientation from frame 1 to frame 2"

extends TransformationMatrix;
function equalityConstraint
input Orientation R1 "Rotation from inertial frame to frame 1";

144

Modelica Language Specification 3.7-dev
9.4. Overconstrained Connections

input Orientation R2 "Rotation from inertial frame to frame 2";
output Real residue [3];
protected
Orientation R_rel "Relative Rotation from frame 1 to frame 2";

algorithm
R_rel := R2*transpose(R1);
/*
If frame_1 and frame_2 are identical , R_rel must be
the unit matrix. If they are close together , R_rel can be
linearized yielding:
R_rel = [1, phi3 , -phi2;
-phi3 , 1, phi1;
phi2 , -phi1 , 1];

where phi1 , phi2 , phi3 are the small rotation angles around
axis x, y, z of frame 1 to rotate frame 1 into frame 2.
The atan2 is used to handle large rotation angles , but does not
modify the result for small angles.

*/
residue := { Modelica.Math.atan2(R_rel[2, 3], R_rel[1, 1]),
Modelica.Math.atan2(R_rel[3, 1], R_rel[2, 2]),
Modelica.Math.atan2(R_rel[1, 2], R_rel[3, 3])};

end equalityConstraint;
end Orientation;

connector Frame "3-dimensional mechanical connector"
import Modelica.Units.SI;
SI.Position r[3] "Vector from inertial frame to Frame";
Orientation R "Orientation from inertial frame to Frame";
flow SI.Force f[3] "Cut -force resolved in Frame";
flow SI.Torque t[3] "Cut -torque resolved in Frame";

end Frame;

A fixed translation from a frame a to a frame b may be defined as:

model FixedTranslation
parameter Modelica.Units.SI.Position r[3];
Frame frame_a , frame_b;

equation
Connections.branch(frame_a.R, frame_b.R);
frame_b.r = frame_a.r + transpose(frame_a.R)*r;
frame_b.R = frame_a.R;
zeros (3) = frame_a.f + frame_b.f;
zeros (3) = frame_a.t + frame_b.t + cross(r, frame_b.f);

end FixedTranslation;

Since the transformation matrix frame_a.R is algebraically coupled with frame_b.R, an edge in the virtual
connection graph has to be defined. At the inertial system, the orientation is consistently initialized and
therefore the orientation in the inertial system connector has to be defined as root:

model InertialSystem
Frame frame_b;

equation
Connections.root(frame_b.R);
frame_b.r = zeros (3);
frame_b.R = identity (3);

end InertialSystem;

]

145

Chapter 10

Arrays

An array of the specialized classes type, record, and connector can be regarded as a collection of
type compatible values, section 6.7. Thus an array of the specialized classes record or connector may
contain scalar values whose elements differ in their dimension sizes, but apart from that they must be of
the same type. Such heterogenous arrays may only be used completely, sliced as specified, or indexed.
An array of other specialized classes can only be used sliced as specified, or indexed. Modelica arrays
can be multidimensional and are “rectangular”, which in the case of matrices has the consequence that
all rows in a matrix have equal length, and all columns have equal length.

Each array has a certain dimensionality, i.e., number of dimensions. The degenerate case of a scalar
variable is not really an array, but can be regarded as an array with zero dimensions. Vectors have one
dimension, matrices (sing. matrix) have two dimensions, etc.

So-called row vectors and column vectors do not exist in Modelica and cannot be distinguished since
vectors have only one dimension. If distinguishing these is desired, row matrices and column matrices are
available, being the corresponding two-dimensional entities. However, in practice this is seldom needed
since the usual matrix arithmetic and linear algebra operations have been defined to give the expected
behavior when operating on Modelica vectors and matrices.

Modelica is a strongly typed language, which also applies to array types. The number of dimensions
of an array is fixed and cannot be changed at run-time. However, the sizes of array dimensions can be
computed at run-time.

The fixed number of array dimensions permits strong type checking and efficient implementation. The
non-fixed sizes of array dimensions on the other hand, allow fairly generic array manipulation code to be
written as well as interfacing to standard numeric libraries implemented in other programming languages.

An array is allocated by declaring an array variable or calling an array constructor. Elements of an array
can be indexed by Integer, Boolean, or enumeration values.

10.1 Array Declarations

The Modelica type system includes scalar number, vector, matrix (number of dimensions, ndim=2), and
arrays of more than two dimensions.

[There is no distinction between a row and column vector.]

The following table shows the two possible forms of declarations and defines the terminology. C is
a placeholder for any class, including the built-in type classes Real, Integer, Boolean, String, and
enumeration types. The type of a dimension upper bound expression, e.g., n, m, p, . . . in the table
below, need to be a subtype of Integer or EB for a class EB that is an enumeration type or subtype of
the Boolean type.

Colon (:) indicates that the dimension upper bound is unknown and is a subtype of Integer. The size
of such a variable can be determined from its binding equation, or the size of any of its array attributes,
see also section 12.4.5. The size cannot be determined from other equations or algorithms.

146

Modelica Language Specification 3.7-dev
10.1. Array Declarations

Upper and lower array dimension index bounds are described in section 10.1.1.

An array indexed by Boolean or enumeration type can only be used in the following ways:

� Subscripted using expressions of the appropriate type (i.e., Boolean or the enumerated type).

� Binding equations of the form x1 = x2 are allowed for arrays independent of whether the index
types of dimensions are subtypes of Integer, Boolean, or enumeration types.

Table 10.1: General forms of declaration of arrays. The notation EB stands for an enumeration
type or Boolean. The general array can have one or more dimensions (k ≥ 1).

Modelica form 1 Modelica form 2 # dims Designation Explanation

C x; C x; 0 Scalar Scalar
C[n] x; C x[n]; 1 Vector n-vector
C[EB] x; C x[EB] 1 Vector Vector indexed by EB
C[n, m] x; C x[n, m]; 2 Matrix n×m matrix
C[n1, n2, . . ., nk] x; C x[n1, n2, . . ., nk]; k Array General array

A component declared with array dimensions, or where the element type is an array type, is called
an array variable. It is a component whose components are array elements (see below). For an array
variable, the ordering of its components matters: The kth element in the sequence of components of an
array variable x is the array element with index k, denoted x[k]. All elements of an array have the same
type. An array element may again be an array, i.e., arrays can be nested. An array element is hence
referenced using n indices in general, where n is the number of dimensions of the array.

A component contained in an array variable is called an array element . An array element has no
identifier. Instead they are referenced by array access expressions called indices that use enumeration
values or positive integer index values.

[Example: The number of dimensions and the dimensions sizes are part of the type, and shall be checked
for example at redeclarations. Declaration form 1 displays clearly the type of an array, whereas declaration
form 2 is the traditional way of array declarations in languages such as Fortran, C, C++.

Real [:] v1 , v2 // Vectors v1 and v2 have unknown sizes.
// The actual sizes may be different.

It is possible to mix the two declaration forms although it might be confusing.

Real[3, 2] x[4, 5]; // x has type Real[4, 5, 3, 2];

The reason for this order is given by examples such as:

type R3 = Real [3];
R3 a;
R3 b[1] = {a};
Real [3] c[1] = b;

Using a type for a and b in this way is normal, and substituting a type by its definition allows c.

A vector y indexed by enumeration values

type TwoEnums = enumeration(one ,two);
Real[TwoEnums] y;

]

Zero-valued dimensions are allowed, so: C x[0]; declares an empty vector, and: C x[0, 3]; an empty
matrix. Some examples of array dimensions of size one are given in table 10.2.

147

Modelica Language Specification 3.7-dev
10.1. Array Declarations

Table 10.2: Special cases of declaration of arrays as 1-vectors, row-vectors, or column-vectors of
arrays.

Modelica form 1 Modelica form 2 # dims Designation Explanation

C[1] x; C x[1]; 1 Vector 1-vector, representing a scalar
C[1, 1] x; C x[1, 1]; 2 Matrix (1× 1)-matrix, representing a scalar
C[n, 1] x; C x[n, 1]; 2 Matrix (n× 1)-matrix, representing a column
C[1, n] x; C x[1, n]; 2 Matrix (1× n)-matrix, representing a row

The type of an array of array is the multidimensional array which is constructed by taking the first
dimensions from the component declaration and subsequent dimensions from the maximally expanded
component type. A type is maximally expanded, if it is either one of the built-in types (Real, Integer,
Boolean, String, enumeration type) or it is not a type class. Before operator overloading is applied, a
type class of a variable is maximally expanded.

[Example:

type Voltage = Real(unit = "V");
type Current = Real(unit = "A");
connector Pin
Voltage v; // type class of v = Voltage , type of v = Real
flow Current i; // type class of i = Current , type of i = Real

end Pin;
type MultiPin = Pin [5];
MultiPin [4] p; // type class of p is MultiPin , type of p is Pin[4, 5];
type Point = Real [3];
Point p1[10];
Real p2[10, 3];

The components p1 and p2 have identical types.

p2[5] = p1[2] + p2[4]; // equivalent to p2[5, :] = p1[2, :] + p2[4, :]
Real r[3] = p1[2]; // equivalent to r[3] = p1[2, :]

]

[Automatic assertions at simulation time:

Let A be a declared array and i be the declared maximum dimension size of the di-dimension, then an
assert-statement assert(i >= 0, . . .) is generated provided this assertion cannot be checked at compile
time. It is a quality of implementation issue to generate a good error message if the assertion fails.

Let A be a declared array and i be an index accessing an index of the di-dimension. Then for every such
index-access an assert statement assert(1 <= i and i <= size(A, di), . . .) is generated, provided
this assertion cannot be checked at compile time.

For efficiency reasons, these implicit assert-statements may be optionally suppressed.]

10.1.1 Lower and Upper Index Bounds

The lower and upper index bounds for a dimension of an array indexed by Integer, Boolean, or
enumeration values are as follows:

� An array dimension indexed by Integer values has a lower bound of 1 and an upper bound being
the size of the dimension.

� An array dimension indexed by Boolean values has the lower bound false and the upper bound
true.

� An array dimension indexed by enumeration values of the type E = enumeration(e1, e2, . . .,
en) has the lower bound E.e1 and the upper bound E.en.

148

Modelica Language Specification 3.7-dev
10.2. Flexible Array Sizes

10.2 Flexible Array Sizes

Regarding flexible array sizes and resizing of arrays in functions, see section 12.4.5.

10.3 Built-in Array Operators and Functions

Modelica provides a number of built-in functions that are applicable to arrays.

The promote function listed below is utilized to define other array operators and functions.

Expression Description Details

promote(A, n) Append dimensions of size 1 Operator 10.1

Operator 10.1 promote

promote(A, n)

Fills dimensions of size 1 from the right to array A upto dimension n, where n ≥ ndims(A) is
required.

Let C = promote(A, n), with nA = ndims(A), then ndims(C) = n, size(C, j) = size(A, j)
for 1 ≤ j ≤ nA, size(C, j) = 1 for nA + 1 ≤ j ≤ n, C[i1, . . ., inA, 1, . . ., 1] = A[i1, . . .,
inA
]

The argument n must be a constant that can be evaluated during translation, as it determines
the number of dimensions of the returned array.

[An n that is not a constant that can be evaluated during translation for promote complicates
matrix handling as it can change matrix-equations in subtle ways (e.g., changing inner products
to matrix multiplication).]

[Some examples of using the functions defined in the following section 10.3.1 to section 10.3.5:

Real x[4, 1, 6];
size(x, 1) = 4;
size(x); // vector with elements 4, 1, 6
size(2 * x + x) = size(x);
Real [3] v1 = fill (1.0, 3);
Real[3, 1] m = matrix(v1);
Real [3] v2 = vector(m);
Boolean check[3, 4] = fill(true , 3, 4);

]

10.3.1 Dimension and Size Functions

The functions listed below operate on the array dimensions of the type of an expression:

Expression Description Details

ndims(A) Number of dimensions Operator 10.2
size(A) Sizes of all array dimensions Operator 10.3
size(A, i) Size of single array dimension Operator 10.4

Operator 10.2 ndims

ndims(A)

Returns the number of dimensions k of expression A, with k ≥ 0.

Operator 10.3 size

size(A)

Returns a vector of length ndims(A) containing the dimension sizes of A.

149

Modelica Language Specification 3.7-dev
10.3. Built-in Array Operators and Functions

If A refers to a component of an expandable connector, then the component must be a declared
component of the expandable connector, and it must not use colon (:) to specify the size of any
array dimension.

Operator 10.4 size

size(A, i)

Syntactic sugar for (size(A))[i], that is, the size of dimension i of array expression A. (It
follows that it is required that 1 ≤ i ≤ ndims(A).)

10.3.2 Dimensionality Conversion Functions

The conversion functions listed below convert scalars, vectors, and arrays to scalars, vectors, or matrices
by adding or removing 1-sized dimensions.

Expression Description Details

scalar(A) Extract only element Operator 10.5
vector(A) Vector of all elements Operator 10.6
matrix(A) Two-dimensional array Operator 10.7

Operator 10.5 scalar

scalar(A)

Returns the single element of array A. size(A, i) = 1 is required for 1 ≤ i ≤ ndims(A).

Operator 10.6 vector

vector(A)

Returns a 1-vector if A is a scalar, and otherwise returns a vector containing all the elements of
the array, provided there is at most one dimension size > 1.

Operator 10.7 matrix

matrix(A)

Returns promote(A, 2) if A is a scalar or vector, and otherwise returns the elements of the first
two dimensions as a matrix. size(A, i) = 1 is required for 2 < i ≤ ndims(A).

10.3.3 Specialized Array Constructor Functions

An array constructor function constructs and returns an array computed from its arguments. Most of the
constructor functions listed below construct an array by filling in values according to a certain pattern,
in several cases just giving all array elements the same value. The general array constructor with syntax
array(. . .) or {. . .} is described in section 10.4.

Expression Description Details

identity(n) Identity matrix Operator 10.8
diagonal(v) Diagonal matrix Operator 10.9
zeros(n1, n2, n3, . . .) Array with all elements being 0 Operator 10.10
ones(n1, n2, n3, . . .) Array with all elements being 1 Operator 10.11
fill(s, n1, n2, n3, . . .) Array with all elements equal Operator 10.12
linspace(x1, x2, n) Vector with equally spaced elements Operator 10.13

Operator 10.8 identity

identity(n)

Returns the n × n Integer identity matrix, with ones on the diagonal and zeros at the other
places.

Operator 10.9 diagonal

diagonal(v)

Returns a square matrix with the elements of vector v on the diagonal and all other elements zero.

150

Modelica Language Specification 3.7-dev
10.3. Built-in Array Operators and Functions

Operator 10.10 zeros

zeros(n1, n2, n3, . . .)

Returns the n1 × n2 × n3 × . . . Integer array with all elements equal to zero (ni ≥ 0). The
function needs one or more arguments, that is, zeros() is not legal.

Operator 10.11 ones

ones(n1, n2, n3, . . .)

Returns the n1×n2×n3× . . . Integer array with all elements equal to one (ni ≥ 0). The function
needs one or more arguments, that is, ones() is not legal.

Operator 10.12 fill

fill(s, n1, n2, n3, . . .)

Returns the n1×n2×n3×. . . array with all elements equal to scalar or array expression s (ni ≥ 0).
The returned array has the same type as s.

Recursive definition: fill(s, n1, n2, n3, . . .) = fill(fill(s, n2, n3, . . .), n1); fill(s,
n) = {s, s, . . ., s}.

The function needs two or more arguments; that is, fill(s) is not legal.

Operator 10.13 linspace

linspace(x1, x2, n)

Returns a Real vector with n equally spaced elements, such that v = linspace(x1, x2, n)
results in

v[i] = x1 + (x2 − x1)
i− 1

n− 1
for 1 ≤ i ≤ n

It is required that n ≥ 2. The arguments x1 and x2 shall be numeric scalar expressions.

10.3.4 Reduction Functions and Operators

The reduction functions listed below “reduce” an array (or several scalars) to one value (normally a
scalar, but the sum reduction function may give an array as result and also be applied to an operator
record). Note that none of these operators (particularly min and max) generate events themselves (but
arguments could generate events). The restriction on the type of the input in section 10.3.4.1 for reduction
expressions also applies to the array elements/scalar inputs for the reduction operator with the same
name.

Expression Description Details

min(A) Least element of array Operator 10.14
min(x, y) Least of two scalars Operator 10.15
min(. . . for . . .) Reduction to least value Operator 10.16
max(A) Greatest element of array Operator 10.17
max(x, y) Greatest of two scalars Operator 10.18
max(. . . for . . .) Reduction to greatest value Operator 10.19
sum(A) Sum of scalar array elements Operator 10.20
sum(. . . for . . .) Sum reduction Operator 10.21
product(A) Product of scalar array elements Operator 10.22
product(. . . for . . .) Product reduction Operator 10.23

Operator 10.14 min

min(A)

Returns the least element of array expression A; as defined by <.

Operator 10.15 min

min(x, y)

Returns the least element of the scalars x and y; as defined by <.

151

Modelica Language Specification 3.7-dev
10.3. Built-in Array Operators and Functions

Operator 10.16 min

min(e(i, . . ., j) for i in u, . . ., j in v)

Also described in section 10.3.4.1. Returns the least value (as defined by <) of the scalar expression
e(i, . . ., j) evaluated for all combinations of i in u, . . . , j in v.

Operator 10.17 max

max(A)

Returns the greatest element of array expression A; as defined by >.

Operator 10.18 max

max(x, y)

Returns the greatest element of the scalars x and y; as defined by >.

Operator 10.19 max

max(e(i, . . ., j) for i in u, . . ., j in v)

Also described in section 10.3.4.1. Returns the greatest value (as defined by >) of the scalar
expression e(i, . . ., j) evaluated for all combinations of i in u, . . . , j in v.

Operator 10.20 sum

sum(A)

Returns the scalar sum of all the elements of array expression A. Equivalent to sum reduction
(see below, including application to operator records) over all array indices: sum(A[j, k, . . .]
for j, k, . . .)

Operator 10.21 sum

sum(e(i, . . ., j) for i in u, . . ., j in v)

Also described in section 10.3.4.1. Returns the sum of the expression e(i, . . ., j) evaluated for
all combinations of i in u, . . . , j in v.

The sum reduction function (both variants) may be applied to an operator record, provided that
the operator record defines '0' and '+'. It is then assumed to form an additive group.

For Integer indexing this is

e(u[1], . . ., v[1]) + e(u[2], . . ., v[1]) + . . .
+ e(u[end], . . ., v[1]) + . . .
+ e(u[end], . . ., v[end])

For non-Integer indexing this uses all valid indices instead of 1..end.

The type of sum(e(i, . . ., j) for i in u, . . ., j in v) is the same as the type of e(i, . . .,
j).

Operator 10.22 product

product(A)

Returns the scalar product of all the elements of array expression A. Equivalent to product
reduction (see below) over all array indices: product(A[j, k, . . .] for j, k, . . .)

Operator 10.23 product

product(e(i, . . ., j) for i in u, . . ., j in v)

Also described in section 10.3.4.1. Returns the product of the expression e(i, . . ., j) evaluated
for all combinations of i in u, . . . , j in v.

For Integer indexing this is

e(u[1], . . ., v[1]) * e(u[2], . . ., v[1]) * . . .
* e(u[end], . . ., v[1]) * . . .

152

Modelica Language Specification 3.7-dev
10.3. Built-in Array Operators and Functions

* e(u[end], . . ., v[end])

For non-Integer indexing this uses all valid indices instead of 1..end.

The type of product(e(i, . . ., j) for i in u, . . ., j in v) is the same as the type of e(i,
. . ., j).

10.3.4.1 Reduction Expressions

An expression:

function-name "(" expression1 for iterators ")"

is a reduction expression. The expressions in the iterators of a reduction expression shall be vector
expressions. They are evaluated once for each reduction expression, and are evaluated in the scope
immediately enclosing the reduction expression. If expression1 contains event-generating expressions,
the expressions inside the iterators shall be evaluable.

For an iterator:

IDENT in expression2

the loop-variable, IDENT, is in scope inside expression1. The loop-variable may hide other variables,
as in for-loops. The result depends on the function-name, and currently the only legal function-names
are the built-in operators array, sum, product, min, and max. For array, see section 10.4. If function
-name is sum, product, min, or max the result is of the same type as expression1 and is constructed
by evaluating expression1 for each value of the loop-variable and computing the sum, product, min,
or max of the computed elements. For deduction of ranges, see section 11.2.2.1; and for using types as
ranges see section 11.2.2.2.

Table 10.3: Reduction expressions with iterators.

Reduction Restriction on expression1 Result for empty expression2

sum Integer or Real zeros(. . .)
product Scalar Integer or Real 1
min Scalar enumeration, Boolean, Integer or Real Greatest value of type
max Scalar enumeration, Boolean, Integer or Real Least value of type

The least and greatest values of Real are the minimum and maximum representable finite floating point
numbers of the underlying type, see also section 4.9.1.

[Example:

sum(i for i in 1:10) // Gives
∑10

i=1 i = 1 + 2 + . . . + 10 = 55
// Read it as: compute the sum of i for i in the range 1 to 10.
sum(i^2 for i in {1,3,7,6}) // Gives

∑
i∈{1, 3, 7, 6} i

2 = 1 + 9 + 49 + 36 = 95

{product(j for j in 1:i) for i in 0:4} // Gives {1, 1, 2, 6, 24}
max(i^2 for i in {3,7,6}) // Gives 49

]

10.3.5 Matrix and Vector Algebra Functions

Functions for matrix and vector algebra are listed below. The function transpose can be applied to any
matrix. The functions outerProduct, symmetric, cross and skew require Real vector(s) or matrix as
input(s) and return a Real vector or matrix.

Expression Description Details

transpose(A) Matrix transpose Operator 10.24
outerProduct(x, y) Vector outer product Function 10.1
symmetric(A) Symmetric matrix, keeping upper part Function 10.2
cross(x, y) Cross product Function 10.3
skew(x) Skew symmetric matrix associated with vector Function 10.4

153

Modelica Language Specification 3.7-dev
10.4. Vector, Matrix and Array Constructors

Operator 10.24 transpose

transpose(A)

Permutes the first two dimensions of array A. It is an error if array A does not have at least 2
dimensions.

Function 10.1 outerProduct

outerProduct(x, y)

Returns the outer product of vectors x and y, that is: matrix(x) * transpose(matrix(y))

Function 10.2 symmetric

symmetric(A)

Returns a symmetric matrix which is identical to the square matrix A on and above the diagonal.

That is, if B := symmetric(A), then B is given by:

B[i,j] =

{
A[i,j] if i ≤ j

A[j,i] if i > j

Function 10.3 cross

cross(x, y)

Returns the cross product of the 3-vectors x and y:

vector ([x[2] * y[3] - x[3] * y[2] ;
x[3] * y[1] - x[1] * y[3] ;
x[1] * y[2] - x[2] * y[1]])

Function 10.4 skew

skew(x)

Returns the 3× 3 skew symmetric matrix associated with a 3-vector, i.e., cross(x, y) = skew(
x) * y. Equivalently, skew(x) is given by:

[0, -x[3], x[2] ;
x[3], 0, -x[1] ;
-x[2], x[1], 0]

10.4 Vector, Matrix and Array Constructors

The array constructor function array(A, B, C, . . .) constructs an array from its arguments according
to the following rules:

� Size matching: All arguments must have the same sizes, i.e., size(A) = size(B) = size(C) = . . .

� All arguments must be type compatible expressions (section 6.7) giving the type of the elements.
The data type of the result array is the maximally expanded type of the arguments. Real and
Integer subtypes can be mixed resulting in a Real result array where the Integer numbers have
been transformed to Real numbers.

� Each application of this constructor function adds a one-sized dimension to the left in the result
compared to the dimensions of the argument arrays, i.e., ndims(array(A, B, C)) = ndims(A) +
1 = ndims(B) + 1, . . .

� {A, B, C, . . .} is a shorthand notation for array(A, B, C, . . .).

� There must be at least one argument.

[The reason array() or {} is not defined is that at least one argument is needed to determine the
type of the resulting array.]

[Example:

154

Modelica Language Specification 3.7-dev
10.4. Vector, Matrix and Array Constructors

{1, 2, 3} is a 3-vector of type Integer.
{{11, 12, 13}, {21, 22, 23}} is a 2 x 3 matrix of type Integer
{{{1.0 , 2.0, 3.0}}} is a 1 x 1 x 3 array of type Real.

Real [3] v = array(1, 2, 3.0);
type Angle = Real(unit="rad");
parameter Angle alpha = 2.0; // type of alpha is Real.
// array(alpha , 2, 3.0) or {alpha , 2, 3.0} is a 3-vector of type Real.
Angle [3] a = {1.0, alpha , 4}; // type of a is Real [3].

]

10.4.1 Constructor with Iterators

An expression:

"{" expression for iterators "}"

or

array "(" expression for iterators ")"

is an array constructor with iterators. The expressions inside the iterators of an array constructor shall
be vector expressions. If expression contains event-generating expressions, the expressions inside the
iterators shall be evaluable. They are evaluated once for each array constructor, and are evaluated in
the scope immediately enclosing the array constructor.

For an iterator:

IDENT in array_expression

the loop-variable, IDENT, is in scope inside expression in the array construction. The loop-variable may
hide other variables, as in for-loops. The loop-variable has the same type as the type of the elements
of array_expression; and can be simple type as well as a record type. The loop-variable will have the
same type for the entire loop – i.e., for an array_expression {1, 3.2} the iterator will have the type
of the type-compatible expression (Real) for all iterations. For deduction of ranges, see section 11.2.2.1;
and for using types as range see section 11.2.2.2.

10.4.1.1 Constructor with One Iterator

If only one iterator is used, the result is a vector constructed by evaluating expression for each value of
the loop-variable and forming an array of the result.

[Example:

array(i for i in 1:10)
// Gives the vector 1:10 = {1, 2, 3, . . ., 10}

{r for r in 1.0 : 1.5 : 5.5}
// Gives the vector 1.0:1.5:5.5 = {1.0, 2.5, 4.0, 5.5}

{i^2 for i in {1,3,7,6}}
// Gives the vector {1, 9, 49, 36}

]

10.4.1.2 Constructor with Several Iterators

The notation with several iterators is a shorthand notation for nested array constructors. The notation
can be expanded into the usual form by replacing each ’,’ by ’} for’ and prepending the array constructor
with a ’{’.

[Example:

155

Modelica Language Specification 3.7-dev
10.4. Vector, Matrix and Array Constructors

Real toeplitz [:,:] = {i-j for i in 1:n, j in 1:n};
Real toeplitz2 [:,:] = {{i-j for i in 1:n} for j in 1:n};

]

10.4.2 Concatenation

The function cat(k, A, B, C, . . .) concatenates arrays A, B, C, . . . along dimension k according to the
following rules:

� Arrays A, B, C, . . . must have the same number of dimensions, i.e., ndims(A) = ndims(B) = . . .

� Arrays A, B, C, . . .must be type compatible expressions (section 6.7) giving the type of the elements
of the result. The maximally expanded types should be equivalent. Real and Integer subtypes
can be mixed resulting in a Real result array where the Integer numbers have been transformed
to Real numbers.

� k has to characterize an existing dimension, i.e., 1 ≤ k ≤ ndims(A) = ndims(B) = ndims(C); k
shall be a parameter expression of Integer type.

� Size matching: Arrays A, B, C, . . .must have identical array sizes with the exception of the size of
dimension k, i.e., size(A, j) = size(B, j), for 1 ≤ j ≤ ndims(A) and j ̸= k.

[Example:

Real [2,3] r1 = cat(1, {{1.0, 2.0, 3}}, {{4, 5, 6}});
Real [2,6] r2 = cat(2, r1 , 2*r1);

]

Formally, the concatenation R = cat(k, A, B, C, . . .) is defined as follows. Let n = ndims(A) =
ndims(B) = ndims(C) = . . . Then the size of R is given by

size(R,k) = size(A,k) + size(B,k) + size(C,k) + . . .
size(R,j) = size(A,j) = size(B,j) = size(C,j) = . . . for 1 ≤ j ≤ n and j ̸= k

and the array elements of R are given by

R[i1, . . ., ik, . . ., in] = A[i1, . . ., ik, . . ., in]
for 0 < ik ≤ size(A,k)

R[i1, . . ., ik, . . ., in] = B[i1, . . ., ik - size(A,k), . . ., in]
for size(A,k) < ik ≤ size(A,k) + size(B,k)

R[i1, . . ., ik, . . ., in] = C[i1, . . ., ik - size(A,k) - size(B,k), . . ., in]
for size(A,k) + size(B,k) < ik ≤ size(A,k) + size(B,k) + size(C,k)

. . .

where 1 ≤ ij ≤ size(R,j) for 1 ≤ j ≤ n.

10.4.2.1 Concatenation along First and Second Dimensions

For convenience, a special syntax is supported for the concatenation along the first and second dimensions:

� Concatenation along first dimension:
[A; B; C; . . .] = cat(1, promote(A, n), promote(B, n), promote(C, n), . . .) where n =
max(2, ndims(A), ndims(B), ndims(C), . . .). If necessary, 1-sized dimensions are added to the
right of A, B, C before the operation is carried out, in order that the operands have the same number
of dimensions which will be at least two.

� Concatenation along second dimension:
[A, B, C, . . .] = cat(2, promote(A, n), promote(B, n), promote(C, n), . . .) where n =
max(2, ndims(A), ndims(B), ndims(C), . . .). If necessary, 1-sized dimensions are added to the
right of A, B, C before the operation is carried out, especially that each operand has at least two
dimensions.

� The two forms can be mixed. [. . ., . . .] has higher precedence than [. . .; . . .], e.g., [a, b; c, d]
is parsed as [[a, b]; [c, d]].

156

Modelica Language Specification 3.7-dev
10.4. Vector, Matrix and Array Constructors

� [A] = promote(A, max(2, ndims(A))), i.e., [A] = A, if A has 2 or more dimensions, and it is a
matrix with the elements of A, if A is a scalar or a vector.

� There must be at least one argument (i.e., [] is not defined).

[Example:

Real s1 , s2 , v1[n1], v2[n2], M1[m1 ,n],
M2[m2 ,n], M3[n,m1], M4[n,m2], K1[m1 ,n,k],
K2[m2 ,n,k];
[v1;v2] is a (n1+n2) x 1 matrix
[M1;M2] is a (m1+m2) x n matrix
[M3 ,M4] is a n x (m1+m2) matrix
[K1;K2] is a (m1+m2) x n x k array
[s1;s2] is a 2 x 1 matrix
[s1 ,s1] is a 1 x 2 matrix
[s1] is a 1 x 1 matrix
[v1] is a n1 x 1 matrix
Real [3] v1 = array(1, 2, 3);
Real [3] v2 = {4, 5, 6};
Real [3,2] m1 = [v1 , v2];
Real [3,2] m2 = [v1 , [4;5;6]]; // m1 = m2
Real [2,3] m3 = [1, 2, 3; 4, 5, 6];
Real [1,3] m4 = [1, 2, 3];
Real [3,1] m5 = [1; 2; 3];

]

10.4.3 Vector Construction

Vectors can be constructed with the general array constructor, e.g.,

Real [3] v = {1, 2, 3};

The range vector operator or colon operator of simple-expression can be used instead of or in combi-
nation with this general constructor to construct Real, Integer, Boolean or enumeration type vectors.
Semantics of the colon operator:

� j : k is the Integer vector {j, j + 1, . . ., k}, if j and k are of type Integer.

� j : k is the Real vector {j, j + 1.0, . . ., j + n}, with n = floor(k − j), if j and/or k are of
type Real.

� j : k is a Real, Integer, Boolean, or enumeration type vector with zero elements, if j > k.

� j : d : k is the Integer vector {j, j + d, . . ., j + nd}, with n = div(k − j, d), if j, d, and k
are of type Integer.

� j : d : k is the Real vector {j, j + d, . . ., j + nd}, with n = floor((k − j)/d), if j, d, or k
are of type Real. In order to avoid rounding issues for the length it is recommended to use {j +
d * i for i in 0 : n} or linspace(j, k, n + 1) – if the number of elements are known.

� j : d : k is a Real or Integer vector with zero elements, if d > 0 and j > k or if d < 0 and
j < k.

� false : true is the Boolean vector {false, true}.

� j : j is {j} if j is Real, Integer, Boolean, or enumeration type.

� E.ei : E.ej is the enumeration type vector {E.ei, . . ., E.ej} where E.ej > E.ei, and ei and
ej belong to some enumeration type E = enumeration(. . ., ei, . . ., ej, . . .).

[Example:

Real v1[5] = 2.7 : 6.8;
Real v2[5] = {2.7, 3.7, 4.7, 5.7, 6.7}; // = same as v1
Boolean b1[2] = false:true;
Colors = enumeration (red ,blue ,green);

157

Modelica Language Specification 3.7-dev
10.5. Indexing

Colors ec[3] = Colors.red : Colors.green;

]

10.5 Indexing

The array indexing operator name[. . .] is used to access array elements for retrieval of their values or
for updating these values. An indexing operation is subject to upper and lower array dimension index
bounds (section 10.1.1). The indexing operator takes two or more operands, where the first operand is
the array to be indexed and the rest of the operands are index (or subscript) expressions:

arrayname[indexexpr1, indexexpr2, . . .]

A colon (‘:’) is used to denote all indices of one dimension. A vector expression can be used to pick out
selected rows, columns and elements of vectors, matrices, and arrays. The number of dimensions of the
expression is reduced by the number of scalar index arguments. If the number of index arguments is
smaller than the number of dimensions of the array, the trailing indices will use ‘:’.

It is possible to index a general expression by enclosing it in parenthesis. Note that while the sub-
scripts are applied to an output-expression-list in the grammar, it is only semantically valid when the
output-expression-list represents an expression.

It is also possible to use the array access operator to assign to element/elements of an array in algorithm
sections. This is called an indexed assignment statement . If the index is an array the assignments take
place in the order given by the index array. For assignments to arrays and elements of arrays, the entire
right-hand side and the index on the left-hand side are evaluated before any element is assigned a new
value.

[An indexing operation is assumed to take constant time, i.e., largely independent of the size of the array.]

[Example: Array indexing expressions:

a[:, j] // Vector of the j'th column of a.
a[j] // Vector of the j'th row of a. Same as: a[j, :]
a[j : k] // Same as: {a[j], a[j+1], . . ., a[k]}
a[:, j : k] // Same as: [a[:, j], a[:, j+1], . . ., a[:, k]]

The range vector operator is just a special case of a vector expression:

v[2 : 2 : 8] // Same as: v[{2, 4, 6, 8}]

Array indexing in assignment statements:

v[{j, k}] := {2, 3}; // Same as: v[j] := 2; v[k] := 3;
v[{1, 1}] := {2, 3}; // Same as: v[1] := 3;

Array indexing of general expression:

(a*a)[:, j] // Vector of the j'th column of a*a

If x is a vector, x[1] is a scalar, but the slice x[1:5] is a vector (a vector-valued or colon index expression
causes a vector to be returned).]

158

Modelica Language Specification 3.7-dev
10.6. Scalar, Vector, Matrix, and Array Operator Functions

Table 10.4: Examples of scalars vs. array slices created with the colon index. The examples make
use of the array variables x[n,m], v[k], and z[i,j,p].

Expression # dims Description

x[1, 1] 0 Scalar
x[:, 1] 1 n-vector
x[1, :] or x[1] 1 m-vector
v[1:p] 1 p-vector
x[1:p, :] 2 p×m matrix
x[1:1, :] 2 1×m “row” matrix
x[{1, 3, 5}, :] 2 3×m matrix
x[:, v] 2 n× k matrix
z[:, 3, :] 2 i× p matrix
x[scalar([1]), :] 1 m-vector
x[vector([1]), :] 2 1×m “row” matrix

10.5.1 Boolean or Enumeration Indices

Arrays can be indexed using values of enumeration types or the Boolean type, not only by Integer.
The type of the index should correspond to the type used for declaring the dimension of the array.

[Example:

type ShirtSizes = enumeration(small , medium , large , xlarge);
Real[ShirtSizes] w;
Real[Boolean] b2;

algorithm
w[ShirtSizes.large] := 2.28; // Assign a value to an element of w
b2[true] := 10.0;
b2[ShirtSizes.medium] := 4; // Error , b2 was declared with Boolean dimension
w[1] := 3; // Error , w was declared with ShirtSizes dimension

]

10.5.2 Indexing with end

The expression end may only appear inside array subscripts, and if used in the ith subscript of an array
expression A it is equivalent to the upper bound of the ith dimension of A. If used inside nested array
subscripts it refers to the most closely nested array.

[If indices to A are a subtype of Integer it is equivalent to size(A, i).]

[Example:

A[end - 1, end] is A[size(A,1) - 1, size(A,2)]
A[v[end], end] is A[v[size(v,1)], size(A,2)] // First end is referring to end of v.

Real B[Boolean];
B[end] is B[true]

]

10.6 Scalar, Vector, Matrix, and Array Operator Functions

The mathematical operations defined on scalars, vectors, and matrices are the subject of linear algebra.

The term numeric or numeric class is used below for a subtype of the Real or Integer type classes. The
standard type coercion defined in section 10.6.13 applies.

159

Modelica Language Specification 3.7-dev
10.6. Scalar, Vector, Matrix, and Array Operator Functions

10.6.1 Equality and Assignment

Equality a = b and assignment a := b of scalars, vectors, matrices, and arrays is defined element-wise
and require both objects to have the same number of dimensions and corresponding dimension sizes. See
section 10.5 regarding assignments to array variables with vector of subscripts.

The operands need to be type equivalent. This is legal for the simple types and all types satisfying the
requirements for a record, and is in the latter case applied to each component-element of the records.

Table 10.5: Equality and assignment of arrays and scalars. The scalar Operation applies for all j
in 1, . . . , n and k in 1, . . . , m.

Size of a Size of b Size of a = b Operation

Scalar Scalar Scalar a = b
n-vector n-vector n-vector a[j] = b[j]
n×m matrix n×m matrix n×m matrix a[j, k] = b[j, k]
n×m× . . . n×m× . . . n×m× . . . a[j, k, . . .] = b[j, k, . . .]

10.6.2 Addition, Subtraction, and String Concatenation

Addition a + b and subtraction a - b of numeric scalars, vectors, matrices, and arrays is defined
element-wise and require size(a) = size(b) and a numeric type for a and b. Unary plus and mi-
nus are defined element-wise. Addition a + b of string scalars, vectors, matrices, and arrays is defined
as element-wise string concatenation of corresponding elements from a and b, and require size(a) =
size(b).

Table 10.6: Array addition, subtraction, and string concatenation. In this table the symbolic
operator ± represents either + or -. The scalar Operation applies for all j in 1, . . . , n and k in
1, . . . , m.

Size of a Size of b Size of a ± b Operation c := a ± b
Scalar Scalar Scalar c := a ± b
n-vector n-vector n-vector c[j] := a[j] ± b[j]
n×m matrix n×m matrix n×m matrix c[j, k] := a[j, k] ± b[j, k]
n×m× . . . n×m× . . . n×m× . . . c[j, k, . . .] := a[j, k, . . .] ± b[j, k, . . .]

Element-wise addition a .+ b and subtraction a .- b of numeric scalars, vectors, matrices or arrays a
and b requires a numeric type class for a and b and either size(a) = size(b) or scalar a or scalar b.
Element-wise addition a .+ b of string scalars, vectors, matrices, and arrays is defined as element-wise
string concatenation of corresponding elements from a and b, and require either size(a) = size(b) or
scalar a or scalar b.

Table 10.7: Array element-wise addition, subtraction, and string concatenation. In this table the
symbolic operator ± represents either + or -, and when preceded by a dot (.±), either .+ or .-.
The scalar Operation applies for all j in 1, . . . , n and k in 1, . . . , m.

Size of a Size of b Size of a .± b Operation c := a .± b
Scalar Scalar Scalar c := a ± b
Scalar n×m× . . . n×m× . . . c[j, k, . . .] := a ± b[j, k, . . .]
n×m× . . . Scalar n×m× . . . c[j, k, . . .] := a[j, k, . . .] ± b
n×m× . . . n×m× . . . n×m× . . . c[j, k, . . .] := a[j, k, . . .] ± b[j, k, . . .]

160

Modelica Language Specification 3.7-dev
10.6. Scalar, Vector, Matrix, and Array Operator Functions

Table 10.8: Unary operators. In this table the symbolic operator ± represents either unary + or
unary -. The element-wise (.+, .-) and normal (+, -) operators give the same results. The scalar
Operation applies for all j in 1, . . . , n and k in 1, . . . , m.

Size of a Size of ± a Operation c := ± a
Scalar Scalar c := ± a
n×m× . . . n×m× . . . c[j, k, . . .] := ± a[j, k, . . .]

10.6.3 Element-wise Multiplication

Scalar multiplication s * a or a * s with numeric scalar s and numeric scalar, vector, matrix or array
a is defined element-wise:

Table 10.9: Scalar and scalar to array multiplication of numeric elements. The scalar Operation
applies for all j in 1, . . . , n and k in 1, . . . , m.

Size of s Size of a Size of s * a and a * s Operation c := s * a or c := a * s

Scalar Scalar Scalar c := s * a
Scalar n-vector n-vector c[j] := s * a[j]
Scalar n×m matrix n×m matrix c[j, k] := s * a[j, k]
Scalar n×m× . . . n×m× . . . c[j, k, . . .] := s * a[j, k, . . .]

Element-wise multiplication a .* b of numeric scalars, vectors, matrices or arrays a and b requires a
numeric type class for a and b and either size(a) = size(b) or scalar a or scalar b.

Table 10.10: Array element-wise multiplication. The scalar Operation applies for all j in 1, . . . , n
and k in 1, . . . , m.

Size of a Size of b Size of a .* b Operation c := a .* b

Scalar Scalar Scalar c := a * b
Scalar n×m× . . . n×m× . . . c[j, k, . . .] := a * b[j, k, . . .]
n×m× . . . Scalar n×m× . . . c[j, k, . . .] := a[j, k, . . .] * b
n×m× . . . n×m× . . . n×m× . . . c[j, k, . . .] := a[j, k, . . .] * b[j, k, . . .]

10.6.4 Multiplication of Matrices and Vectors

Multiplication a * b of numeric vectors and matrices is defined only for the following combinations:

Table 10.11: Matrix and vector multiplication of arrays with numeric elements. The scalar Op-
eration applies for all i in 1, . . . , l and j in 1, . . . , n, and the summation over k goes from 1 to
m.

Size of a Size of b Size of a * b Operation c := a * b

m-vector m-vector Scalar c :=
∑

k a[k] * b[k]
m-vector m× n matrix n-vector c[j] :=

∑
k a[k] * b[k, j]

l ×m matrix m-vector l-vector c[i] :=
∑

k a[i, k] * b[k]
l ×m matrix m× n matrix l × n matrix c[i, j] :=

∑
k a[i, k] * b[k, j]

[Example:

Real A[3, 3], x[3], b[3], v[3];
A * x = b;
x * A = b; // same as transpose ([x])*A*b
[v] * transpose ([v]) // outer product
v * A * v // scalar
transpose ([v]) * A * v // vector with one element

]

161

Modelica Language Specification 3.7-dev
10.6. Scalar, Vector, Matrix, and Array Operator Functions

10.6.5 Division by Numeric Scalars

Division a / s of numeric scalars, vectors, matrices, or arrays a and numeric scalars s is defined element-
wise. The result is always of Real type. In order to get integer division with truncation, use the function
div.

Table 10.12: Division of scalars and arrays by numeric elements. The scalar Operation applies for
all j in 1, . . . , n and k in 1, . . . , m.

Size of a Size of s Size of a / s Operation c := a / s

Scalar Scalar Scalar c := a / s
n-vector Scalar n-vector c[k] := a[k] / s
n×m matrix Scalar n×m matrix c[j, k] := a[j, k] / s
n×m× . . . Scalar n×m× . . . c[j, k, . . .] := a[j, k, . . .] / s

10.6.6 Element-wise Division

Element-wise division a ./ b of numeric scalars, vectors, matrices or arrays a and b requires a numeric
type class for a and b and either size(a) = size(b) or scalar a or scalar b. The result is always of
Real type. In order to get integer division with truncation, use the function div.

Table 10.13: Element-wise division of arrays. The scalar Operation applies for all j in 1, . . . , n
and k in 1, . . . , m.

Size of a Size of b Size of a ./ b Operation c := a ./ b

Scalar Scalar Scalar c := a / b
Scalar n×m× . . . n×m× . . . c[j, k, . . .] := a / b[j, k, . . .]
n×m× . . . Scalar n×m× . . . c[j, k, . . .] := a[j, k, . . .] / b
n×m× . . . n×m× . . . n×m× . . . c[j, k, . . .] := a[j, k, . . .] / b[j, k, . . .]

[Example: Element-wise division by scalar (./) and division by scalar (/) are identical: a ./ s = a / s:

2./[1 , 2; 3, 4] // error; same as 2.0 / [1, 2; 3, 4]
2 ./[1, 2; 3, 4] // fine; element -wise division

This is a consequence of the parsing rules, since ‘2.’ is a lexical unit. Using a space after the literal
solves the problem.]

10.6.7 Element-wise Exponentiation

Exponentiation a ^ b always returns a Real scalar value, and it is required that a and b are scalar
Real or Integer expressions. The result should correspond to mathematical exponentiation with the
following special cases:

� For any value of a (including 0.0) and an Integer b = 0, the result is 1.0.

� If a < 0 and b is an Integer, the result is defined as ±|a|b, with sign depending on whether b is
even (positive) or odd (negative).

� A deprecated semantics is to treat a < 0 and a Real b having a non-zero integer value as if b were
an Integer.

� For a = 0 and b > 0, the result is 0.0.

� Other exceptional situations are illegal. For example: a = 0.0 and b = 0.0 for a Real b, a = 0.0
and b < 0, or a < 0 and b does not have an integer value.

[Except for defining the special case of 0.00 it corresponds to pow(double a, double b) in the ANSI C
library. The result is always Real as negative exponents can give non-integer results also when both
operands are Integer. The special treatment of Integer exponents makes it possible to use xn in a
power series.]

162

Modelica Language Specification 3.7-dev
10.6. Scalar, Vector, Matrix, and Array Operator Functions

Element-wise exponentiation a .^ b of numeric scalars, vectors, matrices, or arrays a and b requires a
numeric type class for a and b and either size(a) = size(b) or scalar a or scalar b.

Table 10.14: Element-wise exponentiation of arrays. The scalar Operation applies for all j in
1, . . . , n and k in 1, . . . , m.

Size of a Size of b Size of a .^ b Operation c := a .^ b

Scalar Scalar Scalar c := a ^ b
Scalar n×m× . . . n×m× . . . c[j, k, . . .] := a ^ b[j, k, . . .]
n×m× . . . Scalar n×m× . . . c[j, k, . . .] := a[j, k, . . .] ^ b
n×m× . . . n×m× . . . n×m× . . . c[j, k, . . .] := a[j, k, . . .] ^ b[j, k, . . .]

[Example:

2.^[1 , 2; 3, 4] // error; same as 2.0 ^ [1, 2; 3, 4]
2 .^[1, 2; 3, 4] // fine; element -wise exponentiation

This is a consequence of the parsing rules, i.e., since 2. could be a lexical unit it seen as a lexical unit;
using a space after literals solves the problem.]

10.6.8 Scalar Exponentiation of Matrices

Exponentiation a ^ s is defined if a is a square numeric matrix, and s is a scalar subtype of Integer
with s ≥ 0. The result has the same type as a. The exponentiation is defined mathematically as repeated
multiplication, with the identity matrix as the result for s = 0, e.g.:

a^1 = a;
a^2 = a * a;
a^3 = a * a * a;

[Non-Integer exponents are forbidden, because this would require computing the eigenvalues and eigen-
vectors of a and this is no longer an elementary operation.]

10.6.9 Slice Operation

The following holds for slice operations:

� If the component reference a is an array containing scalar components and m is a component of
those components, the component reference a.m is interpreted as a slice operation. It returns the
array of components {a[1].m, . . .}.

� If m is also an array component, the slice operation is valid only if size(a[1].m) = size(a[2].m)
= . . .

� The slicing operation can for component references be combined with indexing, e.g., a.m[1]. It
returns the array of components {a[1].m[1], a[2].m[1], . . .}, and does not require that size(
a[1].m) = size(a[2].m). The number of subscripts on m must not be greater than the number
of array dimension for m (the number can be smaller, in which case the missing trailing indices are
assumed to be ‘:’), and is only valid if size(a[1].m[. . .]) = size(a[2].m[. . .]).

� When the member access operator is applied to a record array, it is interpreted as constructing an
array by selecting the member in each record. If m in (. . .).m is also an array component of the
record, the slice operation is valid only if the resulting array is homogenous.

[Example: The size-restriction on the operand is only applicable if the indexing on the second operand
uses vectors or colon as in the example:

constant Integer m=3;
Modelica.Blocks.Continuous.LowpassButterworth tf[m](n=2:(m+1));
Real y[m];
Real y2,y3;

equation
// Extract the x1 slice even though different x1's have different lengths

163

Modelica Language Specification 3.7-dev
10.7. Empty Arrays

y = tf.x1[1] ; // Legal , = {tf[1].x1[1], tf[2].x1[1], . . . tf[m].x1 [1]};
y2 = sum(tf.x1[:]); // Illegal to extract all elements since they have
// different lengths. Does not satisfy:
// size(tf[1].x1[:]) = size(tf[2].x1[:]) = . . . = size(tf[m].x1[:])

y3 = sum(tf.x1 [1:2]); // Legal.
// Since x1 has at least 2 elements in all tf , and
// size(tf[1].x1 [1:2]) = . . . = size(tf[m].x1 [1:2]) = {2}

In this example the different x1 vectors have different lengths, but it is still possible to perform some
operations on them.]

[Example: Member access slicing:

// Slice operation as part of component reference:
Complex c[2] = {Complex(1, 2), Complex(2, 3)} * Complex(1, 1);
Real x1[2]=c.im;

// Same result , but slicing a general expression:
Real x2[2] = ({ Complex(1, 2), Complex(2, 3)} * Complex(1, 1)).im;

]

10.6.10 Relational Operators

Relational operators <, <=, >, >=, ==, <>, are only defined for scalar operands of simple types, not for
arrays, see section 3.5

10.6.11 Boolean Operators

The operators and and or take expressions of Boolean type, which are either scalars or arrays of matching
dimensions. The operator not takes an expression of Boolean type, which is either scalar or an array. The
result is the element-wise logical operation. For short-circuit evaluation of and and or, see section 3.3.

10.6.12 Vectorized Calls of Functions

See section 12.4.6.

10.6.13 Standard Type Coercion

In all contexts that require an expression which is a subtype of Real, an expression which is a subtype
of Integer can also be used; the Integer expression is automatically converted to Real.

This also applies to arrays of Real, and for fields of record expressions. There is no similar rule for
sub-typing.

[Example:

record RealR
Real x,y;

end RealR;
record IntegerR
Integer x,y;

end IntegerR;
parameter Integer a = 1;
Real y(start=a); // Ok , a is automatically coerced to Real
RealR r1 = IntegerR(a, a); // Ok, record is automatically coerced
RealR r2 = RealR(a, a); // Ok, a is automatically coerced to Real

]

10.7 Empty Arrays

Arrays may have dimension sizes of 0. For example:

164

Modelica Language Specification 3.7-dev
10.7. Empty Arrays

Real x[0]; // an empty vector
Real A[0, 3], B[5, 0], C[0, 0]; // empty matrices

Empty matrices can be constructed using the fill function. For example:

Real A[:,:] = fill (0.0, 0, 1); // a Real 0 x 1 matrix
Boolean B[:, :, :] = fill(false , 0, 1, 0); // a Boolean 0 x 1 x 0 matrix

[Example: Whereas scalar indexing into an empty dimension of an array is an error, not all applications
of indices to empty arrays are invalid:

Real[1, 0] a = fill (0.0, 1, 0); // a Real 1 x 0 matrix
Real [0] a1a = a[1]; // empty vector
Real [0] a1b = a[1, :]; // same as above
Real [0] a1c = a[1, 1 : end]; // same as above , as 1 : end is empty

]

Size-requirements of operations, such as +, -, must also be fulfilled if a dimension is zero. For example:

Real[3, 0] A, B;
Real[0, 0] C;
A + B // fine , result is an empty matrix
A + C // error , sizes do not agree

Multiplication of two empty matrices results in a zero matrix of corresponding numeric type if the result
matrix has no zero dimension sizes, i.e.,

Real[0, m] * Real[m, n] = Real[0, n] // empty matrix
Real[m, n] * Real[n, 0] = Real[m, 0] // empty matrix
Real[m, 0] * Real[0, n] = fill (0.0, m, n) // matrix of zeros

Note that fill(0.0, m, n) will be an empty matrix if m or n is zero.

[Example:

Real u[p], x[n], y[q], A[n, n], B[n, p], C[q, n], D[q, p];
equation
der(x) = A * x + B * u
y = C * x + D * u

Assume n = 0, p > 0, q > 0: Results in y = D * u.]

165

Chapter 11

Statements and Algorithm Sections

Whereas equations are very well suited for physical modeling, there are situations where computations
are more conveniently expressed as algorithms, i.e., sequences of statements. In this chapter we describe
the algorithmic constructs that are available in Modelica.

Statements are imperative constructs allowed in algorithm sections.

11.1 Algorithm Sections

An algorithm section is a part of a class definition comprised of the keyword algorithm followed by a
sequence of statements. The formal syntax is as follows:

algorithm-section :
[initial] algorithm { statement ";" }

Like an equation, an algorithm section relates variables, i.e., constrains the values that these variables
can take simultaneously. In contrast to an equation section, an algorithm section distinguishes inputs
from outputs: An algorithm section specifies how to compute output variables as a function of given
input variables. A Modelica tool may actually invert an algorithm section, i.e., compute inputs from
given outputs, e.g., by search (generate and test), or by deriving an inverse algorithm symbolically.

Equation equality = or any other kind of equation (see chapter 8) shall not be used in an algorithm
section.

11.1.1 Initial Algorithm Sections

See section 8.6 for a description of both initial algorithm sections and initial equation sections.

11.1.2 An Algorithm in a Model

An algorithm section is conceptually a code fragment that remains together and the statements of an
algorithm section are executed in the order of appearance. Whenever an algorithm section is invoked,
all variables appearing on the left-hand side of the assignment operator := are initialized (at least
conceptually):

� A continuous-time variable is initialized with the value of its start-attribute.

� A discrete-time variable v in a non-initial algorithm is initialized with pre(v).

� A clocked variable v in a discrete-time sub-partition, section 16.8.1, is initialized with previous(v).

� If at least one element of an array appears on the left-hand side of the assignment operator, then
the complete array is initialized in this algorithm section.

� In an initial algorithm, section 8.6, any variable (including a parameter) is initialized with the value
of its start-attribute.

166

Modelica Language Specification 3.7-dev
11.2. Statements

[Initialization is performed, in order that an algorithm section cannot introduce a “memory” (except in
the case of discrete-time variables assigned in the algorithm), which could invalidate the assumptions of
a numerical integration algorithm. Note, a Modelica tool may change the evaluation of an algorithm
section, provided the result is identical to the case, as if the above conceptual processing is performed.

For a clocked variables it is important to skip this initialization when not needed, in order to avoid an
excessive amount of clocked states, section 16.4.

An algorithm section is treated as an atomic vector-equation, which is sorted together with all other
equations. For the sorting process (BLT), every algorithm section with N different left-hand side variables,
is treated as an atomic N-dimensional vector-equation containing all variables appearing in the algorithm
section. This guarantees that all N equations end up in an algebraic loop and the statements of the
algorithm section remain together.

Example:

model Test // wrong Modelica model (has 4 equations for 2 unknowns)
Real x[2](start = {-11, -22});

algorithm // conceptually: x = {1, -22}
x[1] := 1;

algorithm // conceptually: x = {-11, 2}
x[2] := 2;

end Test;

The conceptual part indicate that if the variable is assigned unconditionally in the algorithm before it is
used the initialization can be omitted. This is usually the case, except for algorithms with when-statements,
and especially for initial algorithms.]

11.1.3 The Algorithm in a Function

See section 12.4.4 Initialization and Binding Equations.

11.2 Statements

Statements are imperative constructs allowed in algorithm sections. A flattened statement is identical
to the corresponding nonflattened statement.

Names in statements are found as follows:

� If the name occurs inside an expression: it is first found among the lexically enclosing reduction
functions (see section 10.3.4) in order starting from the inner-most, and if not found it proceeds as
if it were outside an expression:

� Names in a statement are first found among the lexically enclosing for-statements in order starting
from the inner-most, and if not found:

� Names in a statement shall be found by looking up in the partially flattened enclosing class of the
algorithm section.

The syntax of statements is as follows:

statement :
(component-reference (":=" expression | function-call-args)
| "(" output-expression-list ")" ":="
component-reference function-call-args

| break
| return
| if-statement
| for-statement
| while-statement
| when-statement

)
description

167

Modelica Language Specification 3.7-dev
11.2. Statements

11.2.1 Simple Assignment Statements

The syntax of simple assignment statement is as follows:

component-reference ":=" expression

The expression is evaluated. The resulting value is stored into the variable denoted by component-reference.

The expression must not have higher variability than the assigned component, see section 3.8.

Assignment to array variables with subscripts is described in section 10.5.

11.2.1.1 Assignments from Called Functions with Multiple Results

There is a special form of assignment statement that is used only when the right-hand side contains a call
to a function with multiple results. The left-hand side contains a parenthesized, comma-separated list
of variables receiving the results from the function call. A function with n results needs m ≤ n receiving
variables on the left-hand side, and the variables are assigned from left to right.

(out1 , out2 , out3) := function_name(in1 , in2 , in3 , in4);

It is possible to omit receiving variables from this list:

(out1 , , out3) := function_name(in1 , in2 , in3 , in4);

[Example: The function f called below has three results and two inputs:

(a, b, c) := f(1.0, 2.0);
(x[1], x[2], x[1]) := f(3, 4);

In the second example above x[1] is assigned twice: first with the first output, and then with the third
output. For that case the following will give the same result:

(, x[2], x[1]) := f(3,4);

]

The syntax of an assignment statement with a call to a function with multiple results is as follows:

"(" output-expression-list ")" ":=" component-reference function-call-args

[Also see section 8.3.1 regarding calling functions with multiple results within equations.]

11.2.1.2 Assigned Variables - Restrictions

Only components of the specialized classes type, record, operator record, and connector may appear
as left-hand-side in algorithms. This applies both to simple assignment statements, and the parenthesized,
comma-separated list of variables for functions with multiple results.

11.2.2 For-Statement

The syntax of a for-statement is as follows:

for for-indices loop
{ statement ";" }

end for

A for-statement may optionally use several iterators (for-indices), see section 11.2.2.3 for more infor-
mation:

for-indices:
for-index { "," for-index }

for-index:
IDENT [in expression]

The following is an example of a prefix of a for-statement:

168

Modelica Language Specification 3.7-dev
11.2. Statements

for IDENT in expression loop

The rules for for-statements are the same as for for-expressions in section 8.3.2.1 – except that the
expression of a for-statement is not restricted to a parameter-expression.

If the for-statement contains event-generating expressions, any expression in for-index shall be evalu-
able.

[In general, the same event-generating expression requires distinct crossing functions for different itera-
tions of the for-loop, and the restriction ensures that the number of crossing functions is known during
translation time.]

[Example:

for i in 1 : 10 loop // i takes the values 1, 2, 3, . . ., 10
for r in 1.0 : 1.5 : 5.5 loop // r takes the values 1.0, 2.5, 4.0, 5.5
for i in {1, 3, 6, 7} loop // i takes the values 1, 3, 6, 7
for i in TwoEnums loop // i takes the values TwoEnums.one , TwoEnums.two

// for TwoEnums = enumeration(one , two)

The loop-variable may hide other variables as in the following example. Using another name for the
loop-variable is, however, strongly recommended.

constant Integer j = 4;
Real x[j];

equation
for j in 1:j loop // The loop -variable j takes the values 1, 2, 3, 4
x[j] = j; // Uses the loop -variable j

end for;

]

11.2.2.1 Implicit Iteration Ranges

An iterator IDENT in range-expr without the in range-expr requires that the IDENT appears as the
subscript of one or several subscripted expressions, where the expressions are not part of an array in
a component of an expandable connector. The dimension size of the array expression in the indexed
position is used to deduce the range-expr as 1:size(array-expression,indexpos) if the indices are
a subtype of Integer, or as E.e1:E.en if the indices are of an enumeration type E = enumeration(
e1, . . ., en), or as false:true if the indices are of type Boolean. If it is used to subscript several
expressions, their ranges must be identical. There may not be assignments to the entire arrays that are
subscripted with IDENT inside the loop, but there may be assignments to individual elements or ranges
of elements.

[The size of an array – the iteration range – can be evaluated on entry to the for-loop, since the array
size cannot change during the execution of the for-loop.]

The IDENT may also, inside a reduction expression, array constructor expression, for-statement, or for
-equation, occur freely outside of subscript positions, but only as a reference to the variable IDENT, and
not for deducing ranges. The IDENT may also be used as a subscript for an array in a component of an
expandable connector but it is only seen as a reference to the variable IDENT and cannot be used for
deducing ranges.

[Example: Implicit iterator ranges for an Integer subscript:

Real x[4];
Real xsquared [:] = {x[i] * x[i] for i};
// Same as: {x[i] * x[i] for i in 1 : size(x, 1)}
Real xsquared2[size(x, 1)];
Real xsquared3[size(x, 1)];

equation
for i loop // Same as: for i in 1 : size(x, 1) loop . . .
xsquared2[i] = x[i]^2;

end for;
algorithm

169

Modelica Language Specification 3.7-dev
11.2. Statements

for i loop // Same as: for i in 1 : size(x, 1) loop . . .
xsquared3[i] := x[i]^2;

end for;

]

[Example: An array dimension’s type of subscript does not matter for array compatibility, only the size
of the array dimension matters. This is true also for array constructor expressions with implicit iterator
ranges:

type FourEnums = enumeration(one , two , three , four);
Real x[4];
Real xe[FourEnums] = x;
Real xsquared3[FourEnums] = {xe[i] * xe[i] for i in FourEnums };
Real xsquared4[FourEnums] = {xe[i] * xe[i] for i};
Real xsquared5[FourEnums] = {x[i] * x[i] for i};

]

11.2.2.2 Types as Iteration Ranges

The iteration range can be specified as Boolean or as an enumeration type. This means iteration over
the type from min to max, i.e., for Boolean it is the same as false:true and for an enumeration E it is
the same as E.min:E.max. This can be used for for-loops and reduction expressions.

[Example:

type FourEnums = enumeration(one , two , three , four);
Real xe[FourEnums];
Real xsquared1[FourEnums];
Real xsquared2[FourEnums] = {xe[i] * xe[i] for i in FourEnums };

equation
for i in FourEnums loop
xsquared1[i] = xe[i]^2;

end for;

]

11.2.2.3 Nested For-Loops and Reduction Expressions with Multiple Iterators

The notation with several iterators is a shorthand notation for nested for-statements or for-equations
(or reduction expressions). For for-statements or for-equations it can be expanded into the usual form
by replacing each ‘,’ by “loop for” and adding extra “end for”. For reduction expressions it can be
expanded into the usual form by replacing each ‘,’ by “) for” and prepending the reduction expression
with “functionName(”.

[Example:

Real x[4 ,3];
algorithm

for j, i in 1:2 loop
// The loop variable j takes the values 1, 2, 3, 4 (due to use)
// The loop variable i takes the values 1, 2 (given range)
x[j,i] := j+i;

end for;

]

11.2.3 While-Statement

The while-statement has the following syntax:

while expression loop
{ statement ";" }

end while

170

Modelica Language Specification 3.7-dev
11.2. Statements

The expression of a while-statement shall be a scalar Boolean expression.

The while-statement corresponds to while-statements in other programming languages, and is formally
defined as follows:

1. The expression of the while-statement is evaluated.

2. If the expression of the while-statement is false, the execution continues after the while-statement.

3. If the expression of the while-statement is true, the entire body of the while-statement is exe-
cuted (except if a break-statement, see section 11.2.4, or a return-statement, see section 11.2.5,
is executed), and then execution proceeds at step 1.

Event-generating expressions are neither allowed in the expression nor in the loop body statements. A
deprecated feature is that all expressions in a while-statement are implicitly inside noEvent.

11.2.4 Break-Statement

The break-statement breaks the execution of the innermost while- or for-loop enclosing the break-
statement and continues execution after the while- or for-loop. It can only be used in a while- or
for-loop in an algorithm section. It has the following syntax:

break;

[Example: (Note that this could alternatively use return).

function findValue "Returns position of val or 0 if not found"
input Integer x[:];
input Integer val;
output Integer index;

algorithm
index := size(x, 1);
while index >= 1 loop

if x[index] == val then
break;

else
index := index - 1;

end if;
end while;

end findValue;

]

11.2.5 Return-Statements

Can only be used inside functions, see section 12.1.2.

11.2.6 If-Statement

The if-statements have the following syntax:

if expression then
{ statement ";" }

{ elseif expression then
{ statement ";" }

}
[else
{ statement ";" }

]
end if

The expression of an if- or elseif-clause must be scalar Boolean expression. One if-clause, and zero
or more elseif-clauses, and an optional else-clause together form a list of branches. One or zero of
the bodies of these if-, elseif- and else-clauses is selected, by evaluating the conditions of the if- and
elseif-clauses sequentially until a condition that evaluates to true is found. If none of the conditions

171

Modelica Language Specification 3.7-dev
11.2. Statements

evaluate to true the body of the else-clause is selected (if an else-clause exists, otherwise no body is
selected). In an algorithm section, the selected body is then executed. The bodies that are not selected
have no effect on that model evaluation.

11.2.7 When-Statements

A when-statement has the following syntax:

when expression then
{ statement ";" }

{ elsewhen expression then
{ statement ";" }

}
end when

The expression of a when-statement shall be a discrete-time Boolean scalar or vector expression. The
statements within a when-statement are activated only at the instant when the scalar or any one of the
elements of the vector expression becomes true.

[Example: Algorithms are activated when x becomes > 2:

when x > 2 then
y1 := sin(x);
y3 := 2*x + y1+y2;

end when;

The statements inside the when-statement are activated on the positive edge of any of the expressions
x > 2, sample(0, 2), or x < 5:

when {x > 2, sample(0, 2), x < 5} then
y1 := sin(x);
y3 := 2*x + y1+y2;

end when;

For when-statements in algorithm sections the order is significant and it is advisable to have only one
assignment within the when-statement and instead use several algorithm sections having when-statements
with identical conditions, e.g.:

algorithm
when x > 2 then
y1 := sin(x);

end when;
equation
y2 = sin(y1);

algorithm
when x > 2 then
y3 := 2 * x + y1 + y2;

end when;

Merging the when-statements can lead to less efficient code and different models with different behavior
depending on the order of the assignment to y1 and y3 in the algorithm.]

11.2.7.1 Where a When-Statement May Occur

� A when-statement shall not be used inside a function class.

� A when-statement shall not occur inside an initial algorithm.

� A when-statement cannot be nested inside another when-statement.

� when-statements shall not occur inside while-loops, for-loops, or if-statements in algorithms.

[Example: The following nested when-statement is invalid:

when x > 2 then
when y1 > 3 then

172

Modelica Language Specification 3.7-dev
11.2. Statements

y2 := sin(x);
end when;

end when;

]

11.2.7.2 Statements within When-Statements

[In contrast to when-equations, section 8.3.5.3, there are no additional restrictions within when-statements:

� In algorithms, all assignment statements are already restricted to left-hand-side variables.

� If at least one element of an array appears on the left-hand-side of the assignment operator inside a
when-statement, it is as if the entire array appears in the left-hand-side according to section 11.1.2.
Thus, there is no need to restrict the indices to parameter-expressions.

� The for-loops and if-statements are not problematic inside when-statements in algorithms, since
all left-hand-side variables inside when-statements are assigned to their pre-values before the start
of the algorithm, according to section 11.1.2.

]

11.2.7.3 Defining When-Statements by If-Statements

A when-statement:

algorithm
when {x > 1, . . ., y > p} then

. . .
elsewhen x > y.start then

. . .
end when;

is similar to the following special if-statement, where Boolean b1[N]; and Boolean b2; are necessary
because edge can only be applied to variables

Boolean b1[N](start = {x.start > 1, . . ., y.start > p});
Boolean b2(start = x.start > y.start);

algorithm
b1: = {x > 1, . . ., y > p};
b2: = x > y.start;
if edge(b1[1]) or edge(b1[2]) or . . . or edge(b1[N]) then

. . .
elseif edge(b2) then

. . .
end if;

with edge(A) = A and not pre(A) and the additional guarantee, that the statements within this special
if-statement are only evaluated at event instants. The difference compared to the when-statements is
that, e.g., pre may only be used on continuous-time real variables inside the body of a when-clause and
not inside these if-statements.

11.2.8 Special Statements

These special statements have the same form and semantics as the corresponding equations, apart from
the general difference in semantics between equations and statements.

11.2.8.1 Assert-Statement

See section 8.3.7. A failed assert stops the execution of the current algorithm.

11.2.8.2 Terminate-Statement

See section 8.3.8. The terminate-statement shall not be used in functions. In an algorithm outside a
function it does not stop the execution of the current algorithm.

173

Chapter 12

Functions

This chapter describes the Modelica function construct.

12.1 Function Declaration

A Modelica function is a specialized class (section 12.2) using the keyword function. The body of a
Modelica function is an algorithm section that contains procedural algorithmic code to be executed when
the function is called, or alternatively an external function specifier (section 12.9). Formal parameters
are specified using the input keyword, whereas results are denoted using the output keyword. This
makes the syntax of function definitions quite close to Modelica class definitions, but using the keyword
function instead of class.

[The structure of a typical function declaration is sketched by the following schematic function example:

function functionname
input TypeI1 in1;
input TypeI2 in2;
input TypeI3 in3 = defaultExpr1 "Comment" annotation(. . .);
. . .
output TypeO1 out1;
output TypeO2 out2 = defaultExpr2;
. . .

protected
⟨local variables⟩
. . .

algorithm
⟨statements⟩
. . .

end functionname;

]

Optional explicit default values can be associated with any input or output formal parameter through
binding equations. Comment strings and annotations can be given for any formal parameter declaration,
as usual in Modelica declarations.

[Explicit default values are shown for the third input parameter and the second output parameter in the
example above.]

[All internal parts of a function are optional; i.e., the following is also a legal function:

function functionname
end functionname;

]

174

Modelica Language Specification 3.7-dev
12.1. Function Declaration

12.1.1 Ordering of Formal Parameters

The relative ordering between input formal parameter declarations is significant since that determines the
matching between actual arguments and formal parameters at function calls with positional parameter
passing. Likewise, the relative ordering between the declarations of the outputs is significant since
that determines the matching with receiving variables at function calls of functions with multiple results.
However, the declarations of the inputs and outputs can be intermixed as long as these internal orderings
are preserved.

[Mixing declarations in this way is not recommended, however, since it makes the code hard to read.]

[Example:

function functionname
output TypeO1 out1; // Intermixed declarations of inputs and outputs
input TypeI1 in1; // not recommended since code becomes hard to read
input TypeI2 in2;
. . .
output TypeO2 out2;
input TypeI3 in3;
. . .

end functionname;

]

12.1.2 Function Return-Statements

The return-statement terminates the current function call, see section 12.4. It can only be used in an
algorithm section of a function. It has the following form:

return;

[Example: Using return to terminate evaluation of a function algorithm:

function findValue "Find position of value in array , or 0 if not found"
input Integer x[:];
input Integer value;
output Integer index;

algorithm
for i loop

if x[i] == value then
index := i;
return;

end if;
end for;
index := 0;

end findValue;

The same result could be obtained using break, provided that index := 0 is moved to the start of the
algorithm.]

12.1.3 Inheritance of Functions

It is allowed for a function to inherit and/or modify another function following the usual rules for
inheritance of classes (chapter 7).

[For example, it is possible to modify and extend a function class to add default values for input vari-
ables.]

A special case is defining a function as a short-class definition with modifiers for inputs inside a model.
These default values, unless overridden in the function call, will then be considered for variability as if
they were given in the function call, see section 3.8.1.

[Example: Demonstrating the variability implications. Note that functions cannot directly use non-
constants in enclosing scopes, so we cannot write input Real x1 = x; directly in foo.

175

Modelica Language Specification 3.7-dev
12.2. Function as a Specialized Class

model M
function foo
input Real x1;
input Real x2 = 2;
output Real y;

algorithm
y := x1 + x2;

end foo;
Real x = time;
function f1 = foo(x1 = x);
constant Real z1 = f1(x1 = 2); // Legal , since 'x1' has a new value.
constant Real z2 = f1(x2 = 1); // Illegal , since 'x' is seen as an argument.

end M;

]

12.2 Function as a Specialized Class

The function concept in Modelica is a specialized class (section 4.7).

[The syntax and semantics of a function have many similarities to those of the block specialized class.
A function has many of the properties of a general class, e.g., being able to inherit other functions, or
to redeclare or modify elements of a function declaration.]

Modelica functions have the following restrictions compared to a general Modelica class:

� Each public component must have the prefix input or output.

� Input formal parameters are read-only after being bound to the actual arguments or default values,
i.e., they shall not be assigned values in the body of the function.

� A function shall not be used in connections, shall not have equations, shall not have initial algo-
rithms.

� A function can have at most one algorithm section or one external function interface (not both),
which, if present, is the body of the function. The body of the function shall not contain when-
statements, see section 11.2.7.1.

� A function may only contain components of the specialized classes type, record, operator record,
and function; and it must not contain, e.g., model, block, operator or connector components.

� A function may not contain components of type Clock.

� The elements of a function shall not have prefixes inner, or outer.

� A function may have zero or one external function interface, which, if present, is the external
definition of the function.

� For a function to be called in a simulation model, the function shall not be partial, and the output
variables must be assigned inside the function either in binding equations or in an algorithm section,
or have an external function interface as its body, or be defined as a function partial derivative.
The output variables of a function should be computed.

[It is a quality of implementation how much analysis a tool performs in order to determine if the
output variables are computed.]

� There are many Modelica built-in operators that are not allowed to be used in functions, including
der, initial, terminal, sample, pre, edge, change, reinit, delay, cardinality, inStream,
actualStream, the operators of the built-in package Connections, the operators defined in chap-
ter 16 and chapter 17.

� The dimension sizes not declared with colon (:) of each array result or array local variable (i.e.,
a non-input component) of a function must be either given by the input formal parameters, or
given by constant or parameter expressions, or by expressions containing combinations of those
(section 12.4.4).

176

Modelica Language Specification 3.7-dev
12.3. Pure Modelica Functions

� For initialization of local variables of a function see section 12.4.4).

� Components of a function follow special variability rules where the GenerateEvents annotation
plays a central role, see section 3.8.5 for details.

Modelica functions have the following enhancements compared to a general Modelica class:

� Functions can be called, section 12.4.

– The calls can use a mix of positional and named arguments, see section 12.4.1.

– Instances of functions have a special meaning, see section 12.4.2.

– The lookup of the function class to be called is extended, see section 5.3.2.

� A function can be recursive.

� A formal parameter or local variable may be initialized through a binding (=) of a default value
in its declaration, see section 12.4.4. If a non-input component in the function uses a record class
that contain one or more binding equations they are viewed as initialization of those component of
the record component.

� A function is dynamically instantiated when it is called rather than being statically instantiated
by an instance declaration, which is the case for other kinds of classes.

� A function may have an external function interface specifier as its body.

� A function may have a return-statement in its algorithm section body.

� A function allows dimension sizes declared with colon (:) to be resized for non-input array variables,
see section 12.4.5.

� A function may be defined in a short function definition to be a function partial derivative.

12.3 Pure Modelica Functions

Modelica functions are normally pure which makes it easy for humans to reason about the code since
they behave as mathematical functions, and possible for compilers to optimize.

� Pure Modelica functions always give the same output values or errors for the same input values and
only the output values influence the simulation result, i.e., is seen as equivalent to a mathematical
map from input values to output values. Some input values may map to errors. Pure functions are
thus allowed to fail by calling assert, or ModelicaError in C code, or dividing by zero. Such errors
will only be reported when and if the function is called. Pure Modelica functions are not assumed
to be thread-safe.

� A Modelica function which does not have the pure function properties is impure.

The declaration of functions follow these rules:

� Functions defined in Modelica (non-external) are normally assumed to be pure (the exception is
the deprecated case below), if they are impure they shall be marked with the impure keyword.
They can be explicitly marked as pure.

� If a function is declared as impure any function extending from it shall be declared as impure.

� External functions not explicitly declared with pure or impure is deprecated.

� For a function without explicit purity, it is deprecated to call any function declared impure, except
when wrapped in pure(. . .).

� For a function not declared impure, it is deprecated to call an external function not declared pure,
except when wrapped in pure(. . .).

For purposes of symbolic transformations and optimizations, the deprecated semantics above imply that
not only the functions explicitly declared impure are the ones which cannot be treated as pure. Instead,
a function shall be treated as impure in the following cases (applied recursively):

� It is declared impure.

177

Modelica Language Specification 3.7-dev
12.3. Pure Modelica Functions

� It is an external function without explicit purity.

� It calls another function treated as impure, except when wrapped in pure(. . .).

Calls of pure functions used inside expression may be skipped if the resulting expression will not depend
on the possible returned value; ignoring the possibility of the function generating an error.

A call to a function with no declared outputs is assumed to have desired side-effects or assertion checks.

[A tool shall thus not remove such function calls, with exception of non-triggered assert calls. A pure
function, used in an expression or used with a non-empty left-hand side, need not be called if the output
from the function call do not mathematically influence the simulation result, even if errors would be
generated if it were called.]

[Comment 1: This property enables writing declarative specifications using Modelica. It also makes
it possible for Modelica compilers to freely perform algebraic manipulation of expressions containing
function calls while still preserving their semantics. For example, a tool may use common subexpression
elimination to call a pure function just once, if it is called several times with identical input arguments.
However, since functions may fail we can, e.g., only move a common function call from inside a loop to
outside the loop if the loop is run at least once.]

[Comment 2: The Modelica translator is responsible for maintaining this property for pure non-external
functions. Regarding external functions, the external function implementor is responsible. Note that
external functions can have side-effects as long as they do not influence the internal Modelica simulation
state, e.g., caching variables for performance or printing trace output to a log file.]

With the prefix keyword impure it is stated that a Modelica function is impure and it is only allowed to
call such a function from within:

� Another function marked with the prefix impure.

� A when-equation.

� A when-statement.

� pure(impureFunction(. . .)) – which allows calling impure functions in any pure context. The
wrapping in pure(. . .) only by-passes the purity checking of the callee impureFunction; the argu-
ment expressions of the function call are not affected.

� Initial equations and initial algorithms.

� Binding equations for components declared as parameter – which is seen as syntactic sugar for
having a parameter with fixed=false and the binding as an initial equation.

[Thus, evaluation of the same function call at a later time during simulation is not guaranteed to
result in the same value as when the parameter was initialized, seemingly breaking the declaration
equation.]

� Binding equations for external objects.

It is an error if an impure function call is part of a systems of equations (including linear systems),
even if called in agreement with the restrictions above. The reason is that solving systems of equations
generally requires expressions to be evaluated an unknown number of times. This includes the special
handling of when initial() during initialization.

There are two ways in which an impure function could be called in a system of equations, namely in the
deprecated case of external functions assumed to be impure, and when using pure(. . .) to call an impure
function from within a pure function. The side-effect semantics of the function call are then undefined.
Specifically, the number of calls with external side-effects is unspecified. However, for impure functions
where the outputs only depend on the inputs the system of equations should be solved correctly.

[A tool is not allowed to perform any optimizations on function calls to an impure function, e.g., re-
ordering calls from different statements in an algorithm or common subexpression elimination is not
allowed.]

By section 6.6, it follows that an impure function can only be passed as argument to a function formal
parameter of impure type. A function having a formal function parameter that is impure must be marked
pure or impure.

178

Modelica Language Specification 3.7-dev
12.4. Function Call

[Example:

function evaluateLinear // pure function
input Real a0;
input Real a1;
input Real x;
output Real y;

algorithm
y := a0 + a1*x;

end evaluateLinear;

impure function receiveRealSignal // impure function
input HardwareDriverID id;
output Real y;

external "C"
y = receiveSignal(id);

end receiveRealSignal;

Examples of allowed optimizations of pure functions:

model M // Assume sin , cos , asin are pure functions with normal derivatives.
input Real x[2];
input Real w;
Real y[2] = [cos(w), sin(w); -sin(w), cos(w)] * x;
Real z[2] = der(y);
Real a = 0 * asin(w);

end M;

A tool only needs to generate one call of the pure function cos(w) in the model M – a single call used for
both the two elements of the matrix, as well as for the derivative of that matrix. A tool may also skip
the possible error for asin(w) and assume that a is zero.

Examples of restrictions on optimizing pure functions:

Real x =
if noEvent(abs(x)) < 1 then
asin(x) // Cannot move asin(x) out of if -branch.

else
0;

algorithm
assertCheck(p, T); // Must call function

algorithm
if b then
y := 2 * someOtherFunction(x);

end if;
y := y + asin(x);
y := y + someOtherFunction(x);
// Cannot evaluate someOtherFunction(x) before asin(x) - unless b is true
// The reason is that asin(x) may fail and someOtherFunction may hang ,
// and it might be possible to recover from this error.

]

12.4 Function Call

Function classes and record constructors (section 12.6) and enumeration type conversions (section 4.9.5.3)
can be called as described in this section.

12.4.1 Positional or Named Input Arguments

A function call has optional positional arguments followed by zero, one or more named arguments, such
as

f(3.5, 5.76, arg3=5, arg6 =8.3);

179

Modelica Language Specification 3.7-dev
12.4. Function Call

The formal syntax of a function call (simplified by removing reduction expression, section 10.3.4.1):

primary :
component-reference function-call-args

function-call-args :
"(" [function-arguments] ")"

function-arguments :
function-argument ["," function-arguments]
| named-arguments

named-arguments: named-argument ["," named-arguments]

named-argument: IDENT "=" function-argument

function-argument : function-partial-application | expression

The interpretation of a function call is as follows: First, a list of unfilled slots is created for all formal
input parameters. If there are N positional arguments, they are placed in the first N slots, where the
order of the parameters is given by the order of the component declarations in the function definition.
Next, for each named argument identifier = expression, the identifier is used to determine the
corresponding slot. The value of the argument is placed in the slot, filling it (it is an error if this slot
is already filled). When all arguments have been processed, the slots that are still unfilled are filled
with the corresponding default value of the function definition. The default values may depend on other
inputs (these dependencies must be acyclical in the function) – the values for those other inputs will then
be substituted into the default values (this process may be repeated if the default value for that input
depend on another input). The default values for inputs shall not depend on non-input variables in the
function. The list of filled slots is used as the argument list for the call (it is an error if any unfilled slots
still remain).

Special purpose operators with function syntax defined in the specification shall not be called with named
arguments, unless otherwise noted.

The type of each argument must agree with the type of the corresponding parameter, except where the
standard type coercion, section 10.6.13, can be used to make the types agree. (See also section 12.4.6 on
applying scalar functions to arrays.)

[Example: Assume a function RealToString is defined as follows to convert a Real number to a String:

function RealToString
input Real number;
input Real precision = 6 "number of significant digits";
input Real length = 0 "minimum length of field";
output String string "number as string";
. . .

end RealToString;

Then the following applications are equivalent:

RealToString (2.0);
RealToString (2.0, 6, 0);
RealToString (2.0, 6);
RealToString (2.0, precision =6);
RealToString (2.0, length =0);
RealToString (2.0, 6, precision =6); // error: slot is used twice

]

12.4.2 Functional Input Arguments

A functional input argument to a function is an argument of function type. The declared type of such an
input formal parameter in a function can be the type-specifier of a partial function that has no replaceable
elements. It cannot be the type-specifier of a record or enumeration (i.e., record constructor functions

180

Modelica Language Specification 3.7-dev
12.4. Function Call

and enumeration type conversions are not allowed in this context). Such an input formal parameter of
function type can also have an optional functional default value.

[Example:

function quadrature "Integrate function y = integrand(x) from x1 to x2"
input Real x1;
input Real x2;
input Integrand integrand; // Integrand is a partial function , see below
// With default: input Integrand integrand = Modelica.Math.sin;
output Real integral;

algorithm
integral := (x2 - x1) * (integrand(x1) + integrand(x2)) / 2;

end quadrature;

partial function Integrand
input Real u;
output Real y;

end Integrand;

]

A functional argument can be provided in one of the following forms to be passed to a scalar formal
parameter of function type in a function call:

1. as a function type-specifier (Parabola example below),

2. as a function partial application (section 12.4.2.1 below),

3. as a function that is a component (i.e., a formal parameter of function type of the enclosing
function),

4. as a function partial application of a function that is a component (example in section 12.4.2.1
below).

In all cases the provided function must be function-compatible (definition 6.8) with the corresponding
formal parameter of function type.

[Example: A function as a positional input argument according to case 1:

function Parabola
extends Integrand;

algorithm
y := x * x;

end Parabola;
area = quadrature (0, 1, Parabola);

The quadrature2 example below uses a function integrand that is a component as input argument
according to case 3:

function quadrature2 "Integrate function y = integrand(x) from x1 to x2"
input Real x1;
input Real x2;
input Integrand integrand; // Integrand is a partial function type
output Real integral;

algorithm
integral :=
quadrature(x1, (x1 + x2) / 2, integrand) +
quadrature ((x1 + x2) / 2, x2, integrand);

end quadrature2;

]

12.4.2.1 Function Partial Application

A function partial application is similar to a function call with certain formal parameters bound to
expressions, the specific rules are specified in this section and are not identical to the ones for function

181

Modelica Language Specification 3.7-dev
12.4. Function Call

call in section 12.4.1. A function partial application returns a partially evaluated function that is also a
function, with the remaining not bound formal parameters still present in the same order as in the original
function declaration. A function partial application is specified by the function keyword followed by a
function call to func_name giving named formal parameter associations for the formal parameters to be
bound, e.g.:

function func_name(. . ., formal_parameter_name = expr , . . .)

[Note that the keyword function in a function partial application differentiates the syntax from a normal
function call where some parameters have been left out, and instead supplied via default values.]

The function created by the function partial application acts as the original function but with the
bound formal input parameters(s) removed, i.e., they cannot be supplied arguments at function call.
The binding occurs when the partially evaluated function is created. A partially evaluated function is
function-compatible (definition 6.8) with the same function where all bound arguments are removed.

[Thus, for checking function type compatibility, bound formal parameters are ignored.]

[Example: Function partial application as argument, positional argument passing, according to case 2
above:

model Test
parameter Integer N;
Real area;

algorithm
area := 0;
for i in 1:N loop
area := area + quadrature (0, 1, function Sine(A = 2, w = i * time));

end for;
end Test;

function Sine "y = Sine(x, A, w)"
extends Integrand;
input Real A;
input Real w;

algorithm
y := A * Modelica.Math.sin(w * x);

end Sine;

Call with function partial application as named input argument:

area :=
area + quadrature (0, 1, integrand = function Sine(A = 2, w = i * time));

]

[Example: Function types are matching after removing the bound arguments A and w in a function partial
application:

function Sine2 "y = Sine2(A, w, x)"
input Real A;
input Real w;
input Real x; // Note: x is now last in argument list.
output Real y;

algorithm
y := A * Modelica.Math.sin(w * x);

end Sine2;
area = quadrature (0, 1, integrand = function Sine2(A = 2, w = 3));

The partially evaluated Sine2 has only one argument: x – and is thus type compatible with Integrand.]

[Example: Function partial application of a function that is a component, according to case 4 above:

partial function SurfaceIntegrand
input Real x;
input Real y;

182

Modelica Language Specification 3.7-dev
12.4. Function Call

output Real z;
end SurfaceIntegrand;

function quadratureOnce
input Real x;
input Real y1;
input Real y2;
input SurfaceIntegrand integrand;
output Real z;

algorithm
z := quadrature(y1, y2, function integrand(y = x));
// This is according to case 4 and needs to bind the 2nd argument

end quadratureOnce;

function surfaceQuadrature
input Real x1;
input Real x2;
input Real y1;
input Real y2;
input SurfaceIntegrand integrand;
output Real integral;

algorithm
integral :=
quadrature(x1, x2,

function quadratureOnce(y1 = y1 , y2 = y2 , integrand = integrand));
// Case 2 and 3

end surfaceQuadrature;

]

12.4.3 Output Formal Parameters

A function may have more than one output component, corresponding to multiple return values. The
only way to use more than the first return value of such a function is to make the function call the right-
hand side of an equation or assignment. In this case, the left-hand side of the equation or assignment
shall contain a list of component references within parentheses:

(out1, out2, out3) = f(. . .);

The component references are associated with the output components according to their position in the
list. Thus output component i is set equal to, or assigned to, component reference i in the list, where
the order of the output components is given by the order of the component declarations in the function
definition. The type of each component reference in the list must agree with the type of the corresponding
output component.

A function application may be used as expression whose value and type is given by the value and type
of the first output component, if at least one return result is provided.

It is possible to omit left-hand side component references and/or truncate the left-hand side list in order
to discard outputs from a function call.

[Optimizations to avoid computation of unused output results can be automatically deduced by an opti-
mizing compiler.]

[Example: Function eigen to compute eigenvalues and optionally eigenvectors may be called in the
following ways:

ev = eigen(A); // calculate eigenvalues
x = isStable(eigen(A)); // used in an expression
(ev , vr) = eigen(A) // calculate eigenvectors
(ev ,vr ,vl) = eigen(A) // and also left eigenvectors
(ev ,,vl) = eigen(A) // no right eigenvectors

The function may be defined as:

183

Modelica Language Specification 3.7-dev
12.4. Function Call

function eigen "calculate eigenvalues and optionally eigenvectors"
input Real A[:, size(A,1)];
output Real eigenValues[size(A,1) ,2];
output Real rightEigenVectors[size(A,1),size(A,1)];
output Real leftEigenVectors [size(A,1),size(A,1)];

algorithm
// The output variables are computed separately (and not , e.g., by one
// call of a Fortran function) in order that an optimizing compiler can
// remove unnecessary computations , if one or more output arguments are
// missing
// compute eigenvalues
// compute right eigenvectors using the computed eigenvalues
// compute left eigenvectors using the computed eigenvalues

end eigen;

]

The only permissible use of an expression in the form of a list of expressions in parentheses, is when it
is used as the left-hand side of an equation or assignment where the right-hand side is an application of
a function.

[Example: The following are illegal:

(x+1, 3.0, z/y) = f(1.0, 2.0); // Not a list of component references.
(x, y, z) + (u, v, w) // Not LHS of suitable eqn/assignment.

]

12.4.4 Initialization and Binding Equations

Components in a function can be divided into three groups:

� Public components which are input formal parameters.

� Public components which are output formal parameters.

� Protected components which are local variables, parameters, or constants.

When a function is called, components of the function do not have start-attributes. However, a binding
equation (= expression) with an expression may be present for a component.

A binding equation for a non-input component initializes the component to this expression at the start
of every function invocation (before executing the algorithm section or calling the external function).
These bindings must be executed in an order where a variable is not used before its binding equations
has been executed; it is an error if no such order exists (i.e., the binding must be acyclic).

Binding equations can only be used for components of a function. If no binding equation is given for a
non-input component the variable is uninitialized (except for record components where modifiers may
also initialize that component). It is an error to use (or return) an uninitialized variable in a function.
Binding equations for input formal parameters are interpreted as default arguments, as described in
section 12.4.1.

[It is recommended to check for use of uninitialized variables statically – if this is not possible a warning
is recommended combined with a run-time check.]

[The properties of components in functions described in this section are also briefly described in sec-
tion 12.2.]

12.4.5 Flexible Array Sizes and Resizing of Arrays

[Flexible setting of array dimension sizes of arrays in functions is also briefly described in section 12.2.]

A dimension size not specified with colon (:) for a non-input array component of a function must be
given by the inputs or be constant.

[Example:

184

Modelica Language Specification 3.7-dev
12.4. Function Call

function joinThreeVectors
input Real v1[:],v2[:],v3[:];
output Real vres[size(v1 ,1)+size(v2 ,1)+size(v3 ,1)];

algorithm
vres := cat (1,v1 ,v2 ,v3);

end joinThreeVectors;

]

A non-input array component declared in a function with a dimension size specified by colon (:) and no
binding equation, can change size according to these special rules:

� Prior to execution of the function algorithm the dimension size is zero.

� The entire array (without any subscripts) may be assigned with a corresponding array with arbi-
trary dimension size (the array variable is re-sized).

These rules also apply if the array component is an element of a record component in a function.

[Example: A function to collect the positive elements in a vector:

function collectPositive
input Real x[:];
output Real xpos [:];

algorithm
for i in 1 : size(x, 1) loop

if x[i] > 0 then
xpos := cat(1, xpos , x[i:i]);

end if;
end for;

end collectPositive;

]

12.4.6 Automatic Vectorization

Functions with one scalar return value can be applied to arrays element-wise, e.g., if A is a vector of
reals, then sin(A) is a vector where each element is the result of applying the function sin to the
corresponding element in A. Only function classes that are transitively non-replaceable (section 6.3.1
and section 7.1.4) may be called vectorized.

Consider the expression f(arg1, . . ., argn), an application of the function f to the arguments arg1,
. . . , argn. Potential vectorization of this call is defined as follows. For each passed argument, the type
of the argument is checked against the type of the corresponding formal parameter of the function:

1. If the types match, nothing is done.

2. If the types do not match, and a type conversion can be applied, it is applied. Continue with step 1.

3. If the types do not match, and no type conversion is applicable, the passed argument type is checked
to see if it is an n-dimensional array of the formal parameter type. If it is not, the function call is
invalid. If it is, we call this a foreach argument.

4. For all foreach arguments, the number and sizes of dimensions must match. If they do not match,
the function call is invalid.

5. If no foreach argument exists, the function is applied in the normal fashion, and the result has the
type specified by the function definition.

6. The result of the function call expression is an n-dimensional array e with the same dimension
sizes as the foreach arguments. Each element e[i, . . ., j] is the result of applying f to arguments
constructed from the original arguments in the following way:

� If the argument is not a foreach argument, it is used as-is.

� If the argument is a foreach argument, the element at index [i, . . ., j] is used.

185

Modelica Language Specification 3.7-dev
12.5. Built-in Functions

If more than one argument is an array, all of them have to be the same size, and they are traversed in
parallel.

[Example:

sin({a, b, c}) = {sin(a), sin(b), sin(c)} // argument is a vector
sin([a, b, c]) = [sin(a), sin(b), sin(c)] // argument may be a matrix
atan2 ({a, b, c}, {d, e, f}) = {atan2(a, d), atan2(b, e), atan2(c, f)}

This works even if the function is declared to take an array as one of its arguments. If pval is defined
as a function that takes one argument that is a Real vector and returns a Real, then it can be used with
an actual argument which is a two-dimensional array (a vector of vectors). The result type in this case
will be a vector of Real.

pval ([1 ,2;3 ,4]) = [pval ([1 ,2]); pval ([3 ,4])]
sin ([1 ,2;3 ,4]) = [sin ({1 ,2}); sin ({3 ,4})]
= [sin(1), sin(2); sin(3), sin(4)]

function add
input Real e1, e2;
output Real sum1;

algorithm
sum1 := e1 + e2;

end add;

add(1, [1,2,3]) adds one to each of the elements of the second argument giving the result [2,3,4].
For built-in operators one can do this with 1 .+ [1,2,3] but not with 1 + [1,2,3], because the rules
for the built-in operators are more restrictive.]

12.4.7 Empty Function Calls

An empty function call is a call that does not return any results.

[An empty call is of limited use in Modelica since a function call without results does not contribute
to the simulation, but it is useful to check assertions and in certain cases for desired side-effects, see
section 12.3.]

An empty call can occur either as a kind of “null equation” or “null statement”.

[Example: The empty calls to eigen() are examples of a “null equation” and a “null statement”:

equation
Modelica.Math.Matrices.eigen(A); // Empty function call as an equation

algorithm
Modelica.Math.Matrices.eigen(A); // Empty function call as a statement

]

12.5 Built-in Functions

There are basically four groups of built-in functions in Modelica:

� Intrinsic mathematical and conversion functions, see section 3.7.1.

� Derivative and special operators with function syntax, see section 3.7.4.

� Event-related operators with function syntax, see section 3.7.5.

� Built-in array functions, see section 10.3.

Note that when the specification references a function having the name of a built-in function it
references the built-in function, not a user-defined function having the same name.

186

Modelica Language Specification 3.7-dev
12.6. Record Constructor Functions

12.6 Record Constructor Functions

Whenever a record is defined, a record constructor function with the same name and in the same scope
as the record class is implicitly defined according to the following rules:

The declaration of the record is partially flattened including inheritance, modifications, redeclarations,
and expansion of all names referring to declarations outside of the scope of the record to their fully
qualified names.

[The partial flattening is performed in order to remove potentially conflicting import-clauses in the record
constructor function due to flattening the inheritance tree.]

All record elements (i.e., components and local class definitions) of the partially flattened record decla-
ration are used as declarations in the record constructor function with the following exceptions:

� Component declarations which do not allow a modification (such as final parameter Real) are
declared as protected components in the record constructor function.

� Prefixes (constant, parameter, final, discrete, . . .) of the remaining record components are
removed.

� The prefix input is added to the public components of the record constructor function.

An instance of the record is declared as output parameter using a name not appearing in the record,
together with a modification. In the modification, all input parameters are used to set the corresponding
record variables.

A record constructor can only be called if the referenced record class is found in the global scope, and
thus cannot be modified.

[This allows constructing an instance of a record, with an optional modification, at all places where a
function call is allowed.

Examples:

record Complex "Complex number"
Real re "real part";
Real im "imaginary part";

end Complex;

function add
input Complex u, v;
output Complex w(re = u.re + v.re , im = u.im + v.re);

end add;

Complex c1 , c2;
equation
c2 = add(c1 , Complex(sin(time), cos(time));

In the following example, a convenient data sheet library of components is built up:

package Motors
record MotorData "Data sheet of a motor"
parameter Real inertia;
parameter Real nominalTorque;
parameter Real maxTorque;
parameter Real maxSpeed;

end MotorData;

model Motor "Motor model" // using the generic MotorData
MotorData data;
. . .

equation
. . .

end Motor;

record MotorI123 = MotorData(// data of a specific motor

187

Modelica Language Specification 3.7-dev
12.6. Record Constructor Functions

inertia = 0.001,
nominalTorque = 10,
maxTorque = 20,
maxSpeed = 3600) "Data sheet of motor I123";

record MotorI145 = MotorData(// data of another specific motor
inertia = 0.0015 ,
nominalTorque = 15,
maxTorque = 22,
maxSpeed = 3600) "Data sheet of motor I145";

end Motors

model Robot
import Motors .*;
Motor motor1(data = MotorI123 ()); // just refer to data sheet
Motor motor2(data = MotorI123(inertia = 0.0012));
// data can still be modified (if no final declaration in record)
Motor motor3(data = MotorI145 ());
. . .

end Robot;

Example showing most of the situations, which may occur for the implicit record constructor function
creation. With the following record definitions:

package Demo
record Record1
parameter Real r0 = 0;

end Record1;

record Record2
import Modelica.Math .*;
extends Record1;
final constant Real c1 = 2.0;
constant Real c2;
parameter Integer n1 = 5;
parameter Integer n2;
parameter Real r1 "comment";
parameter Real r2 = sin(c1);
final parameter Real r3 = cos(r2);
Real r4;
Real r5 = 5.0;
Real r6[n1];
Real r7[n2];

end Record2;
end Demo;

The following record constructor functions are implicitly defined (the name of the output, given in italic
below, is not defined; it should be chosen to not cause any conflict):

package Demo
function Record1
input Real r0 = 0;
output Record1 result(r0 = r0);

end Record1;

function Record2
input Real r0 = 0;
input Real c2;
input Integer n1 = 5;
input Integer n2;
input Real r1 "comment"; // the comment also copied from record
input Real r2 = Modelica.Math.sin(c1);
input Real r4;
input Real r5 = 5.0;
input Real r6[n1];

188

Modelica Language Specification 3.7-dev
12.6. Record Constructor Functions

input Real r7[n2];
output Record2 result(
r0 = r0, c2 = c2 , n1 = n1 , n2 = n2 ,
r1 = r1, r2 = r2 , r4 = r4 , r5 = r5 , r6 = r6 , r7 = r7);

protected
final constant Real c1 = 2.0; // referenced from r2
final parameter Real r3 = Modelica.Math.cos(r2);

end Record2;
end Demo;

and can be applied in the following way

Demo.Record2 r1 =
Demo.Record2(r0 = 1, c2 = 2, n1 = 2, n2 = 3, r1 = 1, r2 = 2, r4 = 5, r5 = 5,

r6 = {1, 2}, r7 = {1, 2, 3});
Demo.Record2 r2 =
Demo.Record2(1, 2, 2, 3, 1, 2, 5, 5, {1, 2}, {1, 2, 3});

parameter Demo.Record2 r3 =
Demo.Record2(c2 = 2, n2 = 1, r1 = 1, r4 = 4, r6 = 1 : 5, r7 = {1});

The above example is only used to show the different variants appearing with prefixes, but it is not very
meaningful, because it is simpler to just use a direct modifier.]

12.6.1 Casting to Record

A constructor of a record R can be used to cast an instance m of a model, block, connector class
M to a value of type R, provided that for each component defined in R (that do not have a default
value) there is also a public component defined in M with identical name and type. A nested record
component of R is handled as follows, if the corresponding component of M is a model/block/connector
a nested record constructor is called – otherwise the component is used directly; and the resulting
call/component is used as argument to the record constructor R. If the corresponding component of R in
M is a conditional component, it is an error. The instance m is given as single (un-named) argument to
the record constructor of R. The interpretation is that R(m) is replaced by a record constructor of type
R where all public components of M that are present in R are assigned to the corresponding components
of R. The record cast can be used in vectorized form according to section 12.4.6.

[The problem if R would be a conditional component is that the corresponding binding would be illegal
since it is not a connect-equation.]

[The record cast operation is uniquely distinguished from a record constructor call, because an argument
of the record constructor cannot be a model, block or connector instance.]

[Example:

connector Flange
Real phi;
flow Real tau;

end Flange;

model Model1
Real m1;
Boolean b1;
Flange flange;

end Model1;

model Model2
Real r1;
Real r2;
Integer i2;
Pin p1 , p2;
Model1 sub1;
protected
Integer i1;
. . .

189

Modelica Language Specification 3.7-dev
12.7. Derivatives and Inverses of Functions

end Model2;

record MyFlange
Real tau;

end MyFlange;

record MyRecord1
Boolean b1;
MyFlange flange;

end MyRecord1;

record MyRecord2
Real r1;
Integer i2;
MyRecord1 sub1;

end MyRecord2;

model Model
Model2 s1;
Model2 s2[2];
MyRecord2 rec1 = MyRecord2(s1);
MyRecord2 rec2 [2] = MyRecord2(s2);
. . .

end Model;
// Model is conceptually mapped to
model ModelExpanded
Model2 s1;
Model2 s2[2];
MyRecord2 rec1 = MyRecord2(r1=s1.r1, i2=s1.i2,
sub1 = MyRecord1(b1=s1.sub1.b1 ,
flange = MyFlange(tau=s1.sub1.flange.tau));
MyRecord2 rec2 [2] = {MyRecord2(r1=s2[1].r1, i2=s2[1].i2,
sub1 = MyRecord1(b1=s2[1]. sub1.b1 ,
flange = MyFlange(tau=s1[1]. sub1.flange.tau)),
MyRecord2(r1=s2[2].r1, i2=s2[2].i2,
sub1 = MyRecord1(b1=s2[2]. sub1.b1 ,
flange = MyFlange(tau=s2[2]. sub1.flange.tau)};
. . .

end ModelExpanded;

]

12.7 Derivatives and Inverses of Functions

The annotations listed below are related to differentiation and closed-form inverses of functions. A
function declaration can have derivative annotations specifying derivative functions or preferably, for
a function written in Modelica, use the smoothOrder annotation to indicate that the tool can construct
the derivative function automatically. Partial derivatives are not provided via annotations, but using a
certain type of short function definition described in section 12.7.2.

Annotation Description Details

smoothOrder Function smoothness guarantee Annotation 12.1
derivative Provide function derivative Annotation 12.2
inverse Provide closed-form inverses Annotation 12.3

Annotation 12.1 smoothOrder

"smoothOrder" "=" UNSIGNED-NUMBER
"smoothOrder"
"("
"normallyConstant" "=" IDENT
{ "," "normallyConstant" "=" IDENT }

190

Modelica Language Specification 3.7-dev
12.7. Derivatives and Inverses of Functions

")"
"=" UNSIGNED-NUMBER

This annotation has only an effect within a function declaration.

smoothOrder defines the number of differentiations of the function, in order that all of the dif-
ferentiated outputs are continuous provided all input arguments and their derivatives up to order
smoothOrder are continuous.

[This means that the function is at least CsmoothOrder.

When a tool computes the derivative of a function, e.g., for index reduction or to compute an ana-
lytic Jacobian, each differentiation of a function reduces the smoothOrder by 1. The smoothOrder
information can then be used to infer continuity of the resulting differentiated function calls, pro-
vided the input arguments are continuous. This is a conservative check, however, meaning that a
tool may be able to establish continuity of a function call even though the smoothOrder has been
reduced to less than 0, and/or some input arguments are not continuous.]

The optional argument normallyConstant of smoothOrder defines that the function argument
IDENT is usually constant.

[A tool might check whether the actual argument to IDENT is a parameter expression at the place
where the function is called. If this is the case, the derivative of the function might be constructed
under the assumption that the corresponding argument is constant, to enhance efficiency. Typi-
cally, a tool would generate at most two different derivative functions of a function: One, under
the assumption that all normallyConstant arguments are actually constant. And one, under the
assumption that all input arguments are time varying. Based on the actual arguments of the
function call either of the two derivative functions is used.

This annotation is used by many functions of the Modelica.Fluid library, such as
Modelica.Fluid.Dissipation.PressureLoss.StraightPipe.dp_laminar_DP, since geometric
arguments to these functions are usually constant.]

Annotation 12.2 derivative

"derivative" [derivative-constraints] "=" name

derivative-constraints :
"(" derivative-constraint { "," derivative-constraint } ")"

derivative-constraint :
"order" = UNSIGNED-NUMBER
| "noDerivative" = IDENT
| "zeroDerivative" = IDENT

This annotation has only an effect within a function declaration.

The derivative annotation can influence simulation time and accuracy, can be applied to both
functions written in Modelica and to external functions, and may be used several times for the
same function declaration.

Each use of the derivative annotation points to another derivative-function that expresses a
derivative of the declared function, and the annotation can state that it is only valid under certain
restrictions on the input arguments. These restrictions are defined using the optional attributes
order, noDerivative, and zeroDerivative. The order may be specified at most once for each
derivative annotation, must be at least 1, and defaults to 1. Specifying order is only considered
a restriction if order > 1.

For details abouts using the derivative annotation, see section 12.7.1.

Annotation 12.3 inverse

"inverse" "(" function-inverse { "," function-inverse } ")"

function-inverse :
IDENT "=" type-specifier function-call-args"

191

Modelica Language Specification 3.7-dev
12.7. Derivatives and Inverses of Functions

A function with one output formal parameter may have one or more inverse annotations to
define inverses of this function.

For details abouts using the inverse annotation, see section 12.7.3.

12.7.1 Using the Derivative Annotation

The given derivative-function must be a valid derivative if the derivative annotation restrictions are
satisfied, and can thus be used to compute the derivative in those cases. There may be multiple restric-
tions on the derivative, in which case they must all be satisfied. The restrictions also imply that some
derivatives of some inputs are excluded from the call of the derivative (since they are not necessary).
When a function supplies multiple derivative-functions subject to different restrictions, the first one that
can be used (i.e., satisfying the restrictions) will be used for each call.

[This means that the most restrictive derivatives should be written first.]

[Example: The following model illustrates the requirement that a provided derivative must be valid. That
fder is a valid derivative of f means that it can be used safely to compute x2 by numeric integration:
the function value, x1, will up to numerical precision be matched by the integral of the derivative, x2.

function f
input Real x;
output Real y;
annotation(derivative = fder);
external "C";

end f;
model M
input Real u;
Real x1 "Directly from function";
Real x2 "Integrated from derivative";

equation
x1 = f(u);
der(x2) = der(x1);

initial equation
x2 = x1;

end M;

Note that tools are not required to use the provided derivative, and might solve the equations completely
without numeric integration.]

[Example: Use of order to specify a second order derivative:

function foo0 annotation(derivative = foo1);
end foo0;

function foo1 annotation(derivative(order =2) = foo2);
end foo1;

function foo2 end foo2;

]

The inputs and outputs of the derivative function of order 1 are constructed as follows:

� First are all inputs to the original function, and after all them we will in order append one derivative
for each input containing reals. These common inputs must have the same name, type, and
declaration order for the function and its derivative.

� The outputs are constructed by starting with an empty list and then in order appending one
derivative for each output containing reals. The outputs must have the same type and declaration
order for the function and its derivative.

If the Modelica function call is a nth derivative (n ≥ 1), i.e., this function call has been derived from an
(n−1)th derivative by differentiation inside the tool, an annotation(derivative(order=n+ 1) = . . .),
specifies the (n+ 1)th derivative, and the (n+ 1)th derivative call is constructed as follows:

192

Modelica Language Specification 3.7-dev
12.7. Derivatives and Inverses of Functions

� The input arguments are appended with the (n + 1)th derivative, which are constructed in order
from the nth order derivatives.

� The output arguments are similar to the output argument for the nth derivative, but each output
is one higher in derivative order. The outputs must have the same type and declaration order for
the function and its derivative.

[The restriction that only the result of differentiation can use higher-order derivatives ensures that the
derivatives x, der_x, . . . are in fact derivatives of each other. Without that restriction we would have
both der(x) and x_der as inputs (or perform advanced tests to verify that they are the same).]

[Example: Given the declarations

function foo0
. . .
input Real x;
input Boolean linear;
input . . .;
output Real y;
. . .
annotation(derivative = foo1);

end foo0;

function foo1
. . .
input Real x;
input Boolean linear;
input . . .;
input Real der_x;
. . .
output Real der_y;
. . .
annotation(derivative(order =2) = foo2);

end foo1;

function foo2
. . .
input Real x;
input Boolean linear;
input . . .;
input Real der_x;
. . .;
input Real der_2_x;
. . .
output Real der_2_y;
. . .

the equation

(. . . , y(t), . . .) = foo0(. . . , x(t), b, . . .)

implies that:

(. . . ,
dy(t)

dt
, . . .) = foo1(. . . , x(t), b, . . . , . . . ,

dx(t)

dt
, . . .)

(. . . ,
d2y(t)

dt2
, . . .) = foo2(. . . , x(t), b, . . . ,

dx(t)

dt
, . . . , . . . ,

d2x(t)

dt2
, . . .)

]

An input or output to the function may be any simple type (Real, Boolean, Integer, String and
enumeration types) or a record. For a record containing Real values, the corresponding derivative
uses a derivative record that only contains the real-predefined types and sub-records containing reals
(handled recursively) from the original record. When using smoothOrder, then the derivative record is

193

Modelica Language Specification 3.7-dev
12.7. Derivatives and Inverses of Functions

automatically constructed. The function must have at least one input containing reals. The output list
of the derivative function shall not be empty.

[Example: Here is one example use case with records mixing Real and non-Real as inputs and outputs:

record ThermodynamicState "Thermodynamic state"
SpecificEnthalpy h "Specific enthalpy";
AbsolutePressure p "Pressure";
Integer phase(min = 1, max = 2, start = 1);

end ThermodynamicState;

record ThermoDynamicState_der "Derivative"
SpecificEnthalpyDerivative h "Specific enthalphy derivative";
PressureDerivative p "Pressure derivative";
// Integer input is skipped

end ThermodynamicState_der;

function density
input ThermodynamicState state "Thermodynamic state";
output Density d "Density";

algorithm
. . .
annotation(derivative = density_der);

end density;

function density_der
input ThermodynamicState state "Thermodynamic state";
input ThermodynamicState_der state_der;
output DensityDerivative d "Density derivative";

algorithm
. . .

end density_der;

function setState_ph
input Pressure p;
input SpecificEnthalpy h;
input Integer phase = 0;
output ThermodynamicState state;

algorithm
. . .
annotation(derivative = setState_ph_der);

end setState_ph;

function setState_ph_der
input Pressure p;
input SpecificEnthalpy h;
input Integer phase;
input PressureDerivative p_der;
input SpecificEnthalpyDerivative h_der;
output ThermodynamicState_der state_der;

algorithm
. . .

end setState_ph_der;

ThermodynamicState state1 = setState_ph(p=. . ., h=. . ., phase=. . .);
Density rho1 = density(state1);
DensityDerivative d_rho1 = der(rho1);
Density rho2 = density(setState_ph(p=. . ., h=. . ., phase=. . .));
DensityDerivative d_rho2 = der(rho2);

]

� "zeroDerivative" "=" inputVar1 { "," "zeroDerivative" "=" inputVar2 }

The derivative function is only valid if inputVar1 (and inputVar2 etc.) are independent of the variables

194

Modelica Language Specification 3.7-dev
12.7. Derivatives and Inverses of Functions

the function call is differentiated with respect to (i.e., that the derivative of inputVar1 is zero). The
derivative of inputVar1 (and inputVar2 etc.) are excluded from the argument list of the derivative-
function. If the derivative-function also specifies a derivative the common variables should have consistent
zeroDerivative.

[Assume that function f takes a matrix and a scalar. Since the matrix argument is usually a parameter
expression it is then useful to define the function as follows (the additional derivative = fGeneralDer
is optional and can be used when the derivative of the matrix or offset is non-zero). Note that the
derivative annotation of fDer must specify zeroDerivative for both y and offset as below, but the
derivative annotation of fGeneralDer shall not have zeroDerivative for either of them (it may specify
zeroDerivative for x_der, y_der, or offset_der).

function f "Simple table lookup"
input Real x;
input Real y[:, 2];
input Real offset "Shortened to o below";
output Real z;

algorithm
. . .
annotation(derivative(zeroDerivative=y, zeroDerivative=offset) = fDer ,

derivative = fGeneralDer);
end f;

function fDer "Derivative of simple table lookup"
input Real x;
input Real y[:, 2];
input Real offset;
input Real x_der;
output Real z_der;

algorithm
. . .
annotation(
derivative(zeroDerivative=y, zeroDerivative=offset , order =2) = fDer2);

end fDer;

function fDer2 "Second derivative of simple table lookup"
input Real x;
input Real y[:, 2];
input Real offset;
input Real x_der;
input Real x_der2;
output Real z_der2;

algorithm
. . .

end fDer2;

function fGeneralDer "Derivative of table lookup taking
into account varying tables"
input Real x;
input Real y[:, 2];
input Real offset;
input Real x_der;
input Real y_der[:, 2];
input Real offset_der;
output Real z_der;

algorithm
. . .
// annotation(derivative(order =2) = fGeneralDer2);

end fGeneralDer;

195

Modelica Language Specification 3.7-dev
12.7. Derivatives and Inverses of Functions

In the example above zeroDerivative=y and zeroDerivative=offset imply that

d

dt
f(x(t), y(t), o(t)) =

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂o

do

dt

=
∂f

∂x

dx

dt
+

∂f

∂y
· 0 + ∂f

∂o
· 0

=
∂f

∂x

dx

dt

= fDer · dx
dt

]

� "noDerivative" "=" inputVar1

The derivative of inputVar1 is excluded from the argument list of the derivative-function. This relies on
assumptions on the arguments to the function; and the function should document these assumptions (it
is not always straightforward to verify them). In many cases even the undifferentiated function will only
behave correctly under these assumptions.

The inputs excluded using zeroDerivative or noDerivative may be of any type (including types not
containing reals).

[Assume that function fg is defined as a composition f(x, g(x)). When differentiating f it is useful to
give the derivative under the assumption that the second argument is defined in this way:

function fg
input Real x;
output Real z;

algorithm
z := f(x, g(x));

end fg;

function f
input Real x;
input Real y;
output Real z;

algorithm
. . .
annotation(derivative(noDerivative=y) = h);

end f;

function h
input Real x;
input Real y;
input Real x_der;
output Real z_der;

algorithm
. . .

end h;

This is useful if g represents the major computational effort of fg.

Therefore h indirectly includes the derivative with respect to y as follows:

d

dt
fg(x(t)) =

d

dt
f(x(t), g(x(t)))

=
∂f

∂x

dx

dt
+

∂f

∂y

∂g

∂x

dx

dt

=

(
∂f

∂x
+

∂f

∂y

∂g

∂x

)
dx

dt

= h(x(t), y(t)))
dx

dt

]

196

Modelica Language Specification 3.7-dev
12.7. Derivatives and Inverses of Functions

12.7.2 Partial Derivatives of Functions

A function class defined as follows is a partial derivative of another function:

IDENT "=" der "(" name "," IDENT { "," IDENT } ")" comment

In f = der(g, u1, . . .), the function being defined is named f , and the function being differentiated is
g. The name g is looked up in the same way as a in short class definition, and the referenced class must
be a function. Each ui must be a scalar Real input to the function, and corresponds mathematically
to prepending ∂

∂ui
to the function call. The ui are applied in increasing order of i (although the partial

derivatives commute for a broad class of functions).

[In mathematical notation, the order of partial differentiation is reversed compared to the function defi-
nition; der(g, x, y) means ∂

∂y
∂
∂xg.]

The comment has the same semantics as in a short class definition, for instance allowing the function to
be given a description string, as well as Documentation and Icon annotations.

[Example: The specific enthalpy can be computed from a Gibbs-function as follows:

function Gibbs
input Real p, T;
output Real g;

algorithm
. . .

end Gibbs;
function Gibbs_T = der(Gibbs , T);
function specificEnthalpy
input Real p, T;
output Real h;

algorithm
h := Gibbs(p, T) - T * Gibbs_T(p, T);

end specificEnthalpy;

Thus der(Gibbs, T) corresponds to ∂Gibbs(p, T)
∂T = ∂

∂TGibbs.]

12.7.3 Using the Inverse Annotation

If a function f1 with one output formal parameter y can be restricted to an informally defined domain
and codomain, such that the mapping of the input formal parameter uk to y is bijective for any fixed
assignment to the other input formal parameters in the domain (see examples below), then it can be
given an inverse annotation to provide an explicit inverse f2 to this mapping, provided that the function
is only applied on this domain:

The inverse annotation takes the following form in a function declaration:

function f1
input A1 u1;
. . .
input T1 uk;
. . .
input Am um = am;
. . .
input An un;
output T2 y;

algorithm
. . .
annotation(inverse(uk = f2(. . ., y, . . .));

end f1;

In addition to y, the formal call to f2 in the annotation shall also pass the other formal parameters
(excluding uk) needed determine the inverse, see below. The function f2 must be an actual inverse,
meaning that if uk is calculated as uk = f2(. . . , y, . . .), then the equality y = f1(. . . , uk, . . .) is satisfied
up to a certain precision, for all values of the input arguments of f2(. . . , y, . . .) in the range and informal
domain of f1.

197

Modelica Language Specification 3.7-dev
12.7. Derivatives and Inverses of Functions

More than one inverse can be defined within the same inverse annotation, separated by commas:

annotation(inverse(uk = f2(. . ., y, . . .), ui = f3(. . ., y, . . .), . . .));

Function f1 can have any number and types of formal parameters with and without default value. The
restriction is that the number of unknown variables (see section 4.8) in the output formal parameter of
both f1 and f2 must be the same and that f2 should have a union of output and formal parameters that
is the same or a subset of that union for f1, but the order of the formal parameters may be permuted.

[Example: Inverse function with same union of formal parameters:

function h_pTX
input Real p "pressure";
input Real T "temperature";
input Real X[:] "mass fractions";
output Real h "specific enthalpy";

algorithm
. . .
annotation(inverse(T = T_phX(p, h, X)));

end h_pTX;

function T_phX
input Real p "pressure";
input Real h "specific enthalpy";
input Real X[:] "mass fractions";
output Real T "temperature";

algorithm
. . .

end T_phX;

]

The subset case is useful if f1 computes the inverse of f2 within a region, or up to a certain tolerance.
Then, f1 may specify f2 as inverse with fewer arguments, skipping the arguments for tolerance and/or
the region.

[Example: Inverse function with subset of formal parameters:

function inv_sine
input Real x;
input Real angleOrig;
output Real angle;
// Finds sine(angle) = x with angle closest to angleOrig.

algorithm
. . .
annotation(inverse(x = sine(angle)));

end inv_sine;

function sine
input Real angle;
output Real x;

algorithm
x := sin(angle);
// Note: No inverse.

end sine;

]

Tools are not expected to verify the bijectiveness requirement, meaning that it is the user’s responsibility
to ensure that this requirement is fulfilled, and that tools can rely on the requirement as an assumption
for symbolic manipulations when an inverse function is provided.

There is no guarantee that a provided inverse will be used, and no rule for at which stage of symbolic
processing it could be applied. Inlining a function means that the possibility to apply provided inverses
is lost. Hence, the recommended inlining annotations – if any – for use together with the inverse
annotation is either Inline = false or LateInline = true.

198

Modelica Language Specification 3.7-dev
12.7. Derivatives and Inverses of Functions

[Example: If an inverse is provided, but the injectiveness part of the bijectiveness requirement is not
fulfilled, this may introduce additional ambiguity to the solution of equations with multiple solutions.
Consider the following invalid use of the inverse annotation:

model NotInjective
function square
input Real x;
output Real y = x^2;
annotation(inverse(x = sqrt(y))); // Invalid !}

end square;

parameter Real y0 = -1.0;
Real y(start = y0 , fixed = true);
Real x(start = sign(y0) * sqrt(abs(y0))); // Good guess with same sign as y.

equation
der(y) = -y;
square(x) = abs(y); // Expecting continuous solution for x.

end NotInjective;

That the parameter y0 may have any sign means the sign of x cannot be restricted in the informal
domain of square, and hence that the injectiveness requirement cannot be fulfilled. Without the inverse
annotation, the nonlinear equation in x and y has an ambiguity, but it is generally expected that this
is handled so that a continuous solution for x is obtained, meaning that it will keep the same sign as
y throughout the simulation. The additional ambiguity introduced by the inverse annotation is that if
the provided inverse is used to solve the nonlinear equation instead of using a generic nonlinear equation
solver based on local search, then the solution with positive sign is always obtained. The lack of guarantees
that a provided inverse will be used thus implies a worse ambiguity than what was present in the model
before introducing the inverse annotation.]

[Example: If an inverse is provided, but the surjectiveness part of the bijectiveness requirement is not
fulfilled, this may introduce an invalid solution to equations that do not have a solution at all. Consider
the following invalid use of the inverse annotation:

model NotSurjective
function cube
input Real x;
output Real y = x ^ 3;

end cube;

function cbrtPos "Cubic root of positive number"
input Real y;
output Real x;

algorithm
assert(y > 0, "Argument must be positive.");
x := exp(log(y) / 3);
annotation(inverse(y = cube(x))); // Invalid !}

end cbrtPos;

Real x = 0.5 + sin(time);
Real y;

equation
cbrtPos(y) = x; // Calling cbrtPos requires y > 0.
annotation(experiment(StopTime = 10.0));

end NotSurjective;

As the value of x varies over the interval [−0.5, 1.5], but the range of cbrtPos is only (0,∞), the informal
codomain of cbrtPos cannot be restricted such that the surjectiveness is fulfilled. A valid solution to the
equation in x and y must satisfy y > 0, and when no inverse annotation is given, a violation will be
detected by a nonlinear solver applied directly to the equation. When the (invalid) inverse provided by
the inverse annotation is used, however, the equation gets transformed into

y = cube(x);

199

Modelica Language Specification 3.7-dev
12.8. Function Inlining and Event Generation

where the requirement y > 0 can no longer be detected, resulting in a simulation result that does not
fulfill the original model equations.]

12.8 Function Inlining and Event Generation

The annotations listed below affect inlining of functions and the related topic of event generation inside
functions. See section 18.1 regarding the notation used to describe the annotations.

Annotation Description Details

Inline Inline function Annotation 12.4
LateInline Inline after all symbolic transformations Annotation 12.5
InlineAfterIndexReduction Inline after index reduction Annotation 12.6
GenerateEvents Generate events for zero crossings in function Annotation 12.7

Inlining a function makes the statements of the function body accessible to symbolic operations, po-
tentially leading to expression simplifications and more efficient solution of equations. At the same
time, another important consequence of inlining a function is that any annotations for derivatives or
inverses are lost. Hence, one needs to find the right balance between inlining too early (loss of provided
derivatives and inverses) and too late (earlier stages of symbolic processing cannot benefit from symbolic
simplifications).

Annotation 12.4 Inline

/* literal */ constant Boolean Inline;

Has only an effect within a function declaration.

If Inline = true, the model developer proposes to inline the function. This means, that the
body of the function is included at all places where the function is called.

If Inline = false, the model developer proposes to not inline the function.

The default for inlining is tool specific.

[Inline = true is for example used in Modelica.Mechanics.MultiBody.Frames and in func-
tions of Modelica.Media to have no overhead for function calls such as resolving a vector in a
different coordinate system and at the same time the function can be analytically differentiated,
e.g., for index reduction needed for mechanical systems.]

Annotation 12.5 LateInline

/* literal */ constant Boolean LateInline;

Has only an effect within a function declaration.

If LateInline = true, the model developer proposes to inline the function after all symbolic
transformations have been performed.

[Late inlining is especially useful for differentiation and inversion of functions; for efficiency
reasons it is then useful to replace all function calls with identical input arguments by one function
call, before the inlining.]

If LateInline = false, the model developer proposes to not inline the function after symbolic
transformations have been performed.

The default for late inlining is tool specific. In particular, tools may automatically delay inlining
in order to take advantage of function annotations for derivatives and inverses.

Inline = true, LateInline = false is identical to Inline = true.

Inline = true, LateInline = true is identical to LateInline = true.

Inline = false, LateInline = true is identical to LateInline = true.

[This annotation is for example used in Modelica.Media.Water.IF97_Utilities.T_props_ph to
provide in combination with common subexpression elimination the automatic caching of function

200

Modelica Language Specification 3.7-dev
12.8. Function Inlining and Event Generation

calls. Furthermore, it is used in order that a tool is able to propagate specific enthalpy over
connectors in the Modelica.Fluid library.]

Annotation 12.6 InlineAfterIndexReduction

/* literal */ constant Boolean InlineAfterIndexReduction;

Has only an effect within a function declaration.

If true, the model developer proposes to inline the function after the function is differentiated for
index reduction, and before any other symbolic transformations are performed. The default is to
not perform this specific inlining.

This annotation cannot be combined with annotations Inline and LateInline.

Annotation 12.7 GenerateEvents

/* literal */ constant Boolean GenerateEvents;

Has only an effect within a function declaration.

By default, GenerateEvents = false and expressions in the function body that would normally
be event generating shall not generate events, similar to inlining the function body while wrapping
all expressions in noEvent, see operator 3.21. By specifying GenerateEvents = true, event-
generating expressions in the function body shall generate events as normal, similar to inlining
the function body without wrapping all expressions in noEvent. Having GenerateEvents = true
implies Inline = true unless overridden by specifying one of the inlining annotations with value
true (in particular, GenerateEvents = true cannot be combined with Inline = false).

A function with GenerateEvents = true should be considered event generating for purposes of
determining where the function may be called, regardless of whether the function body contains
any expressions which could actually generate events.

[In case a given inlining annotation proposes to inline at a stage when the tool cannot process
GenerateEvents = true, it is recommended to give a diagnostic and instead perform inlining of
the function at the nearest stage where GenerateEvents = true can still be respected.

If the function is called in a context where events will not be generated (e.g., inside another
function without GenerateEvents = true) no special action is needed.]

[Example: GenerateEvents impacts variability according to section 3.8. The benefit of treating
functions with GenerateEvents = true in this way is that it makes it possible to construct func-
tions behaving like the built-in event generating operators. E.g., it allows constructing a variant
of integer() that rounds towards closest Integer instead of towards − inf that is usable in the
same way as integer().

function nearestInteger
input Real r;
output Integer i;

algorithm
i :=if (r > 0) then integer(floor(r + 0.5)) else integer(ceil(r - 0.5));

end nearestInteger;

The following is an illustration of some trivial cases.

function greaterEqual
input Real x1;
input Real x2;
output Boolean b;

algorithm
b := x1 >= x2;
annotation(GenerateEvents=true , LateInline=true);

end greaterEqual;

function greaterEqualWO
input Real x1;
input Real x2;

201

Modelica Language Specification 3.7-dev
12.9. External Function Interface

output Boolean b;
algorithm
b := x1 >= x2;
annotation(LateInline=true);

end greaterEqualWO;

model M
Boolean b1 = greaterEqual(time , 1);
Boolean b2 = greaterEqualWO(time , 1) "Illegal";
Boolean b3 = noEvent(greaterEqual(time , 1)) "Illegal";
Boolean b4 = greaterEqualWO(if b1 then 2 else 0, 1);
Real z = if greaterEqualWO(time , 1) then 2 else 1;

end M;

function bad
input Real x1;
output Integer i;

algorithm
i := greaterEqualWO(x1, 1) then 2 else 1;
annotation(GenerateEvents=true , LateInline=true);

end bad;

In M, there will be an event when time becomes greater or equal to 1, and thus the discrete-time
variable b1 can be bound to this function call even though it involves the non-discrete time variable
time. Both b2 and b3 are illegal, since the right-hand sides have non-discrete-time variability.
The variable z is legal, since a Real variable can have non-discrete time variability. The variable
b4 is legal, since the function inputs have discrete-time variability. The function bad demonstrates
that similar restrictions (as for b2 and b3) apply inside functions with GenerateEvents = true.

function saturatedSquare
input Real x2;
output Real y;

algorithm
if x2 > 1 then
y := 1;

else
y := x2^2;

end if;
end saturatedSquare;

function isBelowSat
input Real x1, x2;
output Boolean b;

algorithm
b : = x1 < saturatedSquare(x2);
annotation (GenerateEvents=true , LateInline=true);

end isBelowSat;

The function isBelowSat demonstrates that it is possible to call functions that do not generate
events (like saturatedSquare) inside functions with GenerateEvents = true. Combined, the
last two examples demonstrate that GenerateEvents = true does not propagate to called func-
tions.

The annotation LateInline=true is not needed, but makes the issue more obvious in tools that
normally inline function before checking variability.]

12.9 External Function Interface

Here, the word function is used to refer to an arbitrary external routine, whether or not the routine has
a return value or returns its result via output parameters (or both). The Modelica external function call
interface provides the following:

� Support for external functions written in C (specifically C89) and FORTRAN 77. Other languages,

202

Modelica Language Specification 3.7-dev
12.9. External Function Interface

e.g., C++ and Fortran 90, may be supported in the future, and provided the function is link-
compatible with C89 or FORTRAN 77 it can be written in any language.

� Mapping of argument types from Modelica to the target language and back.

� Natural type conversion rules in the sense that there is a mapping from Modelica to standard
libraries of the target language.

� Handling arbitrary parameter order for the external function.

� Passing arrays to and from external functions where the dimension sizes are passed as explicit
integer parameters.

� Handling of external function parameters which are used both for input and output, by passing an
output that has a binding equation to the external function.

[Binding equations are executed prior to calling the external function.]

The format of an external function declaration is as follows.

function IDENT description-string
{ component-clause ";" }
[protected { component-clause ";" }]

external [language-specification]
[external-function-call]
[annotation-clause] ";"

[annotation-clause ";"]
end IDENT;

Just as for any other function, components in the public part of an external function declaration shall
be declared either as input or output.

Protected components can be passed to the external function without being initialized by means of a
declaration equation, which is useful for passing workspace memory to functions with FORTRAN style
memory management, and the reason for passing them in the same (writable) way as output components
(see section 12.9.1). The value of a protected component passed to the external function should be
considered undefined (destroyed) after the external function call.

The language-specification must currently be one of "builtin" (deprecated), "C", "C. . ." (for one of
the specific C standards like C89, C99, and C11 – specifying that it relies on the C standard library of
that version) or "FORTRAN 77". Unless the external language is specified, it is assumed to be "C".

[The intended use of, e.g., C99 is to detect if the user tries to link with a C99-function using a C89
compiler.]

The deprecated "builtin" specification is only used for the elementary mathematical functions described
in section 3.7.3. The external function call mechanism for "builtin" functions is implementation-defined.

[Typically, for functions from the standard C library, the prototype of the function is provided but no
Library annotation. Currently, there are no other builtin functions defined in Modelica.]

[Example:

package Modelica
package Math

function sin
input Real x;
output Real y;

external "builtin"
y = sin(x);

end sin;
end Math;

end Modelica;

model UserModel
parameter Real p = Modelica.Math.sin(2);

end UserModel;

203

Modelica Language Specification 3.7-dev
12.9. External Function Interface

]

The external-function-call specification allows functions whose prototypes do not match the default
assumptions as defined below to be called. It also gives the name used to call the external function. If
the external call is not given explicitly, this name is assumed to be the same as the Modelica name.

The only permissible kinds of expressions in the argument list are component references, scalar con-
stant expressions, and the function size applied to an array and a constant dimension number. The
annotations are used to pass additional information to the compiler when necessary.

A component reference to a component that is part of an input or output is treated the same way as a
top-level input or output in the external call.

12.9.1 Argument type Mapping

The arguments of the external function are declared in the same order as in the Modelica declaration,
unless specified otherwise in an explicit external function call. Values of constant expressions (including
references to constant components) and size calls are passed as inputs, whereas protected non-constant
variables (i.e., temporaries) are passed in the same way as outputs.

12.9.1.1 Simple Types

Arguments of simple types are by default mapped as follows for C:

Modelica C
Input Output

Real double double *

Integer int int *

Boolean int int *

String const char * const char **

Enumeration type int int *

An exception is made when the argument is of the form size(. . ., . . .). In this case the corresponding
C type is size_t.

Strings are nul-terminated (i.e., terminated by '\0') and are encoded using UTF-8 (assuming CHAR_BIT
==8 in C) to facilitate calling of C functions. The valid return values for an external function returning
a String are:

� A string given as String input to the external function.

� A pointer to a C string literal.

� A pointer returned by one of the string allocation functions in section 12.9.6.2.

[The reason why it is not allowed to return a string allocated with, for instance, malloc is that there is
no transfer of ownership when a string is returned from the external function. The external code would
remain the owner of such a string, and would be responsible for eventually releasing the memory at some
point. Consequently, the Modelica simulation environment would not be able to assume that only its own
string deallocation routines could invalidate any of the strings returned by external functions.]

Boolean values are mapped to C such that false in Modelica is 0 in C and true in Modelica is 1 in C.
If the returned value from C is 0 it is treated as false in Modelica; otherwise as true.

[It is recommended that the C function should interpret any non-zero value as true.]

Arguments of simple types are by default mapped as follows for FORTRAN 77:

Modelica FORTRAN 77
Input Output

Real DOUBLE PRECISION DOUBLE PRECISION

Integer INTEGER INTEGER

Boolean LOGICAL LOGICAL

String Special Not available
Enumeration type INTEGER INTEGER

204

Modelica Language Specification 3.7-dev
12.9. External Function Interface

Sending string literals to FORTRAN 77 subroutines/functions is supported for LAPACK/BLAS-routines,
and the strings are nul-terminated for compatibility with C. String are UTF-8 encoded, even though the
support for non-ASCII characters in FORTRAN 77 is unclear and it is not relevant for the LAPACK/BLAS-
routines. Returning strings from FORTRAN 77 subroutines/functions is currently not supported.

Enumeration types used as arguments are mapped to type int when calling an external C function, and
to type INTEGER when calling an external FORTRAN function. The ith enumeration literal is mapped
to integer value i, starting at 1.

Return values are mapped to enumeration types analogously: integer value 1 is mapped to the first enu-
meration literal, 2 to the second, etc. Returning a value which does not map to an existing enumeration
literal for the specified enumeration type is an error.

12.9.1.2 Arrays

Unless an explicit function call is present in the external-clause, an array is passed by its address
followed by n arguments of type size_t with the corresponding array dimension sizes, where n is the
number of dimensions.

[The type size_t is a C unsigned integer type.]

Arrays are stored in row-major order when calling C functions and in column-major order when calling
FORTRAN 77 functions.

The table below shows the mapping of an array argument in the absence of an explicit external function
call when calling a C function. The type T is allowed to be any of the simple types which can be passed
to C as defined in section 12.9.1.1 or a record type as defined in section 12.9.1.3 and it is mapped to the
type T ′ as defined in these sections for input arguments. Array inputs to C-functions are const-pointers,
indicating that the arrays shall not be changed.

Modelica C
Input Output

T[dim1] const T ′ *, size_t dim1 T ′ *, size_t dim1

T[dim1, dim2] const T ′ *, size_t dim1, size_t dim2 T ′ *, size_t dim1, size_t dim2

T[. . ., dimn] const T ′ *, . . ., size_t dimn T ′ *, . . ., size_t dimn

The method used to pass array arguments to FORTRAN 77 functions in the absence of an explicit
external function call is similar to the one defined above for C: first the address of the array, then the
dimension sizes as integers. See the table below. The type T is allowed to be any of the simple types
which can be passed to FORTRAN 77 as defined in section 12.9.1.1 and it is mapped to the type T ′ as
defined in that section.

Modelica FORTRAN 77
Input and output

T[dim1] T ′, INTEGER dim1

T[dim1, dim2] T ′, INTEGER dim1, INTEGER dim2

T[dim1, . . ., dimn] T ′, INTEGER dim1, . . ., INTEGER dimn

[Example: The following two examples illustrate the default mapping of array arguments to external C
and FORTRAN 77 functions.

function foo
input Real a[:,:,:];
output Real x;
external;

end foo;

The corresponding C prototype is as follows:

double foo(const double *, size_t , size_t , size_t);

If the external function is written in FORTRAN 77, i.e.:

function foo
input Real a[:,:,:];

205

Modelica Language Specification 3.7-dev
12.9. External Function Interface

output Real x;
external "FORTRAN 77";
end foo;

the default assumptions correspond to a FORTRAN 77 function defined as follows:

FUNCTION foo(a, d1, d2, d3)
DOUBLE PRECISION(d1 , d2 , d3) a
INTEGER d1
INTEGER d2
INTEGER d3
DOUBLE PRECISION foo
. . .

END

]

When an explicit call to the external function is present, the array and the sizes of its dimensions must
be passed explicitly.

[Example: This example shows how arrays can be passed explicitly to an external FORTRAN 77 function
when the default assumptions are unsuitable.

function foo
input Real x[:];
input Real y[size(x,1) ,:];
input Integer i;
output Real u1[size(y,1)];
output Integer u2[size(y,2)];

external "FORTRAN 77"
myfoo(x, y, size(x,1), size(y,2), u1, i, u2);

end foo;

The corresponding FORTRAN 77 subroutine would be declared as follows:

SUBROUTINE myfoo(x, y, n, m, u1, i, u2)
DOUBLE PRECISION(n) x
DOUBLE PRECISION(n,m) y
INTEGER n
INTEGER m
DOUBLE PRECISION(n) u1
INTEGER i
DOUBLE PRECISION(m) u2
. . .

END

]

12.9.1.3 Records

Mapping of record types is only supported for C. A Modelica record class is mapped as follows:

� The record class is represented by a struct in C.

� Each component of the Modelica record is mapped to its corresponding C representation. A nested
record component is mapped to a nested struct component.

� The components of the Modelica record class are declared in the same order in the C struct.

� Records containing arrays cannot be mapped.

Scalar records are passed as pointers (by reference). Record inputs are const-pointers, indicating that
the records shall not be changed. As stated in section 12.9.1.2, an array of records is passed as a pointer
to the first element in an array of structs (array-to-pointer decay in C).

[Example:

206

Modelica Language Specification 3.7-dev
12.9. External Function Interface

record A
Integer b;

end A;
record R
Real x;
Real z;
A a1, a2;

end R;

is mapped to:

struct A {
int b;

};
struct R {
double x;
double z;
struct A a1, b2;

};

]

12.9.2 Return Type Mapping

If there is a single output parameter and no explicit call of the external function, or if there is an explicit
external call in the form of an equation, in which case the LHS must be one of the output parameters,
the external routine is assumed to be a value-returning function. Otherwise the external function is
assumed not to return anything; i.e., it is really a procedure or, in C, a void-function.

Mapping of the return type of functions is performed as indicated in the table below. Storage for arrays
as return values is allocated by the calling routine, so the dimensions of the returned array are fixed at
call time. See section 12.9.1.1 regarding returning of String values.

[In the case of an external function not returning anything, argument type mapping according to sec-
tion 12.9.1.1 is performed in the absence of any explicit external function call.]

Return types are by default mapped as follows for C and FORTRAN 77:

Modelica C FORTRAN 77

Real double DOUBLE PRECISION

Integer int INTEGER

Boolean int LOGICAL

String const char* Not allowed
T[dim1, . . ., dimn] Not allowed Not allowed
Enumeration type int INTEGER

Record See section 12.9.1.3 Not allowed

The element type T of an array can be any simple type as defined in section 12.9.1.1 or, for C, a record
type is returned as a value of the record type defined in section 12.9.1.3.

12.9.3 Aliasing

Any potential aliasing in the external function is the responsibility of the tool and not the user. An
external function is not allowed to internally change the inputs (even if they are restored before the end
of the function).

[Example:

function foo
input Real x;
input Real y;
output Real z = x;

external "FORTRAN 77"
myfoo(x, y, z);

207

Modelica Language Specification 3.7-dev
12.9. External Function Interface

end foo;

The following Modelica function:

function f
input Real a;
output Real b;

algorithm
b := foo(a, a);
b := foo(b, 2 * b);

end f;

can on most systems be transformed into the following C function:

double f(double a) {
extern void myfoo_(double*, double*, double *);
double b, temp1 , temp2;

myfoo_ (&a, &a, &b);
temp1 = 2 * b;
temp2 = b;
myfoo_ (&b, &temp1 , &temp2);

return temp2;
}

The reason for not allowing the external function to change the inputs is to ensure that inputs can be
stored in static memory and to avoid superfluous copying (especially of matrices). If the routine does
not satisfy the requirements the interface must copy the input argument to a temporary. This is rare but
occurs, e.g., in dormlq in some Lapack implementations. In those special cases the writer of the external
interface have to copy the input to a temporary. If the first input was changed internally in myfoo the
designer of the interface would have to change the interface function foo to:

function foo
input Real x;
protected Real xtemp = x; // Temporary used because myfoo changes its input
public input Real y;
output Real z;

external "FORTRAN 77"
myfoo(xtemp , y, z);

end foo;

Note that we discuss input arguments for Fortran-routines even though FORTRAN 77 does not formally
have input arguments and forbid aliasing between any pair of arguments to a function (Section 15.9.3.6
of X3J3/90.4). For the few (if any) FORTRAN 77 compilers that strictly follow the standard and are
unable to handle aliasing between input variables the tool must transform the first call of foo into:

temp1 = a; /* Temporary to avoid aliasing */
myfoo_ (&a, &temp1 , &b);

The use of the function foo in Modelica is uninfluenced by these considerations.]

12.9.4 Annotations for External Functions

The annotations listed below are useful in the context of calling external functions from Modelica. They
should occur on the external-clause, and no other standard annotations should occur on the external
-clause.

208

Modelica Language Specification 3.7-dev
12.9. External Function Interface

Annotation Description Details

Library Libraries to link with Annotation 12.8
Include Include directives Annotation 12.9
LibraryDirectory Directories containing libraries Annotation 12.10
IncludeDirectory Directories containing header files Annotation 12.11
SourceDirectory Directories containing source code Annotation 12.12
License License files Annotation 12.1

As an alternative to specifying a scalar string, they all can also specify an array of strings instead as
indicated explicitly only for the Library annotation.

The TopPackage used below for IncludeDirectory, LibraryDirectory, and SourceDirectory indi-
cates the top-level class where the annotation is found in the Modelica source code.

Annotation 12.8 Library

/* literal */ constant String Library

or
/* literal */ constant String [:] Library

Library = "libraryName" is used to tell the linker to include the library file where the compiled
external function is available.

Library = {"libraryName1", "libraryName2"} is used to tell the linker to include the library
file where the compiled external function is available, as well as additional libraries used to im-
plement it. For shared libraries it is recommended to include all non-system libraries in this
list.

The Library name and the LibraryDirectory (see below) are mapped to a linkage directive in
a compiler-dependent way, thereby selecting the object library suited for the respective computer
platform.

The library on Windows may refer to a lib-file (static library), both a lib- and dll-file (in this case
the lib-file is an import-library), or just a dll-file. It shall not refer to an obj-file.

Annotation 12.9 Include

/* literal */ constant String Include

The annotation(Include="insertedCode"), used to insert function prototypes or definitions
needed for calling the external function in the code generated by the Modelica compiler. When
generating a call to the external function, the "insertedCode" shall be present at the top level
somewhere before the point of the call (similar to where include directives are typically placed).
The Include annotation shall be used in such a way that each external function can be handled
in a separate translation unit. In particular, different external functions must not have Include
annotations providing exported definitions of the same function symbol to avoid linking errors.

A deprecated feature is that if multiple Include annotations – possibly coming from different
external functions – have identical content, the tool shall not include this content more than once
in any translation unit. In case calls to several external functions are generated in the same
translation unit, the Include annotations of the different functions must not define the same
function – except when relying on the deprecated behavior.

The included code should be valid C89 code. If the external-function-call contains any size-
expression, the tool is responsible for ensuring that a C-header defining size_t is included before
the "insertedCode". The "insertedCode", conditionally preceded by a header for size_t, must
be a valid translation unit.

When an Include annotation is present, it shall provide a prototype for the external function,
and hence the tool shall not produce an automatically generated prototype in the generated code
in this case.

Although all pointer types are const pointers in the type mapping for input arguments, it is
a deprecated feature that the prototype in an Include annotation may use non-const pointers
instead.

209

Modelica Language Specification 3.7-dev
12.9. External Function Interface

[For an external function declaration calling the external function myfoo, examples of "insertedCode
" include:

� An #include directive including a header file with a prototype for myfoo.

� An #include directive including a source file with a static definition of myfoo. Include guards
should be used (either in the Include annotation or in the source file) to avoid relying on
the deprecated feature that tools shall include at most one copy in the same translation unit.
(Having a static definition allows the same source file to be included by multiple Include
annotations in different translation units.)

� A prototype for myfoo. This may be useful when no header file is available and it is not
desirable to rely on the automatic generation of a prototype.

� A piece of C code directly defining myfoo. Since no other Include annotation is expected to
contain a definition of myfoo, it is not necessary to make the definition static.

]

Annotation 12.10 LibraryDirectory

/* literal */ constant String LibraryDirectory

The annotation(LibraryDirectory="modelica:/TopPackage/Resources/Library"), used to
specify a location for library files. The preceding one is the default and need not be specified;
but another location could be specified by using an URI name for the library directory, see
section 13.6. Different versions of one object library can be provided (e.g., for Windows and for
Linux) by providing a platform directory below the LibraryDirectory. If no platform directory
is present, the object library must be present in the LibraryDirectory.

The following platform names are standardized:

� "win32" (Microsoft Windows 32 bit)

� "win64" (Microsoft Windows 64 bit)

� "linux32" (Linux Intel 32 bit)

� "linux64" (Linux Intel 64 bit)

The win32 or win64 directories may contain gcc47, vs2010, vs2012 for specific versions of these
compilers and these are used instead of the general win32 or win64 directories, and similarly for
other platforms.

If the directory for the specific compiler version is missing the platform specific directory is used.

[A tool may give a diagnostic if the directory corresponding to the selected compiler version is
missing. The directories may use symbolic links or use a text-file as described below: e.g., a text-
file vs2008 containing the text ../win32/vs2005 (or vs2005) suggesting that it is compatible with
vs2005.]

Annotation 12.11 IncludeDirectory

/* literal */ constant String IncludeDirectory

The annotation(IncludeDirectory="modelica:/TopPackage/Resources/Include"), used to
specify a location for header files. The preceding one is the default and need not be specified;
but another location could be specified by using an URI name for the include directory, see
section 13.6.

Annotation 12.12 SourceDirectory

/* literal */ constant String SourceDirectory

The annotation(SourceDirectory="modelica:/TopPackage/Resources/Source"), gives the
location for source files. The preceding one is the default and need not be specified; but an-
other location could be specified by using an URI name for the source directory, see section 13.6.
It is not specified how they are built.

210

Modelica Language Specification 3.7-dev
12.9. External Function Interface

Annotation 12.1 License

/* literal */ constant String License

The annotation(License="modelica:/TopPackage/Resources/Licenses/MyLicense.txt"), gives
the license text file for the function. It is analogous to the License annotation for a top-level
class, see annotation 18.8.

12.9.5 Examples

12.9.5.1 Use of object libraries

[Example: A package with some external functions making use of object libraries:

package ExternalFunctions
model Example
Real x(start = 1.0), y(start = 2.0);

equation
der(x) = -ExternalFunc1(x);
der(y) = -ExternalFunc2(y);

end Example;

model OtherExample
Real x(start = 1.0);

equation
der(x) = -ExternalFunc3(x);

end OtherExample;

function ExternalFunc1 "Include header file for library implementation"
input Real x;
output Real y;

external "C"
y = ExternalFunc1_ext(x)

annotation(
Library = "ExternalLib1",
Include = "#include \" ExternalFunc1.h\"",
// SourceDirectory is the default and thus redundant:
SourceDirectory = "modelica :/ ExternalFunctions/Resources/Source"

);
end ExternalFunc1;

function ExternalFunc2 "Include header file for library implementation"
input Real x;
output Real y;

external "C"
annotation(
Library = "ExternalLib2",
Include = "#include \" ExternalFunc2.h\""

);
end ExternalFunc2;

function ExternalFunc3 "Include source file"
input Real x;
output Real y;

external "C"
annotation(
Include = "#include \" ExternalFunc3.c\""

);
end ExternalFunc3;

end ExternalFunctions;

package MyExternalFunctions
extends ExternalFunctions;

end MyExternalFunctions;

211

Modelica Language Specification 3.7-dev
12.9. External Function Interface

Directory structure:

ExternalFunctions
package.mo – Modelica code from above
Resources
Include – Include files
ExternalFunc1.h – C header file
ExternalFunc2.h – C header file
ExternalFunc3.c – C source file (not ideal)

Library – Object libraries for different platforms
win32
ExternalLib1.lib – Static link library for VisualStudio
ExternalLib2.lib statically linking the dynamic link library
ExternalLib2.dll – Dynamic link library (with manifest)

linux32
libExternalLib1.a – Static link library
libExternalLib2.so – Shared library

Source – Sources for library
Func1.c – C source for ExternalLib1.lib
Func2.c – C source for ExternalLib2.lib
HelperFunc.c – C source also included in ExternalLib2.lib

MyExternalFunctions
package.mo

Note that calling the function MyExternalFunctions.ExternalFunc1 will use the header and library
files from ExternalFunction, the ExternalFunctions.Example will not use ExternalFunc3.c, and one
library file may contain multiple functions.

The C-source ExternalFunc3.c will be included fully, and is not part of any library. That is not ideal for
C-code, but it works for small functions.

It is not specified how the C-sources in the specified SourceDirectory will be used to build the libraries.

Header file for the function in the dynamic link / shared library ExternalLib2 so that the desired functions
are defined to be exported for Microsoft VisualStudio and for GNU C compiler (note, for Linux it is
recommended to use the compiler option -fPIC to build shared libraries or object libraries that are later
transformed to a shared library):

/* File ExternalFunc2.h */
#ifndef EXTERNAL_FUNC2_H_
#define EXTERNAL_FUNC2_H_
#ifdef __cplusplus
extern "C" {
#endif
#ifdef _MSC_VER
#ifdef EXTERNAL_FUNCTION_EXPORT
define EXTLIB2_EXPORT __declspec(dllexport)
#else
define EXTLIB2_EXPORT __declspec(dllimport)
#endif
#elif __GNUC__ >= 4
/* In gnuc , all symbols are by default exported. It is still often useful ,
* to not export all symbols but only the needed ones */

define EXTLIB2_EXPORT __attribute__ ((visibility("default")))
#else
define EXTLIB2_EXPORT
#endif

EXTLIB2_EXPORT double ExternalFunc2(double);

#ifdef __cplusplus
}
#endif

212

Modelica Language Specification 3.7-dev
12.9. External Function Interface

#endif

]

12.9.5.2 Input Parameters, Function Value

[Example: Here all parameters to the external function are input parameters. One function value is
returned. If the external language is not specified, the default is "C", as below.

function foo
input Real x;
input Integer y;
output Real w;
external;

end foo;

This corresponds to the following C prototype:

double foo(double , int);

Example call in Modelica:

z = foo(2.4, 3);

Translated call in C:

z = foo(2.4, 3);

]

12.9.5.3 Arbitrary Placement of Output Parameters, No External Function Value

[Example: In the following example, the external function call is given explicitly which allows passing the
arguments in a different order than in the Modelica version.

function foo
input Real x;
input Integer y;
output Real u1;
output Integer u2;

external "C"
myfoo(x, u1, y, u2);

end foo;

This corresponds to the following C prototype:

void myfoo(double , double *, int , int *);

Example call in Modelica:

(z1 ,i2) = foo(2.4, 3);

Translated call in C:

myfoo (2.4, &z1, 3, &i2);

]

12.9.5.4 Both Function Value and Output Variable

[Example: The following external function returns two results: one function value and one output pa-
rameter value. Both are mapped to Modelica output parameters.

function foo
input Real x;
input Integer y;
output Real funcvalue;

213

Modelica Language Specification 3.7-dev
12.9. External Function Interface

output Integer out1;
external "C"
funcvalue = myfoo(x, y, out1);

end foo;

This corresponds to the following C prototype:

double myfoo(double , int , int *);

Example call in Modelica:

(z1 ,i2) = foo(2.4, 3);

Translated call in C:

z1 = myfoo (2.4, 3, &i2);

]

12.9.6 Utility Functions

This section describes the utility functions declared in ModelicaUtilities.h, which can be called in external
Modelica functions written in C.

The tool must ensure that the header is found by #include "ModelicaUtilities.h" within an Include
annotation (see section 12.9.4); no IncludeDirectory annotation is needed.

[Example: The following usage patterns are common:

� The Include annotation may first #include "ModelicaUtilities.h", and then contain the external
function definition where the utility functions may be used.

� Like above, but moving the annotation content above to, say, myExtFun.c, and then just do #include
"myExtFun.c" in the annotation.

� After #include "ModelicaUtilities.h", the Include annotation can also define a wrapper around
a function in a linked library that does the real job, where the wrapper forwards the arguments as
well as passes function pointers for a selection of functions from ModelicaUtilities.h.

]

[When building external libraries independently of Modelica tools, it is not possible to rely on the tool
mechanism that provides ModelicaUtilities.h for Include annotations. Instead, an external library project
may contain its own instance of ModelicaUtilities.h, for example obtained by making a copy of the instance
included within the Modelica Standard Library.]

12.9.6.1 Error Reporting Utility Functions

The functions listed below produce a message in different ways.

Expression Description Details

ModelicaMessage(string) Message with fixed string
Function 12.1ModelicaWarning(string) Warning with fixed string

ModelicaError(string) Error with fixed string
ModelicaFormatMessage(format, . . .) Message with printf style formatting

Function 12.2ModelicaFormatWarning(format, . . .) Warning with printf style formatting
ModelicaFormatError(format, . . .) Error with printf style formatting
ModelicaVFormatMessage(format, ap) Message with vprintf style formatting

Function 12.3ModelicaVFormatWarning(format, ap) Warning with vprintf style formatting
ModelicaVFormatError(format, ap) Error with vprintf style formatting

The Message-functions only produce the message, but the Warning- and Error -functions combine this
with error handling as follows.

The Warning-functions view the message as a warning and can skip duplicated messages similarly to an
assert with level = AssertionLevel.Warning in the Modelica code.

214

Modelica Language Specification 3.7-dev
12.9. External Function Interface

The Error -functions never return to the calling function, but handle the error similarly to an assert
with level = AssertionLevel.Error in the Modelica code.

Function 12.1 ModelicaMessage, ModelicaWarning, ModelicaError

void ModelicaMessage(const char* string);
void ModelicaWarning(const char* string);
void ModelicaError(const char* string);

Output the fixed message string (no format control).

Function 12.2 ModelicaFormatMessage, ModelicaFormatWarning, ModelicaFormatError

void ModelicaFormatMessage(const char* format , ...);
void ModelicaFormatWarning(const char* format , ...);
void ModelicaFormatError(const char* format , ...);

Output the message under the same format control as the C function printf.

Function 12.3 ModelicaVFormatMessage, ModelicaVFormatWarning, ModelicaVFormatError

void ModelicaVFormatMessage(const char* format , va_list ap);
void ModelicaVFormatWarning(const char* format , va_list ap);
void ModelicaVFormatError(const char* format , va_list ap);

Output the message under the same format control as the C function vprintf.

12.9.6.2 String Allocation Utility Functions

The functions listed below are related to string allocation.

Expression Description Details

ModelicaAllocateString(len) Allocate or error Function 12.4
ModelicaAllocateStringWithErrorReturn(len) Allocate or null Function 12.5
ModelicaDuplicateString(str) Duplicate or error Function 12.6
ModelicaDuplicateStringWithErrorReturn(str) Duplicate or null Function 12.7

As described in section 12.9.1.1, an external function wanting to return a newly constructed string must
allocate this string with one of the string allocation functions in this section. The allocated memory
is owned by the Modelica simulation environment, and may only be accessed by the external function
during the currently executing external function call. The string allocation functions can also be used
to allocate temporary strings that are not returned from the external function, with the convenience of
the Modelica simulation environment being responsible for deallocation after the return of the external
function. (This is particularly convenient for avoiding memory leaks in the event of abnormal termination
of the external function, for example, via ModelicaError).

[Memory that is not passed to the Modelica simulation environment, such as memory that is freed before
leaving the function, or in an ExternalObject, see section 12.9.7, may be allocated with the standard C
mechanisms, like malloc.]

Function 12.4 ModelicaAllocateString

char* ModelicaAllocateString(size_t len);

Allocates len + 1 characters, and sets the last one to nul. If an error occurs, this function does
not return, but calls ModelicaError.

Function 12.5 ModelicaAllocateStringWithErrorReturn

char* ModelicaAllocateStringWithErrorReturn(size_t len);

Same as ModelicaAllocateString, except that in case of error, the function returns 0. This allows
the external function to close files and free other open resources in case of error. After cleaning
up resources, use ModelicaError or ModelicaFormatError to signal the error.

Function 12.6 ModelicaDuplicateString

char* ModelicaDuplicateString(const char* str);

215

Modelica Language Specification 3.7-dev
12.9. External Function Interface

Returns a writeable duplicate of the nul-terminated string str . If an error occurs, this function
does not return, but calls ModelicaError.

Function 12.7 ModelicaDuplicateStringWithErrorReturn

char* ModelicaDuplicateStringWithErrorReturn(const char* str);

Same as ModelicaDuplicateString, except that in case of error, the function returns 0. This allows
the external function to close files and free other open resources in case of error. After cleaning
up resources, use ModelicaError or ModelicaFormatError to signal the error.

12.9.7 External Objects

External functions may need to store their internal memory between function calls. Within Modelica
this memory is defined as instance of the predefined class ExternalObject according to the following
rules:

� There is a predefined partial class ExternalObject.

[Since the class is partial, it is not possible to define an instance of this class.]

� An external object class shall be directly extended from ExternalObject, shall have exactly two
function definitions, called constructor and destructor, may extend from empty classes (defini-
tion 4.1), but not contain any other elements. The functions constructor and destructor shall
not be replaceable. It is not legal to call the constructor and destructor functions explicitly.

� The constructor function is called exactly once before the first use of the object. The constructor
shall have exactly one output argument in which the constructed instance derived from ExternalObject
is returned. The arguments to the constructor must not – directly nor indirectly – depend on the
external object being constructed. The constructor shall initialize the object, and must not require
any other calls to be made for the initialization to be complete (e.g., from an initial algorithm or
initial equation). To indicate failure, the constructor may return a null pointer, to be treated in
the same way as a failed assert in Modelica.

The constructor shall not assume that pointers sent to the external object will remain valid for the
life-time of the external object. An exception is that if the pointer to another external object is
given as argument to the constructor, that pointer will remain valid as long as the other external
object lives.

� For each completely constructed object, the destructor is called exactly once, after the last use
of the object, even if an error occurs. The destructor shall have no output arguments and the
only input argument of the destructor shall be of the type derived from ExternalObject. The
destructor shall delete the object, and must not require any other calls to be made for the deletion
to be complete (e.g., from a when terminal() clause).

[External objects may be a protected component (or part of one) in a function. The constructor is
in that case called at the start of the function call, and the destructor when the function returns,
or when recovering from errors in the function.]

[External objects may be an input (or part of an input) to a function, in that case the destructor is
not called (since the external object is active before and after the function call). Normally this is
an external function, but it could be a non-external function as well (e.g., calling external functions
one or more times). The function input shall not have a default value using the constructor.]

� An external object class shall be of the specialized class class.

[Apart from empty classes (definition 4.1), this is the only use of class.]

� Classes derived from ExternalObject can neither be used in an extends-clause nor in a short class
definition.

� Only the constructor may return external objects and an external object can only be bound in
component declarations and neither modified later nor assigned to.

[It follows that a function cannot return a component containing an external object, since only the
constructor may return an external object and the constructor exactly returns the external object.]

216

Modelica Language Specification 3.7-dev
12.9. External Function Interface

� External functions may be defined which operate on the internal memory of an ExternalObject.
An ExternalObject used as input argument or return value of an external C function is mapped
to the C type void*.

[Example: A user-defined table may be defined in the following way as an ExternalObject (the table is
read in a user-defined format from file and has memory for the last used table interval):

class MyTable
extends ExternalObject;
function constructor
input String fileName = "";
input String tableName = "";
output MyTable table;

external "C"
table = initMyTable(fileName , tableName);

end constructor;

function destructor "Release storage of table"
input MyTable table;

external "C"
closeMyTable(table);

end destructor;
end MyTable;

and used in the following way:

model test "Define a new table and interpolate in it"
MyTable table=MyTable(fileName ="testTables.txt",
tableName="table1"); // call initMyTable

Real y;
equation
y = interpolateMyTable(table , time);

end test;

This requires to provide the following Modelica function:

function interpolateMyTable "Interpolate in table"
input MyTable table;
input Real u;
output Real y;

external "C"
y = interpolateMyTable(table , u);

end interpolateTable;

The external C functions may be defined in the following way:

typedef struct { /* User -defined datastructure of the table */
double* array; /* nrow*ncolumn vector */
int nrow; /* number of rows */
int ncol; /* number of columns */
int type; /* interpolation type */
int lastIndex; /* last row index for search */

} MyTable;

void* initMyTable(const char* fileName , const char* tableName) {
MyTable* table = malloc(sizeof(MyTable));
if (table == NULL) ModelicaError("Not enough memory");
// read table from file and store all data in *table
return (void*) table;

}

void closeMyTable(void* object) { /* Release table storage */
MyTable* table = (MyTable *) object;
if (object == NULL) return;
free(table ->array);

217

Modelica Language Specification 3.7-dev
12.9. External Function Interface

free(table);
}

double interpolateMyTable(void* object , double u) {
MyTable* table = (MyTable *) object;
double y;
// Interpolate using "table" data (compute y)
return y;

}

]

218

Chapter 13

Packages

Packages in Modelica may contain definitions of constants and classes including all kinds of specialized
classes, functions, and subpackages. By the term subpackage we mean that the package is declared inside
another package, no inheritance relationship is implied. Parameters and variables cannot be declared
in a package. The definitions in a package should typically be related in some way, which is the main
reason they are placed in a particular package. Packages are useful for a number of reasons:

� Definitions that are related to some particular topic are typically grouped into a package. This
makes those definitions easier to find and the code more understandable.

� Packages provide encapsulation and coarse-grained structuring that reduces the complexity of large
systems. An important example is the use of packages for construction of (hierarchical) class
libraries.

� Name conflicts between definitions in different packages are eliminated since the package name is
implicitly prefixed to names of definitions declared in a package.

� Information hiding and encapsulation can be supported to some extent by declaring protected
classes, types, and other definitions that are available only inside the package and therefore inac-
cessible to outside code.

� Modelica defines a method for locating a package by providing a standard mapping of package
names to storage places, typically file or directory locations in the file system.

13.1 Package as Specialized Class

The package concept is a specialized class (section 4.7), using the keyword package.

13.2 Importing Definitions from a Package

The import-clause makes public classes and other public definitions declared in some package available
for use by shorter names in a class or a package. It is the only way of referring to definitions declared in
some other package for use inside an encapsulated package or class.

[The import-clauses in a package or class fill the following two needs:

� Making definitions from other packages available for use (by shorter names) in a package or class.

� Explicit declaration of usage dependences on other packages.

]

An import-clause can occur in one of the following syntactic forms:

import definitionname; (qualified import of top-level definition)

import packagename.definitionname; (qualified import)

219

Modelica Language Specification 3.7-dev
13.2. Importing Definitions from a Package

import packagename.{def 1, def 2, . . ., def n}; (multiple definition import)

import packagename.*; (unqualified import)

import shortname = definitionname; (renaming import of top-level definition)

import shortname = packagename.definitionname; (renaming import)

Here packagename is the fully qualified name of the imported package including possible dot notation
and definitionname is the name of an element in a package. The multiple definition import is equivalent
to multiple single definition imports with corresponding packagename and definition names.

13.2.1 Lookup of Imported Names

This section only defines how the imported name is looked up in the import-clause. For lookup in general
– including how import-clauses are used – see section 5.3.

Lookup of the name of an imported package or class deviates from the normal lexical lookup. For example,
consider A.B.C in the import-clauses import A.B.C;, import D = A.B.C;, or import A.B.C.*;. Here,
lookup starts with the lexical lookup of the first part of the name (A) at the top level.

Qualified import-clauses may only refer to packages or elements of packages, i.e., in import A.B.C;
or import D = A.B.C;, A.B must be a package. Unqualified import-clauses may only import from
packages, i.e., in import A.B.*;, A.B must be a package.

[In import A; the class A can be any class which is an element of the unnamed top-level package.]

[For example, if the package ComplexNumbers would have been declared as a subpackage inside the package
Modelica.Math, its fully qualified name would be Modelica.Math.ComplexNumbers. definitionname is
the simple name without dot notation of a single definition that is imported. A shortname is a simple
name without dot notation that can be used to refer to the package after import instead of the presumably
much longer packagename.

The forms of import are exemplified below assuming that we want to access the addition operation of the
hypothetical package Modelica.Math.ComplexNumbers:

import Modelica.Math.ComplexNumbers; // Accessed by ComplexNumbers.Add
import Modelica.Math.ComplexNumbers.Add; // Accessed by Add
import Modelica.Math.ComplexNumbers .{Add ,Sub}; // Accessed by Add and Sub
import Modelica.Math.ComplexNumbers .*; // Accessed by Add
import Co = Modelica.Math.ComplexNumbers; // Accessed by Co.Add

]

13.2.2 Rules for Import-Clauses

The following rules apply to import-clauses:

� The import-clauses are not inherited.

� The import-clauses are not named elements of a class or package. This means that import-clauses
cannot be changed by modifiers or redeclarations.

� The order of import-clauses does not matter.

� One can only import from packages, not from other kinds of classes. Both packages and classes
can be imported into, i.e., they may contain import-clauses.

� An imported package or definition should always be referred to by its fully qualified name in the
import-clause.

� Multiple qualified import-clauses shall not have the same import name (see section 5.3.1).

220

Modelica Language Specification 3.7-dev
13.3. The Modelica Library Path – MODELICAPATH

13.3 The Modelica Library Path – MODELICAPATH

The top-level scope implicitly contains a number of classes stored externally. If a top-level name is not
found at global scope, a Modelica translator shall look up additional classes in an ordered list of library
roots, called MODELICAPATH.

[The implementation of MODELICAPATH is tool dependent. In order that a user can work in parallel with
different Modelica tools, it is advisable to not have this list as environment variable, but as a setting
in the respective tool. Since MODELICAPATH is tool dependent, it is not specified in which way the list
of library roots is stored. Typically, on a Windows system MODELICAPATH is a string with path names
separated by ‘;’ whereas on a Linux system it is a string with path names separated by a ‘:’.]

In addition a tool may define an internal list of libraries, since it is in general not advisable for a program
installation to modify global environment variables. The version information for a library (as defined in
section 18.11) may also be used during this search to search for a specific version of the library (e.g., if
Modelica library version 2.2 is needed and the first directory in MODELICAPATH contain Modelica library
version 2.1, whereas the second directory contains Modelica version 2.2, then Modelica library version
2.2 is loaded from the second directory.).

[The first part of the path A.B.C (i.e., A) is located by searching the ordered list of roots in MODELICAPATH.
If no root contains A the lookup fails. If A has been found in one of the roots, the rest of the path is
located in A; if that fails, the entire lookup fails without searching for A in any of the remaining roots in
MODELICAPATH.]

If during lookup a top-level name is not found in the unnamed top-level scope, the search continues in
the package hierarchies stored in these directories.

[Example: Figure 13.1 below shows an example MODELICAPATH = C:\library;C:\lib1;C:\lib2, with three
directories containing the roots of the package hierarchies Modelica, MyLib, and ComplexNumbers. The
first two are represented as the subdirectories C:\library\Modelica and C:\lib1\MyLib, whereas the third is
stored as the file C:\lib2\ComplexNumbers.mo.

MODELICAPATH

Modelica
C:\library

Blocks

Interfaces

Electrical Mechanics

Rotational Translational

Math

MyLib
C:\lib1

Pack1 Pack2

ComplexNumbers.mo
C:\lib2

Figure 13.1: Roots of package hierarchies, e.g., Modelica, MyLib, and ComplexNumbers in
MODELICAPATH = C:\library;C:\lib1;C:\lib2.

Assume that we want to access the package MyLib.Pack2 in figure 13.1 above, e.g., through an import-
clause import MyLib.Pack2;. During lookup we first try to find a package MyLib corresponding to the
first part of the name in the import-statement. It is not found in the top-level scope since it has not
previously been loaded into the environment.

Since the name was not found in the top-level scope the search continues in the directories in the
MODELICAPATH in the specified order. For the search to succeed, there must be a subdirectory MyLib
or a file MyLib.mo in one of the directories mentioned in the MODELICAPATH. If there is no such subdirec-
tory or file, the lookup fails. If MyLib is found in one of the directories, the rest of the name, in this case
Pack2, is located in MyLib. If that fails, the entire lookup fails without continuing the search in possibly
remaining directories.

In this example the name matches the subdirectory named MyLib in the second directory C:\lib1 mentioned
in the MODELICAPATH. This subdirectory must have a file package.mo containing a definition of the
package MyLib, according to the Modelica rules on how to map a package hierarchy to the file system.

221

Modelica Language Specification 3.7-dev
13.4. File System Mapping of Package/Class

The subpackage Pack2 is stored in its own subdirectory or file in the subdirectory MyLib. In this case the
search succeeds and the package MyLib.Pack2 is loaded into the environment.]

13.4 File System Mapping of Package/Class

A package/class hierarchy may be represented in the hierarchical structure of the operating system (the
file system). For classes with version information see also section 18.11.3. The nature of such an external
entity falls into one of the following two groups:

� Directory in the file system.

� File in the file system.

Each Modelica file in the file system is stored in UTF-8 format (defined by The Unicode Consortium;
https://unicode.org). A deprecated feature is that the file may start with the UTF-8 encoded BOM
(byte order mark; 0xef 0xbb 0xbf); this is treated as white-space in the grammar. Since the use of
BOM is deprecated, tools can ignore any BOM when reading, and it is recommended to never write it.

[Tools may also store classes in data-base systems, but that is not standardized.]

13.4.1 Directory Hierarchy Mapping

A directory shall contain a node, the file package.mo. The node shall contain a stored-definition that
defines a class A with a name matching the name of the structured entity.

[The node typically contains documentation and graphical information for a package, but may also contain
additional elements of the class A.]

A directory may also contain one or more sub-entities (directories or files). The sub-entities are mapped
as elements of the class defined by their enclosing structured entity. Two sub-entities shall not define
classes with identical names

[Example: If directory A contains the three files package.mo, B.mo and C.mo, the classes defined are A,
A.B, and A.C.]

[Example: A directory shall not contain both the sub-directory A and the file A.mo.]

In order to preserve the order of sub-entities it is advisable to create a file package.order where each line
contains the name of one class or constant (using its Modelica IDENT form). If a package.order is present
when reading a structured entity the classes and constants are added in this order; if the contents does not
exactly match the classes and constants in the package, the resulting order is tool specific and a warning
may be given. Classes and constants that are stored in package.mo are also present in package.order but
their relative order should be identical to the one in package.mo (this ensures that the relative order
between classes and constants stored in different ways is preserved).

13.4.2 Single File Mapping

When mapping a package or class hierarchy to a file (e.g., the file A.mo), the file content shall match
stored-definition in the grammar. In this case, the stored-definition shall only define a single class
whose name (here, A) matches the name of the nonstructured entity. The filename shall have the extension
mo.

13.4.3 The within Clause

A within-clause has the following syntax:

within [packageprefixname] ";"

A non-top-level entity shall begin with a within-clause which for the class defined in the entity specifies
the location in the Modelica class hierarchy. A top-level class may contain a within-clause with no
name. For a sub-entity of an enclosing structured entity, the within-clause shall designate the class
of the enclosing entity; and this class must exist and must not have been defined using a short class

222

https://unicode.org

Modelica Language Specification 3.7-dev
13.5. Stored Definitions Containing Multiple Class Definitions

definition. See section 13.5 regarding the use of within-clause when a stored-definition does not hold
exactly one class definition.

[Example: The subpackage Rotational declared within Modelica.Mechanics has the fully qualified name
Modelica.Mechanics.Rotational, which is formed by concatenating the packageprefixname with the
short name of the package. The declaration of Rotational could be given as below:

within Modelica.Mechanics;
package Rotational // Modelica.Mechanics.Rotational

. . .

]

13.5 Stored Definitions Containing Multiple Class Definitions

The stored-definition in the grammar allows for zero or more class definitions, but a stored-definition
not containing exactly one class definition can only be used to define top-level classes, cannot be used
for file system mapping of packages or class-hierarchies (section 13.4), and shall be ignored when search-
ing the MODELICAPATH (section 13.3). It follows that any within-clause (section 13.4.3) in such a
stored-definition shall not contain a packageprefixname.

13.6 External Resources

Examples of references to external resources include links and images in HTML documentation, and
images in the Bitmap annotation (see section 18.9.5.6). Absolute URIs should be used, for example
file:/// and the URI scheme modelica:/ which can be used to retrieve resources associated with a package.
According to the URI specification scheme names are case-insensitive, but the lower-case form should be
used, that is Modelica:/ is allowed but modelica:/ is the recommended form.

The Modelica-scheme has the ability to reference a hierarchical structure of resources associated with
packages. The same structure is used for all kind of resource references, independent of use (external
file, image in documentation, bitmap in icon layer, and link to external file in the documentation), and
regardless of the storage mechanism.

Any Modelica-scheme URI containing a slash after the package-name is interpreted as a reference to a
resource. The first segment of the path of the URI is interpreted as a fully qualified package name and
the rest of the path of the URI is interpreted as the path (relative to the package) of the resource. Each
storage scheme can define its own interpretation of the path (but care should be taken when converting
from one storage scheme or when restructuring packages that resource references resolve to the same
resource). Any storage scheme should be constrained such that a resource with a given path should be
unique for any package name that precedes it. The second segment of the path shall not be the name of
a class in the package given by the first segment.

As a deprecated feature the URI may start with modelica:// and use the host-part of the authority as the
fully qualified package name. That feature is widely used, but deprecated since host-names are generally
case-insensitive.

[Examples of deprecated URIs would be modelica://Modelica/Resources/C.jpg (referring to a resource) and
modelica://Modelica.Blocks (referring to a package). These should be rewritten as modelica:/Modelica/Resources/C.jpg
and modelica:/Modelica.Blocks.]

When Modelica packages are stored hierarchically in a file system (i.e., package A in a directory A contain-
ing package.mo) the resource modelica:/A/Resources/C.jpg should be stored in the file A/Resources/C.jpg,
it is not recommend to use modelica:/A.B/C.jpg for referencing resources; it could be stored in the file
A/B/C.jpg – which is counter-intuitive if A.B is stored together with A. When Modelica packages are
stored in other formats a similar mapping should be defined, such that a resource with a given path should
be unique for any package name that precedes it. The second segment of the path shall not be the name of
a class in the package given by the first segment. As above for Modelica 3.2.1/package.mo, i.e., resources
starting from Modelica 3.2.1, and modelica:/Modelica.Mechanics/C.jpg is Modelica 3.2.1/Mechanics/C.jpg
– regardless of whether Modelica.Mechanics is stored inModelica 3.2.1/package.mo,Modelica 3.2.1/Mechanics.mo,
or Modelica 3.2.1/Mechanics/package.mo.

223

Modelica Language Specification 3.7-dev
13.7. Multilingual Descriptions

When mapping a Modelica URI to a file system path, the file system path shall end in a directory separa-
tor if and only if the URI path ends in the segment separator ‘/’. For example, if modelica:/A/Resources
maps to A/Resources, then modelica:/A/Resources/ maps to A/Resources/, and vice versa.

[The use of a trailing segment separator is recommended when the resource is a directory and the
file system path will be prepended to relative file paths within the directory. If possible, use URIs for
specific files or specific sub-directories instead of appending relative paths to a generic URI such as
modelica:/A/Resources/ as the latter creates a dependency on the entire directory.]

For a Modelica-package stored as a single file, A.mo, the resource modelica:/A/C.jpg refers to a file C.jpg
stored in the same directory as A.mo, but using resources in this variant is not recommended since
multiple packages will share resources.

In case the name of the class contains quoted identifiers, the single-quote ‘`’ and any reserved characters
(‘:’, ‘/’, ‘?’, ‘#’, ‘[’, ‘]’, ‘@’, ‘!’, ‘$’, ‘&’, ‘(’, ‘)’, ‘*’, ‘+’, ‘,’, ‘;’, ‘=’) should be percent-encoded as normal
in URIs.

[Example: Consider a top-level package Modelica and a class Mechanics inside it, a reference such as
modelica:/Modelica.Mechanics/C.jpg is legal, while modelica:/Modelica/Mechanics/C.jpg is illegal. The
references modelica:/Modelica.Mechanics/C.jpg and modelica:/Modelica/C.jpg must also refer to two dis-
tinct resources.]

13.7 Multilingual Descriptions

[Descriptive texts in a model or library are usually formulated in English. This section describes how a
tool can present the library in another language. Translated Modelica text is provided by external files,
so that no modification of the original Modelica text is required.]

The texts in following Modelica constructs should be translated:

� description strings of component declarations and classes

� strings in the following annotations:

– Text.string, Text.textString

– missingInnerMessage, obsolete, unassignedMessage

– Dialog.group, Dialog.tab

– Dialog.loadSelector.caption, Dialog.loadSelector.filter,
Dialog.saveSelector.caption, Dialog.saveSelector.filter

– Documentation.info, Documentation.revisions

– Figure.title, Figure.caption, Figure.group, Plot.title, Axis.label, Curve.legend

– mustBeConnected

[None of the translatable constructs can have any impact on simulation results.]

Comments (delimited as well as rest-of-line) are not translated. Only constructs given entirely by one
or more concatenated string literals are translated, using nothing but the operator + for concatenation.
In order to have parameter values as part of the texts the special substitution syntax is preferable (see
section 18.9.5.5 and section 18.5.2.6), and translators need to be aware of these substrings in order to
make good translations.

[Example: Consider:

annotation(. . ., Text(string = "1st Frequency: %f1"),
Text(string = "2nd Frequency: " + String(w2 / (2 * pi))), . . .);

In this example only "1st Frequency: %f1" can be translated; the second Text.string doesn’t consist
entirely of concatenated string literals, and is hence completely excluded from translation.]

The files to support translation must be provided along with the library. They must be stored in the
resources directory modelica://LibraryName/Resources/Language/.

224

Modelica Language Specification 3.7-dev
13.7. Multilingual Descriptions

Two kind of files in Drepper, Meyering, Pinard, and Haible (2020) format have to be provided:

1. Template file LibraryName.pot (Portable Object Template), one file per library which is stored
as the resource modelica://LibraryName/Resources/Language/LibraryName.pot. It describes all
translatable strings in the library, but does not contain any translations. The pattern LibraryName
denotes the toplevel class name of the library.

2. One file for each supported language with the name LibraryName.language.po (Portable Object), as
the resource modelica://LibraryName/Resources/Language/LibraryName.language.po. This file is
a copy of the associated template file, but extended with the translations in the specified language.
The pattern language stands for the ISO 639-1 language code, e.g., de or sv.

The detailed format of these files is described in Drepper, Meyering, Pinard, and Haible (2020). Use of
translation files in other formats (including the binary MO file format) is not standardized in Modelica.
For Modelica translations, only the keywords msgctxt, msgid and msgstr are used, meaning that a
translation entry looks like this:

#: filename:lineNumber
#, no-c-format
msgctxt messageContext
msgid messageIdentifier
msgstr messageTranslation

The restriction to a few keywords makes it easier for tools to support the format without relying on the
implementation from Drepper, Meyering, Pinard, and Haible (2020).

The use of no-c-format ensures that translation tools will not parse "%class" as the format specifier
%c followed by lass.

[In the remainder of this section, several facts about the gettext specification are interleaved non-normatively
for easy access to some of the gettext basics. Always refer to the external gettext specification for full
detail or in case of doubt.

All text strings are in double quotes and encoded with UTF-8 characters. Comments start with an # and
are continued until the end of line. Spaces outside strings are ignored and used as separators.

The files consist of a header and a body. The header is marked with an empty msgid and looks like this:

SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR THE PACKAGE 'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE

package.
FIRST AUTHOR <EMAIL@ADDRESS >, YEAR.
#
#, fuzzy
msgid ""
msgstr ""
"Project -Id-Version: PACKAGE VERSION\n"
"Report -Msgid -Bugs -To: \n"
"POT -Creation -Date: 2019 -03 -15 10:52+0100\n"
"PO -Revision -Date: YEAR -MO-DA HO:MI+ZONE\n"
"Last -Translator: FULL NAME <EMAIL@ADDRESS >\n"
"Language -Team: LANGUAGE <LL@li.org >\n"
"Language: \n"
"MIME -Version: 1.0\n"
"Content -Type: text/plain; charset=UTF -8\n"
"Content -Transfer -Encoding: 8bit\n"

All general terms in the header should be replaced by specific information.

Following the header, there is one translation entry for each string to be translated. It can start with an
optional comment describing the location (file name and line number) of the text to translate. Multiple
occurences of the same string can be listed here, separated by space.]

225

Modelica Language Specification 3.7-dev
13.7. Multilingual Descriptions

The messageContext following the keyword msgctxt shall be the full name of the Modelica class (e.g.,
"Modelica.Blocks.Math.Sin") where the text appears. Short class definitions do not appear here.
Texts in such classes belong to the enclosing full class definition.

The text string which shall be translated is used as messageIdentifier (following the msgid keyword),
and shall contain the original string from the Modelica code. Note that if a msgid string is given more
than once in the same context, all occurrences are translated with the same (last) translation!

[The messageTranslation (following the keyword msgstr) is the translation of messageIdentifier and is
typically edited using special tools for translators. In the template file this string is empty by definition.
If this is empty in a language specific file the messageIdentifier may be used instead.]

[Since in Modelica control sequences also start with a backslash and another backslash is used to use
sequences literally or to hide double quotes, no change is required here. But Modelica allows strings to go
over more than one line, gettext does not. Therefore, line breaks in Modelica must be encoded with "\n"
for gettext.

In order to avoid long lines in the translated strings (following msgid or msgstr), strings may be split
into smaller parts given on consecutive lines. E.g., the Modelica description

"A
B\"C" + "D\nE"

evaluates to:

A
B"CD
E

which in the translation entry looks like:

msgid ""
"A\n"
"B\"CD\n"
"E"

]

[Example: Consider a simple sine-source:

within MyPackage.Sources;
model Sine "Sine"
parameter Frequency f=2 "Frequency";
RealOutput y=sin(2*pi*f*time); // Relying on imported types
/* Could add details. Note that this is not translated */
annotation(Icon(graphics ={Text(extent ={{0 ,0} ,{40 ,40}} ,

textString="Frequency: %f")}));
end Sine;

The entries for translating this model into Swedish could look like this:

#: MyPackage/Sources/package.mo :10126
#, no-c-format
msgctxt "MyPackage.Sources.Sine"
msgid "Sine"
msgstr "Sinus"
#: MyPackage/Sources/package.mo :10127
#, no-c-format
msgctxt "MyPackage.Sources.Sine"
msgid "Frequency"
msgstr "Frekvens"
#: MyPackage/Sources/package.mo :10131
#, no-c-format
msgctxt "MyPackage.Sources.Sine"
msgid "Frequency: %f"

226

Modelica Language Specification 3.7-dev
13.7. Multilingual Descriptions

msgstr "Frekvens: %f"

]

[To support the translation of these strings a number of free and commercial tools exist in context of
GNU gettext.]

227

Chapter 14

Overloaded Operators

A Modelica operator record can overload the behavior for operations such as constructing, adding,
multiplying etc.

The overloading is defined in such a way that ambiguities are not allowed and give an error. Furthermore,
it is sufficient to define overloading for scalars. Some overloaded array operations are automatically
deduced from the overloaded scalar operations (see item 4 and item 3 in the lists below), and others can
be defined independently of the corresponding scalar operations.

14.1 Overview of Overloaded Operators

In an operator record the definition of operations are done using the specialized class operator (a
specialized class similar to package, see section 4.7) followed by the name of the operation. Each
operator class is comprised of functions implementing different variants of the operation for the operator
record class in which the definition resides.

� Overloaded constructors, see section 14.3:
'constructor', '0'

� Overloaded string conversions, see section 14.4:
'String'

� Overloaded binary operations, see section 14.5:
'+', '-' (subtraction), '*', '/', '^', '==', '<=', '>', '<', '>=', '<=', 'and', 'or'

� Overloaded unary operations, see section 14.6:
'-' (negation), 'not'

The functions defined in the operator-class must take at least one component of the record class as input,
except for the constructor-functions which instead must return one component of the record class. All
of the functions shall return exactly one output.

The functions can be either called as defined in this section, or they can be called directly using the
hierarchical name. The operator or operator function must be encapsulated; this allows direct calls of
the functions and prohibits the functions from using the elements of operator record class.

The operator record may also contain additional functions, and declarations of components of the
record. It is not legal to extend from an operator record, except as a short class definition modifying
the default attributes for the component elements directly inside the operator record.

If an operator record was derived by a short class definition, the overloaded operators of this operator
record are the operators that are defined in its base class, for subtyping see chapter 6.

The precedence and associativity of the overloaded operators is identical to the one defined in table 3.1
in section 3.2.

[Note, the operator overloading as defined in this section is only a short hand notation for function calls.]

228

Modelica Language Specification 3.7-dev
14.2. Matching Function

14.2 Matching Function

All functions defined inside the operator class must return one output (based on the restriction above),
and may include functions with optional arguments, i.e., functions of the form

function f
input A1 u1;
. . .
input Am um = am;
. . .
input An un;
output B y;

algorithm
. . .

end f;

The vector P indicates whether argument m of f has a default value (true for default value, false
otherwise). A call f(a1, a2, . . ., ak, b1 = w1, . . ., bp = wp) with distinct names bj is a valid match
for the function f, provided (treating Integer and Real as the same type)

� Ai = typeOf(ai) for 1 ≤ i ≤ k,

� the names bj = uQj
, Qj > k, AQj

= typeOf(wj) for 1 ≤ j ≤ p, and

� if the union of {i : 1 ≤ i ≤ k}, {Qj : 1 ≤ j ≤ p}, and {m : Pm and 1 ≤ m ≤ n} is the set
{i : 1 ≤ i ≤ n}.

[This corresponds to the normal treatment of function calls with named arguments, requiring that all
inputs have some value given by a positional argument, named argument, or a default value (and that
positional and named arguments do not overlap). Note, that this only defines a valid call, but does not
explicitly define the set of domains.]

14.3 Overloaded Constructors

Let C denote an operator record class and consider an expression C(A1, a2, . . ., ak, b1=w1, . . ., bp
=wp).

1. If there exists a unique function f in C.'constructor' such that (A1, a2, . . . , ak, b1=w1, . . . ,
bp=wp) is a valid match for the function f , then C(A1, a2, . . ., ak, b1=w1, . . ., bp=wp) is
resolved to C.'constructor'.f(A1, a2, . . ., ak, b1=w1, . . ., bp=wp).

2. If there is no operator C.'constructor' the automatically generated record constructor is called.

3. Otherwise the expression is erroneous.

Restrictions:

� The operator C.'constructor' shall only contain functions that declare one output component,
which shall be of the operator record class C.

� For an operator record class there shall not exist any potential call that lead to multiple matches
in item 1 above.

[How to verify this is not specified.]

� For a pair of operator record classes C and D and components c and d of these classes, respectively,
at most one of C.'constructor'(d) and D.'constructor'(c) shall be legal.

[Hence, one of the two definitions must be removed.]

[By the last restriction the following problem for binary operators is avoided:

Assume there are two operator record classes C and D that both have a constructor from Real. If we
want to extend c + c and d + d to support mixed operations, one variant would be to define c + d and
d + c; but then c + 2 becomes ambiguous (since it is not clear which instance should be converted to).
Without mixed operations expressions such as c + d are only ambiguous if both conversion from C to D
and back from D to C are both available, and this possibility is not allowed by the restriction above.]

229

Modelica Language Specification 3.7-dev
14.4. Overloaded String Conversions

Additionally there is an operator '0' defining the zero-value which can also be used to construct an
element. The operator '0' for an operator record C can contain only one function, having zero inputs
and one output of type C (the called function is therefore unambiguous). It should return the identity
element of addition, and is used for generating flow-equations for connect-equations and zero elements
for matrix multiplication.

14.4 Overloaded String Conversions

Consider an expression String(A1, a2, . . ., ak, b1=w1, . . ., bp=wp), k ≥ 1 where A1 is an element
of class A.

1. If A is a predefined type except String (i.e., Boolean, Integer, Real or an enumeration), or derived
from such a type, then the corresponding built-in operation is performed.

2. If A is an operator record class and there exists a unique function f in A.'String' such that
A.'String'.f(A1, a2, . . ., ak, b1=w1, . . ., bp=wp) is a valid match for f , then String(A1,
a2, . . ., ak, b1=w1, . . ., bp=wp) is evaluated to
A.'String'.f(A1, a2, . . ., ak, b1=w1, . . ., bp=wp).

3. Otherwise the expression is erroneous.

Restrictions:

� The operator A.'String' shall only contain functions that declare one output component, which
shall be of the String type, and the first input argument shall be of the operator record class A.

� For an operator record class there shall not exist any call that lead to multiple matches in item 2
above.

[How to verify this is not specified.]

14.5 Overloaded Binary Operations

Let X denote a binary operator and consider an expression a X b where a is an instance or array of
instances of class A and b is an instance or array of instances of class B.

1. If A and B are predefined types of such, then the corresponding built-in operation is performed.

2. Otherwise, if there exists exactly one function f in the union of A.X and B.X such that f(a, b)
is a valid match for the function f , then a X b is evaluated using this function. It is an error, if
multiple functions match. If A is not an operator record class, A.X is seen as the empty set, and
similarly for B.

[Having a union of the operators ensures that if A and B are the same, each function only appears
once.]

Note that if the operations take array arguments, they will in this step only match if the number
of dimensions match.

3. Otherwise, consider the set given by f in A.X and an operator record class C (different from B) with
a constructor, g, such that C.'constructor'.g(b) is a valid match, and f(a, C.'constructor
'.g(b)) is a valid match; and another set given by f in B.X and an operator record class D
(different from A) with a constructor, h, such that D.'constructor'.h(a) is a valid match and
f(D.'constructor'.h(a), b) is a valid match. If the sum of the sizes of these sets is one this
gives the unique match. If the sum of the sizes is larger than one it is an error. Note that if the
operations take array arguments, they will in this step only match if the number of dimensions
match.

[Informally, this means: If there is no direct match of a X b, then it is tried to find a direct match
by automatic type casts of a or b, by converting either a or b to the needed type using an appropriate
constructor function from one of the operator record classes used as arguments of the overloaded
op functions. Example using the Complex-definition below:

230

Modelica Language Specification 3.7-dev
14.6. Overloaded Unary Operations

Real a;
Complex b;
Complex c = a * b; // interpreted as:
// Complex .'*'. multiply(Complex.'constructor '.fromReal(a), b);

]

4. Otherwise, if a or b is an array expression, then the expression is conceptually evaluated according
to the rules of section 10.6 with the following exceptions concerning section 10.6.4:

a. vector * vector is not automatically defined based on the scalar multiplication.

[The scalar product of table 10.10 does not generalize to the expected linear and conjugate
linear scalar product of complex numbers. It is possible to define a specific product function
taking two array arguments handling this case.]

b. vector * matrix is not automatically defined based on the scalar multiplication.

[The corresponding definition of table 10.10 does not generalize to complex numbers in the
expected way. It is possible to define a specific product function taking two array arguments
handling this case.]

c. If the inner dimension for matrix * vector or matrix * matrix is zero, this uses the over-
loaded '0' operator of the result array element type. If the operator '0' is not defined for
that class it is an error if the inner dimension is zero.

[For array multiplication it is assumed that the scalar elements form a non-commutative ring that
does not necessarily have a multiplicative identity.]

5. Otherwise the expression is erroneous.

For an element-wise operator, a .op b, items 1, 4 and 5 are used; e.g., the operator .+ will always be
defined in terms of '+'.

Restrictions:

� A function is allowed for a binary operator if and only if it has at least two inputs; at least one of
which is of the operator record class, and the first two inputs shall not have default values, and all
inputs after the first two must have default values.

� For an operator record class there shall not exist any (potential) call that lead to multiple matches
in item 2 above.

14.6 Overloaded Unary Operations

Let X denote a unary operator and consider an expression X a where a is an instance or array of
instances of class A. Then X a is evaluated in the following way.

1. If A is a predefined type, then the corresponding built-in operation is performed.

2. If A is an operator record class and there exists a unique function f in A.X such that A.X.f(a)
is a valid match, then X a is evaluated to A.X.f(a). It is an error, if there are multiple valid
matches. Note that if the operations take array arguments, they will in this step only match if the
number of dimensions match.

3. Otherwise, if a is an array expression, then the expression is conceptually evaluated according to
the rules of section 10.6.

4. Otherwise the expression is erroneous.

Restrictions:

� A function is allowed for a unary operator if and only if it has least one input; and the first input
is of the record type (or suitable arrays of such) and does not have a default value, and all inputs
after the first one must have default values.

231

Modelica Language Specification 3.7-dev
14.7. Example of Overloading for Complex Numbers

� For an operator record class there shall not exist any (potential) call that lead to multiple matches
in item 2 above.

� A binary and/or unary operator-class may only contain functions that are allowed for this binary
and/or unary operator-class; and in case of '-' it is the union of these sets, since it may define
both a unary (negation) and binary (subtraction) operator.

14.7 Example of Overloading for Complex Numbers

[Example: The rules in the previous subsections are demonstrated at hand of a record class to work
conveniently with complex numbers:

operator record Complex "Record defining a Complex number"
Real re "Real part of complex number";
Real im "Imaginary part of complex number";
encapsulated operator 'constructor '

import Complex;
function fromReal
input Real re;
input Real im = 0;
output Complex result(re = re , im = im);

algorithm
annotation(Inline = true);

end fromReal;
end 'constructor ';

encapsulated operator function '+' // short hand notation , see section 4.7
import Complex;
input Complex c1;
input Complex c2;
output Complex result "= c1 + c2";

algorithm
result := Complex(c1.re + c2.re , c1.im + c2.im);
annotation(Inline = true);

end '+';

encapsulated operator '-'
import Complex;
function negate
input Complex c;
output Complex result "= - c";

algorithm
result := Complex(-c.re , -c.im);
annotation(Inline = true);

end negate;

function subtract
input Complex c1;
input Complex c2;
output Complex result "= c1 - c2";

algorithm
result := Complex(c1.re - c2.re , c1.im - c2.im);
annotation(Inline = true);

end subtract;
end '-';

encapsulated operator function '*'
import Complex;
input Complex c1;
input Complex c2;
output Complex result "= c1 * c2";

algorithm
result :=

232

Modelica Language Specification 3.7-dev
14.7. Example of Overloading for Complex Numbers

Complex(c1.re * c2.re - c1.im * c2.im , c1.re * c2.im + c1.im * c2.re);
annotation(Inline = true);

end '*';

encapsulated operator function '/'
import Complex; input Complex c1;
input Complex c2;
output Complex result "= c1 / c2";

algorithm
result :=
Complex ((c1.re*c2.re + c1.im*c2.im) / (c2.re^2 + c2.im^2),

(-c1.re*c2.im + c1.im*c2.re) / (c2.re^2 + c2.im^2));
annotation(Inline = true);

end '/';

encapsulated operator function '=='
import Complex;
input Complex c1;
input Complex c2;
output Boolean result "= c1 == c2";

algorithm
result := c1.re == c2.re and c1.im == c2.im;
annotation(Inline = true);

end '==';

encapsulated operator function 'String '
import Complex;
input Complex c;
input String name = "j"
"Name of variable representing sqrt(-1) in the string";

input Integer significantDigits = 6
"Number of significant digits to be shown";

output String s;
algorithm
s := String(c.re, significantDigits = significantDigits);
if c.im <> 0 then
s := if c.im > 0 then s + " + " else s + " - ";
s := s + String(abs(c.im), significantDigits = significantDigits) + name;

end if;
end 'String ';

encapsulated function j
import Complex;
output Complex c;

algorithm
c := Complex(0, 1);
annotation(Inline = true);

end j;

encapsulated operator function '0'
import Complex;
output Complex c;

algorithm
c := Complex(0, 0);
annotation(Inline = true);

end '0';
end Complex;

function eigenValues
input Real A [: ,:];
output Complex ev[size(A, 1)];
protected
Integer nx = size(A, 1);

233

Modelica Language Specification 3.7-dev
14.7. Example of Overloading for Complex Numbers

Real eval[nx , 2];
Integer i;

algorithm
eval := Modelica.Math.Matrices.eigenValues(A);
for i in 1 : nx loop
ev[i] := Complex(eval[i, 1], eval[i, 2]);

end for;
end eigenValues;

// Usage of Complex number above:
Complex j = Complex.j();
Complex c1 = 2 + 3 * j;
Complex c2 = 3 + 4 * j;
Complex c3 = c1 + c2;
Complex c4[:] = eigenValues ([1, 2; -3, 4]);

algorithm
Modelica.Utilities.Streams.print("c4 = " + String(c4));
// results in output:
// c4 = {2.5 + 1.93649j, 2.5 - 1.93649j}

How overloaded operators can be symbolically processed. Example:

Real a;
Complex b;
Complex c = a + b;

Due to inlining of functions, the equation for c is transformed to:

c = Complex.'+'.add(Complex.'constructor '.fromReal(a), b);
= Complex.'+'.add(Complex(re = a, im = 0), b)
= Complex(re = a + b.re, im = b.im);

or

c.re = a + b.re;
c.im = b.im;

These equations can be symbolically processed as other equations.

Complex can be used in a connector:

operator record ComplexVoltage = Complex(re(unit = "V"), im(unit = "V"));
operator record ComplexCurrent = Complex(re(unit = "A"), im(unit = "A"));

connector ComplexPin
ComplexVoltage v;
flow ComplexCurrent i;

end ComplexPin;

ComplexPin p1, p2, p3;
equation
connect(p1 , p2);
connect(p1 , p3);

The two connect-equations result in the following connection equations:

p1.v = p2.v;
p1.v = p3.v;
p1.i + p2.i + p3.i = Complex.'0'();
// Complex .'+'(p1.i, Complex.'+'(p2.i, p3.i)) = Complex .'0'();

The restrictions on extends are intended to avoid combining two variants inheriting from the same oper-
ator record, but with possibly different operations; thus ComplexVoltage and ComplexCurrent still use
the operations from Complex. The restriction that it is not legal to extend from any of its enclosing
scopes implies that:

234

Modelica Language Specification 3.7-dev
14.7. Example of Overloading for Complex Numbers

package A
extends Icon; // Ok
operator record B . . . end B;

end A;

package A2
extends A(. . .); // Not legal

end A2;

package A3 = A(. . .); // Not legal

]

235

Chapter 15

Stream Connectors

The two basic variable types in a connector – potential (or across) variable and flow (or through) variable
– are not sufficient to describe in a numerically sound way the bi-directional flow of matter with convective
transport of specific quantities, such as specific enthalpy and chemical composition. The values of these
specific quantities are determined from the upstream side of the flow, i.e., they depend on the flow
direction. When using across and through variables, the corresponding models would include nonlinear
systems of equations with Boolean unknowns for the flow directions and singularities around zero flow.
Such equation systems cannot be solved reliably in general. The model formulations can be simplified
when formulating two different balance equations for the two possible flow directions. This is not possible
with across and through variables though.

This fundamental problem is addressed in Modelica by introducing a third type of connector variable,
called stream variable, declared with the prefix stream. A stream variable describes a quantity that
is carried by a flow variable, i.e., a purely convective transport phenomenon. The value of the stream
variable is the specific property inside the component close to the boundary, assuming that matter flows
out of the component into the connection point. In other words, it is the value the carried quantity
would have if the fluid was flowing out of the connector, irrespective of the actual flow direction.

The rationale of the definition and typical use cases are described in appendix C.

15.1 Definition of Stream Connectors

If at least one variable in a connector has the stream prefix, the connector is called stream connector
and the corresponding variable is called stream variable. The following definitions hold:

� The stream prefix can only be used in a connector declaration.

� A stream connector must have exactly one variable with the flow prefix. That variable shall be a
scalar that is a subtype of Real.

[The idea is that all stream variables of a connector are associated with this flow variable.]

� For every outside connector (see section 9.1.2), one equation is generated for every variable with
the stream prefix (to describe the propagation of the stream variable along a model hierarchy).
For the exact definition, see the end of section 15.2.

� For inside connectors (see section 9.1.2), variables with the stream prefix do not lead to connection
equations.

� Connection equations with stream variables are generated in a model when using inStream or
actualStream, see section 15.2 and section 15.3.

The variable with flow prefix must exist at the same level of the connector as the variable with stream
prefix; i.e., they can each be directly declared in the connector or be inherited, while a stream variable
in a sub-connector would result in a separate stream sub-connector.

[Example:

236

Modelica Language Specification 3.7-dev
15.2. inStream and Connection Equations

connector FluidPort
replaceable package Medium =
Modelica.Media.Interfaces.PartialMedium;

Medium.AbsolutePressure p "Pressure in connection point";
flow Medium.MassFlowRate m_flow "> 0, if flow into component";
stream Medium.SpecificEnthalpy h_outflow "h close to port if m_flow < 0";
stream Medium.MassFraction X_outflow[Medium.nX] "X close to port if m_flow <
0";

end FluidPort;

FluidPort is a stream connector, because some connector variables have the stream prefix. The Medium
definition and the stream variables are associated with the only flow variable (m_flow) that defines a
fluid stream. The Medium and the stream variables are transported with this flow variable. The stream
variables h_outflow and X_outflow are the stream properties inside the component close to the boundary,
when fluid flows out of the component into the connection point. The stream properties for the other flow
direction can be inquired with the built-in inStream. The value of the stream variable corresponding to
the actual flow direction can be inquired through the built-in actualStream, see section 15.3.]

15.2 inStream and Connection Equations

In combination with the stream variables of a connector, inStream is designed to describe in a numerically
reliable way the bi-directional transport of specific quantities carried by a flow of matter.

inStream(v) is only allowed on stream variables v and is informally the value the stream variable has,
assuming that the flow is from the connection point into the component. This value is computed from
the stream connection equations of the flow variables and of the stream variables.

For the following definition it is assumed that N inside connectors mj.c (j = 1, 2, . . . , N) and M outside
connectors ck (k = 1, 2, . . . ,M) belonging to the same connection set (see definition in section 9.1.2)
are connected together and a stream variable h_outflow is associated with a flow variable m_flow in
connector c.

connector FluidPort
. . .
flow Real m_flow "Flow of matter; m_flow > 0 if flow into component";
stream Real h_outflow "Specific variable in component if m_flow < 0"

end FluidPort

model FluidSystem
. . .
FluidComponent m1, m2, . . ., mN ;
FluidPort c1, c2, . . ., cM ;

equation
connect(m1.c, m2.c);
connect(m1.c, m3.c);
. . .
connect(m1.c, mN .c);
connect(m1.c, c1);
connect(m1.c, c2);
. . .
connect(m1.c, cM);
. . .

end FluidSystem;

237

Modelica Language Specification 3.7-dev
15.2. inStream and Connection Equations

m1 c

m2 c

m3 c

c1

c2

Figure 15.1: Exemplary FluidSystem with N = 3 and M = 2.

[The connection set represents an infinitesimally small control volume, for which the stream connection
equations are equivalent to the conservation equations for mass and energy.]

With these prerequisites, the semantics of the expression inStream(mi.c.h_outflow) is given implicitly
by defining an additional variable h_mix_ini, and by adding to the model the conservation equations
for mass and energy corresponding to the infinitesimally small volume spanning the connection set.
The connection equation for the flow variables has already been added to the system according to the
connection semantics of flow variables defined in section 9.2.

// Standard connection equation for flow variables
0 = sum(mj.c.m_flow for j in 1:N) + sum(-ck.m_flow for k in 1:M);

Whenever inStream is applied to a stream variable of an inside connector, the balance equation of the
transported property must be added under the assumption of flow going into the connector

// Implicit definition of inStream applied to inside connector i
0 =
sum(mj.c.m_flow *

(if mj.c.m_flow > 0 or j==i then h_mix_ini else mj.c.h_outflow)
for j in 1:N) +

sum(-ck.m_flow *
(if -ck.m_flow > 0 then h_mix_ini else inStream(ck.h_outflow)

for k in 1:M);
inStream(mi.c.h_outflow) = h_mix_ini;

Note that the result of inStream(mi.c.h_outflow) is different for each port i, because the assumption
of flow entering the port is different for each of them.

Additional equations need to be generated for the stream variables of outside connectors.

// Additional connection equations for outside connectors
for q in 1:M loop
0 =
sum(mj.c.m_flow *

(if mj.c.m_flow > 0 then h_mix_outq else mj.c.h_outflow)
for j in 1:N) +

sum(-ck.m_flow *
(if -ck.m_flow > 0 or k==q then h_mix_outq else inStream(ck.h_outflow))

for k in 1:M);
cq.h_outflow = h_mix_outq;

end for;

Neglecting zero flow conditions, the solution of the above-defined stream connection equations for
inStream values of inside connectors and outflow stream variables of outside connectors is (for a deriva-
tion, see appendix C):

inStream(mi.c.h_outflow) :=
(sum(max(-mj.c.m_flow ,0)*mj.c.h_outflow for j in cat(1, 1:i-1, i+1:N) +
sum(max(ck.m_flow ,0)*inStream(ck.h_outflow) for k in 1:M))
/
(sum(max(-mj.c.m_flow ,0) for j in cat(1, 1:i-1, i+1:N) +
sum(max(ck.m_flow ,0) for k in 1:M));

238

Modelica Language Specification 3.7-dev
15.2. inStream and Connection Equations

// Additional equations to be generated for outside connectors q
for q in 1:M loop

cq.h_outflow :=
(sum(max(-mj.c.m_flow ,0)*mj.c.h_outflow for j in 1:N) +
sum(max(ck.m_flow ,0)*inStream(ck.h_outflow) for k in cat(1, 1:q-1, q+1:M))
/
(sum(max(-mj.c.m_flow ,0) for j in 1:N) +
sum(max(ck.m_flow ,0) for k in cat(1, 1:q-1, q+1:M)));

end for;

[Note, that inStream(ck.h_outflow) is computed from the connection set that is present one hierarchical
level above. At this higher level ck.h_outflow is no longer an outside connector, but an inside connector
and then the formula from above for inside connectors can be used to compute it.]

If the argument of inStream is an array, the implicit equation system holds elementwise, i.e., inStream
is vectorizable.

The stream connection equations have singularities and/or multiple solutions if one or more of the flow
variables become zero. When all the flows are zero, a singularity is always present, so it is necessary to
approximate the solution in an open neighbourhood of that point.

[For example, assume that mj.c.m_flow = ck.m_flow = 0, then all equations above are identically
fulfilled and inStream can have any value.]

However, specific optimizations may be applied to avoid the regularization if the flow through one port is
zero or non-negative, see appendix C. It is required that inStream is appropriately approximated when
regularization is needed and the approximation must fulfill the following requirements:

1. inStream(mi.c.h_outflow) and inStream(ck.h_outflow) must be unique with respect to all
values of the flow and stream variables in the connection set, and must have a continuous depen-
dency on them.

2. Every solution of the implicit equation system above must fulfill the equation system identically
(upto the usual numerical accuracy), provided the absolute value of every flow variable in the
connection set is greater than a small value (|mi.c.m_flow| > eps for 1 ≤ i ≤ N and |ci.m_flow| >
eps for 1 ≤ i ≤ M).

[Based on the above requirements, the following implementation is recommended:

� N = 1, M = 0:

inStream(m1.c.h_outflow) = m1.c.h_outflow;

� N = 2, M = 0:

inStream(m1.c.h_outflow) = m2.c.h_outflow;
inStream(m2.c.h_outflow) = m1.c.h_outflow;

� N = 1, M = 1:

inStream(m1.c.h_outflow) = inStream(c1.h_outflow);
// Additional equation to be generated
c1.h_outflow = m1.c.h_outflow;

� N = 0, M = 2:

// Additional equation to be generated
c1.h_outflow = inStream(c2.h_outflow);
c2.h_outflow = inStream(c1.h_outflow);

� All other cases:

if mj.c.m_flow.min >= 0 for all j = 1:N with j <> i and
ck.m_flow.max <= 0 for all k = 1:M

then
inStream(mi.c.h_outflow) = mi.c.h_outflow;

239

Modelica Language Specification 3.7-dev
15.2. inStream and Connection Equations

else
si = sum (max(-mj.c.m_flow ,0) for j in cat(1,1:i-1, i+1:N) +

sum(max(ck.m_flow ,0) for k in 1:M);
inStream(mi.c.h_outflow) =
(sum(positiveMax(-mj.c.m_flow ,si)*mj.c.h_outflow)
+ sum(positiveMax(ck.m_flow ,s_i)*inStream(ck.h_outflow)))/
(sum(positiveMax(-mj.c.m_flow ,s_i))
+ sum(positiveMax(ck.m_flow ,s_i)))

for j in 1:N and i <> j and mj.c.m_flow.min < 0,
for k in 1:M and ck.m_flow.max > 0

// Additional equations to be generated
for q in 1:M loop

if mj.c.m_flow.min >= 0 for all j = 1:N and
ck.m_flow.max <= 0 for all k = 1:M and k <> q

then
cq.h_outflow = 0;

else
sq = (sum(max(-mj.c.m_flow ,0) for j in 1:N) +

sum(max(ck.m_flow ,0) for k in cat(1,1:q-1, q+1:M)));
cq.h_outflow = (sum(positiveMax(-mj.c.m_flow ,s_q)*mj.c.h_outflow) +

sum(positiveMax(ck.m_flow ,sq)* inStream(ck.h_outflow)))/
(sum(positiveMax(-mj.c.m_flow ,s_q)) +
sum(positiveMax(ck.m_flow ,s_q)))

for j in 1:N and mj.c.m_flow.min < 0,
for k in 1:M and k <> q and ck.m_flow.max > 0

end for;

The operator positiveMax(-mj.c.m_flow, si) should be such that:

� positiveMax(-mj.c.m_flow, si) = -mj.c.m_flow if −mj.c.m_flow > eps1 j ≥ 0, where eps1 j

are small flows, compared to typical problem-specific values,

� all denominators should be greater than eps2 > 0, where eps2 is also a small flow, compared to
typical problem-specific values.

Trivial implementation of positiveMax guarantees continuity of inStream:

postiveMax(-mj.c.m_flow , si) = max(-mj.c.m_flow , eps1); // so si is not needed

More sophisticated implementation, with smooth approximation, applied only when all flows are small:

// Define a "small number" eps (nominal(v) is the nominal value of v, see
section 4.9.6)

eps := relativeTolerance*min(nominal(mj.c.m_flow));

// Define a smooth curve , such that alpha(si >= eps)=1 and alpha(si < 0)=0
alpha := smooth(1, if si > eps then 1

else if si > 0 then (si/eps)^2*(3 -2* si/eps)
else 0);

// Define function positiveMax(v,s_i) as a linear combination of max (v,0)
// and of eps along alpha
positiveMax ((-mj.c.m_flow ,s_i) := alpha*max(-mj.c.m_flow ,0) + (1-alpha)*eps;

The derivation of this implementation is discussed in appendix C. Note that in the cases N = 1, M = 0
(unconnected port, physically corresponding to a plugged-up flange), and N = 2, M = 0 (one-to-one
connection), the result of inStream is trivial and no non-linear equations are left in the model, despite
the fact that the original definition equations are nonlinear.

The following properties hold for this implementation:

� inStream is continuous (and differentiable), provided that mj.c.h_outflow, mj.c.m_flow, ck.
h_outflow, and ck.m_flow are continuous and differentiable.

� A division by zero can no longer occur (since sum(positiveMax(-mj.c.m_flow, si)) ≥ eps2 >
0), so the result is always well-defined.

240

Modelica Language Specification 3.7-dev
15.3. actualStream

� The balance equations are exactly fulfilled if the denominator is not close to zero (since the exact
formula is used, if sum(positiveMax(-mj.c.m_flow, si)) > eps).

� If all flows are zero, inStream(mi.c.h_outflow) = sum(mj.c.h_outflow for j ̸= i and mj.
c.m_flow.min < 0) / Np, i.e., it is the mean value of all the Np variables mj.c.h_outflow,
such that j ̸= i and mj.c.m_flow.min < 0. This is a meaningful approximation, considering the
physical diffusion effects that are relevant at small flow rates in a small connection volume (thermal
conduction for enthalpy, mass diffusion for mass fractions).

The value of relativeTolerance should be larger than the relative tolerance of the nonlinear solver used
to solve the implicit algebraic equations.

As a final remark, further symbolic simplifications could be carried out by taking into account equations
that affect the flows in the connection set (i.e., equivalent to mj.c.m_flow = 0, which then implies
mj.c.m_flow.min ≥ 0). This is interesting, e.g., in the case of a valve when the stem position is set
identically to closed by its controller.]

15.3 actualStream

actualStream is provided for convenience, in order to return the actual value of the stream variable,
depending on the actual flow direction. The only argument of this built-in operator needs to be a
reference to a stream variable. The operator is vectorizable, in the case of vector arguments. For the
following definition it is assumed that an (inside or outside) connector c contains a stream variable
h_outflow which is associated with a flow variable m_flow in the same connector c:

actualStream(c.h_outflow) =
if c.m_flow > 0 then inStream(c.h_outflow) else c.h_outflow;

[actualStream is typically used in two contexts:

der(U) = c.m_flow * actualStream(c.h_outflow); // (1) energy balance equation
h_c = actualStream(c.h); // (2) monitoring the enthalpy

at port c

In the case of equation (1), although actualStream is discontinuous, the product with the flow variable
is not, because actualStream is discontinuous when the flow is zero by construction. Therefore, a tool
might infer that the expression is smooth(0, . . .) automatically, and decide whether or not to generate
an event. If a user wants to avoid events entirely, he/she may enclose the right-hand side of (1) with
noEvent.

Equations like (2) might be used for monitoring purposes (e.g., plots), in order to inspect what the actual
enthalpy of the fluid flowing through a port is. In this case, the user will probably want to see the change
due to flow reversal at the exact instant, so an event should be generated. If the user doesn’t bother, then
he/she should enclose the right-hand side of (2) with noEvent. Since the output of actualStream will
be discontinuous, it should not be used by itself to model physical behaviour (e.g., to compute densities
used in momentum balances) – inStream should be used for this purpose. actualStream should be used
to model physical behaviour only when multiplied by the corresponding flow variable (like in the above
energy balance equation), because this removes the discontinuity.]

241

Chapter 16

Synchronous Language Elements

This chapter defines synchronous behavior suited for implementation of control systems. The synchronous
behavior relies on an additional kind of discrete-time variables and equations, as well as an additional
kind of when-clause. The benefits of synchronous behavior is that it allows a model to define large
sampled data systems in a safe way, so that the translator can provide good a diagnostic in case of a
modeling error.

The following small example shows the most important elements:

/∗ D i s c r e t e c o n t r o l l e r ∗/
when Clock () then

E * xd = A * previous (xd) + B * yd;
ud = C * previous (xd) + D * yd;

end when;

/∗ Sample c o n t i n u o u s s i g n a l ∗/
yd = sample (y, Clock (3));

/∗ P l a n t ∗/
0 = f(der(x), x, u);
y = g(x);

/∗ Hold ∗/
u = hold(ud);

udu

y yd

ti ∈ { 0, 3, 6, . . . }, i = 0, 1, 2, . . .

yd(ti) = y(ti)
E xd(ti) = A xd(ti−1) + B yd(ti)

ud(ti) = C xd(ti−1) + D yd(ti)
u(t) = ud(ti), ti ≤ t < ti+1

Figure 16.1: A continuous plant and a sampled data controller connected together with sample
and (zero-order) hold elements.

� A periodic clock is defined with Clock(3). The argument of Clock defines the sampling interval
(for details see section 16.3).

� Clocked variables (such as yd, xd, ud) are associated uniquely with a clock and can only be directly
accessed when the associated clock is active. Since all variables in a clocked equation must belong
to the same clock, clocking errors can be detected at compile time. If variables from different
clocks shall be used in an equation, explicit cast operators must be used, such as sample to convert
from continuous-time to clocked discrete-time or hold to convert from clocked discrete-time to
continuous-time.

242

Modelica Language Specification 3.7-dev
16.1. Rationale for Clocked Semantics

� A continuous-time variable is sampled at a clock tick with sample. The operator returns the value
of the continuous-time variable when the clock is active.

� When no argument is defined for Clock, the clock is deduced by clock inference.

� For a when-clause with an associated clock, all equations inside the when-clause are clocked with
the given clock. All equations on an associated clock are treated together and in the same way
regardless of whether they are inside a when-clause or not. This means that automatic sampling
and hold of variables inside the when-clause does not apply (explicit sampling and hold is required)
and that general equations can be used in such when-clauses (this is not allowed for when-clauses
with Boolean conditions, that require a variable reference on the left-hand side of an equation).

� The when-clause in the controller could also be removed and the controller could just be defined
by the equations:

/* Discrete controller */
E * xd = A * previous(xd) + B * yd;

ud = C * previous(xd) + D * yd;

� previous(xd) returns the value of xd at the previous clock tick. At the first sample instant, the
start value of xd is returned.

� A discrete-time signal (such as ud) is converted to a continuous-time signal with hold.

� If a variable belongs to a particular clock, then all other equations where this variable is used,
with the exception of as argument to certain special operators, belong also to this clock, as well as
all variables that are used in these equations. This property is used for clock inference and allows
defining an associated clock only at a few places (above only in the sampler, whereas in the discrete
controller and the hold the sampling period is inferred).

� The approach in this chapter is based on the clock calculus and inference system proposed by
Colaço and Pouzet (2003) and implemented in Lucid Synchrone version 2 and 3 (Pouzet 2006).
However, the Modelica approach also uses multi-rate periodic clocks based on rational arithmetic
introduced by Forget, Boniol, Lesens, and Pagetti (2008), as an extension of the Lucid Synchrone
semantics. These approaches belong to the class of synchronous languages (Benveniste, Caspi,
Edwards, Halbwachs, Le Guernic, and Simone 2003).

16.1 Rationale for Clocked Semantics

[Periodically sampled control systems could also be defined with standard when-clauses, see section 8.3.5,
and the sample operator, see section 3.7.5. For example:

when sample(0, 3) then
xd = A * pre(xd) + B * y;
u = C * pre(xd) + D * y;

end when;

Equations in a when-clause with a Boolean condition have the property that (a) variables on the left-hand
side of the equal sign are assigned a value when the when-condition becomes true and otherwise hold their
value, (b) variables not assigned in the when-clause are directly accessed (= automatic sample semantics),
and (c) the variables assigned in the when-clause can be directly accessed outside of the when-clause (=
automatic hold semantics).

Using standard when-clauses works well for individual simple sampled blocks, but the synchronous ap-
proach using clocks and clocked equations provide the following benefits (especially for large sampled
systems):

1. Possibility to detect inconsistent sampling rate, since clock partitioning (see section 16.7), replaces
the automatic sample and hold semantics. Examples:

a. If when-clauses in different blocks should belong to the same controller part, but by accident
different when-conditions are given, then this is accepted (no error is detected).

b. If a sampled data library such as the Modelica_LinearSystems2.Contoller library is used, at
every block the sampling of the block has to be defined as integer multiple of a base sampling

243

Modelica Language Specification 3.7-dev
16.2. Definitions

rate. If several blocks should belong to the same controller part, and different integer multiples
are given, then the translator has to accept this (no error is detected).

Note: Clocked systems can mix different sampling rates in well-defined ways when needed.

2. Fewer initial conditions are needed, as only a subset of clocked variables need initial conditions –
the clocked state variables (see section 16.4). For a standard when-clause all variables assigned in a
when-clause must have an initial value because they might be used, before they are assigned a value
the first time. As a result, all these variables are “discrete-time states” although in reality only a
subset of them need an initial value.

3. More general equations can be used, compared to standard when-clauses that require a restricted form
of equations where the left-hand side has to be a variable, in order to identify the variables that are
assigned in the when-clause. This restriction can be circumvented for standard when-clauses, but is
absent for clocked equations and make it more convenient to define nonlinear control algorithms.

4. Clocked equations allow clock inference, meaning that the sampling need only be given once for a
sub-system. For a standard when-clause the condition (sampling) must be explicitly propagated to
all blocks, which is tedious and error prone for large systems.

5. Possible to use general continuous-time models in synchronous models (e.g., some advanced con-
trollers use an inverse model of a plant in the feedforward path of the controller, see Thümmel,
Looye, Kurze, Otter, and Bals (2005)). This powerful feature of Modelica to use a nonlinear plant
model in a controller would require to export the continuous-time model with an embedded inte-
gration method and then import it in an environment where the rest of the controller is defined.
With clocked equations, clocked controllers with continuous-time models can be directly defined in
Modelica.

6. Clocked equations are straightforward to optimize because they are evaluated exactly once at each
event instant. In contrast a standard when-clause with sample conceptually requires several eval-
uations of the model (in some cases tools can optimize this to avoid unneeded evaluations). The
problem for the standard when-clause is that after v is changed, pre(v) shall be updated and the
model re-evaluated, since the equations could depend on pre(v). For clocked equations this itera-
tion can be omitted since previous(v) can only occur in the clocked equations that are only run
the first event iterations.

7. Clocked subsystems using arithmetic blocks are straightforward to optimize. When a standard math-
block (e.g., addition) is part of a clocked sub-system it is automatically clocked and only evaluated
when the clocked equations trigger. For standard when-clauses one either needs a separate sampled
math-block for each operation, or it will conceptually be evaluated all the time. However, tools may
perform a similar optimization for standard when-clauses and it is only relevant in large sampled
systems.

]

16.2 Definitions

In this section various terms are defined.

16.2.1 Clocks and Clocked Variables

In section 3.8.5 the term discrete-time Modelica expression and in section 3.8.6 the term continuous-time
Modelica expression is defined. In this chapter, two additional kinds of discrete-time expressions/variables
are defined that are associated to clocks and are therefore called clocked discrete-time expressions. The
different kinds of discrete-time variables in Modelica are defined below.

Definition 16.1. Piecewise-constant variable. (See section 3.8.5.) Variables m(t) of base type
Real, Integer, Boolean, enumeration, and String that are constant inside each interval ti ≤ t < ti+1

(i.e., piecewise constant continuous-time variables). In other words, m(t) changes value only at events:
m(t) = m(ti), for ti ≤ t < ti+1. Such variables depend continuously on time and they are discrete-time
variables. See figure 16.2.

244

Modelica Language Specification 3.7-dev
16.2. Definitions

time t
t0 t1 t2

m(t)

m−(t1)

m(t1)

Figure 16.2: A piecewise-constant variable.

Definition 16.2. Clock variable. Clock variables c(ti) are of base type Clock. A clock is either
defined by a constructor (such as Clock(3)) that defines when the clock ticks (is active) at a particular
time instant, or it is defined with clock operators relatively to other clocks, see section 16.5.1. See
figure 16.3.

[Example: Clock variables:

Clock c1 = Clock(. . .);
Clock c2 = c1;
Clock c3 = subSample(c2, 4);

]

time t
t0 t1 t2 t3

c(ti)

Figure 16.3: A clock variable. The value of a clock variable is not defined – the plot marks only
indicate when the clock is active.

Definition 16.3. Clocked variable. The elements of clocked variables r(ti) are of base type Real
, Integer, Boolean, enumeration, String that are associated uniquely with a clock c(ti). A clocked
variable can only be directly accessed at the event instant where the associated clock is active. A
constant and a parameter can always be used at a place where a clocked variable is required.

[Note that clock variables are not included in this list. This implies that clock variables cannot be used
where clocked variables are required.]

At time instants where the associated clock is not active, the value of a clocked variable can be inquired
by using an explicit cast operator, see below. In such a case hold semantics is used, in other words the
value of the clocked variable from the last event instant is used. See figure 16.4.

time t
t0 t1 t2 t3

r(ti)

c(ti)

Figure 16.4: A clocked variable. The hold extrapolation of the value at the last event instant is
illustrated with dashed green lines.

245

Modelica Language Specification 3.7-dev
16.2. Definitions

16.2.2 Base- and Sub-Partitions

There are two kinds of clock partitions:

Definition 16.4. Base-partition. A base-partition identifies a set of equations and a set of variables
which must be executed together in one task. Different base-partitions can be associated to separate
tasks for asynchronous execution.

Definition 16.5. Sub-partition. A sub-partition identifies a subset of equations and a subset of
variables of a base-partition which are partially synchronized with other sub-partitions of the same
base-partition, i.e., synchronized when the ticks of the respective clocks are simultaneous.

The terminology for the partitions is as follows:

� Clocked base-partitions.

– Discrete-time sub-partitions.

– Discretized sub-partitions.

� Unclocked base-partition.

[Note that the term clock partition refers to these partitions in general, whereas clocked base-partition is
a specific kind of partition. Previously the discrete-time sub-partitions were called clocked discrete-time
(sub-clock partition). Further, discretized sub-partitions were called discretized continuous-time (sub-
clock partition). When emphasizing that the partitions are clock partitions, sub-partitions can still be
referred to as sub-clock partitions; and similarly for base-partition.]

16.2.3 Argument Restrictions (Component Expression)

The built-in operators (with function syntax) defined in the following sections have partially restrictions
on their input arguments that are not present for Modelica functions. To define the restrictions, the
following term is used.

Definition 16.6. Component expression. A component expression is a component-reference which
is a valid expression, i.e., not referring to models or blocks with equations. In detail, it is an instance
of a (a) base type, (b) derived type, (c) record, (d) an array of such an instance (a-c), (e) one or more
elements of such an array (d) defined by index expressions which are evaluable (see below), or (f) an
element of records.

[The essential features are that one or several values are associated with the instance, that start values
can be defined on these values, and that no equations are associated with the instance. A component
expression can be constant or can vary with time.]

In the following sections, when defining an operator with function calling syntax, there are some com-
mon restrictions being used for the input arguments (operands). For example, an input argument to
the operator may be required to be a component expression (definition 16.6) or evaluable expression
(section 3.8). To emphasize that there are no such restrictions, an input argument may be said to be
just an expression.

[The reason for restricting an input argument to be a component expression is that the start value of the
input argument is returned before the first tick of the clock of the input argument and this is not possible
for a general expression.

The reason for restricting an input argument to be an evaluable expression is to ensure that clock analysis
can be performed during translation. In cases when special handling of parameter expressions is specified,
it is an indication that the values are not needed during translation.]

[Example: The input argument to previous is restricted to be a component expression.

Real u1;
Real u2[4];
Complex c;
Resistor R;
. . .

246

Modelica Language Specification 3.7-dev
16.3. Clock Constructors

y1 = previous(u1); // fine
y2 = previous(u2); // fine
y3 = previous(u2[2]); // fine
y4 = previous(c.im); // fine
y5 = previous (2 * u); // error (general expression , not component expression)
y6 = previous(R); // error (component , not component expression)

]

[Example: The named argument factor of subSample is restricted to be an evaluable expression.

Real u;
parameter Real p=3;
. . .
y1 = subSample(u, factor = 3); // fine (literal)
y2 = subSample(u, factor = 2 * p - 3); // fine (evaluable expression)
y3 = subSample(u, factor = 3 * u); // error (general expression)

]

None of the operators defined in this chapter vectorize, but some can operate directly on array variables
(including clocked array variables, but not clock array variables). They are not callable in functions.

16.3 Clock Constructors

The overloaded constructors listed below are available to generate clocks, and it is possible to call them
with the specified named arguments, or with positional arguments (according to the order shown in the
details after the table). None of these operators are allowed inside function classes.

Expression Description Details

Clock() Inferred clock Operator 16.1
Clock(intervalCounter, resolution) Rational interval clock Operator 16.2
Clock(interval) Real interval clock Operator 16.3
Clock(condition, startInterval) Event clock Operator 16.4
Clock(c, solverMethod) Solver clock Operator 16.5

Operator 16.1 Clock

Clock ()

Inferred clock . The operator returns a clock that is inferred.

[Example:

when Clock () then // equations are on the same clock
x = A * previous(x) + B * u;
Modelica.Utilities.Streams.print
("clock ticks at = " + String(sample(time)));

end when;

Note, in most cases, the operator is not needed and equations could be written without a when-
clause (but not in the example above, since the print statement is otherwise not associated to a
clock). This style is useful if a modeler would clearly like to mark the equations that must belong
to one clock (although a tool could figure this out as well, if the when-clause is not present).]

Operator 16.2 Clock

Clock(intervalCounter=intervalCounter , resolution=resolution)

Rational interval clock . The first input argument, intervalCounter , is a clocked component ex-
pression (definition 16.6) or an evaluable expression of type Integer with min = 0. The optional
second argument resolution (defaults to 1) is an evaluable expression of type Integer with min
= 1 and unit = "Hz". If intervalCounter is an evaluable expression with value zero, the period
of the clock is derived by clock inference, see section 16.7.5.

247

Modelica Language Specification 3.7-dev
16.3. Clock Constructors

If intervalCounter is an evaluable expression greater than zero, the clock defines a periodic clock.
If intervalCounter is a clocked component expression it must be greater than zero. The result is of
base type Clock that ticks when time becomes tstart, tstart+interval1, tstart+interval1+interval2,
. . . The clock starts at the start of the simulation tstart or when the controller is switched
on. At the first clock tick, intervalCounter must be computed and the second clock tick is
scheduled interval1 = intervalCounter/resolution into the future. At the second clock tick at
time tstart + interval1, a new value for intervalCounter must be computed and the next clock tick
is scheduled interval2 = intervalCounter/resolution into the future, and so on.

[The given interval and time shift can be modified by using the subSample, superSample, shiftSample
and backSample operators on the returned clock, see section 16.5.2.]

[Example:

// first clock tick: previous(intervalCounter) = 2
Integer intervalCounter(start = 2);
Real y1(start = 0);
Real y2(start = 0);

equation
when Clock(2, 1000) then
// periodic clock that ticks at 0, 0.002, 0.004, . . .
y1 = previous(y1) + 1;

end when;

when Clock(intervalCounter , 1000) then
// interval clock that ticks at 0, 0.003, 0.007, 0.012, . . .
intervalCounter = previous(intervalCounter) + 1;
y2 = previous(y2) + 1;

end when;

Note that operator interval(c) of Clock c = Clock(intervalCounter, resolution) returns:
previous(intervalCounter) / resolution (in seconds)]

Operator 16.3 Clock

Clock(interval=interval)

Real interval clock . The input argument, interval , is a clocked component expression (defini-
tion 16.6) or a parameter expression. The interval must be strictly positive (interval > 0) of type
Real with unit = "s". The result is of base type Clock that ticks when time becomes tstart,
tstart + interval1, tstart + interval1 + interval2, . . . The clock starts at the start of the simulation
tstart or when the controller is switched on. Here the second clock tick is scheduled interval1 =
interval into the future. At the second clock tick at time tstart + interval1, the next clock tick is
scheduled interval2 = interval into the future, and so on. If interval is a parameter expression,
the clock defines a periodic clock.

[The given interval and time shift can be modified by using the subSample, superSample, shiftSample
and backSample operators on the returned clock, see section 16.5.2. There are restrictions where
this operator can be used, see Clock expressions below. Note that interval does not have to an
evaluable expression, since different real interval clocks are never compared.]

[Example:

// first clock tick: previous(nextInterval) = 0.002
Real nextInterval(start = 0.002);
Real y(start = 0);

equation
when Clock(nextInterval) then
// Real interval clock that ticks at 0, 0.003, 0.007, 0.012, . . .
nextInterval = previous(nextInterval) + 1e-3;
y = previous(y) + 1;

end when;

]

248

Modelica Language Specification 3.7-dev
16.3. Clock Constructors

Operator 16.4 Clock

Clock(condition=condition, startInterval=startInterval)

Event clock . The first input argument, condition, is a continuous-time expression of type Boolean.
The optional startInterval argument (defaults to 0) is the value returned by interval() at the
first tick of the clock, see section 16.9. The result is of base type Clock that ticks when edge(pre
(condition)) becomes true.

[This clock is used to trigger a clocked base-partition due to a state event (that is a zero-crossing of
a Real variable) in an unclocked base-partition, or due to a hardware interrupt that is modeled as
Boolean in the simulation model. The additional pre delays the event clock one event iteration,
but does not introduce any time-delay.]

[Example:

Clock c = Clock(angle > 0, 0.1); // before first tick of c:
// interval(c) = 0.1

]

[Example: Demonstrating the subtle effect of the additional pre:

Boolean b = time >= 0.5;
Clock c = Clock(b);
Boolean b2 = sample(b, c);

The first tick of c (the clock of b2) is at 0.5 where b2 is true. This is because both the event
clock and sample introduce a delay of one event iteration, keeping them synchronized.]

[The implicitly given interval and time shift can be modified by using the subSample, superSample
, shiftSample and backSample operators on the returned clock, see section 16.5.2, provided the
base interval is not smaller than the implicitly given interval.]

Operator 16.5 Clock

Clock(c=c, solverMethod=solverMethod)

Solver clock . The first input argument, c, is a clock and the operator returns this clock. The
returned clock is associated with the second input argument solverMethod of type String. The
meaning of solverMethod is defined in section 16.8.2. If solverMethod is the empty String, then
this Clock construct does not associate an integrator with the returned clock.

[Example:

Clock c1 = Clock(1, 10); // 100 ms, no solver
Clock c2 = Clock(c1, "ImplicitTrapezoid"); // 100 ms, ImplicitTrapezoid

solver
Clock c3 = Clock(c2, ""); // 100 ms, no solver

]

Besides inferred clocks and solver clocks, one of the following mutually exclusive associations of clocks
are possible in one base-partition:

1. One or more periodic rational interval clocks, provided they are consistent with each other, see
section 16.7.5.

[Example: Assume y = subSample(u), and Clock(1, 10) is associated with u and Clock(2,
10) is associated with y, then this is correct, but it would be an error if y is associated with a
Clock(1, 3).]

2. Exactly one non-periodic rational interval clock.

3. Exactly one real interval clock.

[Example: Assume Clock c = Clock(2.5), then variables in the same base-partition can be asso-
ciated multiple times with c but not multiple times with Clock(2.5).]

249

Modelica Language Specification 3.7-dev
16.4. Clocked State Variables

4. Exactly one event clock.

5. A default clock, if neither a real interval, nor a rational interval nor an event clock is associated
with a base-partition. In this case the default clock is associated with the fastest sub-partition.

[Typically, a tool will use Clock(1.0) as a default clock and will raise a warning, that it selected a
default clock.]

Clock variables can be used in a restricted form of expressions. Generally, every expression switching
between clock variables must be an evaluable expression (in order that clock analysis can be performed
when translating a model). Thus subscripts on clock variables and conditions of if-then-else switching
between clock variables must be evaluable expressions, and there are similar restrictions for sub-clock
conversion operators section 16.5.2. Otherwise, the following expressions are allowed:

� Declaring arrays of clocks.

[Example: Clock c1[3] = {Clock(1), Clock(2), Clock(3)}]

� Array constructors of clocks: {}, [], cat.

� Array access of clocks.

[Example: sample(u, c1[2])]

� Equality of clocks.

[Example: c1 = c2]

� if-expressions of clocks in equations.

[Example:

Clock c2 =
if f > 0 then
subSample(c1, f)

elseif f < 0 then
superSample(c1, f)

else
c1;

]

� Clock variables can be declared in models, blocks, connectors, and records. A clock variable can be
declared with the prefixes input, output, inner, outer, but not with the prefixes flow, stream,
discrete, parameter, or constant.

[Example:

connector ClockInput = input Clock;

]

16.4 Clocked State Variables

Definition 16.7. Clocked state variable. A component expression which is not a parameter, and to
which previous has been applied.

The previous value of a clocked variable can be accessed with the previous operator, listed below. This
operator is not allowed inside function classes.

Expression Description Details

previous(u) Previous value of clocked variable Operator 16.6

Operator 16.6 previous

previous(u)

250

Modelica Language Specification 3.7-dev
16.5. Partitioning Operators

The input argument u is a component expression (definition 16.6). If u is a parameter, its value
is returned.

Otherwise: Input and return arguments are on the same clock. At the first tick of the clock of u
or after a reset transition (see section 17.3.2), the start value of u is returned, see section 16.9.
At subsequent activations of the clock of u, the value of u from the previous clock activation is
returned.

[At a clock tick only the (previous) values of the clocked state variables are needed to compute the new
values of all clocked variables on that clock. This roughly corresponds to state variables in continuous
time.]

16.5 Partitioning Operators

A set of clock conversion operators together act as boundaries between different clock partitions.

16.5.1 Base-Clock Conversion Operators

The operators listed below convert between a clocked and an unclocked representation and vice versa.
None of these operators are allowed inside function classes.

Expression Description Details

sample(u, clock) Sample unclocked expression Operator 16.7
hold(u) Zeroth order hold of clocked-time variable Operator 16.8

Operator 16.7 sample

sample(u, clock)

Input argument u is in an unclocked base-partition, and there are no variability restrictions, i.e.,
it is continuous-time according to section 3.8.6. The optional input argument clock is of type
Clock, and can in a call be given as a named argument (with the name clock), or as positional
argument. The operator returns a clocked variable that has clock as associated clock and has the
value of the left limit of u when clock is active (that is the value of u just before the event of clock
is triggered). If clock is not provided, it is inferred, see section 16.7.5.

[Since the operator returns the left limit of u, it introduces an infinitesimal small delay between the
unclocked and the clocked partition. This corresponds to the reality, where a sampled data system
cannot act infinitely fast and even for a very idealized simulation, an infinitesimal small delay is
present. The consequences for the sorting are discussed below.

Input argument u can be a general expression, because the argument is unclocked and therefore
has always a value. It can also be a constant, a parameter or a piecewise constant expression.

Note that sample is an overloaded function: If sample has two positional input arguments and
the second argument is of type Real, it is the operator from section 3.7.5. If sample has one
input argument, or it has two input arguments and the second argument is of type Clock, it is the
base-clock conversion operator from this section.]

Operator 16.8 hold

hold(u)

Input argument u is a clocked (definition 16.3) component expression (definition 16.6) or a param-
eter expression. The operator returns a piecewise constant signal of the same type as u. When
the clock of u ticks, the operator returns u and otherwise returns the value of u from the last
clock activation. Before the first clock activation of u, the operator returns the start value of u,
see section 16.9.

[Since the input argument is not defined before the first tick of the clock of u, the restriction is
present, that it must be a component expression (or a parameter expression), in order that the
initial value of u can be used in such a case.]

[Example: Assume there is the following model:

251

Modelica Language Specification 3.7-dev
16.5. Partitioning Operators

Real y(start = 1), yc;
equation
der(y) + y = 2;
yc = sample(y, Clock (0.1));

initial equation
der(y) = 0;

The value of yc at the first clock tick is yc = 2 (and not yc = 1). The reason is that the continuous-time
model der(y) + y = 2 is first initialized and after initialization y has the value 2. At the first clock tick
at time = 0, the left limit of y is 2 and therefore yc = 2.]

16.5.1.1 Sorting of a Simulation Model

[Since sample(u) returns the left limit of u, and the left limit of u is a known value, all inputs to a
base-partition are treated as known during sorting. Since a periodic and interval clock can tick at most
once at a time instant, and since the left limit of a variable does not change during event iteration
(i.e., re-evaluating a base-partition associated with a condition clock always gives the same result because
the sample(u) inputs do not change and therefore need not to be re-evaluated), all base-partitions, see
section 16.7.3, need not to be sorted with respect to each other. Instead, at an event instant, active
base-partitions can be evaluated first (and once) in any order. Afterwards, the unclocked base-partition
is evaluated.

Event iteration takes place only over the unclocked base-partition. In such a scenario, accessing the left
limit of u in sample(u) just means to pick the latest available value of u when the base-partition is
entered, storing it in a local variable of the base-partition and only using this local copy during evaluation
of the equations in this base-partition.]

16.5.2 Sub-Clock Conversion Operators

The operators listed below convert between synchronous clocks. None of these operators are allowed
inside function classes.

Expression Description Details

subSample(u, factor) Clock that is slower by a factor Operator 16.9
superSample(u, factor) Clock that is faster by a factor Operator 16.10
shiftSample(u, shiftCounter, resolution) Clock with time-shifted ticks Operator 16.11
backSample(u, backCounter, resolution) Inverse of shiftSample Operator 16.12
noClock(u) Clock that is always inferred Operator 16.13

These operators have the following properties:

� The input argument u is a clocked expression or an expression of type Clock. (The operators can
operate on all types of clocks.) If u is a clocked expression, the operator returns a clocked variable
that has the same type as the expression. If u is an expression of type Clock, the operator returns
a Clock – except for noClock where it is an error.

� The optional input arguments factor (defaults to 0, with min = 0), and resolution (defaults to
1, with min = 1) are evaluable expressions of type Integer.

� Calls of the operators can use named arguments for the multi-letter arguments (i.e., not for u) with
the given names, or positional arguments.

[Named arguments can make the calls easier to understand.]

� The input arguments shiftCounter and backCounter are evaluable expressions of type Integer
with min = 0.

Operator 16.9 subSample

subSample(u, factor=factor)

The clock of y = subSample(u, factor) is factor times slower than the clock of u. At every
factor ticks of the clock of u, the operator returns the value of u. The first activation of the clock
of y coincides with the first activation of the clock of u, and then every activation of the clock of

252

Modelica Language Specification 3.7-dev
16.5. Partitioning Operators

y coincides with the every factorth activativation of the clock of u. If factor is not provided or is
equal to zero, it is inferred, see section 16.7.5.

Operator 16.10 superSample

superSample(u, factor=factor)

The clock of y = superSample(u, factor) is factor times faster than the clock of u. At every
tick of the clock of y, the operator returns the value of u from the last tick of the clock of u. The
first activation of the clock of y coincides with the first activation of the clock of u, and then the
interval between activations of the clock of u is split equidistantly into factor activations, such
that the activation 1 + k · factor of y coincides with the 1 + k activation of u.

[Thus subSample(superSample(u, factor), factor) = u.]

If factor is not provided or is equal to zero, it is inferred, see section 16.7.5. If an event clock
is associated to a base-partition, all its sub-partitions must have resulting clocks that are sub-
sampled with an Integer factor with respect to this base-clock.

[Example: Restrictions on super-sampling of event clocks:

Clock u = Clock(x > 0);
Clock y1 = subSample(u, 4);
Clock y2 = superSample(y1, 2); // fine; y2 = subSample(u, 2)
Clock y3 = superSample(u, 2); // error
Clock y4 = superSample(y1, 5); // error

]

[Example: Valid use of superSample for clocked expressions:

Integer y = integer(sample(time +0.5, Clock (1))); // Rounded
Integer ySub = subSample(y, 4);
Integer ySubSuper = superSample(ySub , 5);

Here y has the value 0 at time 0.0, 1 at 1.0, etc, and ySub has the value 0 at time 0.0, 4 at 4.0,
8 at 8.0 etc. The super-sampled signal ySubSuper has the value 0 for 5 samples starting at time
0.0, the value 4 for 5 samples starting at time 4.0, etc.]

Operator 16.11 shiftSample

shiftSample(u, shiftCounter=k, resolution=resolution)

The operator c = shiftSample(u, k, resolution) splits the interval between ticks of u into
resolution equidistant intervals i. The clock c then ticks k intervals i after each tick of u.

It leads to

shiftSample(u, k, resolution) =
subSample(shiftSample(superSample(u, resolution), k), resolution)

[Note, due to the restriction of superSample on event clocks, shiftSample can only shift the
number of ticks of the event clock, but cannot introduce new ticks. Example:

// Rational interval clock
Clock u = Clock(3, 10); // ticks: 0, 3/10, 6/10, . . .
Clock y1 = shiftSample(u, 1, 3); // ticks: 1/10, 4/10, . . .
// Event clock
Integer revolutions = integer(time);
Clock u = Clock(change(revolutions), startInterval = 0.0);

// ticks: 0.0, 1.0, 2.0, 3.0, . . .
Clock y1 = shiftSample(u, 2); // ticks: 2.0, 3.0, . . .
Clock y2 = shiftSample(u, 2, 3); // error (resolution must be 1)

Additional example showing the full form:

Integer intervalCnt(start =2);
Integer cnt(start =0);
Clock u = Clock(intervalCnt ,1);

253

Modelica Language Specification 3.7-dev
16.5. Partitioning Operators

Clock s1 = shiftSample(u, 3, 2);
equation

when u then
cnt = previous(cnt) + 1;
intervalCnt = if (cnt >=2) then 1 else previous(intervalCnt);

end when;

Here u ticks at 0, 2, 3, 4, 5, 6. First you superSample to split each sampling interval in two
equal parts leading to the ticks 0.0, 1.0, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0. Then the simple
shiftSample removes the first three ticks giving 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0. And finally
every other point is removed by subSample, and s1 ticks at 2.5, 3.5, 4.5, 5.5.]

[Example: The effect of the shiftSample resolution explained in terms of superSample and
subSample:

Integer y = integer(sample(time +0.5, Clock (1))); // Rounded
Integer yShift = shiftSample(y, 1, 5);
Integer yShift2 = subSample(shiftSample(superSample(y, 5), 1), 5);

Here, yShift and yShift2 are identical, with value 0 at time 0.2, 1 at 1.2, etc.]

Operator 16.12 backSample

backSample(u, backCounter=cnt , resolution=res)

The input argument u is either a component expression (definition 16.6) or an expression of
type Clock. This is an inverse of shiftSample such that Clock y = backSample(u, cnt, res)
implicitly defines a clock y such that shiftSample(y, cnt, res) activates at the same times as
u. It is an error if the clock of y starts before the base-clock of u.

At every tick of the clock of y, the operator returns the value of u from the last tick of the
clock of u. If u is a clocked component expression, the operator returns the start value of u, see
section 16.9, before the first tick of the clock of u.

[Example:

// Rational interval clock 1
Clock u = Clock(3, 10); // ticks: 0, 3/10, 6/10, . . .
Clock y1 = shiftSample(u, 3); // ticks: 9/10, 12/10 , . . .
Clock y2 = backSample(y1, 2); // ticks: 3/10, 6/10, . . .
Clock y3 = backSample(y1, 4); // error (ticks before u)
Clock y4 = shiftSample(u, 2, 3); // ticks: 2/10, 5/10, . . .
Clock y5 = backSample(y4, 1, 3); // ticks: 1/10, 4/10, . . .
// Event clock
Integer revolutions = integer(time);
Clock u = Clock(change(revolutions), startInterval = xx)

// ticks: 0, 1.0, 2.0, 3.0, . . .
Clock y1 = shiftSample(u, 3); // ticks: 3.0, 4.0, . . .
Clock y2 = backSample(y1, 2); // ticks: 1.0, 2.0, . . .

]

[Clarification of backSample:

Let a and b be positive integers with a < b, and

yb = backSample(u, a, b)
ys = shiftSample(u, b− a, b)

Then when ys exists, also yb exists and ys = yb.

The variable yb exists for the above parameterization with a < b one clock tick before ys. Therefore,
backSample is basically a shiftSample with a different parameterization and the clock of backSample.y
ticks before the clock of u. Before the clock of u ticks, yb = u.start.

[Example: Time is shifted in the same direction when using backSample as when using shiftSample,
but by a different amount:

254

Modelica Language Specification 3.7-dev
16.6. Clocked When-Clause

Integer y = integer(sample(time +0.5, Clock (1))); // Rounded
Integer yShift(start =10) = shiftSample(y, 1, 5);
Integer yBack = backSample(yShift , 1, 5);
Integer yShift2 = shiftSample(yShift , 4, 5);

Here yBack has the value 10 (the start value of yShift) at time 0.0, 0 at 1.0, 1 at 2.0 etc. The only
difference between yBack and yShift2 is that yShift2 does not have a value at time 0.0, i.e., it begins
with the value 0 at time 1.0.]

]

Operator 16.13 noClock

noClock(u)

The clock of y = noClock(u) is always inferred, and u must be part of the same base-clock as y.
At every tick of the clock of y, the operator returns the value of u from the last tick of the clock
of u. If noClock(u) is called before the first tick of the clock of u, the start value of u is returned.

[Clarification of noClock operator:

Note, that noClock(u) is not equivalent to sample(hold(u)). Consider the following model:

model NoClockVsSampleHold
Clock clk1 = Clock (0.1);
Clock clk2 = subSample(clk1 , 2);
Real x(start = 0), y(start = 0), z(start = 0);

equation
when clk1 then
x = previous(x) + 0.1;

end when;
when clk2 then
y = noClock(x); // most recent value of x
z = sample(hold(x)); // left limit of x (infinitesimally delayed)!

end when;
end NoClockVsSampleHold;

Due to the infinitesimal delay of sample, z will not show the current value of x as clk2 ticks, but will
show its previous value (left limit). However, y will show the current value, since it has no infinitesimal
delay.]

Note that it is not legal to compute the derivative of the sample, subSample, superSample, backSample,
shiftSample, and noClock operators.

16.6 Clocked When-Clause

In addition to the previously discussed when-equation (see section 8.3.5), a clocked when-clause is intro-
duced:

when clockExpression then
⟨clocked equations⟩
. . .

end when;

The clocked when-clause cannot be nested and does not have any elsewhen part. It cannot be used
inside an algorithm. General equations are allowed in a clocked when-clause.

For a clocked when-clause, all equations inside the when-clause are clocked with the same clock given by
the clockExpression.

16.7 Clock Partitioning

This section defines how clock-partitions and clocks associated with equations are inferred.

255

Modelica Language Specification 3.7-dev
16.7. Clock Partitioning

[Typically clock partitioning is performed before sorting the equations. The benefit is that clocking and
symbolic transformation errors are separated.]

Every clocked variable is uniquely associated with exactly one clock.

After model flattening, every equation in an equation section, every expression and every algorithm
section is either unclocked, or it is uniquely associated with exactly one clock. In the latter case it is
called a clocked equation, a clocked expression or clocked algorithm section respectively. The associated
clock is either explicitly defined by a when-clause, see section 16.5.2, or it is implicitly defined by the
requirement that a clocked equation, a clocked expression and a clocked algorithm section must have
the same clock as the variables used in them with exception of the expressions used as first arguments
in the conversion operators of section 16.5. Clock inference means to infer the clock of a variable, an
equation, an expression or an algorithm section if the clock is not explicitly defined and is deduced from
the required properties in the previous two paragraphs.

All variables in an expression without clock conversion operators must have the same clock to infer the
clocks for each variable and expression. The clock inference works both forward and backwards regarding
the data flow and is also being able to handle algebraic loops. The clock inference method uses the set
of variable incidences of the equations, i.e., what variables that appear in each equation.

Note that incidences of the first argument of clock conversion operators of section 16.5 are handled
specially.

[As clock partitions are solely determined by the equations, two different clock partitions can have clocks
defined by the same expressions. It is a quality of implementation issue that such partitions are executed
synchronously, e.g., by putting them in the same task in a real-time simulation context.]

16.7.1 Flattening of Model

The clock partitioning is conceptually performed after model flattening, i.e., redeclarations have been
elaborated, arrays of model components expanded into scalar model components, and overloading re-
solved. Furthermore, function calls to inline functions have been inlined.

[This is called conceptually, because a tool might do this more efficiently in a different way, provided
the result is the same as if everything is flattened. For example, array and matrix equations and records
don’t not need to be expanded if they have the same clock.]

Furthermore, each non-trivial expression (non-literal, non-constant, non-parameter, non-variable), expr i,
appearing as first argument of a clock conversion operator (except hold and backSample) is recursively
replaced by a unique variable, vi, and the equation vi = expr i is added to the equation set.

16.7.2 Connected Components of the Equations and Variables Graph

Consider the set E of equations and the set V of unknown variables (not constants and parameters) in a
flattened model, i.e., M = ⟨E, V ⟩. The partitioning is described in terms of an undirected graph ⟨N, F ⟩
with the nodes N being the set of equations and variables, N = E ∪ V . The set incidence(e) for an
equation e in E is a subset of V , in general, the unknowns which lexically appear in e. There is an edge
in F of the graph between an equation, e, and a variable, v, if v ∈ incidence(e):

F = {(e, v) : e ∈ E, v ∈ incidence(e)}

A set of clock partitions is the connected components (Wikipedia, Connected components) of this graph
with appropriate definition of the incidence operator.

A special case is the built-in variable time (see section 3.6.7). Each use of time is conceptually included
as a separate variable in this analysis, timei with der(timei) = 1.

[This means that time can be used in different partitions without any restrictions. Additionally, it means
that every sub-partition directly referencing time contains a call to der.]

256

Modelica Language Specification 3.7-dev
16.7. Clock Partitioning

16.7.3 Base-Partitioning

The goal is to identify all clocked equations and variables that should be executed together in the same
task, as well as to identify the unclocked base-partition.

The base-partitioning is performed with base-clock inference which uses the following incidence definition:
incidence(e) =

the unknown variables, as well as variables x in der(x), pre(x), and previous(x), which lexically
appear in e

except as first argument of base-clock conversion operators: sample and hold and Clock(
condition=. . ., startInterval=. . .).

The resulting set of connected components, is the partitioning of the equations and variables, Bi =
⟨Ei, Vi⟩, according to base-clocks and unclocked partitions.

The base partitions are identified as clocked or as unclocked partitions according to the following prop-
erties:

A variable u in sample(u), a variable y in y = hold(ud), and a variable b in Clock(b, startInterval
=. . .) where the Boolean b is in an unclocked partition.

Correspondingly, variables u and y in y = sample(uc), y = subSample(u), y = superSample(u), y =
shiftSample(u), y = backSample(u), y = previous(u), are in a clocked base-partition. Equations
in a clocked when-clause are also in a clocked base-partition. Other base-partitions, where none of the
variables in the partition are associated with any of the operators above, have an unspecified partition
kind and are considered to be unclocked base-partitions.

All unclocked base-partitions are collected together and form the unclocked base-partition.

[Example:

// Controller 1
ud1 = sample(y,c1);
0 = f1(yd1 , ud1 , previous(yd1));

// Controller 2
ud2 = superSample(yd1 ,2);
0 = f2(yd2 , ud2);

// Unclocked system
u = hold(yd2);
0 = f3(der(x1), x1, u);
0 = f4(der(x2), x2, x1);
0 = f5(der(x3), x3);
0 = f6(y, x1 , u);

After base-partitioning, the following partitions are identified:

// Base partition 1 -- clocked partition
ud1 = sample(y, c1); // incidence(e) = {ud1}
0 = f1(yd1 , ud1 , previous(ud1)); // incidence(e) = {yd1 , ud1}
ud2 = superSample(yd1 , 2); // incidence(e) = {ud2 , yd1}
0 = f2(yd2 , ud2); // incidence(e) = {yd2 , ud2}

// Base partition 2 -- unclocked partition
u = hold(yd2); // incidence(e) = {u}
0 = f3(der(x1), x1, u); // incidence(e) = {x1, u}
0 = f4(der(x2), x2, x1); // incidence(e) = {x2, x1}
0 = f6(y, x1 , u); // incidence(e) = {y, x1, u}

// Identified as separate partition , but belonging to base -partition 2
0 = f5(der(x3), x3); // incidence(e) = {x3}

]

257

Modelica Language Specification 3.7-dev
16.7. Clock Partitioning

16.7.4 Sub-Partitioning

For each clocked base-partition Bi, identified in section 16.7.3, the sub-partitioning is performed with
sub-clock inference which uses the following incidence definition:

incidence(e) =
the unknown variables, as well as variables x in der(x), pre(x), and previous(x), which lexically
appear in e

except as first argument of sub-clock conversion operators: subSample, superSample,
shiftSample, backSample, noClock, and Clock with first argument of Boolean type.

The resulting set of connected components, is the partitioning of the equations and variables, Sij =
⟨Eij , Vij⟩, according to sub-clocks.

The connected components (corresponding to the sub-clocks) are then further split into strongly con-
nected components corresponding to systems of equations. The resulting sets of equations and variables
shall be possible to solve separately, meaning that systems of equations cannot involve different sub-
clocks.

It can be noted that:
Eij

⋂
Ekl = ∅, ∀i ̸= k, j ̸= l

Vij

⋂
Vkl = ∅, ∀i ̸= k, j ̸= l

V =
⋃

Vij

E =
⋃

Eij

[Example: After sub-partitioning of the example from section 16.7.3, the following partitions are identi-
fied:

// Base partition 1 (clocked partition)
// Sub -partition 1.1
ud1 = sample(y, c1); // incidence(e) = {ud1}
0 = f1(yd1 , ud1 , previous(yd1)); // incidence(e) = {yd1 ,ud1}

// Sub -partition 1.2
ud2 = superSample(yd1 , 2); // incidence(e) = {ud2}
0 = f2(yd2 , ud2); // incidence(e) = {yd2 ,ud2}

// Base partition 2 (no sub -partitioning , since unclocked)
u = hold(yd2);
0 = f3(der(x1), x1, u);
0 = f4(der(x2), x2, x1);
0 = f5(der(x3), x3);
0 = f6(y, x1 , u);

]

[Example: Forbidding systems of equations involving different sub-clocks means that the following is
forbidden:

Real a;
//Real x=a+z;
Real y=superSample(a+z, 2);
Real z;

equation
a+z = sample(time , Clock (1 ,100));
0 = subSample(y, 2)+a;

Here a and z are part of one sub-clock, and y of another, and the system of equations involve both of
them.

The following legal example solves the issues in the previous example by replacing a by x-z (and simpli-
fying the equations). Additionally, it shows that it is not required that the sub-clocks can necessarily be
sorted:

258

Modelica Language Specification 3.7-dev
16.8. Discretized Sub-Partition

Real x=sample(time , Clock (1 ,100));
Real y=superSample(x, 2);
Real z=subSample(y, 2)+x;

Here x and z are part of one sub-partition, and y of another. The equations form three equation systems
with one equation in each (hence trivially satisfying the requirement that only variables from one sub-
partition are being solved). The equation systems need to be solved in a strict order, but the first and
last equation system belong to one sub-clock, while the second equation system belongs to another sub-
clock. This illustrates that there is no guarantee that the sub-partitions can be ordered in agreement
with the equation systems. Note that equation systems with more than one equation are also allowed in
sub-partitions.]

16.7.5 Sub-Clock Inferencing

For each base-partition, the base interval needs to be determined and for each sub-partition, the sub-
sampling factors and shift need to be determined. The sub-partition intervals are constrained by
subSample and superSample factors which might be known (or evaluable expression) or unspecified, as
well as by shiftSample, shiftCounter and resolution, or backSample, backCounter and resolution.
This constraint set is used to solve for all intervals and sub-sampling factors and shift of the sub-partitions.
The model is erroneous if no solution exist.

[It must be possible to determine that the constraint set is valid at compile time. However, in certain
cases, it could be possible to defer providing actual numbers until run-time.]

It is required that accumulated sub- and supersampling factors in the range of 1 to 263 can be handled.

[64 bit internal representation of numerator and denominator with sign can be used and gives minimum
resolution 1.08× 10−19 seconds and maximum range 9.22× 1018 seconds = 2.92× 1011 years.]

16.8 Discretized Sub-Partition

[The goal is that every continuous-time Modelica model can be utilized in a sampled data control system.
This is achieved by solving the continuous-time equations with a defined integration method between clock
ticks. With this feature, it is for example possible to invert the nonlinear dynamic model of a plant, see
Thümmel, Looye, Kurze, Otter, and Bals (2005), and use it in a feedforward path of an advanced control
system that is associated with a clock.

This feature also allows defining multi-rate systems: Different parts of the continuous-time model are
associated to different clocks and are solved with different integration methods between clock ticks, e.g., a
very fast sub-system with an implicit solver with a small step-size and a slow sub-system with an explicit
solver with a large step-size.]

With the language elements defined in this section, continuous-time equations can be used in clocked
partitions. Hereby, the continuous-time equations are solved with the defined integration method between
clock ticks.

Such a sub-partition is called a discretized sub-partition, and the clock ticks are not interpreted as
events, but as step-sizes of the integrator that the integrator must hit exactly. Hence, no event handling
is triggered at clock ticks (provided an explicit event is not triggered from the model at this time instant).

[The interpretation of the clock ticks is the same assumption as for manually discretized controllers, such
as the z-transform.]

[It is not defined how to handle events that are triggered while solving a discretized sub-partition. For
example, a tool could handle events in the same way as for a usual simulation – but only check them at
the time associated with clock-ticks.

Alternatively, relations might be interpreted literally, so that events are no longer triggered (in order that
the time for an integration step is always the same, as needed for hard real-time requirements). However,
even if relations do not generate events, when-clauses and operators edge and change should behave as
normal.]

259

Modelica Language Specification 3.7-dev
16.8. Discretized Sub-Partition

From the viewpoint of other partitions, the discretized continuous-time variables only have values at
clock ticks (internally it may be more complicated, see section 16.8.2). Therefore, outside the discretized
sub-partitions themselves, they are treated similarly to discrete-time sub-partitions. Especially, operators
such as sample, hold, subSample must be used to communicate signals of the discretized sub-partition
with other partitions.

16.8.1 Discrete-time and Discretized Sub-Partitions

Additionally to the variability of expressions defined in section 3.8, an orthogonal concept clocked vari-
ability is defined in this section. If not explicitly stated otherwise, an expression with a variability such
as continuous-time or discrete-time means that the expression is inside a partition that is unclocked.
If an expression is present in a base-partition that is not an unclocked base-partition, it is a clocked
expression and has clocked variability .

After sub-clock inferencing, see section 16.7.5, every sub-partition that is associated with a clock has to
be categorized as discrete-time or discretized .

[Previously, discrete-time sub-partition was referred to as clocked discrete-time partition, and discretized
sub-partition as clocked discretized continuous-time partition.]

If a clocked sub-partition contains any of the operators der, delay, spatialDistribution, or event
related operators from section 3.7.5 (with exception of noEvent and smooth), or contains a when-clause
with a Boolean condition, it is a discretized sub-partition. Otherwise, it is a discrete-time sub-partition.

[That is, a discrete-time sub-partition is a standard sampled data system described by difference equa-
tions.]

A discretized sub-partition has to be solved with a solver method of section 16.8.2. When previous(x)
is used on a continuous-time state variable x, then previous(x) uses the start value of x as value for
the first clock tick.

The use of the operator sample from section 3.7.5 in a discretized sub-partition is problematic. A
diagnostic is recommended, especially if the operator is intended to generate events faster than the clock
ticks, and otherwise the sampling should ideally be adjusted to the clock ticks.

[The reason for not disallowing sample in a discretized sub-partition is to make it possible to include
any continuous-time Modelica model in a sampled data control system. Note that even if the sampling
is slower than the clock ticks (or even the same rate) it still introduces the problem of possibly uneven
sampling.]

In a discrete-time sub-partition none of the event generating mechanisms apply. Especially neither
relations, nor any of the built-in operators of section 3.7.2 (event triggering mathematical functions) will
trigger events.

16.8.2 Solver Methods

A sub-partition can have an integration method, directly associated (section 16.8.3) or inferred from other
sub-partitions (section 16.8.4). A predefined type ModelicaServices.Types.SolverMethod defines the
methods supported by the respective tool by using the choices annotation.

[The ModelicaServices package contains tool specific definitions. A string is used instead of an enumer-
ation, since different tools might have different values and then the integer mapping of an enumeration
is misleading since the same value might characterize different integrators.]

The following names of solver methods are standardized:

type SolverMethod = String
annotation(choices(
choice = "External" "Solver specified externally",
choice = "ExplicitEuler" "Explicit Euler method (order 1)",
choice = "ExplicitMidPoint2" "Explicit mid point rule (order 2)",
choice = "ExplicitRungeKutta4" "Explicit Runge -Kutta method (order 4)",
choice = "ImplicitEuler" "Implicit Euler method (order 1)",
choice = "ImplicitTrapezoid" "Implicit trapezoid rule (order 2)"

));

260

Modelica Language Specification 3.7-dev
16.8. Discretized Sub-Partition

If a tool supports one of the integrators of SolverMethod, it must use the solver method name of above.

[A tool may also support other integrators. Typically, a tool supports at least methods "External" and
"ExplicitEuler". If a tool does not support the integration method defined in a model, typically a
warning message is printed and the method is changed to "External".]

If the solver method is "External", then the sub-partition associated with this method is integrated by
the simulation environment for an interval of length of interval() using a solution method defined in
the simulation environment.

[An example of such a solution method could be to have a table of the clocks that are associated with
discretized sub-partitions and a method selection per clock. In such a case, the solution method might be
a variable step solver with step-size control that integrates between two clock ticks. The simulation envi-
ronment might also combine all partitions associated with method "External", as well as all unclocked
partitions, and integrate them together with the solver selected by the simulation environment.]

If the solver method is not "External", then the sub-partition is integrated using the given method with
the step-size interval().

[For a periodic clock, the integration is thus performed with fixed step size.]

The solvers are defined with respect to the underlying ordinary differential equation in state space form
that corresponds to the sub-partition before it has been discretized, at least conceptually:

ẋ = f(x, u, t)

y = g(x, u, t)

where:

� t is time

� uc(t) is the continuous-time Real vector of input variables

� ud(t) is the discrete-time Real/Integer/Boolean/String vector of input variables

� x(t) is the continuous-time real vector of states

� y(t) is the continuous-time or discrete-time Real/Integer/Boolean/String vector of algebraic
and/or output variables

A solver method is applied to a discretized sub-partition. Such a partition has explicit inputs umarked by
sample(u), subSample(u), superSample(u), shiftSample(u) and/or backSample(u). Furthermore,
the outputs y of such a partition are marked by hold(y), subSample(y), superSample(y), shiftSample
(y), and/or backSample(y). The arguments of these operators are to be used as input signals u and
output signals y in the conceptual ordinary differential equation above, and in the discretization formulae
below, respectively.

The solver methods (with exception of "External") are defined by integrating from clock tick ti−1 to
clock tick ti and computing the desired variables at ti, with h = ti − ti−1 = interval(u) and xi = x(ti)
(for all methods: yi = g(xi, uc,i, ud,i, ti)):

261

Modelica Language Specification 3.7-dev
16.8. Discretized Sub-Partition

SolverMethod Solution method

"ExplicitEuler"
xi := xi−1 + h · ẋi−1

ẋi := f(xi, uc,i, ud,i, ti)

"ExplicitMidPoint2"
xi := xi−1 + h · f(xi−1 +

1

2
· h · ẋi−1,

uc,i−1 + uc,i

2
, ud,i−1, ti−1 +

1
2 · h)

ẋi := f(xi, uc,i, ud,i, ti)

"ExplicitRungeKutta4"

k1 := h · ẋi−1

k2 := h · f(xi−1 +
1
2k1,

uc,i−1 + uc,i

2
, ud,i−1, ti−1 +

1
2 · h)

k3 := h · f(xi−1 +
1
2k2,

uc,i−1 + uc,i

2
, ud,i−1, ti−1 +

1
2 · h)

k4 := h · f(xi−1 + k3, uc,i, ud,i, ti)

xi := xi−1 +
1
6 · (k1 + 2 · k2 + 2 · k3 + k4)

ẋi := f(xi, uc,i, ud,i, ti)

"ImplicitEuler"

Equation system with unknowns: xi, ẋi

xi = xi−1 + h · ẋi

ẋi = f(xi, uc,i, ud,i, ti)

"ImplicitTrapezoid"

Equation system with unknowns: xi, ẋi

xi = xi−1 +
1
2h · (ẋi + ẋi−1)

ẋi = f(xi, uc,i, ud,i, ti)

The initial conditions will be used at the first tick of the clock, and the first integration step will go from
the first to the second tick of the clock.

[Example: Assume the differential equation

input Real u;
Real x(start = 1, fixed = true);

equation
der(x) = -x + u;

shall be transformed to a discretized sub-partition with the "ExplicitEuler" method. The following
model is a manual implementation:

input Real u;
parameter Real x_start = 1;
Real x(start = x_start); // previous(x) = x_start at first clock tick
Real der_x(start = 0); // previous(der_x) = 0 at first clock tick

protected
Boolean first(start = true);

equation
when Clock () then
first = false;
if previous(first) then
// first clock tick (initialize system)
x = previous(x);

else
// second and further clock tick
x = previous(x) + interval () * previous(der_x);

end if;
der_x = -x + u;

end when;

]

[For the implicit integration methods the efficiency can be enhanced by utilizing the discretization formula
during the symbolic transformation of the equations. For example, linear differential equations are then
mapped to linear and not non-linear algebraic equation systems, and also the structure of the equations
can be utilized. For details see Elmqvist, Otter, and Cellier (1995). It might be necessary to associate
additional data for an implicit integration method, e.g., the relative tolerance to solve the non-linear
algebraic equation systems, or the maximum number of iterations in case of hard realtime requirements.

262

Modelica Language Specification 3.7-dev
16.8. Discretized Sub-Partition

This data is tool specific and is typically either defined with a vendor annotation or is given in the
simulation environment.]

16.8.3 Associating a Solver to a Sub-Partition

A SolverMethod can be associated to a clock with the overloaded Clock constructor Clock(c, solverMethod
=. . .), see section 16.3. If a clock is associated with a sub-clock of a discretized sub-partition and a
SolverMethod is associated with this clock, then the sub-partition is integrated with it.

[Example:

// Continuous PI controller in a clocked partition
vd = sample(x2 , Clock(Clock(1, 10), solverMethod="ImplicitEuler"));
e = ref - vd;
der(xd) = e / Ti;
u = k * (e + xd);

// Physical model
f = hold(u);
der(x1) = x2;
m * der(x2) = f;

]

16.8.4 Inferencing of solverMethod

If a solverMethod is not explicitly associated with a sub-partition, it is inferred with a similar mechanism
as for sub-clock inferencing, see section 16.7.5.

First, one set is constructed for each sub-partition, containing just this sub-partition. These sets are then
merged as follows: For each set without a specified solverMethod, the set is merged with sets connected
to it (these may contain a solverMethod), and this is repeated until it is not possible to merge more
sets. The sets connected in this way should be part of the same base-partition and connected through a
sub-clock conversion operator (subSample, superSample, shiftSample, backSample, or noClock).

� It is an error if this set contains multiple different values for solverMethod.

� If the set contains continuous-time equations:

– It is an error if this set contains no solverMethod.

– Otherwise, the specified solverMethod is used.

� If the set does not contain continuous-time equations, there is no need for a solverMethod. How-
ever, inferencing between sub-partitions works the same regardless of whether there are continuous-
time equations.

[Example:

model InferenceTest
Real x(start = 3) "Explicitly using ExplicitEuler";
Real y "Explicitly using ImplicitEuler method";
Real z "Inferred to use ExplicitEuler";

equation
der(x) = -x + sample(1, Clock(Clock(1, 10), solverMethod="ExplicitEuler"));
der(y) = subSample(x, 2) +

sample(1, Clock(Clock(2, 10), solverMethod="ImplicitEuler"));
der(z) = subSample(x, 2) + 1;

end InferenceTest;

Note that there is only one base-partition, but it has two different periodic rational clocks - consistent
with section 16.7.5.

model IllegalInference
Real x(start = 3) "Explicitly using ExplicitEuler";
Real y "Explicitly using ImplicitEuler method";

263

Modelica Language Specification 3.7-dev
16.9. Initialization of Clocked Partitions

Real z;
equation
der(x) = -x + sample(1, Clock(Clock(1, 10), solverMethod="ExplicitEuler"));
der(y) = subSample(x, 2) +

sample(1, Clock(Clock(2, 10), solverMethod="ImplicitEuler"));
der(z) = subSample(x, 4) + 1 + subSample(y);

end IllegalInference;

Here z is a continuous-time equation connected directly to both x and y sub-partitions that have different
solverMethod.]

16.9 Initialization of Clocked Partitions

The standard scheme for initialization of Modelica models does not apply for discrete-time sub-partitions.
Instead, initialization is performed in the following way:

� Variables in discrete-time sub-partitions cannot be used in initial equation or initial algorithm
sections.

� Attribute fixed cannot be applied to variables in discrete-time sub-partitions. The attribute fixed
is true for clocked states, otherwise false.

16.10 Other Operators

A few additional utility operators are listed below. None of these operators are allowed inside function
classes.

Expression Description Details

firstTick(u) Test for first clock tick Operator 16.14
interval(u) Interval between previous and present tick Operator 16.15

It is an error if these operators are called in the unclocked base-partition.

Operator 16.14 firstTick

firstTick(u)

This operator returns true at the first tick of the clock of the expression, in which this operator
is called. The operator returns false at all subsequent ticks of the clock. The optional argument
u is only used for clock inference, see section 16.7.

Operator 16.15 interval

interval(u)

This operator returns the interval between the previous and present tick of the clock of the
expression, in which this operator is called. The optional argument u is only used for clock
inference, see section 16.7. At the first tick of the clock the following is returned:

� For a rational interval clock (operator 16.2): previous(intervalCounter)/resolution

� For a real interval clock (operator 16.3): previous(interval)

� For an event clock (operator 16.4): startInterval

The return value of interval is a scalar Real number.

[Example: A discrete PI controller is parameterized with the parameters of a continuous PI controller,
in order that the discrete block is robust against changes in the sample period. This is achieved by
discretizing a continuous PI controller (here with an implicit Euler method):

block ClockedPI
parameter Real T "Time constant of continuous PI controller";
parameter Real k "Gain of continuous PI controller";
input Real u;
output Real y;

264

Modelica Language Specification 3.7-dev
16.11. Semantics

Real x(start = 0);
protected
Real Ts = interval(u);

equation
/* Continuous PI equations: der(x) = u / T; y = k * (x + u);
* Discretization equation: der(x) = (x - previous(x)) / Ts;
*/

when Clock () then
x = previous(x) + Ts / T * u;
y = k * (x + u);

end when;
end ClockedPI;

A continuous-time model is inverted, discretized and used as feedforward controller for a PI controller
(der, previous, interval are used in the same partition):

block MixedController
parameter Real T "Time constant of continuous PI controller";
parameter Real k "Gain of continuous PI controller";
input Real y_ref , y_meas;
Real y;
output Real yc;
Real z(start = 0);
Real xc(start = 1, fixed = true);
Clock c = Clock(Clock (0.1) , solverMethod="ImplicitEuler");

protected
Real uc;
Real Ts = interval(uc);

equation
/* Continuous -time , inverse model */
uc = sample(y_ref , c);
der(xc) = uc;
/* PI controller */
z = if firstTick () then 0 else
previous(z) + Ts / T * (uc - y_meas);
y = xc + k * (xc + uc);
yc = hold(y);

end MixedController;

]

16.11 Semantics

The execution of sub-partitions requires exact time management for proper synchronization. The impli-
cation is that testing a Real-valued time variable to determine sampling instants is not possible. One
possible method is to use counters to handle sub-sampling scheduling,

Clock_i_j_ticks =
if pre(Clock_i_j_ticks) < subSamplingFactor_i_j then
1 + pre(Clock_i_j_ticks)

else
1;

and to test the counter to determine when the sub-clock is ticking:

Clock_i_j_activated =
BaseClock_i_activated and Clock_i_j_ticks >= subSamplingFactor_i_j;

The Clock_i_j_activated flag is used as the guard for the sub partition equations.

[Consider the following example:

model ClockTicks
Integer second = sample(1, Clock (1));

265

Modelica Language Specification 3.7-dev
16.11. Semantics

Integer seconds(start = -1) = mod(previous(seconds) + second , 60);
Integer milliSeconds(start = -1) =
mod(previous(milliSeconds) + superSample(second , 1000) , 1000);

Integer minutes(start = -1) =
mod(previous(minutes) + subSample(second , 60), 60);

end ClockTicks;

A possible implementation model is shown below using Modelica 3.2 semantics. The base-clock is deter-
mined to 0.001 seconds and the sub-sampling factors to 1000 and 60000.

model ClockTicksWithModelica32
Integer second;
Integer seconds(start = -1);
Integer milliSeconds(start = -1);
Integer minutes(start = -1);

Boolean BaseClock_1_activated;
Integer Clock_1_1_ticks(start = 59999);
Integer Clock_1_2_ticks(start = 0);
Integer Clock_1_3_ticks(start = 999);
Boolean Clock_1_1_activated;
Boolean Clock_1_2_activated;
Boolean Clock_1_3_activated;

equation
// Prepare clock tick
BaseClock_1_activated = sample(0, 0.001);
when BaseClock_1_activated then
Clock_1_1_ticks =

if pre(Clock_1_1_ticks) < 60000 then 1 + pre(Clock_1_1_ticks) else 1;
Clock_1_2_ticks =

if pre(Clock_1_2_ticks) < 1 then 1 + pre(Clock_1_2_ticks) else 1;
Clock_1_3_ticks =

if pre(Clock_1_3_ticks) < 1000 then 1 + pre(Clock_1_3_ticks) else 1;
end when;
Clock_1_1_activated = BaseClock_1_activated and Clock_1_1_ticks >= 60000;
Clock_1_2_activated = BaseClock_1_activated and Clock_1_2_ticks >= 1;
Clock_1_3_activated = BaseClock_1_activated and Clock_1_3_ticks >= 1000;

// ---
// Sub partition execution
when {Clock_1_3_activated} then
second = 1;

end when;
when {Clock_1_1_activated} then
minutes = mod(pre(minutes) + second , 60);

end when;
when {Clock_1_2_activated} then
milliSeconds = mod(pre(milliSeconds) + second , 1000);

end when;
when {Clock_1_3_activated} then
seconds = mod(pre(seconds) + second , 60);

end when;
end ClockTicksWithModelica32;

]

266

Chapter 17

State Machines

This chapter defines language elements to define clocked state machines. These state machines have a
similar modeling power as Statecharts (Harel 1987) and have the important feature that at one clock
tick, there is only one assignment to every variable (for example, it is an error if state machines are
executed in parallel and they assign to the same variable at the same clock tick; such errors are detected
during translation). Furthermore, it is possible to activate and deactivate clocked equations and blocks
at a clock tick. An efficient implementation will only evaluate the equations and blocks that are active at
the current clock tick. With other Modelica language elements, this important feature cannot be defined.

The semantics of the state machines defined in this chapter is inspired by mode automata and is basically
the one from Lucid Synchrone 3.0 (Pouzet 2006). Note, safety critical control software in aircrafts is
often defined with such kind of state machines. The following properties are different to Lucid Synchrone
3.0:

� Lucid Synchrone has two kinds of transitions: strong and weak transitions. Strong transitions are
executed before the actions of a state are evaluated and weak transitions are executed after the
actions of a state are evaluated. This can lead to surprising behavior, because the actions of a state
are skipped if it is activated by a weak transition and exited by a true strong transition.

For this reason, the state machines in this chapter use immediate (= the same as strong) and delayed
transitions. Delayed transitions are immediate transitions where the condition is automatically
delayed with an implicit previous.

� Parallel state machines can be explicitly synchronized with a language element (similarly to parallel
branches in Sequential Function Charts). This often occurring operation can also be defined in
Statecharts or in Lucid Synchrone state machines but only indirectly with appropriate conditions
on transitions.

� Modelica blocks can be used as states. They might contain clocked equations. If the equations are
discretized, they are integrated between the previous and the current clock tick, if the corresponding
state is active.

17.1 Transitions

Any Modelica block instance without continuous-time equations or continuous-time algorithms can po-
tentially be a state of a state machine. A cluster of instances which are coupled by transition statements
makes a state machine. All parts of a state machine must have the same clock. All transitions leaving
one state must have different priorities. One and only one instance in each state machine must be marked
as initial by appearing in an initialState statement.

The special kinds of connect-like equations listed below are used to define a state machine. None of
these operators are allowed inside function classes.

Expression Description Details

transition(from, to, condition, . . .) State machine transition between states Operator 17.1
initialState(state) State machine initial state Operator 17.2

267

Modelica Language Specification 3.7-dev
17.1. Transitions

The transition- and initialState-equations can only be used in equations, and cannot be used inside
if-equations with conditions that are not parameter expressions, or in when-equations.

The operators listed below are used to query the status of the state machine. None of these operators
are allowed inside function classes.

Expression Description Details

activeState(state) Predicate for active state Operator 17.3
ticksInState() Ticks since activation Operator 17.4
timeInState() Time since activation Operator 17.5

Operator 17.1 transition

transition(from, to, condition,
immediate=imm, reset=reset , synchronize=synch, priority=prio)

Arguments from and to are block instances, and condition is a Boolean argument. The optional
arguments immediate, reset, and synchronize are of type Boolean, have parameter variability
and a default of true, true, false respectively. The optional argument priority is of type
Integer, has parameter variability and a default of 1.

This operator defines a transition from instance from to instance to. The from and to instances
become states of a state machine. The transition fires when condition = true if imm = true
(this is called an immediate transition) or previous(condition) when imm = false (this is called
a delayed transition). Argument priority defines the priority of firing when several transitions
could fire. In this case the transition with the smallest value of priority fires. It is required
that prio ≥ 1 and that for all transitions from the same state, the priorities are different. If
reset = true, the states of the target state are reinitialized, i.e., state machines are restarted in
initial state and state variables are reset to their start values. If synch = true, any transition is
disabled until all state machines of the from-state have reached final states, i.e., states without
outgoing transitions. For the precise details about firing a transition, see section 17.3.

Operator 17.2 initialState

initialState(state)

Argument state is the block instance that is defined to be the initial state of a state machine. At
the first clock tick of the state machine, this state becomes active.

Operator 17.3 activeState

activeState(state)

Argument state is a block instance. The operator returns true if this instance is a state of a state
machine and this state is active at the actual clock tick. If it is not active, the operator returns
false.

It is an error if the instance is not a state of a state machine.

Operator 17.4 ticksInState

ticksInState ()

Returns the number of ticks of the clock of the state machine for which the currently active state
has maintained its active state without interruption, i.e., without local or hierarchical transitions
from this state. In the case of a self-transition to the currently active state or to an active enclosing
state, the number is reset to one.

This function can only be used in state machines.

Operator 17.5 timeInState

timeInState ()

Returns the time duration as Real in [s] for which the currently active state has maintained its
active state without interruption, i.e., without local or hierarchical transitions from this state. In
the case of a self-transition to the currently active state or to an active enclosing state, the time
is reset to zero.

268

Modelica Language Specification 3.7-dev
17.2. State Machine Graphics

This function can only be used in state machines.

[Example: If there is a transition with immediate = false from state A1 to A2 and the condition is
ticksInState() >= 5, and A1 became active at 10ms, and the clock period is 1ms, then A1 will be
active at 10ms, 11ms, 12ms, 13ms, 14ms, and will be not active at 15ms.

block State end State;
State A0;
State A1; // Becomes active at 10ms
State A2;

equation
initialState(A0);
transition(A0, A1, sample(time , Clock(1, 1000)) > 0.0095);
transition(A1, A2, ticksInState () >= 5, immediate = false);

]

17.2 State Machine Graphics

[Figure 17.1 shows the recommended layout of a state machine.]

state1

state2

a

2: b

3: c

4: d
5: e

Figure 17.1: Recommended layout of a simple state machine. For the 5 transitions, the settings
are as follows, from left to right: immediate = true, false, true, false, true; reset = true, true, false,
false, true; synchronize = false, false, false, false, true; priority = 1, 2, 3, 4, 5.

The annotation for graphics of transition has the following structure: annotation(Line(. . .), Text
(. . .)); and for initialState(): graphical-primitives(Line(. . .)); with Line and Text annotations
defined in chapter 18.

[Example:

transition(state2 , state1 , x < 10,
immediate = true , reset = true , synchronize = false , priority = 1)

annotation(
Line(
points = {{-40,-16},{-36,-4},{-32,8},{-40,26},{-40,32},{-46,50}},
color = {175, 175, 175},
thickness = 0.25,
smooth = Smooth.Bezier),

Text(
string = "%condition",
extent = {{4, -4}, {4, -10}},
fontSize = 10,
textStyle = {TextStyle.Bold},
textColor = {95, 95, 95},
horizontalAlignment = TextAlignment.Left),

);

]

269

Modelica Language Specification 3.7-dev
17.3. State Machine Semantics

The Text annotation representing the transition condition can use the notation %condition to refer to
the condition expression.

The extent of the Text is interpreted relative to either the first point of the Line, in the case of immediate
= false, or the last point (immediate = true).

In addition to the line defined by the points of the Line annotation, a perpendicular line is used to
represent the transition. This line is closer to the first point if immediate = false otherwise closer to
the last point.

If the condition text is somewhat distant from the perpendicular line, a dimmed straight line joins the
transition text and the perpendicular line. (See the rightmost transition above.)

If reset = true, a filled arrow head is used otherwise an open arrow head. For synchronize = true,
an inverse “fork” symbol is used in the beginning of the arrow. (See the rightmost transition above.)

The value of the priority-attribute is prefixing the condition text followed by a colon if priority > 1.

The initialState line has a filled arrow head and a bullet at the opposite end of the initial state (as
shown above).

17.3 State Machine Semantics

For the purpose of defining the semantics of state machines, assume that the data of all transitions are
stored in an array of records:

record Transition
Integer from;
Integer to;
Boolean immediate = true;
Boolean reset = true;
Boolean synchronize = false;
Integer priority = 1;

end Transition;

The transitions are sorted with lowest priority number last in the array; and the priorities must be unique
for each value of from. The states are enumerated from 1 and up. The transition conditions are stored
in a separate array c[:] since they are time varying.

The semantics model is a discrete-time system with inputs {c[:], active, reset} with t being an
array corresponding to the inputs to the transition operator, outputs {activeState, activeReset,
activeResetStates[:]} and states {nextState, nextReset, nextResetStates[:]}. For a top-level
state machine, active is always true. For sub-state machines, active is true only when the parent state
is active. For a top-level state machine, reset is true at the first activation only. For sub-state machine,
reset is propagated from the state machines higher up.

17.3.1 State Activation

The state update starts from nextState, i.e., what has been determined to be the next state at the
previous time. selectedState takes into account if a reset of the state machine is to be done.

output Integer selectedState = if reset then 1 else previous(nextState);

The integer fired is calculated as the index of the transition to be fired by checking that selectedState
is the from-state and the condition is true for an immediate transition or previous(condition) is true
for a delayed transition. The max function returns the index of the transition with highest priority or 0.

Integer fired =
max(

if t[i].from == selectedState and
(if t[i]. immediate then c[i] else previous(c[i]))

then i
else 0

for i in 1 : size(t, 1));

270

Modelica Language Specification 3.7-dev
17.3. State Machine Semantics

The start value of c is false. This definition would require that the previous value is recorded for all
transitions conditions. Below is described an equivalent semantics which just require to record the value
of one integer variable delayed.

The integer immediate is calculated as the index of the immediate transition to potentially be fired by
checking that selectedState is the from-state and the condition is true. The max function returns the
index of the transition with true condition and highest priority or 0.

Integer immediate =
max(

if t[i]. immediate and t[i].from == selectedState and c[i] then i else 0
for i in 1 : size(t, 1));

In a similar way, the Integer delayed is calculated as the index for a potentially delayed transition,
i.e., a transition taking place at the next clock tick. In this case the from-state needs to be equal to
nextState:

Integer delayed =
max(

if not t[i]. immediate and t[i].from == nextState and c[i] then i else 0
for i in 1 : size(t, 1));

The transition to be fired is determined as follows, taking into account that a delayed transition might
have higher priority than an immediate:

Integer fired = max(previous(delayed), immediate);

nextState is set to the found transitions to-state:

Integer nextState =
if active then
(if fired > 0 then t[fired].to else selectedState)

else
previous(nextState);

In order to define synchronize transitions, each state machine must determine which are the final states,
i.e., states without from-transitions and to determine if the state machine is in a final state currently:

Boolean finalStates[nStates] =
{min(t[j].from <> i for j in 1 : size(t, 1)) for i in 1 : nStates };

Boolean stateMachineInFinalState = finalStates[activeState];

To enable a synchronize transition, all the stateMachineInFinalState conditions of all state machines
within the meta state must be true. An example is given below in the semantic example model.

17.3.2 Reset Handling

A state can be reset for two reasons:

� The whole state machine has been reset from its context. In this case, all states must be reset, and
the initial state becomes active.

� A reset transition has been fired. Then, its target state is reset, but not other states.

The first reset mechanism is handled by the activeResetStates and nextResetStates vectors.

The state machine reset flag is propagated and maintained to each state individually:

output Boolean activeResetStates[nStates] =
{reset or previous(nextResetStates[i]) for i in 1 : nStates };

until a state is eventually executed, then its corresponding reset condition is set to false:

Boolean nextResetStates[nStates] =
if active then
{activeState <> i and activeResetStates[i] for i in 1 : nStates}

else
previous(nextResetStates)

271

Modelica Language Specification 3.7-dev
17.3. State Machine Semantics

The second reset mechanism is implemented with the selectedReset and nextReset variables. If no
reset transition is fired, the nextReset is set to false for the next cycle.

17.3.3 Activation Handling

When a state is suspended, its equations should not be executed, and its variables keep their values –
including state-variables in discretized equations.

The execution of a sub-state machine has to be suspended when its enclosing state is not active. This
activation flag is given as a Boolean input active. When this flag is true, the sub-state machine
maintains its previous state, by guarding the equations of the state variables nextState, nextReset and
nextResetStates.

17.3.4 Semantics Summary

The entire semantics model is given below:

model StateMachineSemantics "Semantics of state machines"
parameter Integer nStates;
parameter Transition t[:] "Array of transition data sorted in priority";
input Boolean c[size(t, 1)] "Transition conditions sorted in priority";
input Boolean active "true if the state machine is active";
input Boolean reset "true when the state machine should be reset";
Integer selectedState = if reset then 1 else previous(nextState);
Boolean selectedReset = reset or previous(nextReset);
// For strong (immediate) and weak (delayed) transitions
Integer immediate =
max(

if (t[i]. immediate and t[i].from == selectedState and c[i]) then i else 0
for i in 1 : size(t, 1));

Integer delayed =
max(

if (not t[i]. immediate and t[i].from == nextState and c[i]) then i else 0
for i in 1 : size(t, 1));

Integer fired = max(previous(delayed), immediate);
output Integer activeState =

if reset then 1 elseif fired > 0 then t[fired].to else selectedState;
output Boolean activeReset =
reset or (if fired > 0 then t[fired].reset else selectedReset);

// Update states
Integer nextState = if active then activeState else previous(nextState);
Boolean nextReset = not active and previous(nextReset);
// Delayed resetting of individual states
output Boolean activeResetStates[nStates] =
{reset or previous(nextResetStates[i]) for i in 1 : nStates };

Boolean nextResetStates[nStates] =
if active then
{activeState <> i and activeResetStates[i] for i in 1 : nStates}

else
previous(nextResetStates);

Boolean finalStates[nStates] =
{min(t[j].from <> i for j in 1 : size(t, 1)) for i in 1 : nStates };

Boolean stateMachineInFinalState = finalStates[activeState];
end StateMachineSemantics;

17.3.5 Merging Variable Definitions

[When a state class uses an outer output declaration, the equations have access to the corresponding
variable declared inner. Special rules are then needed to maintain the single assignment rule since
multiple definitions of such outer variables in different mutually exclusive states needs to be merged.]

272

Modelica Language Specification 3.7-dev
17.3. State Machine Semantics

In each state, the outer output variables are solved for and for each such variable a single definition is
formed:

v :=
if activeState(state1) then
expre1

elseif activeState(state2) then
expre2

elseif . . .
else
last(v)

last is special internal semantic operator returning its input. It is just used to mark for the sorting
that the incidence of its argument should be ignored. A start value must be given to the variable if not
assigned in the initial state.

A new assignment equation is formed which might be merged on higher levels in nested state machines.

17.3.6 Merging Connections to Outputs

[The causal connection semantics of Modelica for non-state machines are generalized to states of state
machines, using the fact that only one state is active at a time.]

It is possible to connect outputs each coming from different states of state machines together – and
connect this with other causal connectors. These outputs are combined seen as one source of the signal,
and give the following constraint equations,

u1 = u2 = . . . = y1 = y2 = . . .

with yi being outputs from different states of the state-machine and ui being other causal variables. The
semantics is defined similarly to section 17.3.5:

v = if activeState(state1) then
y1

elseif activeState(state2) then
y2

elseif . . .
else
last(v);

u1 = v
u2 = v
. . .

273

Modelica Language Specification 3.7-dev
17.3. State Machine Semantics

17.3.7 Example

state1

stateA
outer output Integer v;

v = previous (v) + 2;

stateB
outer output Integer v;

v = previous (v) - 1;

stateC
outer output Integer count;

count = previous (count) + 1;

stateD

v >= 6

v == 0

count >= 22: true

stateX

outer input Integer v;
Integer i(start = 0);
Integer w;

i = previous (i) + 1;
w = v;

stateY
Integer j(start = 0);

j = previous (j) + 1;

stateX.i > 20

inner Integer count(start = 0);
inner outer output Integer v;

state2
outer output Integer v;

v = previous (v) + 5;

activeState(state1.stateD) and activeState(state1.stateY)

v >= 20

inner Integer v(start = 0);

Figure 17.2: Example of a hierarchical state machine.

[Example: Consider the hierarchical state machine in figure 17.2. The model demonstrates the following
properties:

� state1 is a meta state with two parallel state machines in it.

� stateA declares v as outer output. state1 is on an intermediate level and declares v as inner
outer output, i.e., matches lower level outer v by being inner and also matches higher level
inner v by being outer. The top level declares v as inner and gives the start value.

� count is defined with a start value in state1. It is reset when a reset transition (v >= 20) is made
to state1.

� stateX declares the local variable w to be equal to v declared as inner input.

274

Modelica Language Specification 3.7-dev
17.3. State Machine Semantics

� stateY declares a local counter j. It is reset at start and as a consequence of the reset transition
(v >= 20) to state1: When the reset transition (v >= 20) fires, then the variables of the active
states are reset immediately (so count from state1, and i from stateX). The variables of other
states are only reset at the time instants when these states become active. So j in StateY is reset
to 0, when the transition stateX.i > 20 fires (after state1 became active again, so after the reset
transition v >= 20).

� Synchronizing the exit from the two parallel state machines of state1 is done by checking that
stated and stateY are active using the activeState function.

The Modelica code (without annotations) is:

block HierarchicalAndParallelStateMachine
inner Integer v(start = 0);

State1 state1;
State2 state2;

equation
initialState(state1);
transition(state1 , state2 ,

activeState(state1.stateD) and activeState(state1.stateY),
immediate = false);

transition(state2 , state1 , v >= 20, immediate = false);

public
block State1

inner Integer count(start = 0);
inner outer output Integer v;

block StateA
outer output Integer v;

equation
v = previous(v) + 2;

end StateA;
StateA stateA;

block StateB
outer output Integer v;

equation
v = previous(v) - 1;

end StateB;
StateB stateB;

block StateC
outer output Integer count;

equation
count = previous(count) + 1;

end StateC;
StateC stateC;

block StateD
end StateD;
StateD stateD;

equation
initialState(stateA);
transition(stateA , stateB , v >= 6, immediate = false);
transition(stateB , stateC , v == 0, immediate = false);
transition(stateC , stateA , true , immediate = false , priority = 2);
transition(stateC , stateD , count >= 2, immediate = false);

public
block StateX

outer input Integer v;

275

Modelica Language Specification 3.7-dev
17.3. State Machine Semantics

Integer i(start = 0);
Integer w; // = v;

equation
i = previous(i) + 1;
w = v;

end StateX;
StateX stateX;

block StateY
Integer j(start = 0);

equation
j = previous(j) + 1;

end StateY;
StateY stateY;

equation
initialState(stateX);
transition(stateX , stateY , stateX.i > 20,

immediate = false , reset = false);
end State1;

block State2
outer output Integer v;

equation
v = previous(v) + 5;

end State2;
end HierarchicalAndParallelStateMachine;

Figure 17.3 shows the behavior of the state machine.

0 5 10 15 20 25 30

0

5

10

15

20

time

v

Figure 17.3: State machine behavior, as reflected by the variable v.

The transition from state1 to state2 could have been done with a synchronize transition with condition
=true instead. The semantically equivalent model is shown below:

block HierarchicalAndParallelStateMachine
extends StateMachineSemantics(
nStates = 2,
t = {Transition(from = 1, to = 2, immediate = false , synchronize = true),

Transition(from = 2, to = 1, immediate = false)},
c = {true , v >= 20});

Boolean init(start = true) = sample(false);

block State1
Boolean active;
Boolean reset;
outer input Integer v_previous;
inner output Integer v;

276

Modelica Language Specification 3.7-dev
17.3. State Machine Semantics

inner Integer count(start = 0);
inner Integer count_previous = if reset then 0 else previous(count);

block StateMachineOf_stateA
extends StateMachineSemantics(
nStates = 4,
t = {Transition(from = 1, to = 2, immediate = false),

Transition(from = 2, to = 3, immediate = false),
Transition(from = 3, to = 1, immediate = false),
Transition(from = 3, to = 4, immediate = false)},

c = {v >= 6, v == 0, true , count >= 2});
outer input Integer v_previous;
outer output Integer v;
outer input Integer count_previous;
outer output Integer count;

equation
inFinalState = true; // no macro states
if activeState == 1 then
// equations for stateA
v = v_previous + 2;
count = count_previous;

elseif activeState == 2 then
// equations for stateB
v = v_previous - 1;
count = count_previous;

elseif activeState == 3 then
// equations for stateC
v = v_previous;
count = count_previous + 1;

else // if activeState == 4 then
// equations for stateD
v = v_previous;
count = count_previous;

end if;
end StateMachineOf_stateA;

StateMachineOf_stateA stateMachineOf_stateA(
active = active , reset = reset);

block StateMachineOf_stateX
extends StateMachineSemantics(
nStates = 2,
t = {Transition(from = 1, to = 2, immediate = false , reset = false)},
c = {i > 25});

outer input Integer v;
Integer i(start = 0);
Integer i_previous;
Integer j(start = 0);
Integer j_previous;
Integer w;

equation
inFinalState = true; // no macro states
if activeState == 1 then
// equations for stateX
i_previous =

if activeReset or activeResetStates [1] then 0 else previous(i);
j_previous = previous(j);
i = i_previous + 1;
w = v;
j = j_previous;

else // if activeState == 2 then
// equations for stateY
i_previous = previous(i);

277

Modelica Language Specification 3.7-dev
17.3. State Machine Semantics

j_previous =
if activeReset or activeResetStates [2] then 0 else previous(j);

i = i_previous;
w = previous(w);
j = j_previous + 1;

end if;
end StateMachineOf_stateX;

StateMachineOf_stateX stateMachineOf_stateX(
active = active , reset = reset);

Boolean inFinalState =
stateMachineOf_stateA.stateMachineInFinalState and
stateMachineOf_stateX.stateMachineInFinalState;

end State1;

State1 state1;
Integer v(start = 0);
inner Integer v_previous = if reset then 0 else previous(v);

equation
active = true;
reset = previous(init);
if activeState == 1 then
// equations for state1
inFinalState = state1.inFinalState;
state1.active = true;
state1.reset = activeReset or activeResetStates [1];
v = state1.v;

else // if activeState == 2 then
// equations for state2
inFinalState = true; // not macro state
state1.active = false;
state1.reset = false;
v = previous(v) + 5;

end if;
end HierarchicalAndParallelStateMachine;

]

278

Chapter 18

Annotations

Annotations are intended for storing extra information about a model, such as graphics, documentation
or versioning, etc. The standard annotations (that is, all annotations except the vendor-specific ones,
see section 18.4) shall only be used where their semantics is defined. A Modelica tool is free to define
and use other annotations, in addition to those defined here, according to section 18.4.

Annotations are optional in the Modelica grammar, and when present, indicated using the annotation
keyword, see annotation-clause in the grammar (appendix A.2.7). The structure of the annotation
content is the same as a class modification (class-modification in the grammar). (For replaceable class
declarations with a constraining-clause also refer to section 7.3.2.1.) The specification in this document
defines the semantic meaning if a tool implements any of these annotations.

18.1 Notation for Annotation Definitions

Annotations are defined using the syntactic forms of Modelica component declarations and record defi-
nitions, with the following special semantics. If the annotation is described by a component declaration,
the annotation is used in the form of a value modifier for the same name. If the annotation is described
by a record class the annotation is used in the form of a modifier for a record component with the
same name.

A declaration equation for a component or record member specifies a default to be used when no cor-
responding annotation is given. An array record member without declaration equation and with size
specified by colon (:) defaults to being empty. Default behavior can also be specified in the text as an
alternative to a declaration equation, or implicitly by saying if specified. If the description states that
the annotation only has an effect for specific values it implies that the default is a value that has no
effect. When there is no declaration equation and no other explanation of default behavior in the text
for a record member, an annotation modifier for the record must contain a modifier for that member.

As all annotations are optional, component declaration annotations will always have default behavior.
The default behavior is either the implicit absence of any of the effects for defined values of the annotation,
or explicitly defined as corresponding to one of the valid values.

When an annotation is defined with a component variability prefix (section 4.4.3), this restricts the
allowed variability of corresponding annotation modifiers analogously to the rules in section 3.8. If the
annotation is declared as an /*evaluable*/ parameter the corresponding modifier is further restricted
to be evaluable. If the annotation is declared as a /*literal*/ constant the corresponding modifier
is further restricted to be a literal value.

[Example: Since the semantics of an annotation comes from the interpretation as a modification, empty
annotations have no impact at all. For example, the following is allowed, but meaningless:

annotation(Dialog ());

An annotation such as annotation(Dialog) is also meaningless, but deprecated according to section 18.2.]

279

Modelica Language Specification 3.7-dev
18.2. Semantic Restrictions of Annotation Syntax

The allowed annotations for a short class definition is the union of the allowed annotations in classes and
on extends-clauses.

18.2 Semantic Restrictions of Annotation Syntax

The syntactic form of annotations, annotation-clause, uses the generic class-modification in appendix A.2.5.
However, except where explicitly stated, the following constructs shall not be used in annotations:

� final. For instance, neither final experiment(StopTime = 2.0) nor experiment(final StopTime
= 2.0) may be used to prevent that an extending model overrides the StopTime setting.

� each. When an annotation is given for an array component declaration, it applies to the array as a
whole. Thus, neither should values be given in arrays matching the size of the declared component,
nor should each be used express that a scalar value applies to each element of the array.

� element-redeclaration in the grammar. In particular, the keyword redeclare cannot be used.

� element-replaceable in the grammar. In particular the keywords replaceable and constrainedby
cannot be used.

� A element-modification without modification is deprecated without exceptions. The meaning of
such annotations has never been defined.

[Example: The following annotations are not merely meaningless, but deprecated:

annotation(
Dialog ,
Dialog(colorSelector)

);

In particular, the effect of colorSelector is not the same as colorSelector = true, even though the
latter is the only meaningful use of colorSelector.]

18.3 Expression Evaluation Inside Annotations

This section describes some differences to the evaluation of expressions inside of annotations compared
to normal evaluation rules outside of annotations.

18.3.1 Enumerations for Use in Annotations

Several annotations make use of dedicated enumeration types. These enumeration types do not have
the full status of being built-in types as, e.g., StateSelect (section 4.9.7.1). Instead, they are only in
scope where expressions inside annotations are evaluated, shadowing any user-defined definitions with
the same names.

[Example: The smooth attribute of a Polygon can be controlled through a model parameter, but the
parameter cannot use the Smooth type directly:

model BezierParameter
parameter Smooth smooth = Smooth.Bezier; // Error: Smooth is unknown here.
parameter Boolean bezier = true; // Fine.
annotation(Icon(graphics = {
Polygon(
smooth = if bezier then Smooth.Bezier else Smooth.None ,
points = {{-50, -20}, {0, 30}, {50, -20}}

)
}));

end BezierParameter;

]

[When evaluating the expression expr in the model M, one can imagine it being done as in

280

Modelica Language Specification 3.7-dev
18.4. Vendor-Specific Annotations

model M_annotation
extends M;
import AnnotationEnumerations .*;
T result = expr ;

end M_annotation;

where AnnotationEnumerations is a hidden package containing all enumeration types used in annota-
tions, and T is the expected type of the expression.]

18.4 Vendor-Specific Annotations

A vendor may – anywhere inside an annotation – add specific, possibly undocumented, annotations
which are not intended to be interpreted by other tools. The semantic restrictions in section 18.2 are not
enforced in vendor-specific annotations, giving vendors the full freedom of using the most general form
of annotations. The only requirement is that any tool shall save files with all vendor-specific annotations
(and all annotations from this chapter) intact. Two variants of vendor-specific annotations exist; one
simple and one hierarchical. Double underscore concatenated with a vendor name as initial characters
of the identifier are used to identify vendor-specific annotations.

[Example:

annotation(
Icon(coordinateSystem(extent = {{-100, -100}, {100, 100}}) ,

graphics = {__NameOfVendor(Circle(center = {0, 0}, radius = 10))}));

This introduces a new graphical primitive Circle using the hierarchical variant of vendor-specific anno-
tations.

annotation(
Icon(coordinateSystem(extent = {{-100, -100}, {100, 100}}) ,

graphics = {Rectangle(extent = {{-5, -5}, {7, 7}},
__NameOfVendor_shadow = 2)}));

This introduces a new attribute __NameOfVendor_shadow for the Rectangle primitive using the simple
variant of vendor-specific annotations.]

18.5 Documentation

The annotations listed below define various forms of documentation for a class. They are all sub-
annotations of the Documentation annotation.

Annotation Description Details

Documentation.info Class presentation Annotation 18.1
Documentation.revisions Class revision history Annotation 18.2
Documentation.styleSheets Style sheets for documentation Annotation 18.3
Documentation.figures Simulation result figures Annotation 18.4

How the tool interprets the information in Documentation is unspecified.

18.5.1 Class Description and Revision History

This section describes some of the sub-annotations of the Documentation annotation.

Annotation 18.1 info

record Documentation
/* literal */ constant String info = "";
. . .

end Documentation;

The info annotation gives a textual description of the class.

281

Modelica Language Specification 3.7-dev
18.5. Documentation

If the string starts with the tag <html> or <HTML>, the entire string is HTML encoded (assumed
to end with </html> or </HTML>, but to be rendered as HTML even if the end-tag is missing).
Otherwise, the entire string is rendered as is. HTML encoded content may contain links. Modelica
URIs may be used to refer to external resources (see section 13.6), as well as to refer to Modelica
classes, e.g.,

MultiBody.Tutorial

Together with scheme Modelica the (URI) fragment specifiers #diagram, #info, #text, #icon
may be used to reference different layers. User-defined fragment specifiers (anchors) may also
be used, and they may be renamed when generating HTML (in particular to avoid collisions).
Example:

Revolute

Annotation 18.2 revisions

record Documentation
/* literal */ constant String revisions = "";
. . .

end Documentation;

The revisions annotation gives a revision history of the class.

The string is interpreted in the same way as in the info annotation, see annotation 18.1.

[The revisions documentation may be omitted in printed documentation.]

Annotation 18.3 styleSheets

record Documentation
/* literal */ constant String [:] styleSheets;
. . .

end Documentation;

Only considered for top-level packages, and applies to the entire package. Specifying just a string
for styleSheets has the same meaning as specifying a singleton array containing the string.

Each element of the styleSheets annotation array specifies a cascading style sheet. The style
sheets are used when displaying the info and revisions annotations found in the Documentation
annotations of the package. The style sheets will be cascaded in the given order.

[It is recommended to use class and id selectors with a NameOfLibrary- prefix to avoid colli-
sions when the content is included in a larger context.]

The style sheet rules should not use type or universal selectors, due to possible interference with
tool-specific styling.

Vendors should use a NameOfV endor- prefix to style vendor generated HTML content surround-
ing the user provided documentation. If tools want to give users (of that tool) the possibility to
override the tool-specific CSS they can document that. The prefix is used to avoid this happening
by accident.

18.5.2 Figures

This section describes the figures sub-annotation of the Documentation annotation.

Annotation 18.4 figures

record Documentation
Figure [:] figures;
. . .

end Documentation;

Each element of the figures annotation array defines a simulation result figure. A figure is a
graphical container that can contain several plots. Details about the Figure record are given in
section 18.5.2.1.

282

Modelica Language Specification 3.7-dev
18.5. Documentation

18.5.2.1 Figure and Plot Properties

Each figure in the figures annotation is described by a Figure:

record Figure
/* literal */ constant String title = "" "Title meant for display";
/* literal */ constant String identifier = "" "Identifier meant for
programmatic access";
/* literal */ constant String group = "" "Name of figure group";
/* literal */ constant Boolean preferred = false "Automatically display figure
after simulation";
Plot [:] plots "Plots";
/* literal */ constant String caption = "" "Figure caption";

end Figure;

A plot inside a Figure is described by a Plot:

record Plot
/* literal */ constant String title "Title meant for display";
/* literal */ constant String identifier = "" "Identifier meant for
programmatic access";
Curve [:] curves "Plot curves";
/* literal */ constant Axis x "X axis properties";
/* literal */ constant Axis y "Y axis properties";

end Plot;

A Plot can contain several curves, see section 18.5.2.3, that all share a common x and y axis with
properties described in section 18.5.2.2.

Both Figure and Plot can have an optional title. When the Figure title is the empty string (the
default), the tool must produce a non-empty title based on the figure content. On the other hand, the
Plot title has a tool-dependent default, but the default may be the empty string. When the Plot
title is the empty string, no title should be shown. The plot title is not to be confused with the plot
label which is never empty, see below. Variable replacements, as described in section 18.5.2.6, can be
used in the title of Figure and Plot.

The identifier in Figure and Plot is a String identifier, and is intended to identify the Figure and
Plot for programmatic access. The figures annotation is inherited in the sense that each class has a
collection of figures comprised by the contents of the figures annotation in the class itself, as well as
the figures annotations from any base classes. A Figure must be uniquely identified by its identifier
and a class having it in its collection. This means that a Figure identifier must be unique among
all Figure annotations within the same figures annotation as well as among all figures annotations
from inherited classes. A Plot identifier on the other hand is only required to be unique among the
plots in the the same Figure annotation. If an identifier is an empty string it cannot be used for
programmatic access and is exempt from the uniqueness requirements.

[For Figure, this makes it possible to reference the plot from a tool-specific scripting environment. For
Plot, this makes it possible to reference the plot in the figure caption, which becomes useful when the
Figure contains more than one Plot.]

Even though a Figure annotation can be shared through inheritance between classes in a class hierarchy,
note that each simulated class provides its own data to be displayed in the figure.

Every Plot has an automatically generated label which is required to be shown as soon as at least one
Plot in the Figure has an identifier. A tool is free to choose both labeling scheme (such as a, b, . . . ,
or i, ii, . . .), placement in the plot, and styling in the plot itself as well as in other contexts.

When a Figure defines a non-empty group, it is used to organize figures similar to how group is used
in the Dialog annotation (see section 18.10). However, leaving group at the default of an empty string
does not mean that a group will be created automatically, but that the figure resides outside of any
group. The group is both the key used for grouping, and the name of the group for display purposes.

The preferred attribute of Figure indicates whether the figure should be given preference when auto-
matically determining which figures to show, and a class may define any number of preferred figures.
For example, a tool might choose to automatically show all preferred figures when the class is simulated.

283

Modelica Language Specification 3.7-dev
18.5. Documentation

The caption attribute of Figure can use the restricted form of text markup described in section 18.5.2.7
as well as the variable replacements described in section 18.5.2.6.

18.5.2.2 Axis Properties

Properties may be defined for each Plot axis:

record Axis
/* literal */ constant Real min "Axis lower bound , in 'unit'";
/* literal */ constant Real max "Axis upper bound , in 'unit'";
/* literal */ constant String unit = "" "Unit of axis tick labels";
/* literal */ constant String label "Axis label";
/* literal */ constant AxisScale scale = Linear () "Mapping between axis values
and position on axis"

end Axis;

When an axis bound is not provided, the tool computes one automatically.

A non-empty unit shall match unit-expression in chapter 19. An empty unit means that the axis is
unitless, and each expression plotted against it may use its own unit determined by the tool. The tool
is responsible for conveying the information about choice of unit for the different variables, for instance
by attaching this information to curve legends.

The Modelica tool is responsible for showing that values at the axis tick marks are expressed in unit,
so the axis label shall not contain this information.

[When unit is empty, and axis bounds are to be determined automatically, a natural choice of unit could
be the variable’s displayUnit. When axis bounds are specified by the user, on the other hand, a tool
may choose a unit for the variable such that the range of the variable values (expressed in the chosen
unit) fit nicely with the range of the unitless axis.]

If a tool does not recognize the unit, it is recommended to issue a warning and treat the unit as if it
was empty, as well as ignore any setting for min and max.

When label is not provided, the tool produces a default label. Providing the empty string as label
means that no label should be shown. Variable replacements, as described in section 18.5.2.6, can be
used in label. The Modelica tool is responsible for showing the unit used for values at the axis tick
marks, so the axis label shall not contain the unit.

The type of scale is defined as an empty partial record:

partial record AxisScale
end AxisScale;

The standardized annotations extending from AxisScale are Linear and Log, but it is also allowed to
use a vendor-specific annotation.

Use Linear for a linear mapping between axis values and position on axis:

record Linear
extends AxisScale;

end Linear;

Use Log for a logarithmic mapping between axis values and position on axis:

record Log
extends AxisScale;
/* literal */ constant Integer base(min = 2) = 10;

end Log;

The base of a Log scale determines preferred positions of major axis ticks. It is not required that the
presentation of axis tick labels reflect the base setting. For example, when base is 10, major axis ticks
should preferably be placed at integer powers of 10, and natural alternatives that a tool may use for
major axis tick labels could look like 0.001 or 10−3. Under some circumstances, such as when the axis
range does not span even a single order of magnitude, a tool may disregard the preference in order to
get useful axis ticks.

284

Modelica Language Specification 3.7-dev
18.5. Documentation

[Example: A symmetric log axis scale is sometimes used for axes spanning across several orders of
magnitude of both positive and negative values. Details vary, but the mapping from value to linear

position along axis is some variation of y 7→ sign(y) log(1 + |y|
10α). A tool may implement this as a

vendor-specific axis scale:

Axis(
min = -1e5 , max = 1e5 ,
scale = __NameOfVendor_symlog (1),

)

]

18.5.2.3 Plot Curves

The actual data to plot is specified in the curves of a Plot:

record Curve
expression x = time "X coordinate values";
expression y "Y coordinate values";
/* literal */ constant String legend "Legend";
/* literal */ constant Integer zOrder = 0 "Drawing order control";

end Curve;

The mandatory x and y expressions are restricted to be result references in the form of result-reference
in the grammar (appendix A.2.7), referring to a scalar variable (or a derivative thereof) or time. It is an
error if x or y does not designate a scalar result. If x or y is a derivative, der(v, n), then n must not
exceed the maximum amount of differentiation applied to v in the model. A diagnostic is recommended
in case the simulation result is missing a trajectory for a valid result reference.

[While the syntax for referring to a second order derivative is der(v, 2), the appearance is left for tools
to decide. For example, a tool might choose to present this as der(der(v)).]

When the unit of an Axis is non-empty, it is an error if the unit of the corresponding x or y expression
(i.e., a variable’s unit, or second for time) is incompatible with the axis unit.

When legend is not provided, the tool produces a default based on x and/or y. Providing the empty
string as legend means that the curve shall be omitted from the plot legend. Variable replacements, as
described in section 18.5.2.6, can be used in legend. The order of presentation within the plot legend
corresponds to order of appearance in the curves of a Plot.

The zOrder gives control over drawing order, with higher values corresponding to closer to front. Ties
are resolved using order of appearance in the curves of a Plot, with later appearance corresponding to
closer to front.

18.5.2.4 Escape Sequences

In an attribute inside a figure where the variable replacements of section 18.5.2.6 or the text markup of
section 18.5.2.7 can be used, the following use of text markup escape sequences applies. These escape
sequences are applied after the application of other markup, and are not applied at all inside some of
the other markup, see details for the respective markup.

The percent character ‘%’ shall be encoded %%. The following are all the recognized escape sequences:

Sequence Encoded character Comment

%% ‘%’ Only way to encode character.
%] ‘]’ Prevents termination of markup delimited by [. . .].

[With the percent character being encoded as %%, the behavior of % appearing in any other way than the es-
cape sequences above, for variable replacement (section 18.5.2.6), or for the text markup (section 18.5.2.7)
is undefined, and thus possible to define in the future without breaking backward compatibility.]

18.5.2.5 Vendor-Specific Markup

Vendor-specific markup takes the form __nameOfVendor1(data1). . .__nameOfVendorn(datan), where
n ≥ 1. It is only allowed as part of constructs described in section 18.5.2.6 and section 18.5.2.7, where

285

Modelica Language Specification 3.7-dev
18.5. Documentation

it will be denoted by vendorSpecificMarkup. The nameOfVendor consists of only digits and letters, and
shall only convey the name of the vendor defining the meaning of the associated data. Text markup
escape sequences don’t apply inside the data, implying that it cannot contain the closing parenthesis,
‘)’. A tool which does not understand any of the vendor-specific meanings will always be able to safely
ignore all vendor-specific markup.

18.5.2.6 Variable Replacements

In the places listed in table 18.1 where text for display is defined, the final value of a result variable
can be embedded by referring to the variable as %{inertia1.w}. This is similar to the Text graphical
primitive in section 18.9.5.5.

Table 18.1: Attributes that can use variable replacements.

Attribute Annotation

title Figure and Plot
caption Figure
legend Curve
label Axis

In %{variable}, text markup escape sequences don’t apply inside the variable, which has the form of
result-reference. This means that a complete result-reference shall be scanned before looking for the
terminating closing brace.

[Example: The variable replacement %{'%%'} references the variable '%%', not the variable '%'.]

[Example: The variable replacement %{foo . '}bar{'} makes a valid reference to the variable
foo.'}bar{'.]

Note that expansion to the final value means that expansion is not restricted to parameters and constants,
so that values to be shown in a caption can be determined during simulation.

[By design, neither %class nor %name is supported in this context, as this information is expected to
already be easily accessible (when applicable) in tool-specific ways. (Titles making use of %class or
%name would then only lead to ugly duplication of this information.)]

Vendor-specific markup can be added to a variable replacement in the form %vendorSpecificMarkup{
variable}. The vendor-specific markup must not fundamentally alter the meaning of the variable re-
placement, in order to ensure that a tool can safely ignore all vendor-specific markup and still obtain a
result that fits the current context.

[Example: One application of vendor-specific markup for variable replacement is to prototype a feature
that can later be turned into standardized format control. For example, the replaced variable may have
an automatically inferred unit, but no displayUnit-attribute. The tool vendor AVendor could then
describe a selection of display unit with %__AVendor(?displayUnit=mm){integrator1.y}. Later, if
this would become supported by standard variable replacement, it might take the form of something like
%{integrator1.y?displayUnit=mm} instead.]

18.5.2.7 Text Markup in Captions

In addition to variable replacements, a very restricted form of text markup is used for the caption. Note
that the text markup escape sequences described in section 18.5.2.4 generally apply inside caption, with
one exception given below for links.

Links take the form %[text](link), where the [text] part is optional, and text markup escape sequences
don’t apply inside the link . The link can be in either of the following forms, where the interpretation is
given by the first matching form:

� A variable:id , where id is a component reference in the form of result-reference in the grammar,
such as inertia1.w.

� A plot:id , where id is the identifier of a Plot in the current Figure.

286

Modelica Language Specification 3.7-dev
18.5. Documentation

� A URI. Well established schemes such as https://github.com/modelica or modelica:/Modelica
, as well as lesser known schemes may be used. (A tool that has no special recognition of a scheme
can try sending the URI to the operating system for interpretation.)

When [text] is omitted, a Modelica tool is free to derive a default based on the link .

[Note that for the character ‘]’ to appear in text , it needs to be encoded as the escape sequence %], or it
would be interpreted as the terminating delimiter of the [text].

Similarly, the closing parenthesis ‘)’ must be handled with care in link in order to not be interpreted as
the terminating delimiter of the (link).

� For a variable:, no special treatment is needed, as the component reference syntax of the id allows
parentheses to appear without risk of misinterpretation inside a quoted identifier. For example, %(
variable:'try)me!') has a parenthesis in 'try)me!' that must not be mistaken for the end of
the (link).

� For a plot:, there is currently no way to reference a plot with ‘)’ in its identifier.

� For a URI, a closing parenthesis must be URL encoded in order to not be interpreted as the end of the
(link). For example, the URL in %(http://example.org/(tryme)) is just http://example.org/(tryme,
and the entire link is followed by a stray closing parenthesis. To make it work, one has to use URL
encoding: %(http://example.org/%28tryme%29) (using URL encoding of the opening parenthesis
just for symmetry, and note that the % of the percent-encoded sequences are not subject to text
markup escape sequences).

]

The styling of the link text, as well as the link action, is left for each Modelica tool to decide.

[For example, %(variable:inertia1.w) could be displayed as the text inertia1.w formatted with up-
right monospaced font, and have a pop-up menu attached with menu items for plotting the variable,
setting its start value, or investigating the equation system from which it is solved. On the other hand,
%[angular velocity](variable:inertia1.w) could be formatted in the same style as the surrounding
text, except some non-intrusive visual clue about it being linked.]

[Note that link is currently not allowed to be a URI reference, i.e., a URI or a relative reference such as
#foo. This is due to to the current inability to define a base URI referencing the current figure. Once
this becomes possible, the URI form of link may be changed into a URI reference.]

Vendor-specific markup can be added to a link in the form %[text]vendorSpecificMarkup(link). The
vendor-specific markup must not fundamentally alter the appearance of the link, in order to ensure that
a tool can safely ignore all vendor-specific markup and still obtain a result that fits the current context.

[Example: The HTML <a> tag has several attributes with potential application to links, such as target.
This attribute serves a natural purpose if the display of figures is integrated with the display of documen-
tation. The tool vendor AVendor could map the HTML feature to Modelica in the form %__AVendor(?
target=_blank)(modelica:/Modelica#info).]

A sequence of one or more newlines (encoded either literally or using the \n escape sequence) means a
paragraph break. (A line break within a paragraph is not supported, and any paragraph break before
the first paragraph or after the last paragraph has no impact.)

Vendor-specific markup for alternative content takes the form %vendorSpecificMarkup[text]. The vendor-
specific markup must not fundamentally alter the appearance of the text , in order to ensure that a tool
can safely ignore all vendor-specific markup and still obtain a result that fits the current context.

[Example: One application of vendor-specific alternative content is to prototype a feature that can later
be turned into standardized markup. For example, say that the tool AVendor wants to generalize the
variable replacements such that the duration of a simulation can be substituted into a caption. During
the development, this could be represented as the vendor-specific markup %__AVendor(?duration)[10
s], if the simulation has a duration of 10 seconds at the time of writing the caption. When AVendor
renders this, it ignores the text 10 s and just displays the actual duration instead. Later, if this would
become supported by standard markup, it might take the form of something like %{experiment:duration
} instead (note that experiment:duration is not in the form of a component reference, avoiding conflict
with current use of variable replacements).

287

Modelica Language Specification 3.7-dev
18.6. Symbolic Processing

In a similar way, vendor-specific alternative content can be used to prototype a link for future inclusion
in the link markup (either by extending the meaning of Modelica URIs, or by introducing another pseudo-
scheme similar to variable:). This is an example where the vendor-specific markup could make use of
the text (for link text) together with the vendor-specific data (describing the actual link).]

18.6 Symbolic Processing

The annotation listed below, in addition to annotations described in sections 12.7 to 12.8, can influence
the symbolic processing.

Annotation Description Details

Evaluate Use parameter value for symbolic processing Annotation 18.1

Annotation 18.1 Evaluate

/* literal */ constant Boolean Evaluate;

The annotation Evaluate can occur in the component declaration, its type declaration, or a base
class of the type-declaration. In the case of multiple conflicting annotations it is handled similarly
to modifiers (e.g., an Evaluate annotation on the component declaration takes precedence). In the
case of hierarchical components it is applied to all components, overriding any Evaluate-setting
for specific components. The annotation Evaluate is only allowed for parameters and constants.

Setting Evaluate = true for an evaluable parameter, means that it must be an evaluated pa-
rameter (i.e., its value must be determined during translation, similar to a constant). For a
non-evaluable parameter, it has no impact and it is recommended to issue a warning in most
cases. The exception for recommending this warning is when the parameter is non-evaluable due
to dependency on a parameter with Evaluate = false, as this could be a sign of intentional over-
riding of Evaluate = true, see example below. For both evaluable parameters and constants,
the model developer further proposes to utilize the value for symbolic processing. A constant can
never be changed after translation, and it is normal for its value to be used for symbolic processing
even without Evaluate = true.

For a parameter, Evaluate = false ensures that the parameter is a non-evaluable parameter
according to section 4.5 (meaning it is not allowed to be used where an evaluable expression
(section 3.8.3) is expected). For both parameters and constants – even when the value can be
determined during translation – the model developer further proposes to not utilize the value for
symbolic processing.

If the annotation is missing for a parameter or constant the evaluation of the component is tool-
dependent.

[Evaluate = true is for example used for axis of rotation parameters in the Modelica.Mechanics
.MultiBody library in order to improve the efficiency of the generated code.

Conversely, a possible use of Evaluate = false is to ensure that a parameter can be changed
after translation, even when a tool might be tempted to evaluate it to improve the efficiency of the
generated code.]

[Example: When a parameter has Evaluate = true for optimization reasons (not because it needs
to be evaluable), it is possible to prevent the value from being determined during translation without
modifying the original model:

model M_evaluable
/* Here , 'b' is evaluable , and will be evaluated. */
parameter Boolean b = false annotation(Evaluate = true);
Real x(start = 1.0, fixed = true);

equation
if b then /* No need for b to be evaluable. */
der(x) = x;

else
der(x) = -x;

end if;
end M_evaluable;

288

Modelica Language Specification 3.7-dev
18.7. Simulations

model M_non_evaluable
/* Here , 'bn' is non -evaluable , which in turn will cause 'b' to be
* non -evaluable , thereby preventing it from being determined during
* translation.
*/

extends M_evaluable(b = bn);
parameter Boolean bn = false annotation(Evaluate = false);

end M_non_evaluable;

]

18.7 Simulations

The annotations listed below define how models can be checked, translated, and simulated.

Annotation Description Details

experiment Simulation experiment settings Annotation 18.2
HideResult Don’t show component’s simulation result Annotation 18.3
TestCase Information for model used as test case Annotation 18.4

Annotation 18.2 experiment

record experiment
/* literal */ constant Real StartTime(unit = "s") = 0;
/* literal */ constant Real StopTime(unit = "s");
/* literal */ constant Real Interval(unit = "s");
/* literal */ constant Real Tolerance(unit = "1");

end experiment;

The experiment annotation defines the start time (StartTime) in [s], the stop time (StopTime) in
[s], the suitable time resolution for the result grid (Interval) in [s], and the relative integration
tolerance (Tolerance) for simulation experiments to be carried out with the model or block
at hand. When Interval or Tolerance is not provided, the tool is responsible for applying
appropriate defaults.

The experiment options are inherited, and the derived class may override individual inherited
options.

[The inheritance makes it useful to have an experiment annotation also in partial models, e.g.,
a template for a number of similar test cases.]

If StopTime is set in a non-partial model, it is required to be a simulation model. Tools can allow
users to override these settings without modifying the model.

Annotation 18.3 HideResult

/* literal */ constant Boolean HideResult;

HideResult = true defines that the model developer proposes to not show the simulation results
of the corresponding component.

HideResult = false defines that the developer proposes to show the corresponding component.

[For example, a tool is not expected to provide means to plot a variable with HideResult = true.
If a variable is declared in a protected section, a tool might not include it in a simulation result.
By setting HideResult = false, the modeler would like to have the variable in the simulation
result, even if in the protected section.

HideResult is for example used in the connectors of the Modelica.StateGraph library to not
show variables to the modeler that are of no interest to him and would confuse him.]

Annotation 18.4 TestCase

record TestCase
/* literal */ constant Boolean shouldPass;

289

Modelica Language Specification 3.7-dev
18.8. Usage Restrictions

end TestCase;

If shouldPass is false it indicates that the translation or the simulation of the model should
fail. If a tools checks a package where classes have shouldPass = false they should not generate
errors, and checking may even be skipped. On the other hand, models with shouldPass = false
may be useful for creation of negative tests in tool-specific ways. Similarly to a class with obsolete
annotation, a class with TestCase annotation (regardless of the value of shouldPass) shall not
be used in other models, unless those models also have a TestCase annotation.

If the TestCase annotation is missing it is a normal model – there are thus no restrictions on the
use of the model, and the model shall not contain errors.

[The intent of the test-case can be included in the documentation of the class. This annotation
can both be used for models intended as test-cases for implementations, and for models explaining
detectable errors.]

18.8 Usage Restrictions

The annotations listed below are used to restrict the ways in which classes and instances of classes may
be used.

Annotation Description Details

singleInstance Allow at most one instance Annotation 18.5
mustBeConnected Connector must be connected at least once Annotation 18.6
mayOnlyConnectOnce Connector may at most be connected once Annotation 18.7

Annotation 18.5 singleInstance

/* literal */ constant Boolean singleInstance;

Allowed for class annotations. Only has effect when true, meaning that there should only be one
component instance of the class, and it should be in the same scope as the class is defined. The
intent is to remove the class when the component is removed and to prevent duplication of the
component.

[This is useful for the local classes of state machines.]

Annotation 18.6 mustBeConnected

/* literal */ constant String mustBeConnected;

Allowed for connector component declarations. If specified, it makes it an error if the connector
does not appear as an inside connector in any connect-equation (for a conditional connector this
check is only active if the connector is enabled). The string value must be non-empty and provide
the reason why it must be connected. For an array of connectors it applies separately to each
element.

[This annotation is intended for non-causal connectors, see section 9.3. It is particularly suited
for stream connectors, see chapter 15.]

[Example: This can be used for some optional connectors that should be connected when condi-
tionally enabled.

partial model PartialWithSupport
Flange_b flange;
parameter Boolean useSupport;
Support support if useSupport

annotation(
mustBeConnected = "Support connector should be connected if

activated.");
end PartialWithSupport;

The protected components and connections needed to internally handle the support-connector is
omitted.]

290

Modelica Language Specification 3.7-dev
18.9. Graphical Objects

Annotation 18.7 mayOnlyConnectOnce

/* literal */ constant String mayOnlyConnectOnce;

Allowed for connector component declarations. If specified, it makes it an error if the connector
is connected as an inside connector in a connect-equation and thus appears in a connection set if:

� For non-stream connectors the connection set has more than two elements.

� For stream connectors (see chapter 15), the connection set has more than two elements whose
flow variable may be negative (based on evaluation of the min-attribute).

For an array of connectors it applies separately to each element. The string value must be non-
empty and provide the reason why it may only be connected once.

[This annotation is intended for non-causal connectors, see section 9.3. The connection handling
operates on connection sets, and thus this restriction should also operate on those sets. The
set handling avoids the case where only one of two equivalent models generate diagnostics. The
stream connector part is primarily intended to exclude sensor-variables, see appendix C.3.3, but
also excludes non-reversible outgoing flows.]

[Example: This can be used for components that implement mixing of fluids where it is not desired
to combine that with the normal stream-connector mixing.

partial model MultiPort
parameter Integer n = 0 annotation(Dialog(connectorSizing = true));
FluidPort_a port_a(redeclare package Medium = Medium);
FluidPorts_b ports_b[n](redeclare each package Medium = Medium)

annotation (mayOnlyConnectOnce = "Should only connect once per element
!");

end MultiPort;

]

18.9 Graphical Objects

The annotations listed below define the graphical representation of a class.

Annotation Description Details

Icon Icon view of a class Annotation 18.8
Diagram Diagram view of a class Annotation 18.9
Placement Instance placement in icon or diagram Annotation 18.10

The graphical representation of a class consists of two abstraction layers: an icon layer and a diagram
layer. The icon typically visualizes the component by hiding hierarchical details, while the diagram
layer typically shows the hierarchical decomposition using icons of subcomponents and lines representing
connections.

Annotation 18.8 Icon

record Icon
CoordinateSystem coordinateSystem;
GraphicItem [:] graphics;

end Icon;

Allowed for class annotations. The Icon annotation defines the icon view of the class.

The graphics is specified as an ordered sequence of graphical primitives described in section 18.9.1.
Base class contents are drawn behind the graphical primitives of the current class, with base classes
ordered from back to front according to the order of the extends-clauses, and graphical primitives
according to order of appearance in the annotation.

[Note that the ordered sequence is syntactically a valid Modelica annotation, although there is no
mechanism for defining an array of heterogeneous objects in Modelica.]

[Example: A simple icon for a class:

291

Modelica Language Specification 3.7-dev
18.9. Graphical Objects

annotation(
Icon(coordinateSystem(extent = {{-100, -100}, {100, 100}}) ,

graphics = {Rectangle(extent = {{-100, -100}, {100, 100}}) ,
Text(extent = {{-100, -100}, {100, 100}},

textString = "Icon")}));

]

Annotation 18.9 Diagram

record Diagram
CoordinateSystem coordinateSystem;
GraphicItem [:] graphics;

end Diagram;

Allowed for class annotations. The Diagram annotation defines the icon view of the class.

The coordinateSystem and graphics serve the same purpose as in the Icon annotation, see
annotation 18.8.

18.9.1 Common Definitions

The following common definitions are used to define graphical annotations in the later sections.

type DrawingUnit = Real(final unit="mm");
type Point = DrawingUnit [2] "{x, y}";
type Extent = Point [2] "Defines a rectangular area {{x1 , y1}, {x2 , y2}}";

The interpretation of unit is with respect to printer output in natural size (not zoomed).

All graphical entities have a visible attribute which indicates if the entity should be shown.

partial record GraphicItem
Boolean visible = true;
Point origin = {0, 0};
Real rotation(quantity="angle", unit="deg")=0;

end GraphicItem;

The origin attribute specifies the origin of the graphical item in the coordinate system of the layer
in which it is defined. The origin is used to define the geometric information of the item and for all
transformations applied to the item. All geometric information is given relative the origin attribute,
which by default is {0, 0}.

The rotation attribute specifies the rotation of the graphical item counter-clockwise around the point
defined by the origin attribute.

18.9.1.1 Coordinate Systems

Each of the layers has its own coordinate system. A coordinate system is defined by the coordinates of
two points, the left (x1) lower (y1) corner and the right (x2) upper (y2) corner, where the coordinates
of the first point shall be less than the coordinates of the second point.

The attribute preserveAspectRatio specifies a hint for the shape of components of the class, but does
not actually influence the rendering of the component. If preserveAspectRatio is true, changing the
extent of components should preserve the current aspect ratio of the coordinate system of the class.

The attribute initialScale specifies the default component size as initialScale times the size of the
coordinate system of the class. An application may use a different default value of initialScale.

The attribute grid specifies the spacing between grid points which can be used by tools for alignment
of points in the coordinate system, e.g., “snap-to-grid”. Its use and default value is tool-dependent.

record CoordinateSystem
/* literal */ constant Extent extent;
/* literal */ constant Boolean preserveAspectRatio = true;
/* literal */ constant Real initialScale = 0.1;

292

Modelica Language Specification 3.7-dev
18.9. Graphical Objects

/* literal */ constant DrawingUnit grid [2];
end CoordinateSystem;

[Example: A coordinate system for an icon could for example be defined as:

CoordinateSystem(extent = {{-10, -10}, {10, 10}});

i.e., a coordinate system with width 20 units and height 20 units.]

The coordinate systems for the icon and diagram layers are by default defined as follows; where the array
of GraphicItem represents an ordered list of graphical primitives.

record Icon "Representation of the icon layer"
CoordinateSystem coordinateSystem(extent = {{-100, -100}, {100, 100}});
GraphicItem [:] graphics;

end Icon;

record Diagram "Representation of the diagram layer"
CoordinateSystem coordinateSystem(extent = {{-100, -100}, {100, 100}});
GraphicItem [:] graphics;

end Diagram;

The coordinate system attributes (extent and preserveAspectRatio) of a class are separately defined
by the following priority:

1. The coordinate system annotation given in the class (if specified).

2. The coordinate systems of the first base class where the extent on the extends-clause specifies a
null-region (if any). Note that null-region is the default for base classes, see section 18.9.3.

3. The default coordinate system CoordinateSystem(preserveAspectRatio=true, extent = {{-100,
-100}, {100, 100}}).

18.9.1.2 Graphical Properties

Properties of graphical objects and connection lines are described using the following attribute types.

type Color = Integer [3](min = 0, max = 255) "RGB representation";
constant Color Black = zeros (3);
type LinePattern = enumeration(None , Solid , Dash , Dot , DashDot , DashDotDot);
type FillPattern = enumeration(None , Solid , Horizontal , Vertical ,

Cross , Forward , Backward , CrossDiag ,
HorizontalCylinder , VerticalCylinder , Sphere);

type BorderPattern = enumeration(None , Raised , Sunken , Engraved);
type Smooth = enumeration(None , Bezier);
type EllipseClosure = enumeration(None , Chord , Radial , Automatic);

The LinePattern attribute Solid indicates a normal line, None an invisible line, and the other attributes
various forms of dashed/dotted lines.

The FillPattern attributes Horizontal, Vertical, Cross, Forward, Backward and CrossDiag specify
fill patterns drawn with the line color over the fill color.

The attributes HorizontalCylinder, VerticalCylinder and Sphere specify gradients that represent a
horizontal cylinder, a vertical cylinder and a sphere, respectively. Gradients are defined for the geometry
of a GraphicItem before its rotation is applied. The coloring is defined for an enclosing shape, and
then clipped to the actual shape of the GraphicItem. For HorizontalCylinder and VerticalCylinder
, the minimal enclosing axis-parallel rectangle is used, while Sphere uses the smallest area enclosing
ellipse. The enclosing shapes are defined considering full rectangles (ignoring rounded corners) and full
ellipses (ignoring arcs). For HorizontalCylinder, the gradient attains the fill color along the horizontal
line dividing the enclosing rectangle at the center, and the line color at the two horizontal sides of the
rectangle. The VerticalCylinder is defined analogously to HorizontalCylinder, but using vertical
lines. For Sphere, the gradient attains the fill color at the center of the enclosing ellipse, and the line
color along the entire border of the ellipse. Examples of gradient fills are given in figures 18.2 to 18.3.

293

Modelica Language Specification 3.7-dev
18.9. Graphical Objects

The border pattern attributes Raised, Sunken and Engraved represent frames which are rendered in a
tool-dependent way — inside the extent of the filled shape.

P1

P2

P3

P4

P12
P23 P34

Figure 18.1: Line with smooth = Bezier. The four line points P1, . . . , P4 result in two quadratic
splines and two straight line segments.

The smooth attribute specifies that a line can be drawn as straight line segments (None) or using a spline
(Bezier), where the line’s points specify control points of a quadratic Bezier curve, see figure 18.1.

For lines with only two points, the smooth attribute has no effect.

For lines with three or more points (P1, P2, . . . , Pn), the middle point of each line segment (P12, P23, . . . ,
P(n−1)n) becomes the starting point and ending points of each quadratic Bezier curve. For each quadratic
Bezier curve, the common point of the two line segment becomes the control point. For instance, point
P2 becomes the control point for the Bezier curve starting at P12 and ending at P23. A straight line is
drawn between the starting point of the line and the starting point of the first quadratic Bezier curve,
as well as between the ending point of the line and the ending point of the last quadratic Bezier curve.

In the illustration above, the square points (P1, P2, P3, and P4) represent the points that define the line,
and the circle points (P12, P23, and P34) are the calculated middle points of each line segment. Points
P12, P2, and P23 define the first quadratic Bezier curve, and the points P23, P3, and P34 define the second
quadratic Bezier curve. Finally a straight line is drawn between points P1 and P12 as well as between
P34 and P4.

The values of the EllipseClosure enumeration specify if and how the endpoints of an elliptical arc are
to be joined (see section 18.9.5.4).

type Arrow = enumeration(None , Open , Filled , Half);
type TextStyle = enumeration(Bold , Italic , UnderLine);
type TextAlignment = enumeration(Left , Center , Right);

Filled shapes have the following attributes for the border and interior.

record FilledShape "Style attributes for filled shapes"
Color lineColor = Black "Color of border line";
Color fillColor = Black "Interior fill color";
LinePattern pattern = LinePattern.Solid "Border line pattern";
FillPattern fillPattern = FillPattern.None "Interior fill pattern";
DrawingUnit lineThickness = 0.25 "Line thickness";

end FilledShape;

The extent/points of the filled shape describe the theoretical zero-thickness filled shape, and the actual
rendered border is then half inside and half outside the extent.

[Example: Gradient fill patterns. All gradients below use pure white for fillColor and pure black for
lineColor.

Figure 18.2 shows the use of FillPattern.HorizontalCylinder. Since the gradient fill is determined
before applying rotation, the line where fillColor is attained gets rotated together with the rectangle. It
is also seen that the lineColor is attained where the ellipse touches the the enclosing rectangle.

Figure 18.3 shows the use of FillPattern.Sphere on a Rectangle. It is seen that the fillColor is
attained at the center of the enclosing ellipse (coinciding with the center of the rectangle), and that the

294

Modelica Language Specification 3.7-dev
18.9. Graphical Objects

lineColor is attained at the corners of the rectangle, which all lie on the enclosing ellipse. If the rectangle
would have had rounded corners (by specifying a positive radius), the geometry of the gradient fill would
not change, meaning that the lineColor would not have been attained. While the FillPattern.Sphere
name suggests that it is used to make circles look like spheres, this example also illustrates how it can be
used to give a less flat look to other shapes.

Figure 18.4 shows the use of FillPattern.Sphere on a Polygon. Determining the minimal area en-
closing ellipse is a non-trivial but computationally tractable problem.]

Figure 18.2: Applying FillPattern.HorizontalCylinder to an Ellipse with startAngle,
endAngle, rotation, and closure = EllipseClosure.Chord. The dashed line shows the mini-
mal enclosing axis-aligned rectangle, after rotating it together with the ellipse. Since lighting and
reflective properties of the imaginary cylinder are not defined by the specification, many details of
the rendering are tool specific. Here, a more shiny cylinder is shown to the left, and a more matte
cylinder to the right.

Figure 18.3: Applying FillPattern.Sphere to a Rectangle with rotation. The dashed line
shows the minimal area enclosing ellipse, after rotating it together with the rectangle. Similar to
the cylinder gradients, many details of the rendering are tool specific.

295

Modelica Language Specification 3.7-dev
18.9. Graphical Objects

Figure 18.4: Applying FillPattern.Sphere to a Polygon with smooth = Bezier. The dashed
line shows the minimal area enclosing ellipse. Similar to the cylinder gradients, many details of the
rendering are tool specific.

18.9.2 Component Instance

A component instance can be represented within the diagram and/or icon layer of the enclosing class.
Visibility and placement is controlled using the Placement annotation.

Annotation 18.10 Placement

record Placement
Boolean visible = true;
Transformation transformation;
Boolean iconVisible;
Transformation iconTransformation;

end Placement;

Allowed for component declarations. The Placement annotation defines the placement of the
component’s graphics as part of the graphics of the enclosing class.

The visibility of the component in the diagram layer of the enclosing class is defined by visible.
For a connector component, the component’s diagram layer defines the content to be displayed,
while the icon layer is used for other component kinds.

[The use of a connector’s diagram layer facilitates opening up a hierarchical connector to allow
connections to its internal subconnectors.]

The transformation defines the placement in the diagram layer of the enclosing class. The
Transformation type is defined below.

The iconVisible only applies to public connector components, and defines the visibility of the
component in the icon layer of the enclosing class (protected connectors are never visible in
icons). Sub-connectors in a hierarchical connector are only visible if they can be connected to.
The connector’s icon layer defines the content to be displayed. The default for iconVisible is to
be the same as visible.

The iconTransformation only applies to public connector components, and defines the place-
ment of the Icon annotation graphics in the icon layer of the enclosing class. The default for
iconTransformation is to be the same as transformation.

[While it is possible to have independent placements of a connector in the icon and diagram layers, this
freedom should be used with care. A user who wants to find out what hides behind the icon of a component
by opening up the component’s diagram view will benefit if the relative positioning of connectors are
similar between icon and diagram. This way, intuitive understanding of the diagram layer is enabled
without the need to pay attention to connector names.]

The transformation and iconTransformation of the Placement annotation have the following type:

record Transformation
Extent extent;
Real rotation(quantity = "angle", unit = "deg") = 0;

296

Modelica Language Specification 3.7-dev
18.9. Graphical Objects

Point origin = {0, 0};
end Transformation;

It defines a coordinate system transformation by applying the attributes in the order extent, rotation,
origin, as follows:

1. The extent of the component icon is mapped to the extent rectangle (possibly shifting, scaling,
and flipping contents).

2. The rotation specifies counter-clockwise rotation around the origin (that is {0, 0}, not the origin
attribute).

3. The origin specifies a shift (moving {0, 0} to origin).

18.9.2.1 Default Outline for Missing Graphics

If the icon of a component placed in a diagram layer does not contain any graphical primitives (including
inherited ones, and regardless of visible-attributes; but excluding connectors), tools shall show a tool-
dependent rudimentary outline of the component’s transformed extent.

[The reason for making the tool-dependent outline rudimentary is to encourage the model developer to
provide a proper icon. That visible-attributes are not regarded makes it possible to obtain an icon which
only shows connectors by adding a dummy primitive with visible = false.]

18.9.3 Extends-Clause

Each extends-clause (and short class definition, as stated in section 18.9) may have layer specific anno-
tations which describe the rendering of the base class’ icon and diagram layers in the derived class.

record IconMap
/* literal */ constant Extent extent = {{0, 0}, {0, 0}};
/* literal */ constant Boolean primitivesVisible = true;

end IconMap;

record DiagramMap
/* literal */ constant Extent extent = {{0, 0}, {0, 0}};
/* literal */ constant Boolean primitivesVisible = true;

end DiagramMap;

All graphical objects are by default inherited from a base class. If the primitivesVisible attribute is
false, components and connections are visible but graphical primitives are not.

� If the extent is {{0, 0}, {0, 0}} (the default), the base class contents is mapped to the same
coordinates in the derived class, and the coordinate system (including preserveAspectRatio) can
be inherited as described in section 18.9.1.1.

� For any other extent, the base class coordinate system is mapped to this region, with the exception
that preserveAspectRatio = true in the base class requires that the mapping shall preserve the
aspect ratio. The base class coordinate system (and preserveAspectRatio) is not inherited.

[A zero area extent other than {{0, 0}, {0, 0}} will result in none of the base class contents being
visible. By affecting components and connections as well as graphical primitives, this is different from
setting primitivesVisible = false.

Reversed corners of the extent will result in mirrored (rotated if reversed in both direction) base class
contents.]

[Example:

model A
extends B annotation(
IconMap(extent = {{-100, -100}, {100, 100}} , primitivesVisible = false),
DiagramMap(extent = {{-50, -50}, {0, 0}}, primitivesVisible = true)

);
end A;

297

Modelica Language Specification 3.7-dev
18.9. Graphical Objects

model B
extends C annotation(DiagramMap(primitivesVisible = false));
. . .

end B;

In this example the diagram of A contains the graphical primitives from A and B (but not from C since
they were hidden in B) – the ones from B are rescaled, and the icon of A contains the graphical primitives
from A (but neither from B nor from C).]

18.9.4 Connections

A connection is specified with an annotation containing a Line primitive and optionally a Text primitive,
as specified below.

[Example:

connect(a.x, b.x)
annotation(Line(points = {{-25, 30}, {10, 30}, {10, -20}, {40, -20}}));

]

The optional Text primitive defines a text that will be written on the connection line. It has the following
definition (it is not equal to the Text primitive as part of graphics – the differences are marked after
Note in the description-strings):

record Text
extends GraphicItem;
Extent extent;
String string "Note: different name";
Real fontSize = 0 "unit pt";
String fontName;
TextStyle textStyle [:];
Color textColor = Black;
TextAlignment horizontalAlignment =

if index < 0 then TextAlignment.Right else TextAligment.Left "Note:
different default";
Integer index "Note: new";

end Text;

The index is one of the points of Line (numbered 1, 2, 3, . . . where negative numbers count from the
end, thus -1 indicate the last one). The string may use the special symbols "%first" and "%second"
to indicate the connectors in the connect-equation.

The extent and rotation are relative to the origin (default {0, 0}) and the origin is relative to the
point on the Line.

The textColor attribute defines the color of the text. The text is drawn with transparent background
and no border around the text (and without outline). The default value for horizontalAlignment is
deprecated. Having a zero size for the extent is deprecated and is handled as if upper part is moved up
an appropriate amount.

[Example:

connect(controlBus.axisControlBus1 , axis1.axisControlBus)
annotation(
Text(string = "%first", index = -1, extent = [-6, 3; -6, 7]),
Line(points = {{41, 30}, {50, 30}, {50, 50}, {58, 50}})

);

Draws a connection line and adds the text axisControlBus1 ending at (−6, 3) + (58, 50) and 4 vertical
units of space for the text. Using a height of zero, such as extent = [-6, 3; -6, 3] is deprecated, but
gives similar result.]

298

Modelica Language Specification 3.7-dev
18.9. Graphical Objects

18.9.5 Graphical Primitives

This section describes the graphical primitives that can be used to define the graphical objects in an
annotation.

18.9.5.1 Line

A line is specified as follows:

record Line
extends GraphicItem;
Point points [:];
Color color = Black;
LinePattern pattern = LinePattern.Solid;
DrawingUnit thickness = 0.25;
Arrow arrow [2] = {Arrow.None , Arrow.None} "{start arrow , end arrow}";
DrawingUnit arrowSize = 3;
Smooth smooth = Smooth.None "Spline";

end Line;

Note that the Line primitive is also used to specify the graphical representation of a connection.

For arrows:

� The arrow is drawn with an aspect ratio of 1/3 for each arrow half, i.e., if the arrow-head is 3 mm
long an arrow with Half will extend 1 mm from the mid-line and with Open or Filled extend
1 mm to each side, in total making the base 2 mm wide.

� The arrowSize gives the width of the arrow (including the imagined other half for Half) so that
thickness = 10 and arrowSize = 10 will touch at the outer parts.

� All arrow variants overlap for overlapping lines.

� The lines for the Open and Half variants are drawn with thickness.

18.9.5.2 Polygon

A polygon is specified as follows:

record Polygon
extends GraphicItem;
extends FilledShape;
Point points [:];
Smooth smooth = Smooth.None "Spline outline";

end Polygon;

The polygon is automatically closed, if the first and the last points are not identical.

18.9.5.3 Rectangle

A rectangle is specified as follows:

record Rectangle
extends GraphicItem;
extends FilledShape;
BorderPattern borderPattern = BorderPattern.None;
Extent extent;
DrawingUnit radius = 0 "Corner radius";

end Rectangle;

The extent attribute specifies the bounding box of the rectangle. If the radius attribute is specified,
the rectangle is drawn with rounded corners of the given radius.

299

Modelica Language Specification 3.7-dev
18.9. Graphical Objects

18.9.5.4 Ellipse

An ellipse is specified as follows:

record Ellipse
extends GraphicItem;
extends FilledShape;
Extent extent;
Real startAngle(quantity = "angle", unit = "deg") = 0;
Real endAngle(quantity = "angle", unit = "deg") = 360;
EllipseClosure closure = EllipseClosure.Automatic;

end Ellipse;

The extent attribute specifies the bounding box of the ellipse.

Partial ellipses can be drawn using the startAngle and endAngle attributes. These specify the endpoints
of the arc prior to the stretch and rotate operations. The arc is drawn counter-clockwise from startAngle
to endAngle, where startAngle and endAngle are defined counter-clockwise from 3 o’clock (the positive
x-axis).

The closure attribute specifies whether the endpoints specified by startAngle and endAngle are to
be joined by lines to the center of the extent (closure = EllipseClosure.Radial), joined by a single
straight line between the end points (closure = EllipseClosure.Chord), or left unconnected (closure
= EllipseClosure.None). In the latter case, the ellipse is treated as an open curve instead of a closed
shape, and the fillPattern and fillColor are not applied (if present, they are ignored).

The effect of EllipseClosure.Automatic is that of EllipseClosure.Chord when both startAngle is
0 and endAngle is 360, and that of EllipseClosure.Radial otherwise.

[The default for a closed ellipse is not EllipseClosure.None, since that would result in fillColor and
fillPattern being ignored, making it impossible to draw a filled ellipse. EllipseClosure.Chord is
equivalent in this case, since the chord will be of zero length.]

18.9.5.5 Text

A text string is specified as follows:

record Text
extends GraphicItem;
Extent extent;
String textString;
Real fontSize = 0 "unit pt";
String fontName;
TextStyle textStyle [:];
Color textColor = Black;
TextAlignment horizontalAlignment = TextAlignment.Center;

end Text;

The textColor attribute defines the color of the text. The text is drawn with transparent background
and no border around the text (and without outline).

There are a number of common macros that can be used in the text, and they should be replaced when
displaying the text as follows (in order such that the earliest ones have precedence, and using the longest
sequence of identifier characters – alphanumeric and underscore):

� %% replaced by %

� %name replaced by the name of the component (i.e., the identifier for it in the enclosing class).

� %class replaced by the name of the class (only the last part of the hierarchical name).

� %par and %{par} replaced by the value of the parameter or variable with a binding or modifier
setting the value par. If the value is numeric, tools shall display the value with displayUnit,
formatted according to the BIPM specification. E.g., for

parameter Real t(unit = "s", displayUnit = "ms") = 0.1

300

Modelica Language Specification 3.7-dev
18.9. Graphical Objects

tools shall display 100 ms. The intent is that the text is easily readable, thus if par is of an
enumeration type, replace %par by the item name, not by the full name.

[Example: If par = "Modelica.Blocks.Types.Enumeration.Periodic", then %par should be
displayed as Periodic.]

When quoted identifiers (e.g., quoted ident! or '}') or composite names (i.e., not simple iden-
tifiers) are involved, the form %{par} must be used. Here, par is a general component-reference,
and %{a.p} gives the value of the parameter p in the component a. The macro can be directly
followed by a letter. Thus %{w}x%{h} gives the value of w directly followed by x and the value of
h, while %wxh gives the value of the parameter wxh. If the parameter does not exist it is an error.

The style attribute fontSize specifies the font size. If the fontSize attribute is 0 the text is scaled to
fit its extent. Otherwise, the size specifies the absolute size. The text is vertically centered in the extent.

If the extent specifies a box with zero width and positive height the height is used as height for the text
(unless fontSize attribute is non-zero – which specifies the absolute size), and the text is not truncated
(the horizontalAlignment is still used in this case).

[A zero-width extent is convenient for handling texts where the width is unknown.]

If the string fontName is empty, the tool may choose a font. The font names "serif", "sans-serif",
and "monospace" shall be recognized. If possible the correct font should be used – otherwise a reasonable
match, or treat as if fontName was empty.

The style attribute textStyle specifies variations of the font.

18.9.5.6 Bitmap

A bitmap image is specified as follows:

record Bitmap
extends GraphicItem;
Extent extent;
String fileName "Name of bitmap file";
String imageSource "Base64 representation of bitmap";

end Bitmap;

The Bitmap primitive renders a graphical bitmap image. The data of the image can either be stored
on an external file or in the annotation itself. The image is scaled to fit the extent. Given an extent
{{x1, y1}, {x2, y2}}, x2 < x1 defines horizontal flipping and y2 < y1 defines vertical flipping around
the center of the object.

The graphical operations are applied in the order: scaling, flipping and rotation.

When the attribute fileName is specified, the string refers to an external file containing image data.
The mapping from the string to the file is specified for some URIs in section 13.6. The supported file
formats include PNG, BMP, JPEG, and SVG.

When the attribute imageSource is specified, the string contains the image data, and the image format
is determined based on the contents. The image is represented as a Base64 encoding of the image file
format (see RFC 4648, http://tools.ietf.org/html/rfc4648).

The image is uniformly scaled (preserving the aspect ratio) so it exactly fits within the extent (touching
the extent along one axis). The center of the image is positioned at the center of the extent.

18.9.6 Variable Graphics and Schematic Animation

Any value in graphical annotations can be dependent on evaluable parameters except when restricted
otherwise in their respective definitions, (for example with /* literal */ constant).

DynamicSelect has the syntax of a function call with two arguments, where the first argument specifies
the value of the static state and the second argument the value of the dynamic state. The first argument
follows the same rules as when not using DynamicSelect. The second argument may contain references
to variables of a higher variability to enable displaying dynamic behavior of a simulation.

301

http://tools.ietf.org/html/rfc4648

Modelica Language Specification 3.7-dev
18.9. Graphical Objects

[Example: The level of a tank could be animated by a rectangle expanding in vertical direction and its
color depending on a variable overflow:

annotation(Icon(graphics = {
Rectangle(
extent =
DynamicSelect ({{0, 0}, {20, 20}},

{{0, 0}, {20, level }}),
fillColor =
DynamicSelect ({0, 0, 255},

if overflow then {255, 0, 0} else {0, 0, 255})
)}));

]

18.9.7 User Input

It is possible to interactively modify variables during a simulation. The variables may either be param-
eters, discrete-time variables or states. New numeric values can be given, a mouse click can change a
Boolean variable or a mouse movement can change a Real variable. Input fields may be associated with
a GraphicItem or a component as an array named interaction. The interaction array may occur
as an attribute of a graphic primitive, an attribute of a component annotation or as an attribute of the
layer annotation of a class.

18.9.7.1 Mouse Input

A Boolean variable can be changed when the cursor is held over a graphical item or component and the
selection button is pressed if the interaction annotation contains OnMouseDownSetBoolean:

record OnMouseDownSetBoolean
Boolean variable "Name of variable to change when mouse button pressed";
Boolean value "Assigned value";

end OnMouseDownSetBoolean;

[Example: A button can be represented by a rectangle changing color depending on a Boolean variable
on and toggles the variable when the rectangle is clicked on:

annotation(Icon(
graphics = {
Rectangle(extent = [0, 0; 20, 20],

fillColor = if on then {255, 0, 0} else {0, 0, 255})},
interaction = {OnMouseDownSetBoolean(on, not on)}));

]

In a similar way, a variable can be changed when the mouse button is released :

record OnMouseUpSetBoolean
Boolean variable "Name of variable to change when mouse button released";
Boolean value "Assigned value";

end OnMouseUpSetBoolean;

Note that several interaction objects can be associated with the same graphical item or component.

[Example:

interaction = {OnMouseDownSetBoolean(on, true),
OnMouseUpSetBoolean(on , false)}

]

The OnMouseMoveXSetReal interaction object sets the variable to the position of the cursor in X direction
in the local coordinate system mapped to the interval defined by the minValue and maxValue attributes.

record OnMouseMoveXSetReal
Real xVariable "Name of variable to change when cursor moved in x direction";

302

Modelica Language Specification 3.7-dev
18.10. Graphical User Interface

Real minValue;
Real maxValue;

end OnMouseMoveXSetReal;

The OnMouseMoveYSetReal interaction object works in a corresponding way as the OnMouseMoveXSetReal
object but in the Y direction.

record OnMouseMoveYSetReal
Real yVariable "Name of variable to change when cursor moved in y direction";
Real minValue;
Real maxValue;

end OnMouseMoveYSetReal;

18.9.7.2 Edit Input

The OnMouseDownEditInteger interaction object presents an input field when the graphical item or
component is clicked on. The field shows the actual value of the variable and allows changing the value.
If a too small or too large value according to the min and max parameter values of the variable is given,
the input is rejected.

record OnMouseDownEditInteger
Integer variable "Name of variable to change";

end OnMouseDownEditInteger;

The OnMouseDownEditReal interaction object presents an input field when the graphical item or com-
ponent is clicked on. The field shows the actual value of the variable and allows changing the value. If a
too small or too large value according to the min and max parameter values of the variable is given, the
input is rejected.

record OnMouseDownEditReal
Real variable "Name of variable to change";

end OnMouseDownEditReal;

The OnMouseDownEditString interaction object presents an input field when the graphical item or
component is clicked on. The field shows the actual value of the variable and allows changing the value.

record OnMouseDownEditString
String variable "Name of variable to change";

end OnMouseDownEditString;

18.10 Graphical User Interface

The annotations listed below define properties for use in graphical user interfaces.

Annotation Description Details

preferredView Default view when opening class Annotation 18.11
DocumentationClass Purpose of class is documentation Annotation 18.12
defaultComponentName Default name for new components Annotation 18.13
defaultComponentPrefixes Default type prefixes for new components Annotation 18.14
missingInnerMessage Message for unresolved outer Annotation 18.15
absoluteValue Quantity is absolute Annotation 18.16
defaultConnectionStructurallyInconsistent Suppress certain verification errors Annotation 18.17
obsolete Message when using obsolete class Annotation 18.18
unassignedMessage Hint for unmatched variable Annotation 18.19
Dialog Setup for modifications Annotation 18.20

Annotation 18.11 preferredView

/* literal */ constant String preferredView;

The preferredView annotation defines the default view when selecting the class. The value "
info"means class documentation (“information”), "diagram"means diagram view, "icon"means

303

Modelica Language Specification 3.7-dev
18.10. Graphical User Interface

icon view, and "text" means Modelica source code (“text”). If not specified the default view is
tool specific.

Annotation 18.12 DocumentationClass

/* literal */ constant Boolean DocumentationClass;

Only allowed as class annotation on any kind of class and only having effect when true, meaning
that this class and all classes within it are treated as having the annotation preferredView =
"info". If the annotation preferredView is explicitly set for a class, it has precedence over a
DocumentationClass annotation.

[A tool may display such classes in special ways. For example, the description texts of the classes
might be displayed instead of the class names, and if no icon is defined, a special information
default icon may be displayed in the package browser.]

Annotation 18.13 defaultComponentName

/* literal */ constant String defaultComponentName;

The class annotation defaultComponentName gives the recommended component name to use
when creating a component of the class. If the default name cannot be used (e.g., since it is
already in use), another name based on defaultComponentName shall be derived automatically,
except as described under defaultComponentPrefixes. It is an error if the string is not a valid
identifier. When automatically deriving a name, any trailing ‘1’ in the defaultComponentName
shall be disregarded. If not specified, the names of new components are tool-specific.

Annotation 18.14 defaultComponentPrefixes

/* literal */ constant String defaultComponentPrefixes;

The class annotation defaultComponentPrefixes gives a whitespace separated list of recom-
mended type prefixes to include in the type-prefix part of a component-clause1 generated when
creating a component of the class:

type-prefix type-specifier component-declaration

The following prefixes may be included in the defaultComponentPrefixes string: inner, outer,
replaceable, constant, parameter, discrete. The default is an empty string.

[By using defaultComponentPrefixes in combination with defaultComponentName, it becomes
easy for users to create inner components matching the outer declarations; see also example
below. If the type prefixes contain inner or outer and the default name cannot be used (e.g.,
since it is already in use) it is recommended to give a diagnostic.]

Annotation 18.15 missingInnerMessage

/* literal */ constant String missingInnerMessage;

Only has an effect if specified, and the string must then be non-empty. When specified and an
outer component of the class does not have a corresponding inner component, the string message
may be used as part of a diagnostic message (together with appropriate context), see section 5.4.
The default is a tool-specific diagnostic message.

[Example:

model World
. . .
annotation(
defaultComponentName = "world",
defaultComponentPrefixes = "inner replaceable",
missingInnerMessage = "The World object is missing"

);
end World;

When an instance of model World is dragged in to the diagram layer, the following declaration is
generated:

304

Modelica Language Specification 3.7-dev
18.10. Graphical User Interface

inner replaceable World world;

]

Annotation 18.16 absoluteValue

/* literal */ constant Boolean absoluteValue;

Allowed for simple types and components of a simple types. If false, then the component defines
a relative quantity, and if true an absolute quantity. When converting between units (e.g., in
plots and where parameters are edited), the unit offset must be ignored for relative quantities.
The annotation is inherited in the sense that when absoluteValue is defined for a simple type,
it also applies derived classes. When absoluteValue is defined for a simple type, it also applies
to components declared with the type.

When absoluteValue of a component is not determined by an annotation (possibly through
inheritance), the absoluteValue status may be inferred by the tool. If the absoluteValue of a
component is neither determined by annotation nor inference, unit conversions that would differ
depending on absoluteValue cannot be performed.

[For most quantities there are no units with offset, and the annotation is not needed. For a
component where unit conversions involving offsets could be of interest (mainly temperatures),
ensuring that absoluteValue is determined by an annotation (typically by means of using a type
where it has been specified) may reduce impact of quality-of-implementation in tool ability to infer
absoluteValue. Example applications of this annotation can be found among the type definitions
in the Modelica.Units package of the Modelica Standard Library, such as TemperatureDifference
.]

Annotation 18.17 defaultConnectionStructurallyInconsistent

/* literal */ constant Boolean
defaultConnectionStructurallyInconsistent;

Allowed for model and block class definitions. Only has an effect if true, when it is stated that
a default connection will result in a structurally inconsistent model or block1. Here, the default
connection is constructed by instantiating the respective model or block and for every input u
providing an equation 0 = f(u), and for every (potential, flow) pair of the form (v, i), providing
an equation of the form 0 = f(v, i).

[It is useful to check all models/blocks of a Modelica package in a simple way. One check is to
default connect every model/block and to check whether the resulting class is structurally consistent
(which is a stronger requirement than being balanced). It is rarely needed; but is for example used in
Modelica.Blocks.Math.InverseBlockConstraints, in order to prevent a wrong error message.
Additionally, when a user defined model is structurally inconsistent, a tool should try to pinpoint
in which class the error is present. This annotation avoids then to show a wrong error message.]

Annotation 18.18 obsolete

/* literal */ constant String obsolete;

Allowed for class annotations. Only has an effect if specified, and the string must then be non-
empty. It indicates that the class ideally should not be used anymore and gives a message in-
dicating the recommended action. This annotation is not inherited, the assumption is that if a
class uses an obsolete class (as a base class or as the class of one of the components) that shall
be updated – ideally without impacting users of the class. If that is not possible the current class
can have also have an obsolete annotation.

Annotation 18.19 unassignedMessage

/* literal */ constant String unassignedMessage;

Allowed for component declarations. Only has an effect if specified, and the string must then be
non-empty. When the variable to which this annotation is attached in the declaration cannot be
computed due to the structure of the equations, the string can be used as a diagnostic message.

1For the precise definition of structurally inconsistent, see Pantelides (1988).

305

Modelica Language Specification 3.7-dev
18.10. Graphical User Interface

[When using BLT partitioning, this means if a variable a or one of its aliases b = a or b = -a
cannot be assigned, the message is displayed. This annotation is used to provide library specific
error messages.]

[Example:

connector Frame "Frame of a mechanical system"
. . .
flow Modelica.Units.SI.Force f[3]
annotation(unassignedMessage =
"All Forces cannot be uniquely calculated.

The reason could be that the mechanism contains a planar loop
or that joints constrain the same motion.
For planar loops , use one RevolutePlanarLoopConstraint per loop."
);

end Frame;

]

Annotation 18.20 Dialog

record Dialog
/* literal */ constant String tab = "General";
/* literal */ constant String group = "";
/* evaluable */ parameter Boolean enable = true;
/* literal */ constant Boolean showStartAttribute;
/* literal */ constant Boolean colorSelector = false;
/* literal */ constant Selector loadSelector;
/* literal */ constant Selector saveSelector;
/* literal */ constant Selector directorySelector;
/* literal */ constant String groupImage = "";
/* literal */ constant Boolean connectorSizing = false;

end Dialog;

record Selector
/* literal */ constant String filter = "";
/* literal */ constant String caption = "";

end Selector;

Allowed for component declarations and short replaceable class definitions. For a short replaceable
class definition only the fields tab, group, enable and groupImage are allowed.

In the organization of a tool’s user interface, the tab shall correspond to a major divisioning of
“tabs”, and group correspond to sub-divisioning of “groups” within each tab. An empty group
(the default) means tool-specific choice of group. The order of components (and class definitions)
within each group and the order of the groups and tabs are according to the declaration order,
where inherited elements are added at the place of the extends.

A component shall have at most one of showStartAttribute=true, colorSelector=true, loadSelector
, saveSelector, directorySelector, or connectorSizing=true.

Modifiable parameters (except for connectorSizing = true), non-connector inputs, and short
replaceable class definitions should normally be shown in the dialog even without this annotation.

[Example: When group is empty, a tool may place parameters in the group “Parameters”, and
place variables with showStartAttribute = true in the group “Start Attributes”.]

If enable = false, the input field may be disabled and no input can be given.

If showStartAttribute = true the dialog should allow the user to set the start- and fixed-
attributes for the variable instead of the value of the variable.

[The showStartAttribute = true is primarily intended for non-parameter values and avoids
introducing a separate parameter for the start-attribute of the variable.]

306

Modelica Language Specification 3.7-dev
18.10. Graphical User Interface

If a non-parameter declaration has a modifier for the start-attribute and does not have showStartAttribute
= false, the start- and fixed-attributes may also be shown.

If colorSelector = true, it suggests the use of a color selector to pick an rgb color as a vector
of three values in the range 0..255 (the color selector should be useable both for vectors of Integer
and Real).

The presence of loadSelector or saveSelector specifying Selector suggests the use of a file
dialog to select a file. Setting filter will in the dialog only show files that fulfill the given pattern.
Setting text1 (*.ext1);;text2 (*.ext2) will only show files with file extensions ext1 or ext2
with the corresponding description texts text1 and text2, respectively. caption is a caption
for display in the file dialog. loadSelector is used to select an existing file for reading, whereas
saveSelector is used to define a file for writing.

The presence of directorySelector specifying Selector suggests the use of a dialog to select
an existing directory. The selected directory does not need to exist at the time of opening the
dialog; it is allowed to let the dialog be used to create directory before selecting it. The filter
may not be used. The caption is a caption for display in the file dialog.

The groupImage references an image using an URI (see section 13.6), and the image is intended
to be shown together with the entire group (only one image per group is supported). Disabling
the input field will not disable the image. The background of the groupImage and any image
used in HTML-documentation is recommended to be transparent (intended to be a light color)
or white.

The connectorSizing is described separately in section 18.10.1. A dialog annotation only con-
taining showStartAttribute = false and/or connectorSizing = true does not indicate that
the variable shall be shown.

[Example:

model DialogDemo
parameter Boolean b = true "Boolean parameter";
parameter Modelica.Units.SI.Length length "Real parameter with unit";
parameter Real r1 "Real parameter in Group 1"

annotation(Dialog(group = "Group 1"));
parameter Real r2 "Disabled Real parameter in Group 1"

annotation(Dialog(group = "Group 1", enable = not b));
parameter Real r3 "Real parameter in Tab 1"

annotation(Dialog(tab = "Tab 1"));
parameter Real r4 "Real parameter in Tab 1 and Group 2"

annotation(Dialog(tab = "Tab 1", group = "Group 2"));
. . .

end DialogDemo;

When clicking on an instance of model DialogDemo, a dialog is shown that may have the following
layout (other layouts are also possible, this is vendor specific).

]

18.10.1 Connector Sizing

This section describes the connectorSizing annotation inside a Dialog annotation. The value of
connectorSizing must be a literal false or true. If connectorSizing = false, this annotation has

307

Modelica Language Specification 3.7-dev
18.10. Graphical User Interface

no effect. A variable with connectorSizing = true must be declared with the parameter or constant
prefix, must be a subtype of a scalar Integer and must have a literal default value of 0.

[The reason why connectorSizing must be given a literal value is that if the value is an expression, the
connectorSizing functionality is conditional and this will then lead easily to wrong models.

The default value of the variable must be zero since this annotation is designed for a variable that is used
as vector dimension, and the dimension of the vector should be zero when the component is dragged or
redeclared. Furthermore, when a tool does not support the connectorSizing annotation, dragging will
still result in a correct model.]

If connectorSizing = true, a tool may set the variable value in a modifier automatically, if used as
dimension size of a vector of connectors. In that case the value modifier should not be edited directly
by the user, and a tool may choose to not display that variable in the dialog or display it with disabled
input field. There shall be exactly one vector of connectors using the dimension size n for each variable n
with connectorSizing = true. Other vectors of connectors that need to have the same size may use a
different expression with the same value, such as n + 0, to avoid that multiple vectors become associated
with the connectorSizing automatic updating of n. (Note that non-connector vectors may have size n
without becoming associated.)

[The connectorSizing annotation is used in cases where connections to a vector of connectors shall
be made and a new connection requires to resize the vector and to connect to the new index (unary
connections). The annotation allows a tool to perform these two actions in many cases automatically.
This is, e.g., very useful for state machines and for certain components of fluid libraries.

If a variable n with connectorSizing = true would have multiple associated vectors of connectors, some
of the graphical operations described below would not work reliably. If there is no associated vector of
connectors, the user may choose to address this by removing the connectorSizing annotation or the
entire variable.]

[The following part is non-normative text and describes a useful way to handle the connectorSizing
annotation in a tool (still a tool may use another strategy and/or may handle other cases than described
below). The recommended rules are clarified at hand of the following example which represents a connector
and a model from the Modelica.StateGraph library (note that they may be modified or renamed in future
versions):

connector Step_in // Only 1:1 connections are possible since input used
output Boolean occupied;
input Boolean set;

end Step_in;

block Step
// nIn cannot be set through the dialog (but maybe shown)
parameter Integer nIn=0 annotation(Dialog(connectorSizing=true));
Step_in inPorts[nIn];
. . .

end Step;

If the parameter is used as dimension size of a vector of connectors, it is automatically updated according
to the following rules:

1. If a new connection line is drawn between one outside and one inside vector of connectors both di-
mensioned with (connectorSizing) parameters, a connection between the two vectors is performed
and the (connectorSizing) parameter is propagated from connector to component. Other types
of outside connections do not lead to an automatic update of a (connectorSizing) parameter.
Example: Assume there is a connector inPorts and a component step1:

parameter Integer nIn=0 annotation(Dialog(connectorSizing=true));
Step_in inPorts[nIn];
Step step1(nIn =0);

Drawing a connection line between connectors inPorts and step1.inPorts results in:

parameter Integer nIn=0 annotation(Dialog(connectorSizing=true));
Step_in inPorts[nIn];

308

Modelica Language Specification 3.7-dev
18.11. Versions

Step step1(nIn=nIn); // nIn=0 changed to nIn=nIn
equation
connect(inPorts , step1.inPorts); // new connect -equation

2. If a connection line is deleted between one outside and one inside vector of connectors both dimen-
sioned with (connectorSizing) parameters, the connect-equation is removed and the (connectorSizing
) parameter of the component is set to zero or the modifier is removed. Example: Assume the
connection line in the resulting example in case 1 is removed. This results in:

parameter Integer nIn=0 annotation(Dialog(connectorSizing=true));
Step_in inPorts[nIn];
Step step1; // modifier nIn=nIn is removed

3. If a new connection line is drawn to an inside connector with connectorSizing and case 1 does
not apply then, the parameter is incremented by one and the connection is performed for the new
highest index. Example: Assume that 3 connections are present and a new connection is performed.
The result is:

Step step1(nIn =4); // index changed from nIn=3 to nIn=4
equation
connect(. . ., step1.inPorts [4]); // new connect -equation

In some applications, like state machines, the vector index is used as a priority, e.g., to define
which transition is firing if several transitions become active at the same time instant. It is then
not sufficient to only provide a mechanism to always connect to the last index. Instead, some
mechanism to select an index conveniently should be provided.

4. If a connection line is deleted to an inside connector with connectorSizing and case 2 does not
apply then, then the (connectorSizing) parameter is decremented by one and all connections with
index above the deleted connection index are also decremented by one. Example:Assume there are
4 connections:

Step step1(nIn =4);
equation
connect(a1 , step1.inPorts [1]);
connect(a2 , step1.inPorts [2]);
connect(a3 , step1.inPorts [3]);
connect(a4 , step1.inPorts [4]);

and the connection from a2 to step1. inPorts[2] is deleted. This results in

Step step1(nIn =3);
equation
connect(a1 , step1.inPorts [1]);
connect(a3 , step1.inPorts [2]);
connect(a4 , step1.inPorts [3]);

These rules also apply if the connectors and/or components are defined in superclass.

Example: Assume that step1 is defined in superclass MyCompositeStep with 3 connections, and a new
connection is performed in a derived class. The result is:

extends MyCompositeStep(step1(nIn=4)); // new modifier nIn=4
equation
connect(. . ., step1.inPorts [4]); // new connect -equation

]

18.11 Versions

The annotations listed below allow a top-level package or model to specify the versions of top-level classes
it uses, its own version number, and if possible, how to convert from previous versions. This can be used
by a tool to guarantee that consistent versions are used, and if possible to upgrade usage from an earlier
version to a current one.

309

Modelica Language Specification 3.7-dev
18.11. Versions

Annotation Description Details

version Version of top-level package Annotation 18.21
conversion Conversions to apply when upgrading Annotation 18.22
uses Top-level package dependencies Annotation 18.23
versionDate Date of first version build Annotation 18.24
versionBuild Maintenance update number Annotation 18.25
dateModified Date of last change Annotation 18.26
revisionId Version control system version information Annotation 18.27

18.11.1 Version Numbering

Version number strings can be in one of several forms:

PACKAGE-VERSION = MAIN-VERSION | PRE-RELEASE-VERSION | UNORDERED-VERSION

MAIN-VERSION = UNSIGNED-INTEGER { "." UNSIGNED-INTEGER }

PRE-RELEASE-VERSION = MAIN-VERSION " " { S-CHAR }

UNORDERED-VERSION = NON-DIGIT { S-CHAR }

Examples:

� Main release version: "2.1"

� Pre-release version: "2.1 Beta 1"

� Unordered version: "Test 1"

The main release versions are ordered using the hierarchical numerical names, and follow the correspond-
ing pre-release versions. The pre-release versions of the same main release version are internally ordered
alphabetically.

18.11.2 Version Handling

In a top-level class, the version number and the dependency to earlier versions of this class are defined
using one or more of the annotations described in this section.

Annotation 18.21 version

/* literal */ constant String version;

version = currentVersion defines the version number of the model or package. The currentVersion
shall be a PACKAGE-VERSION. All classes within this top-level class have this version number.

Annotation 18.22 conversion

"conversion" "=" "(" [conversion { "," conversion }] ")"

conversion : conversion-none | conversion-with-rules

conversion-none : "noneFromVersion" "=" PACKAGE-VERSION

conversion-with-rules :
"from" "("
"version" = package-versions
["," "to" "=" PACKAGE-VERSION]
"," conversion-rules

")"

conversion-rules :
"script" "=" STRING
| "change" "(" [conversion-rule { "," conversion-rule }] ")"

310

Modelica Language Specification 3.7-dev
18.11. Versions

conversion-rule : IDENT function-call-args

package-versions :
PACKAGE-VERSION
| "{" PACKAGE-VERSION { "," PACKAGE-VERSION } "}"

conversion(noneFromVersion = fromVersion) defines that models and packages using the fromVersion
can be upgraded to the currentVersion of the current class without any changes.

conversion(from(version = fromVersions, to = toVersion, conversionRules)) defines that
models and packages using any of the fromVersions can be upgraded to the toVersion (if the
toVersion is omitted, this is the currentVersion) of the current class by applying the conversionRules.
When conversionRules is given as script = conversionScript , the conversionScript is the name
of a file consisting of an unordered sequence of conversion-rule ";" and Modelica comments,
where any comments should be ignored by tools. A conversion-rule has the form of a function
call, where the functions are defined in section 18.11.2.1.

[The to version is added for clarity and optionally allows a tool to convert in multiple steps.]

Annotation 18.23 uses

"uses" "(" [used-package { "," used-package }] ")"

used-package :
IDENT "("
"version" "=" PACKAGE-VERSION
["," "versionBuild" "=" UNSIGNED-INTEGER]
["," "dateModified" "=" STRING]

")"

uses(otherPackage(version = otherPackageVersion)) defines that classes within this top-level
class use the otherPackageVersion of classes within the top-level class otherPackage.

See section 18.11.4 regarding the use of versionBuild and dateModified.

[Example:

package Modelica
. . .
annotation(
version = "3.1",
conversion(
noneFromVersion = "3.1 Beta 1",
noneFromVersion = "3.1 Beta 2",
from(version = {"2.1", "2.2", "2.2.1"},

script = "convertTo3.mos"),
from(version = "1.5",

script = "convertFromModelica1_5.mos")
));

end Modelica;

model A
. . .
annotation(
version = "1.0",
uses(Modelica(version = "1.5"))

);
end A;

model B
. . .
annotation(
uses(Modelica(version = "3.1 Beta 1"))

);
end B;

311

Modelica Language Specification 3.7-dev
18.11. Versions

In this example the model A uses an older version of the Modelica library and can be upgraded using the
given script, and model B uses an older version of the Modelica library but no changes are required when
upgrading.]

18.11.2.1 Conversion Rules

There are a number of functions: convertClass, convertClassIf, convertElement, convertModifiers,
convertMessage defined as follows. The calls of these functions do not directly convert, instead they
define conversion rules as below. It is recommended, but not required, to terminate each such function
call with a semi-colon. The order between the function calls does not matter, instead the longer paths
(in terms of number of hierarchical names) are used first as indicated below, and it is an error if there
are any ambiguities.

The conversion should generate correct Modelica models using the new version of the library correspond-
ing to the old version.

[Whenever possible tools should preserve the original style of the model, e.g., use of imports. Conversions
should be applied in all places where named element are used in code, including Modelica URIs (for
example, in Documentation annotations).]

These functions can be called with literal strings or arrays of literal strings and vectorize according to
section 12.4.6. The empty literal string is only allowed when constructing an empty array using fill.

All of these convert-functions only use inheritance among user models, and not in the library that is used
for the conversion – thus conversions of base classes will require multiple conversion calls; this ensures
that the conversion is independent of the new library structure. The name of the class used as argument
to convertElement and convertModifiers is similarly the old name of the class, i.e., the name before
it is possibly converted by convertClass.

[Specifying conversions using the old name of a class allows the conversion to be done without access to
the old version of the library (by suitable modifications of the lookup). Another alternative is to use the
old version of the library during the conversion.

The invalid but previously used form convertElement("OldClass", "OldName", "") should be handled
as convertModifiers("OldClass", {"OldName"}, fill("", 0)) without any conversion applied to
equations.]

convertClass("OldClass", "NewClass") Convert class OldClass to NewClass.

Match longer path first, so if converting both A to C and A.B to D then A.F is converted to C.F and A.B.E
to D.E. This is considered before convertMessage for the same OldClass.

[Example: Consider the following as part of a conversion script:

convertClass("Modelica.SIunits", "Modelica.Units.SI");
convertClass("Modelica.SIunits.Icons", "Modelica.Units.Icons");

This ensures that for example Modelica.SIunits.Length is converted to Modelica.Units.SI.Length
and Modelica.SIunits.Icons is converted to Modelica.Units.Icons.]

convertClassIf("OldClass", "oldElement", "whenValue", "NewClass") Convert class OldClass
to NewClass if the literal modifier for oldElement has the value whenValue, and also remove the modifier
for oldElement.

These are considered before convertClass and convertMessage for the same OldClass.

The old element should be of a Boolean, Integer, String, or enumeration type and the match is based
on the literal value of the modifier. For string elements the value argument to convertClassIf shall be
up-quoted, e.g., "\"My String\"", and for enumeration literals only the enumeration literal part of the
old value matters, e.g., red for "Colors.red".

312

Modelica Language Specification 3.7-dev
18.11. Versions

convertElement("OldClass", "OldName", "NewName") In OldClass, convert element OldName
to NewName. Both OldName and NewName normally refer to components, but they may also refer to
class-parameters, or hierarchical names. For hierarchical names, the longest match is used first.

For replaceable classes in packages (and replaceable classes in other classes) convertElement shall be
used if the class is renamed within the package (or class), whereas convertClass shall only be used if
the class is placed outside of the package (or class).

[The latter case indicates a problem with overuse of replaceable classes in the previous design of the
library.]

[Example: Consider the following as part of a conversion script:

convertElement ({"Modelica.Mechanics.MultiBody.World",
"Modelica.Mechanics.MultiBody.World.gravityAcceleration"},
"mue", "mu");

This implies that

Modelica.Mechanics.MultiBody.World world(mue =2);
function f=Modelica.Mechanics.MultiBody.World.gravityAcceleration(mue =4);

is converted to:

Modelica.Mechanics.MultiBody.World world(mu=2);
function f=Modelica.Mechanics.MultiBody.World.gravityAcceleration(mu=4);

]

convertModifiers

convertModifiers("OldClass",
{"OldModifier1=default1", "OldModifier2=default2", . . .},
{"NewModifier1=. . .%OldModifier2%. . .", "NewModifier2=. . .", . . .}
[, simplify=true]);

Normal case; if any modifier among OldModifier exist then replace all of them with the list of
NewModifiers. The . . .%OldModifier2%. . . indicate an expression that may involve the values of the
old modifiers (tools are responsible for adding parentheses if needed). The lists of old and new modifiers
can have different lengths. The defaults (if present) are used if there are multiple OldModifier and not
all are set in the component instance. The defaults are optional if there is at most one OldModifier
element, and should otherwise be provided.

If simplify is specified and true then perform obvious simplifications to clean up the new modifier;
otherwise leave as is.

The old and new modifiers shall be component references, except for the cardinality cases listed below.

[Note: simplify is primarily intended for converting enumerations and emulated enumerations that
naturally lead to large nested if-expressions. The simplifications may also simplify parts of the original
expression.]

If the modifiers contain literal string values they must be quoted.

Behaviour in unusual cases:

� If NewModifier list is empty then the modifier is just removed.

� If OldModifer list is empty it is added for all uses of the class.

� If OldModifieri is cardinality(a) = 0 the conversion will only be applied for a component comp
if there are no inside connections to comp.a. This can be combined with other modifiers that are
handled in the usual way.

� If OldModifieri is cardinality(a) = 1 the conversion will only be applied for a component comp
if there are any inside connections to comp.a.

313

Modelica Language Specification 3.7-dev
18.11. Versions

The converted modifiers and existing modifiers are merged such that the existing modifiers take prece-
dence over the result of convertModifiers. A diagnostic is recommended if this merging removes some
modifiers unless those modifiers are identical or it is the special case of an empty OldModifier list.

[This can be used to handle the case where the default value was changed.]

Converting modifiers with cardinality is used to remove the deprecated operator cardinality from
model libraries, and replace tests on cardinality in models by parameters explicitly enabling the different
cases. The case where the old class is used as a base class, and there exist outside connections to a, and
there is convertModifiers involving the cardinality of a is not handled.

[Having a parameter for explicitly enabling the different cases means that instead of model A internally
testing if its connector B is connected, there will be a parameter for enabling connector B, and the con-
version ensures that each component of model A will have this parameter set accordingly.

In case a parameter is simply renamed it is preferable to use convertElement, since that also handles,
e.g., binding equations using the parameter.]

[Example: The conversion

convertClass("Modelica.Thermal.FluidHeatFlow.Components.IsolatedPipe",
"Modelica.Thermal.FluidHeatFlow.Components.Pipe");

convertModifiers ({"Modelica.Thermal.FluidHeatFlow.Components.IsolatedPipe"},
fill("", 0), {"useHeatPort=false"});

convertClass("Modelica.StateGraph.Temporary.NumericValue",
"Modelica.Blocks.Interaction.Show.RealValue");

convertModifiers("Modelica.StateGraph.Temporary.NumericValue",
{"Value"}, {"number =%Value%"});

convertModifiers("Modelica.StateGraph.Temporary.NumericValue",
{"hideConnector"}, {"use_numberPort=not %hideConnector%"});

convertModifiers("Modelica.Blocks.Math.LinearDependency",
{"y0=0", "k1=0", "k2=0"}, {"y0=%y0%", "k1=%y0%*%k1%", "k2=%y0%*%k2%"},
true);

convertClass("My.Library.BadPackage",
"My.Library.Package");

convertElement("My.Library.BadPackage.PartialBase",
"bad", "correct");

convertElement("My.Library.BadPackage.ActualClass",
"bad", "correct");

converts

Modelica.Thermal.FluidHeatFlow.Components.IsolatedPipe pipe1;
Modelica.StateGraph.Temporary.NumericValue tempValue(
Value = 10, hideConnector = true);

Modelica.Blocks.Math.LinearDependency linearDep(y0 = 2, k2 = 1);
model A

import My.Library;
extends Library.BadPackage.ActualClass;

end A;
model B

extends A;
Boolean b = bad;

end B;

to

Modelica.Thermal.FluidHeatFlow.Components.Pipe pipe1(useHeatPort = false);
Modelica.Blocks.Interaction.Show.RealValue(
number = 10, use_numberPort = not true);

Modelica.Blocks.Math.LinearDependency linearDep(y0 = 2, k1 = 0, k2 = 2);
model A

import My.Library;

314

Modelica Language Specification 3.7-dev
18.11. Versions

extends Library.Package.ActualClass;
end A;
model B

extends A;
Boolean b = correct;

end B;

The convertElement call for ActualClass is needed to avoid relying on base classes in the original
library where ActualClass inherits from PartialBase. However, the inheritance among the models to
convert (in this case B inherits from A) should be handled. Note that conversion works regardless of the
import of My.Library.]

convertMessage("OldClass", "Failed Message") For any use of OldClass report that conversion
could not be applied with the given message.

[This may be useful if there is no possibility to convert a specific class. An alternative is to construct
ObsoleteLibraryA for problematic cases, which may be more work but allows users to directly run the
models after the conversion and later convert them.]

convertMessage("OldClass", "Failed Message", "oldElement") For any use of oldElement in
OldClass report that conversion could not be applied with the given message.

[This is useful if there is no possibility to convert a specific parameter (or other element), especially if it
rarely modified. If the parameter had no impact on the model it can be removed using convertModifiers,
see section 18.11.2.1.]

18.11.3 Versions in the File System

The top-level class packageName with version packageVersion (matching PACKAGE-VERSION defined in
section 18.11.1) can be stored in one of the following ways in a directory given in the MODELICAPATH
(section 13.3):

� The file packageName.mo
Example: Modelica.mo

� The file packageName packageVersion.mo (one space character separating packageName from packageVersion)
Example: Modelica 2.1.mo

� The directory packageName with the file package.mo directly inside it
Example: Modelica/package.mo

� The directory packageName packageVersion with the file package.mo directly inside it (one space
character separating packageName from packageVersion)
Example: Modelica 2.1/package.mo

This allows a tool to access multiple versions of the same package.

18.11.4 Version Date and Build Information

This section describes annotations that a top-level class can have to specify information associated to
the version number.

The versionBuild and dateModified annotations can also be specified in the uses annotation (together
with the version number).

[It is recommended that tools do not automatically store versionBuild and dateModified in the uses
annotation.]

Annotation 18.24 versionDate

/* literal */ constant String versionDate

versionDate is the date when the library was released. This string is updated by the library
author to correspond with the version number.

315

Modelica Language Specification 3.7-dev
18.11. Versions

The date shall be given as UTC according to ISO 8601: YYYY-MM-DD

Annotation 18.25 versionBuild

/* literal */ constant Integer versionBuild

versionBuild is the optional build number of the library. When a new version is released
versionBuild should be omitted or versionBuild = 1. There might be bug fixes to the li-
brary that do not justify a new library version. Such maintenance changes are called a build
release of the library. For every new maintenance change, the versionBuild number is increased.
A versionBuild number A that is higher than versionBuild number B, is a newer release of
the library. There are no conversions between the same versions with different build numbers.

Two releases of a library with the same version but different versionBuild are in general assumed
to be compatible. In special cases, the uses-clause of a model may specify versionBuild and/or
dateModified. In such a case the tool is expected to give a warning if there is a mismatch between
library and model.

Annotation 18.26 dateModified

/* literal */ constant String dateModified

dateModified is the date and time of the last modification of the package.

The date and time shall given as UTC according to ISO 8601 (with one space between date and
time): YYYY-MM-DD hh:mm:ssZ

[The intention is that a Modelica tool updates this annotation whenever the package or part of it
was modified and is saved on persistent storage (like file or database system).]

Annotation 18.27 revisionId

/* literal */ constant String revisionId

revisionId is a tool specific revision identifier possibly generated by a source code management
system (e.g., Subversion or CVS). This information exactly identifies the library source code in
the source code management system.

[Example:

package Modelica
...
annotation(
version = "3.0.1",
versionDate = "2008 -04 -10",
versionBuild = 4,
dateModified = "2009 -02 -15 16:33:14Z",
revisionId = "$Id:: package.mo 2566 2009 -05 -26 13:25:54Z #$"

);
end Modelica;

model M1
annotation(
uses(Modelica(version = "3.0.1")) // Common case

);
end M1

model M2
annotation(
uses(Modelica(version = "3.0.1", versionBuild = 4))

);
end M2

]

316

Modelica Language Specification 3.7-dev
18.12. Access Control to Protect Intellectual Property

18.12 Access Control to Protect Intellectual Property

The annotations listed below define the protection and licensing of packages. They are all sub-annotations
of the Protection annotation.

Annotation Description Details

Protection.access Access control for decrypted content Annotation 18.5
Protection.features Required license features Annotation 18.6
Protection.License User license file Annotation 18.7

The goal is to unify basic mechanisms to control the access to a package in order to protect the intellectual
property contained in it. This information is used to encrypt a package and bind it optionally to a
particular target machine, and/or restrict the usage for a particular period of time.

[Protecting the intellectual property of a Modelica package is considerably more difficult than protecting
code from a programming language. The reason is that a Modelica tool needs the model equations in order
that it can process the equations symbolically, as needed for acausal modeling. Furthermore, if a Modelica
tool generates C-code of the processed equations, this code is then potentially available for inspection by
the user. Finally, the Modelica tool vendors have to be trusted, that they do not have a backdoor in
their tools to store the (internally) decrypted classes in human readable format. The only way to protect
against such misuse is legally binding warranties of the tool vendors.

The intent of this section is to enable a library vendor to maintain one source version of their Modelica
library that can be encrypted and used with several different Modelica tools, using different encryption
formats.]

The following definitions relate to access control.

Definition 18.1. Protection. Define which parts of a class that are visible.

Definition 18.2. Obfuscation. Changing a Modelica class or generated code so that it is difficult to
inspect by a user (e.g., by automatically renaming variables to non-meaningful names).

Definition 18.3. Encryption. Encoding of a model or a package in a form so that the modeler
cannot inspect any content of a class without an appropriate key. An encrypted package that has the
Protection annotation is read-only; the way to modify it is to generate a new encrypted version.

Definition 18.4. Licensing . Restrict the use of an encrypted package for particular users for a
specified period of time.

The Protection annotation defines protection and licensing. Obfuscation and encryption are not stan-
dardized.

18.12.1 Protection of Classes

This section describes the part of the Protection annotation used to define protection.

Annotation 18.5 access

record Protection
/* literal */ constant Access access;
. . .

end Protection;

type Access =
enumeration(hide , icon , documentation , diagram ,

nonPackageText , nonPackageDuplicate ,
packageText , packageDuplicate);

Allowed for class annotations. The access annotation defines which parts of a class that are
visible. If a class is encrypted and no Protection annotation is provided, the default is Access.
documentation.

The access annotation holds for the respective class and all classes that are hierarchically on

317

Modelica Language Specification 3.7-dev
18.12. Access Control to Protect Intellectual Property

a lower level, unless overridden by a Protection annotation with access. Overriding access=
Access.hide or access=Access.packageDuplicate has no effect.

[Example: If the annotation is given on the top level of a package and at no other class in this
package, then the access annotation holds for all classes in this package.]

Classes should not use other classes in ways that contradict this protection. Tools must ensure
that protected contents are not shown, even if classes do not meet this requirement.

The items of the Access enumeration have the following meanings (only parts explicitly listed as
visible below can be accessed):

1. Access.hide
Do not show the class anywhere (it is not possible to inspect any part of the class).

2. Access.icon
The class can be instantiated and public parameter, constant, input, output variables as well
as public connectors can be accessed, as well as the Icon annotation, as defined in section 18.9
(the declared information of these elements can be shown). Additionally, the class name and
its description text can be accessed.

3. Access.documentation
Same as Access.icon and additionally the Documentation annotation (as defined in sec-
tion 18.5) can be accessed. HTML-generation in the Documentation annotation is normally
performed before encryption, but the generated HTML is intended to be used with the en-
crypted package. Thus the HTML-generation should use the same access as the encrypted
version – even before encryption.

4. Access.diagram
Same as Access.documentation and additionally, the Diagram annotation, and all compo-
nents and connect-equations that have a graphical annotation can be accessed.

5. Access.nonPackageText
Same as Access.diagram and additionally if it is not a package: the whole class definition
can be accessed (but that text cannot be copied, i.e., you can see but not copy the source
code).

6. Access.nonPackageDuplicate
Same as Access.nonPackageText and additionally if it is not a package: the class, or part
of the class, can be copied.

7. Access.packageText
Same as Access.diagram (note: not including all rights of Access.nonPackageDuplicate)
and additionally the whole class definition can be accessed (but that text cannot be copied,
i.e., you can see but not copy the source code).

8. Access.packageDuplicate
Same as Access.packageText and additionally the class, or part of the class, can be copied.

[Example: For instance, a class with Access.hide should not be used in the diagram layer of a class
with Access.diagram, and there should not be hyperlinks to classes with Access.icon (from classes with
visible documentation).

Consider the following invalid use of a class with Access.hide:

package P
block MySecret
RealOutput y = time;
annotation(Protection(access = Access.hide));

end MySecret;
model M
MySecret mySecret
annotation(Placement(
transformation(origin = {30, 30}, extent = {{-10, -10}, {10, 10}})));

Integrator integrator
annotation(Placement(

318

Modelica Language Specification 3.7-dev
18.12. Access Control to Protect Intellectual Property

transformation(origin = {70, 30}, extent = {{-10, -10}, {10, 10}})));
equation
connect(mySecret.y, integrator.u)

annotation(Line(origin = {49.5 , 30}, points = {{-8.5, 0}, {8.5, -0}}));
annotation(Protection(access = Access.diagram));

end M;

model M2
// The class MySecret is a simpler Modelica.Blocks.Sources.ContinuousClock
MySecret mySecret annotation(Placement(
transformation(origin = {30, 30}, extent = {{-10, -10}, {10, 10}})));

annotation(Protection(access = Access.packageDuplicate));
end M2;

end P;

In order to not reveal the existence of the class P.MySecret in P.M, a tool may choose to show the diagram
of P.M with both mySecret and all connections to it removed. (The tool could also choose to not show
the diagram of P.M at all, or even reject to load the package P altogether.) As long as the invalid use
of P.MySecret occurs within the same top level package as where the class is defined (here, P), a tool is
allowed to silently ignore the use for purposes of model translation. When simulating P.M, the tool must
not store mySecret.y.

It is not specified whether a tool hides the entire text of P.M2, hides just the declaration, or shows the
entire text of the P.M2. In order to support development of valid protected packages, it is of course OK
and expected that a tool will report the invalid use of P.MySecret in P.M and P.M2 (revealing its existence
in a diagnostic) during development of the package.]

[Example: With the same package P as in the previous example, consider the following invalid use outside
of P:

model My
// There exist a class P.MySecret
P.MySecret a

annotation(Placement(
transformation(origin = {30, 30}, extent = {{-10, -10}, {10, 10}})));

end My;

Regardless of the protection of My, a tool must act as if P.MySecret did not exist. For example, translation
of My must fail with a standard error message about reference to the non-existing class P.MySecret.
Further, just like when being misused inside the package P, the tool must not reveal that it knows about
the icon of P.MySecret. With such precautions taken, showing the text or diagram of My is permitted as
it doesn’t reveal the actual existence of P.MySecret.]

[It is currently not standardized which result variables are accessible for plotting. It seems natural to not
introduce new flags for this, but reuse the Access.XXX definition. For instance:

� For Access.icon only the variables can be stored in a result file that can also be inspected in the
class.

� For Access.nonPackageText all public and protected variables can be stored in a result file, because
all variables can be inspected in the class.

package CommercialFluid // Access icon , documentation , diagram
package Examples // Access icon , documentation , diagram

model PipeExample // Access everything , can be copied
end PipeExample;

package Circuits // Access icon , documentation , diagram
model ClosedCircuit // Access everything , can be copied
end ClosedCircuit;

end Circuits;

model SecretExample // No access
annotation(Protection(access=Access.hide));

end SecretExample;

319

Modelica Language Specification 3.7-dev
18.12. Access Control to Protect Intellectual Property

annotation(Protection(access=Access.nonPackageDuplicate));
end Examples;

package Pipe // Access icon
model StraightPipe // Access icon
end StraightPipe;
annotation(Protection(access=Access.icon));

end Pipe;

package Vessels // Access icon , documentation , diagram
model Tank // Access icon , documentation , diagram , text
end Tank;

end Vessels;
annotation(Protection(access=Access.nonPackageText));

end CommercialFluid;

]

18.12.2 Licensing

This section describes the part of the Protection annotation used to define licensing.

Annotation 18.6 features

record Protection
/* literal */ constant String features [:];
. . .

end Protection;

The features annotation defines the required license options. If the features array in the library
has one or more elements, then at least a license feature according to one of the elements must
be present in the authorization file. If the features array in the library is empty or not provided
there is no need for a license feature in the authorization file. Similar to the access annotation,
the features annotation holds for the respective class and for all classes that are hierarchically
on a lower level, unless further restricted by a corresponding annotation. If no license according
to the features annotation is provided in the authorization file, the corresponding classes are
not visible and cannot be used, not even internally in the package.

[Example:

// Requires license feature "LicenseOption"
annotation(Protection(features ={"LicenseOption"}));

// Requires license features "LicenseOption1" or "LicenseOption2"
annotation(Protection(features ={"LicenseOption1", "LicenseOption2"}));

// Requires license features:
// (" LicenseOption1" and "LicenseOption2 ")
// or "LicenseOption3"
annotation(Protection(
features = {"LicenseOption1 LicenseOption2", "LicenseOption3"}

));

]

Annotation 18.7 License

record Protection
/* literal */ constant UserLicense License;
. . .

end Protection;

record UserLicense "Internal class name , do not use"
/* literal */ constant String libraryKey;

320

Modelica Language Specification 3.7-dev
18.12. Access Control to Protect Intellectual Property

/* literal */ constant String licenseFile = "" "Default mapping if
empty";

end UserLicense;

The License annotation only has an effect at the top of an encrypted class and is then valid for
the whole class hierarchy. (Usually the licensed class is a package.)

The libraryKey is a secret string from the library vendor and is the protection mechanism so
that a user cannot generate his/her own authorization file since the libraryKey is unknown to
him/her.

In order that the protected class can be used either a tool specific license manager, or an autho-
rization file (called licenseFile) must be present. The authorization file is standardized. It is
a Modelica package without classes that has an Authorization annotation of the following form
which specifies a sequence of target records, which makes it natural to define start/end dates for
different sets of targets individually:

record Authorization
/* literal */ constant String licensor = ""
"Information about the licensor";

/* literal */ constant String libraryKey
"Matching the key in the class. Must be encrypted and not visible";

/* literal */ constant License license [:]
"Definition of the license options and of the access rights";

end Authorization;

using the following definition:

record License
/* literal */ constant String licensee = ""
"Information about the licensee";

/* literal */ constant String id[:]
"Unique machine identifications , e.g., MAC addresses";

/* literal */ constant String features [:]
"Activated library license features";

/* literal */ constant String startDate = ""
"Start date in UTCformat YYYY -MM-DD";

/* literal */ constant String expirationDate = ""
"Expiration date in UTCformat YYYY -MM-DD";

/* literal */ constant String operations [:]
"Library usage conditions";

end License;

If startDate and expirationDate are empty (the default) it is a perpetual license.

The format of the strings used for libraryKey and id are not specified (they are vendor specific).
The libraryKey is a secret of the library developer. The operations define the usage conditions
and the following are default names:

� "ExportBinary" Binary code generated from the Modelica code of the library can be included
in binaries produced by a simulation tool.

� "ExportSource" Source code generated from the Modelica code of the library can be included
in sources produced by a simulation tool.

Additional tool-specific names can also be used. To protect the libraryKey and the target
definitions, the authorization file must be encrypted and must never show the libraryKey.

[All other information, especially licensor and license should be visible, in order that the user
can get information about the license. It is useful to include the name of the tool in the authoriza-
tion file name with which it was encrypted. Note that it is not useful to store this information in
the annotation, because only the tool that encrypted the Authorization package can also decrypt
it.]

[Example: (Before encryption:)

321

Modelica Language Specification 3.7-dev
18.13. License Texts

// File MyLibrary\package.mo
package MyLibrary

annotation(Protection(License(
libraryKey = "15783 -A39323 -498222 -444 ckk4ll",
licenseFile = "MyLibraryAuthorization_Tool.mo_lic"

)));
end MyLibrary;

// File MyLibrary\MyLibraryAuthorization_Tool.mo\
// (authorization file before encryption)
package MyLibraryAuthorization_Tool

annotation(Authorization(
libraryKey = "15783 -A39323 -498222 -444 ckk4ll",
licensor = "Organization A\nRoad , Country",
license = {
License(
licensee = "Organization B, Mr.X",
id = {"lic :1269"}), // tool license number

License(
licensee = "Organization C, Mr. Y",
id = {"lic :511"},
expirationDate="2010 -06 -30",
operations = {"ExportBinary"}),

License(
licensee="Organization D, Mr. Z",
id = {"mac :0019 d2c9bfe7"}) // MAC address

}
));

end MyLibraryAuthorization_Tool;

]

18.13 License Texts

The annotation listed below allows a top-level class to specify license conditions.

Annotation Description Details

License License files Annotation 18.8

Annotation 18.8 License

/* literal */ constant String License

For a top-level class the annotation(License="modelica:/TopPackage/Resources/Licenses/
MyLicense.txt"), gives a license text file for the class. The annotation may give a scalar string
or an array of strings, where each string is a URI referencing a license text file, see section 13.6.
The license text files are human-readable files containing the license conditions. If the annotation
specifies an array of license text files the conditions in all of them must be satisfied (i.e., it is not
intended for dual-licensing). External functions may also contain this annotation (with similar
content), see annotation 12.1.

When generating a distributable version for a translated model the license text files for used
functions and top-level classes should be included. Exceptions could be that licenses will be
distributed in another way, or that there is an agreement to include different licenses (e.g., for
internal libraries). Note that the License annotation only allows the library developer and tool
to assist the user in doing what is legally required; in the end it is a user responsibility to ensure
that required license text files accompany distributable versions of models.

322

Modelica Language Specification 3.7-dev
18.14. Functions

18.14 Functions

See section 12.7Derivatives and Inverses of Functions, section 12.8 Function Inlining and Event Generation,
and section 12.9.4 Annotations for External Functions.

18.15 Choices for Modifications and Redeclarations

See section 7.3.4 Annotations for Redeclaration and Modification.

323

Chapter 19

Unit Expressions

Unless otherwise stated, the syntax and semantics of unit expressions in Modelica (for example, sec-
tion 4.9.1 or section 18.5.2.2) conform with the international standards International System of Units
(SI) by BIPM superseding parts of ISO 31/0-1992 General principles concerning quantities, units and
symbols and ISO 1000-1992 SI units and recommendations for the use of their multiples and of certain
other units. Unfortunately, these standards do not define a formal syntax for unit expressions. There
are recommendations and Modelica exploits them.

Note that this document uses the American spelling meter, whereas the SI specification from BIPM uses
the British spelling metre.

Examples for the syntax of unit expressions used in Modelica: "N.m", "kg.m/s2", "kg.m.s-2", "1/rad",
"mm/s".

19.1 The Syntax of Unit Expressions

The Modelica unit string syntax allows neither comments nor white-space, and a unit string shall match
the unit-expression rule:

unit-expression :
unit-numerator ["/" unit-denominator]

unit-numerator :
"1" | unit-factors | "(" unit-expression ")"

unit-denominator:
unit-factor | "(" unit-expression ")"

The unit of measure of a dimension free quantity is denoted by "1". The SI standard does not define
any precedence between multiplications and divisions. The SI standard does not allow multiple units to
the right of the division-symbol (/) since the result is ambiguous; either the divisor shall be enclosed in
parentheses, or negative exponents used instead of division, for example, "J/(kg.K)" may be written as
"J.kg-1.K-1".

unit-factors :
unit-factor ["." unit-factors]

The SI standard specifies that a multiplication operator symbol is written as space or as a dot. The SI
standard requires that this dot is a bit above the base line: ‘·’, which is not part of ASCII. The ISO
standard also prefers ‘·’, but Modelica supports the ISO alternative ‘.’, which is an ordinary dot on the
base line.

For example, Modelica does not support "Nm" for newton-meter, but requires it to be written as "N.m".

unit-factor :
unit-operand [unit-exponent]

324

Modelica Language Specification 3.7-dev
19.1. The Syntax of Unit Expressions

unit-exponent :
["+" | "-"] (UNSIGNED-INTEGER | "(" UNSIGNED-INTEGER "/"
UNSIGNED-INTEGER ")")

The SI standard uses super-script for the exponentation, and does thus not define any operator symbol
for exponentiation. A unit-factor consists of a unit-operand possibly suffixed by a possibly signed
integer or rational number, which is interpreted as an exponent. There must be no spacing between
the unit-operand and a possible unit-exponent. It is recommended to use the simplest representation
of exponents, meaning that the explicit + sign should be avoided, that leading zeros should be avoided,
that rational exponents are reduced to not have common factors in the numerator and denominator,
that rational exponents with denominator 1 should be avoided in favor of plain integer exponents, that
the exponent 1 is omitted, and that entire factors with exponent 0 are omitted.

unit-operand :
unit-symbol | unit-prefix unit-symbol

unit-prefix :
"Q" | "R" | "Y" | "Z" | "E" | "P" | "T" | "G" | "M" | "k" | "h" | "da"
| "d" | "c" | "m" | "u" | "n" | "p" | "f" | "a" | "z" | "y" | "r" | "q"

unit-symbol :
unit-char { unit-char }

unit-char :
NON-DIGIT

The units required to be recognized are the basic and derived units of the SI system, as well as some units
compatible with the SI system listed below, but tools are allowed to additionally support user-defined
unit symbols. The required unit symbols do not make use of Greek letters, but a unit such as Ω is
spelled out as "Ohm". Similarly degree is spelled out as "deg", both on its own (for angles) and as part
of "degC", "degF" and "degRk" for temperatures (Celsius, Fahrenheit and Rankine).

It is recommended that non-SI units are only used for the displayUnit-attribute in order to reduce
impact of unrecognized unit symbols when using another Modelica tool.

The following are the units required to be recognized in addition to the SI system:

� minute "min" (1 minute = 60 s)

� hour "h" (1 hour = 3600 s)

� day "d" (1 day = 86400 s)

� liter "l" and "L" (1 liter = 1 dm3)

� electronvolt "eV" (1 electronvolt = 1.602176634e-19 J)

� degree "deg" (1 degree = π/180 rad)

� debye "debye" (1 debye = 1e-21 / 299792458 Cm)

The first 7 are listed in the SI standard as non-SI units that are acceptable to use with the SI system.

A unit-operand should first be interpreted as a unit-symbol and only if not successful the second alterna-
tive assuming a prefixed operand should be exploited. There must be no spacing between the unit-symbol
and a possible unit-prefix. The values of the prefixes are according to the ISO standard. The letter u
is used as a symbol for the prefix micro.

[A tool may present "Ohm" as Ω and the prefix "u" as µ. Exponents such as "m2" may be presented as
m2. Degrees may be presented as ◦, both for "deg" on its own (for angles) and for temperatures – e.g.,
"degC" can be presented as ◦C. Note that BIPM have specific recommendations for formatting using
these symbols.]

[Example: The unit expression "m" means meter and not milli (10-3), since prefixes cannot be used in
isolation. For millimeter use "mm" and for square meter, m2, write "m2".

The expression "mm2" means (10-3m)2 = 10-6m2. Note that exponentiation includes the prefix.

325

Modelica Language Specification 3.7-dev
19.1. The Syntax of Unit Expressions

The unit expression "T" means tesla, but note that the letter T is also the symbol for the prefix tera which
has a multiplier value of 1012.]

326

Chapter 20

The Modelica Standard Library

In order that a modeler can quickly build up system models, it is important that libraries of the
most commonly used components are available, ready to use, and sharable between applications. For
this reason, the Modelica Association develops and maintains a growing Modelica Standard Library
called package Modelica. For an overview of the current version see https://github.com/modelica/
ModelicaStandardLibrary. This is a free library that can be used without essential restrictions, e.g.,
in commercial Modelica simulation environments. The Modelica Standard Library is tool-neutral, and
relies on a small library, ModelicaServices, that each conformant tool must implement to handle tool-
specific couplings, e.g., for animation. Furthermore, other people and organizations are developing free
and commercial Modelica libraries. For information about these libraries and for downloading the free
libraries see https://modelica.org/libraries/.

327

https://github.com/modelica/ModelicaStandardLibrary
https://github.com/modelica/ModelicaStandardLibrary
https://modelica.org/libraries/

Appendix A

Modelica Concrete Syntax

A.1 Lexical conventions

The following syntactic metasymbols are used (extended BNF):

Syntax Description

[. . .] Optional
{ . . . } Repeat zero or more times
. . . | . . . Alternatives
"text" The text is treated as a single token (no white-space between any characters)

The following lexical units are defined:

IDENT = NON-DIGIT { DIGIT | NON-DIGIT } | Q-IDENT
Q-IDENT = "'" { Q-CHAR | S-ESCAPE } "'"
NON-DIGIT = "_" | letters "a" . . . "z" | letters "A" . . . "Z"
DIGIT = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
Q-CHAR = NON-DIGIT | DIGIT | "!" | "#" | "$" | "%" | "&" | "(" | ")"
| "*" | "+" | "," | "-" | "." | "/" | ":" | ";" | "<" | ">" | "="
| "?" | "@" | "[" | "]" | "^" | "{" | "}" | "|" | "~" | " " | """

S-ESCAPE = "\'" | "\"" | "\?" | "\\"
| "\a" | "\b" | "\f" | "\n" | "\r" | "\t" | "\v"

STRING = """ { S-CHAR | S-ESCAPE } """
S-CHAR = see below
UNSIGNED-INTEGER = DIGIT { DIGIT }
UNSIGNED-REAL =
UNSIGNED-INTEGER "." [UNSIGNED-INTEGER]
| UNSIGNED_INTEGER ["." [UNSIGNED_INTEGER]]
("e" | "E") ["+" | "-"] UNSIGNED-INTEGER

| "." UNSIGNED-INTEGER [("e" | "E") ["+" | "-"] UNSIGNED-INTEGER]

S-CHAR is any member of the Unicode character set (https://unicode.org; see section 13.4 for storing
as UTF-8 on files) except double-quote ‘"’, and backslash ‘\’.

For identifiers the redundant escapes (‘\?’ and ‘\"’) are the same as the corresponding non-escaped
variants (‘?’ and ’"’). The single quotes are part of an identifier. For example, the identifiers 'x' and x
are different.

Note:

� White-space and comments can be used between separate lexical units and/or symbols, and also
separates them. Each lexical unit will consume the maximum number of characters from the input
stream. White-space and comments cannot be used inside other lexical units, except for STRING
and Q-IDENT where they are treated as part of the STRING or Q-IDENT lexical unit.

� Concatenation of string literals requires a binary expression. For example, "a" + "b" evaluates to
"ab". There is no support for the C/C++ style of concatenating adjacent string literal tokens (for

328

https://unicode.org

Modelica Language Specification 3.7-dev
A.2. Grammar

example, "a" "b" becoming "ab").

� Modelica uses the same comment syntax as C++ and Java (i.e., // signals the start of a line
comment and /* . . . */ is a multi-line comment); comments may contain any Unicode character.
Modelica also has structured comments in the form of annotations and string comments.

� In the grammar, keywords of the Modelica language are highlighted with color, for example,
equation.

� Productions use hyphen as separator both in the grammar and in the text. (Previously the grammar
used underscore.)

If a description-string starts with the tag <html> or <HTML>, the entire string is HTML encoded (assumed
to end with </html> or </HTML>, but to be rendered as HTML even if the end-tag is missing). Otherwise,
the entire string is rendered as is. HTML encoded content may contain links in the same way as class
documentation, see section 18.5.

A.2 Grammar

A.2.1 Stored Definition – Within

stored-definition :
[within [name] ";"]
{ [final] class-definition ";" }

A.2.2 Class Definition

class-definition :
[encapsulated] class-prefixes class-specifier

class-prefixes :
[partial]
(class
| model
| [operator] record
| block
| [expandable] connector
| type
| package
| [pure | impure] [operator] function
| operator

)

class-specifier :
long-class-specifier | short-class-specifier | der-class-specifier

long-class-specifier :
IDENT description-string composition end IDENT
| extends IDENT [class-modification] description-string composition
end IDENT

short-class-specifier :
IDENT "=" base-prefix type-specifier [array-subscripts]
[class-modification] description
| IDENT "=" enumeration "(" ([enum-list] | ":") ")" description

der-class-specifier :
IDENT "=" der "(" type-specifier "," IDENT { "," IDENT } ")" description

base-prefix :
[input | output]

enum-list :

329

Modelica Language Specification 3.7-dev
A.2. Grammar

enumeration-literal { "," enumeration-literal }

enumeration-literal :
IDENT description

composition :
element-list
{ public element-list
| protected element-list
| equation-section
| algorithm-section

}
[external [language-specification]
[external-function-call] [annotation-clause] ";"

]
[annotation-clause ";"]

language-specification :
STRING

external-function-call :
[component-reference "="]
IDENT "(" [expression-list] ")"

element-list :
{ element ";" }

element :
import-clause
| extends-clause
| [redeclare]
[final]
[inner] [outer]
(class-definition
| component-clause
| replaceable (class-definition | component-clause)
[constraining-clause description]

)

import-clause :
import
(IDENT "=" name
| name [".*" | "." ("*" | "{" import-list "}")]

)
description

import-list :
IDENT { "," IDENT }

A.2.3 Extends

extends-clause :
extends type-specifier [class-or-inheritance-modification] [
annotation-clause]

constraining-clause :
constrainedby type-specifier [class-modification]

class-or-inheritance-modification :
"(" [argument-or-inheritance-modification-list] ")"

argument-or-inheritance-modification-list :

330

Modelica Language Specification 3.7-dev
A.2. Grammar

(argument | inheritance-modification) { "," (argument |
inheritance-modification) }

inheritance-modification :
break (connect-equation | IDENT)

A.2.4 Component Clause

component-clause :
type-prefix type-specifier [array-subscripts] component-list

type-prefix :
[flow | stream]
[discrete | parameter | constant]
[input | output]

component-list :
component-declaration { "," component-declaration }

component-declaration :
declaration [condition-attribute] description

condition-attribute :
if expression

declaration :
IDENT [array-subscripts] [modification]

A.2.5 Modification

modification :
class-modification ["=" modification-expression]
| "=" modification-expression

modification-expression :
expression
| break

class-modification :
"(" [argument-list] ")"

argument-list :
argument { "," argument }

argument :
element-modification-or-replaceable
| element-redeclaration

element-modification-or-replaceable :
[each] [final] (element-modification | element-replaceable)

element-modification :
name [modification] description-string

element-redeclaration :
redeclare [each] [final]
(short-class-definition | component-clause1 | element-replaceable)

element-replaceable :
replaceable (short-class-definition | component-clause1)
[constraining-clause]

component-clause1 :

331

Modelica Language Specification 3.7-dev
A.2. Grammar

type-prefix type-specifier component-declaration1

component-declaration1 :
declaration description

short-class-definition :
class-prefixes short-class-specifier

A.2.6 Equations

equation-section :
[initial] equation { some-equation ";" }

algorithm-section :
[initial] algorithm { statement ";" }

some-equation :
(equation-or-procedure
| if-equation
| for-equation
| connect-equation
| when-equation

)
description

equation-or-procedure :
simple-expression "=" expression
| component-reference function-call-args

statement :
(statement-or-procedure
| "(" output-expression-list ")" ":="
component-reference function-call-args

| break
| return
| if-statement
| for-statement
| while-statement
| when-statement

)
description

statement-or-procedure :
component-reference ":=" expression
| component-reference function-call-args

if-equation :
if expression then
{ some-equation ";" }

{ elseif expression then
{ some-equation ";" }

}
[else
{ some-equation ";" }

]
end if

if-statement :
if expression then
{ statement ";" }

{ elseif expression then
{ statement ";" }

}

332

Modelica Language Specification 3.7-dev
A.2. Grammar

[else
{ statement ";" }

]
end if

for-equation :
for for-indices loop
{ some-equation ";" }

end for

for-statement :
for for-indices loop
{ statement ";" }

end for

for-indices :
for-index { "," for-index }

for-index :
IDENT [in expression]

while-statement :
while expression loop
{ statement ";" }

end while

when-equation :
when expression then
{ some-equation ";" }

{ elsewhen expression then
{ some-equation ";" }

}
end when

when-statement :
when expression then
{ statement ";" }

{ elsewhen expression then
{ statement ";" }

}
end when

connect-equation :
connect "(" component-reference "," component-reference ")"

[The productions equation-or-procedure and statement-or-procedure are not suitable for recursive de-
scent parsers. A work-around is to left-factor them and for equation-or-procedure introduce semantic
checks to ensure that only the grammar above is accepted.]

A.2.7 Expressions

expression :
simple-expression
| if expression then expression
{ elseif expression then expression }
else expression

simple-expression :
logical-expression [":" logical-expression [":" logical-expression]]

logical-expression :
logical-term { or logical-term }

333

Modelica Language Specification 3.7-dev
A.2. Grammar

logical-term :
logical-factor { and logical-factor }

logical-factor :
[not] relation

relation :
arithmetic-expression [relational-operator arithmetic-expression]

relational-operator :
"<" | " <=" | ">" | " >=" | "==" | "<>"

arithmetic-expression :
[add-operator] term { add-operator term }

add-operator :
"+" | "-" | ".+" | ".-"

term :
factor { mul-operator factor }

mul-operator :
"*" | "/" | ".*" | "./"

factor :
primary [("^" | ".^") primary]

primary :
UNSIGNED-NUMBER
| STRING
| false
| true
| time
| (component-reference | der | initial | pure) function-call-args
| component-reference
| "(" output-expression-list ")" [(array-subscripts | "." IDENT)]
| "[" expression-list { ";" expression-list } "]"
| "{" array-arguments "}"
| end

UNSIGNED-NUMBER :
UNSIGNED-INTEGER | UNSIGNED-REAL

type-specifier :
["."] name

name :
IDENT { "." IDENT }

component-reference :
["."] IDENT [array-subscripts] { "." IDENT [array-subscripts] }

result-reference :
component-reference
| time
| der "(" (component-reference | time) ["," UNSIGNED-INTEGER] ")"

function-call-args :
"(" [function-arguments] ")"

function-arguments :
expression ["," function-arguments-non-first | for for-indices]
| function-partial-application ["," function-arguments-non-first]

334

Modelica Language Specification 3.7-dev
A.2. Grammar

| named-arguments

function-arguments-non-first :
function-argument ["," function-arguments-non-first]
| named-arguments

array-arguments :
expression ["," array-arguments-non-first | for for-indices]

array-arguments-non-first :
expression ["," array-arguments-non-first]

named-arguments: named-argument ["," named-arguments]

named-argument: IDENT "=" function-argument

function-argument :
function-partial-application | expression

function-partial-application :
function type-specifier "(" [named-arguments] ")"

output-expression-list :
[expression] { "," [expression] }

expression-list :
expression { "," expression }

array-subscripts :
"[" subscript { "," subscript } "]"

subscript :
":" | expression

description :
description-string [annotation-clause]

description-string :
[STRING { "+" STRING }]

annotation-clause :
annotation class-modification

335

Appendix B

Modelica DAE Representation

In this appendix, the mapping of a Modelica model into an appropriate mathematical description form
is discussed.

In a first step, a Modelica translator transforms a hierarchical Modelica simulation model into a “flat”
set of Modelica “statements”, consisting of the equation and algorithm sections of all used components
by:

� Expanding all class definitions (flattening the inheritance tree) and adding the equations and
assignment statements of the expanded classes for every instance of the model.

� Replacing all connect-equations by the corresponding equations of the connection set (see sec-
tion 9.2).

� Mapping all algorithm sections to equation sets.

� Mapping all when-clauses to equation sets (see section 8.3.5).

As a result of this transformation process, a set of equations is obtained consisting of differential, algebraic
and discrete equations of the following form where (v := [p; t; ẋ;x; y; z;m; pre(z); pre(m)]):

0 = fx(v, c) (B.1a)

z =

{
fz(v, c) at events

pre(z) otherwise
(B.1b)

m := fm(v, c) (B.1c)

c := fc(relation(v)) (B.1d)

and where

� p: Modelica variables declared as parameter or constant, i.e., variables without any time-dependency.

� t: Modelica variable time, the independent (real) variable.

� x(t): Modelica variables of type Real, appearing differentiated.

� y(t): Continuous-time modelica variables of type Real that do not appear differentiated (= alge-
braic variables).

� z(te): Discrete-time modelica variables of type Real. These variables change their value only at
event instants te. pre(z) are the values of z immediately before the current event occurred.

� m(te): Modelica variables of discrete-valued types (Boolean, Integer, etc) which are unknown.
These variables change their value only at event instants te. pre(m) are the values ofm immediately
before the current event occurred.

[For equations in when-clauses with discrete-valued variables on the left-hand side, the form (B.1c)
relies upon the conceptual rewriting of equations described in section 8.3.5.1.]

336

Modelica Language Specification 3.7-dev

� c(te): The conditions of all if-expressions generated including when-clauses after conversion, see
section 8.3.5).

� relation(v): A relation containing variables vi, e.g., v1 > v2, v3 ≥ 0.

For simplicity, the special cases of noEvent and reinit are not contained in the equations above and
are not discussed below.

The key difference between the two groups of discrete-time variables z and m here is how they are
determined. The interpretation of the solved form of (B.1c) is that given values for everything else, there
is a closed-form solution for m in the form of a sequence of assignments to each of the variables of m in
turn – there must be no cyclic dependencies between the equations used to solve for m. Further, each of
the original model equations behind (B.1c) must be given in almost solved form:

� Non-Integer equations at most requiring flipping sides of the equation to obtain the used assign-
ment form.

� For Integer equations the solved variable must appear uniquely as a term (without any multi-
plicative factor) on either side of the equation, at most requiring addition or subtraction of other
terms in the equation to obtain the used assignment form.

� Rules for if-equations are given in section 8.3.4.

The interpretation of the non-solved form of (B.1b) at events, on the other hand, is that at events, the
discrete-time Real variables z are solved together with the continuous-time variables using (B.1a) and
(B.1b).

[Example: The following model demonstrates that equation (B.1b) does not imply that all discrete-time
Real variables are given by equations in solved form, as also the discrete-time Real variables are included
in z:

model M
discrete Real x(start = 1.0, fixed = true);

equation
when sample (1.0, 1.0) then
x = 3 * pre(x) - x^2; // Valid equation for discrete -time Real variable x.

end when;
end M;

Another way that a discrete-time Real variable can end up becoming determined by a nonlinear equation
is through coupling with other variables.

model M
discrete Real x(start = 1.0, fixed = true);
discrete Real y(start = 0.0, fixed = true);

equation
when sample (1.0, 1.0) then
y = x ^ 2 + 2 * exp(-time);
x = 3 * pre(x) - y; // OK, forming nonlinear equation system with y.

end when;
end M;

]

[Example: The following model is illegal since there is no equation in solved form that can be used in
(B.1c) to solve for the discrete-valued variable y:

model M
Boolean x;
Boolean y;

equation
x = time >= 1.0;
not y = x; /* Equation in solved form , but not with respect to y. */

end M;

]

337

Modelica Language Specification 3.7-dev

The generated set of equations is used for simulation and other analysis activities. Simulation proceeds as
follows. First, initialization takes place, during which initial values for the states x are found, section 8.6.
Given those initial values the equations are simulated forward in time; this is the transient analysis. The
equations define a DAE (Differential Algebraic Equations) which may have discontinuities, a variable
structure and/or which are controlled by a discrete-event system. Such types of systems are called hybrid
DAEs. After initialization, simulation proceeds with transient analysis in the following way:

1. The DAE (B.1a) is solved by a numerical integration method. In this phase the conditions c of the
if- and when-clauses, as well as the discrete-time variables z and m are kept constant. Therefore,
(B.1a) is a continuous function of continuous variables and the most basic requirement of numerical
integrators is fulfilled.

2. During integration, all relations from (B.1d) are monitored. If one of the relations changes its value
an event is triggered, i.e., the exact time instant of the change is determined and the integration
is halted. As discussed in section 8.5, relations which depend only on time are usually treated in
a special way, because this allows determining the time instant of the next event in advance.

3. At an event instant, (B.1) is a mixed set of algebraic equations which is solved for the Real,
Boolean and Integer unknowns.

4. After an event is processed, the integration is restarted at phase 1.

Note, that both the values of the conditions c as well as the values of z and m (all discrete-time Real,
Boolean and Integer variables) are only changed at an event instant and that these variables remain
constant during continuous integration. At every event instant, new values of the discrete-time variables
z and m, as well as of new initial values for the states x, are determined. The change of discrete-time
variables may characterize a new structure of a DAE where elements of the state vector x are disabled.
In other words, the number of state variables, algebraic variables and residue equations of a DAE may
change at event instants by disabling the appropriate part of the DAE. For clarity of the equations, this
is not explicitly shown by an additional index in (B.1).

At an event instant, including the initial event, the model equations are reinitialized according to the
following iteration procedure:

known variables: x, t, p
unknown variables: dx/dt , y, z, m, pre(z), pre(m), c

// pre(z) = value of z before event occurred
// pre(m) = value of m before event occurred
loop
solve (1) for the unknowns , with pre(z) and pre(m) fixed
if z == pre(z) and m == pre(m) then break
pre(z) := z
pre(m) := m

end loop

Clocked variables are handled similarly to z and m (depending on type), but using previous instead of
pre and only solved in the first event iteration.

Solving (B.1) for the unknowns is non-trivial, because this set of equations contains not only Real, but
also discrete-valued unknowns. Usually, in a first step these equations are sorted and in many cases the
discrete-valued unknowns m can be just computed by a forward evaluation sequence. In some cases,
there remain systems of equations involving m due to cyclic dependencies with y and z (e.g., for ideal
diodes, Coulomb friction elements), and specialized algorithms have to be used to solve them.

Due to the construction of the equations by flattening a Modelica model, the hybrid DAE (B.1) contains
a huge number of sparse equations. Therefore, direct simulation of (B.1) requires sparse matrix methods.
However, solving this initial set of equations directly with a numerical method is both unreliable and
inefficient. One reason is that many Modelica models, like the mechanical ones, have a DAE index of 2 or
3, i.e., the overall number of states of the model is less than the sum of the states of the sub-components.
In such a case, every direct numerical method has the difficulty that the numerical condition becomes
worse, if the integrator step size is reduced and that a step size of zero leads to a singularity. Another
problem is the handling of idealized elements, such as ideal diodes or Coulomb friction. These elements

338

Modelica Language Specification 3.7-dev

lead to mixed systems of equations having both Real and Boolean unknowns. Specialized algorithms
are needed to solve such systems.

To summarize, symbolic transformation techniques are needed to transform (B.1) into a set of equations
which can be numerically solved reliably. Most important, the algorithm of Pantelides should to be
applied to differentiate certain parts of the equations in order to reduce the index. Note, that also explicit
integration methods, such as Runge-Kutta algorithms, can be used to solve (B.1a), after the index of
(B.1a) has been reduced by the Pantelides algorithm: During continuous integration, the integrator
provides x and t. Then, (B.1a) is a linear or nonlinear system of equations to compute the algebraic
variables y and the state derivatives dx

dt and the model returns dx
dt to the integrator by solving these

systems of equations. Often, (B.1a) is just a linear system of equations in these unknowns, so that the
solution is straightforward. This procedure is especially useful for real-time simulation where usually
explicit one-step methods are used.

339

Appendix C

Derivation of Stream Equations

This appendix contains a derivation of the equation for stream connectors from chapter 15.

C.1 Mixing Enthalpy

Consider a connection set with n connectors, and denote the mass flow rates m_flow by m̃. The mixing
enthalpy is defined by the mass balance (the general mass-balance for a component has ṁ =

∑
m̃ which

simplifies for the mixing enthalpy where m = 0 and thus ṁ = 0)

0 =

n∑
j=1

m̃j

and similarly the energy balance

0 =

n∑
j=1

H̃j

with

H̃j = m̃j

{
hmix if m̃j > 0

houtflow,j if m̃j ≤ 0

Herein, mass flow rates are positive when entering models (exiting the connection set). The specific
enthalpy represents the specific enthalpy inside the component, close to the connector, for the case of
outflow. Expressed with variables used in the balance equations we arrive at:

houtflow,j =

{
H̃j

m̃j
if m̃j < 0

arbitrary if m̃j ≥ 0

While these equations are suitable for device-oriented modeling, the straightforward usage of this defi-
nition leads to models with discontinuous residual equations, which violates the prerequisites of several
solvers for nonlinear equation systems. This is the reason why the actual mixing enthalpy is not modelled
directly in the model equations. The stream connectors provide a suitable alternative.

340

Modelica Language Specification 3.7-dev
C.2. Rationale for inStream

m
flo

w
,1

, H
flo

w
,1

h m
ix

m
flow

,2 ,
H

flow
,2

h
m

ix

mflow,3, Hflow,3
hmix

Figure C.1: Exemplary connection set with three connected components and a common mixing
enthalpy.

C.2 Rationale for inStream

For simplicity, the derivation of inStream is shown at hand of 3 model components that are connected
together. The case for N connections follows correspondingly.

The energy and mass balance equations for the connection set for 3 components are (see above):

0 =m̃1 ·

{
hmix if m̃1 > 0

houtflow,1 if m̃1 ≤ 0

+m̃2 ·

{
hmix if m̃2 > 0

houtflow,2 if m̃2 ≤ 0

+m̃3 ·

{
hmix if m̃3 > 0

houtflow,3 if m̃3 ≤ 0

(C.1a)

0 = m̃1 + m̃2 + m̃3 (C.1b)

The balance equations are implemented using amax operator in place of the piecewise expressions, taking
care of the different flow directions:

0 =max(m̃1, 0)hmix −max(−m̃1, 0)houtflow,1

+max(m̃2, 0)hmix −max(−m̃2, 0)houtflow,2

+max(m̃3, 0)hmix −max(−m̃3, 0)houtflow,3

(C.2a)

0 =max(m̃1, 0)−max(−m̃1, 0)

+max(m̃2, 0)−max(−m̃2, 0)

+max(m̃3, 0)−max(−m̃3, 0)

(C.2b)

Equation (C.2a) is solved for hmix

hmix =
max(−m̃1, 0)houtflow,1 +max(−m̃2, 0)houtflow,2 +max(−m̃3, 0)houtflow,3

max(m̃1, 0) + max(m̃2, 0) + max(m̃3, 0)

Using (C.2b), the denominator can be changed to:

hmix =
max(−m̃1, 0)houtflow,1 +max(−m̃2, 0)houtflow,2 +max(−m̃3, 0)houtflow,3

max(−m̃1, 0) + max(−m̃2, 0) + max(−m̃3, 0)

341

Modelica Language Specification 3.7-dev
C.3. Special Cases Covered by inStream Definition

Above it was shown that an equation of this type does not yield properly formulated model equations. In
the streams concept we therefore decide to split the energy balance, which consists of different branches
depending on the mass flow direction. Consequently, separate energy balances are the result; each valid
for specific flow directions.

In a model governing equations have to establish the specific enthalpy of fluid leaving the model based
on the specific enthalpy of fluid flowing into it. Whenever the mixing enthalpy is used in a model it is
therefore the mixing enthalpy under the assumption of fluid flowing into said model.

We establish this quantity using a dedicated operator inStream(houtflow,i) = hmix assuming that m̃i ≥ 0.
This leads to different incarnations of hmix, three in this case and n in the general case. This is illustrated
in the figure below. For the present example of three components in a connection set, this means the
following.

inStream(houtflow,1) =
max(−m̃2, 0)houtflow,2 +max(−m̃3, 0)houtflow,3

max(−m̃2, 0) + max(−m̃3, 0)

inStream(houtflow,2) =
max(−m̃1, 0)houtflow,1 +max(−m̃3, 0)houtflow,3

max(−m̃1, 0) + max(−m̃3, 0)

inStream(houtflow,3) =
max(−m̃1, 0)houtflow,1 +max(−m̃2, 0)houtflow,2

max(−m̃1, 0) + max(−m̃2, 0)

m
flo

w
,1

, h
ou

tfl
ow

,1

in
St

re
am

(h
ou

tfl
ow

,1
)

m
flow

,2 ,
h

outflow
,2

inStream(h
outflow

,2)

inStream(houtflow,3)
mflow,3, houtflow,3

Figure C.2: Exemplary connection set with three connected components.

In the general case of a connection set with n components, similar considerations lead to the following.

inStream(houtflow,i) =

∑
j=1,...,n;j ̸=i max(−m̃j , 0)houtflow,j∑

j=1,...,n;j ̸=i max(−m̃j , 0)

C.3 Special Cases Covered by inStream Definition

C.3.1 Unconnected Stream Connector – 1 Stream Connector

For this case, the return value of inStream is arbitrary. Therefore, it is set to the outflow value.

C.3.2 One to One Connections – Connection of 2 Stream Connectors

inStream(houtflow,1) =
max(−m̃2, 0)houtflow,2

max(−m̃2, 0)
= houtflow,2

342

Modelica Language Specification 3.7-dev
C.3. Special Cases Covered by inStream Definition

inStream(houtflow,2) =
max(−m̃1, 0)houtflow,1

max(−m̃1, 0)
= houtflow,1

In this case, inStream is continuous (contrary to hmix) and does not depend on flow rates. The latter
result means that this transformation may remove nonlinear systems of equations, which requires that
either simplifications of the form a ∗ b/a = b must be provided, or that this case is treated directly.

C.3.3 Zero Mass Flow Rate – Connection of 3 Stream Connectors

The case where N = 3 and m̃3 = 0 occurs when a one-port sensor (like a temperature sensor) is connected
to two other components. For the sensor, the min-attribute of the mass flow rate should be set to zero
(no fluid exiting the component via this connector). This simplification (and similar ones) can also be
used if a tool determines that a mass flow rate is zero or non-negative. It is also possible to generalize
this to the case where more than one sensor is connected. The suggested implementation results in the
following equations, and as indicated the last formula can be simplified further by using m̃3 = 0:

inStream(houtflow,1) = houtflow,2

inStream(houtflow,2) = houtflow,1

inStream(houtflow,3) =
max(−m̃1, 0)houtflow,1 +max(−m̃2, 0)houtflow,2

max(−m̃1, 0) + max(−m̃2, 0)

=

{
houtflow,2 if m̃1 ≥ 0

houtflow,1 if m̃1 < 0 and m̃3 = 0

hBhA

inStream(h1a)
h1a

h1b
inStream(h1b)

inStream(h2a)
h2a

h2b
inStream(h2b)

in
St

re
am

(h
3)

h
3Volume

A
Volume

B
Flow
1

Flow
2

Sensor
3

m3.c.m_flow(min=0)

Connection
A — 1a

Connection
1b — B

Connection
1b — 2a

Figure C.3: Example series connection of multiple models with stream connectors.

For the two components with finite mass flow rates (not the sensor), the properties discussed for two
connected components still hold. The connection set equations reflect that the sensor does not any
influence by discarding the flow rate of the latter. In several cases a non-linear equation system is removed
by this transformation. However, inStream results in a discontinuous equation for the sensor, which is
consistent with modeling the convective phenomena only. The discontinuous equation is uncritical, if the
sensor variable is not used in a feedback loop with direct feedthrough, since the discontinuous equation
is then not part of an algebraic loop. Otherwise, it is advisable to regularize or filter the sensor signal.

C.3.4 Ideal Splitting Junction for Uni-Directional Flow - Connection of 3
Stream Connectors where Two Mass Flow Rates are Positive

If uni-directional flow is present and an ideal splitter is modelled, the required flow direction should
be defined in the connector instance with the min-attribute (the max-attribute could be also defined,

343

Modelica Language Specification 3.7-dev
C.3. Special Cases Covered by inStream Definition

however it does not lead to simplifications):

model m2
Fluidport c(m_flow(min=0));
. . .

end m2;

Consider the case of m̃1 < 0 and all other mass flow rates positive (with the min-attribute set accordingly).
Connecting m1.c with m2.c and m3.c, such that

m2.c.m_flow.min = 0; // max(-m2.c.m_flow ,0) = 0
m3.c.m_flow.min = 0; // max(-m3.c.m_flow ,0) = 0

results in the following equation:

inStream(houtflow,1) =
max(−m̃2, 0)houtflow,2 +max(−m̃3, 0)houtflow,3

max(−m̃2, 0) + max(−m̃3, 0)
=

0

0

inStream cannot be evaluated for a connector, on which the mass flow rate has to be negative by
definition. This is not a problem since there is no requirement on the result of inStream in this case,
and the following result is selected instead of the illegal division:

inStream(houtflow,1) := houtflow,1

For the remaining connectors, inStream reduces to a simple result.

inStream(houtflow,2) =
max(−m̃1, 0)houtflow,1 +max(−m̃3, 0)houtflow,3

max(−m̃1, 0) + max(−m̃3, 0)
= houtflow,1

inStream(houtflow,3) =
max(−m̃1, 0)houtflow,1 +max(−m̃2, 0)houtflow,2

max(−m̃1, 0) + max(−m̃2, 0)
= houtflow,1

Again, the previous non-linear algebraic system of equations is removed. This means that utilizing the
information about uni-directional flow is very important.

To summarize, if all mass flow rates are zero, the balance equations for stream variables (C.1) and for flows
(C.2) are identically fulfilled. In such a case, any value of hmix fulfills (C.1), i.e., a unique mathematical
solution does not exist. This specification only requires that a solution fulfills the balance equations.
Additionally, a recommendation is given to compute all unknowns in a unique way, by providing an
explicit formula for inStream. Due to the definition, that only flows where the corresponding min-
attribute is neither zero nor positive enter this formula, a meaningful physical result is always obtained,
even in case of zero mass flow rate. As a side effect, non-linear equation systems are automatically
removed in special cases, like sensors or uni-directional flow, without any symbolic transformations (no
need to analyze any equation; only the min-attributes of the corresponding flow variables).

344

Appendix D

Modelica Revision History

This appendix described the history of the Modelica Language Design, and its contributors. This ap-
pendix is just present for historical reasons and is not normative. The current version, as well as all
previous versions of this document, and the list of changes are available at https://specification.
modelica.org.

The members of the Modelica Association project Modelica Language (MAP-Lang) contributed to the
Modelica specification.

Modelica 1, the first version of Modelica, was released in September 1997, and had the language specifi-
cation as a short appendix to the rationale.

345

https://specification.modelica.org
https://specification.modelica.org

Bibliography

Benveniste, Albert, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le Guernic, and Robert
de Simone (2003). “The Synchronous Languages Twelve Years Later”. In: Proceedings of the IEEE 91.1.
doi: 10.1109/JPROC.2002.805826 (cit. on p. 243).

Bürger, Christoff (Mar. 2019). “Modelica language extensions for practical non-monotonic modelling: on
the need for selective model extension”. In: Proceedings of the 13th International Modelica Conference.
Regensburg, Germany, pp. 277–288. doi: 10.3384/ecp19157277 (cit. on p. 108).

Colaço, Jean-Louis and Marc Pouzet (Oct. 2003). “Clocks as First Class Abstract Types”. In: Third
International Workshop on Embedded Software, EMSOFT 2003. Philadelphia, Pennsylvania, USA. doi:
10.1007/978-3-540-45212-6_10. url: http://www.di.ens.fr/~pouzet/lucid-synchrone/papers/
emsoft03.ps.gz (cit. on p. 243).

Drepper, Ulrich, Jim Meyering, François Pinard, and Bruno Haible (2020). GNU gettext tools, version
0.21. url: https://www.gnu.org/software/gettext/manual/ (cit. on p. 225).

Elmqvist, Hilding, Martin Otter, and Francois E. Cellier (June 1995). “Inline Integration: A New Mixed
Symbolic/Numeric Approach for Solving Differential-Algebraic Equation Systems”. In: Proceedings of
ESM’95, European Simulation Multiconference. Prague, Czech Republic, pp. xxiii–xxxiv. url: https:
//www.semanticscholar.org/paper/Inline-Integration%3A-A-New-Mixed-Symbolic%2FNumeric-
Elmqvist-Otter/b696154cbfb9c82dd4983abbd45ed639a4d5c32c (cit. on p. 262).

Forget, Julien, Frédéric Boniol, David Lesens, and Claire Pagetti (Dec. 2008). “A Multi-Periodic Syn-
chronous Data-Flow Language”. In: 11th IEEE High Assurance Systems Engineering Symposium (HASE’08).
Nanjing, China, pp. 251–260. doi: 10.1109/HASE.2008.47 (cit. on p. 243).

Harel, David (1987). “Statecharts: A Visual Formalism for Complex Systems”. In: Science of Computer
Programming 8, pp. 231–274. doi: 10.1016/0167-6423(87)90035-9 (cit. on p. 267).

Pantelides, Constantinos C. (Mar. 1988). “The Consistent Initialization of Differential-Algebraic Sys-
tems”. In: SIAM Journal on Scientific and Statistical Computing 9.2, pp. 213–231. doi: 10.1137/0909014
(cit. on p. 305).

Pouzet, Marc (2006). Lucid Synchrone, Version 3.0, Tutorial and Reference Manual. url: http://www.
di.ens.fr/~pouzet/lucid-synchrone/ (cit. on pp. 243, 267).

Thümmel, Michael, Gertjan Looye, Matthias Kurze, Martin Otter, and Johann Bals (Mar. 2005). “Nonlin-
ear Inverse Models for Control”. In: Proceedings of 4th International Modelica Conference, ed. G. Schmitz.
Hamburg, Germany. url: https://modelica.org/events/Conference2005/online_proceedings/
Session3/Session3c3.pdf (cit. on pp. 244, 259).

346

https://doi.org/10.1109/JPROC.2002.805826
https://doi.org/10.3384/ecp19157277
https://doi.org/10.1007/978-3-540-45212-6_10
http://www.di.ens.fr/~pouzet/lucid-synchrone/papers/emsoft03.ps.gz
http://www.di.ens.fr/~pouzet/lucid-synchrone/papers/emsoft03.ps.gz
https://www.gnu.org/software/gettext/manual/
https://www.semanticscholar.org/paper/Inline-Integration%3A-A-New-Mixed-Symbolic%2FNumeric-Elmqvist-Otter/b696154cbfb9c82dd4983abbd45ed639a4d5c32c
https://www.semanticscholar.org/paper/Inline-Integration%3A-A-New-Mixed-Symbolic%2FNumeric-Elmqvist-Otter/b696154cbfb9c82dd4983abbd45ed639a4d5c32c
https://www.semanticscholar.org/paper/Inline-Integration%3A-A-New-Mixed-Symbolic%2FNumeric-Elmqvist-Otter/b696154cbfb9c82dd4983abbd45ed639a4d5c32c
https://doi.org/10.1109/HASE.2008.47
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1137/0909014
http://www.di.ens.fr/~pouzet/lucid-synchrone/
http://www.di.ens.fr/~pouzet/lucid-synchrone/
https://modelica.org/events/Conference2005/online_proceedings/Session3/Session3c3.pdf
https://modelica.org/events/Conference2005/online_proceedings/Session3/Session3c3.pdf

Index

abs, 21
absoluteValue, 305
Access, 318
access, 317
acos, 25
activeState, 268
actualStream, 27
algorithm

clocked, 256
section, 166

algorithm, 166
and, 18
annotation, 279
array

constructor, 154
with iterators, 155

element, 147
variable, 147

Arrow, 294
asin, 25
assert

equation, 118
statement, 173

AssertionLevel, 68
assignment statement

indexed, 158
simple, 168

atan, 25
atan2, 25
attribute, 62
Authorization

authorization file, 321
Axis, 284
AxisScale, 284

backSample, 254
balanced

globally, 58
locally, 57

base class, 90
base-clock

conversion-operators, 251
partition, 246

base-clock partition
clocked, 257
unclocked, 257

base-partition, 246
binding equation, 111

in function, 184
Bitmap, 301
block, 54
BOM (byte order mark), 222
Boolean, 64

reserved name, 63
BooleanType, 63
BorderPattern, 293
break, 171

deselection, 108
removing modifier, 99

byte order mark, 222

cardinality, 27
cat, 156
ceil, 24
change, 35
checkBox, 107
choices, 106
choicesAllMatching, 107
class, 51
class, 92
class tree, 75
class type, 80, 83
Clock, 245

event, 249
inferred, 247
interval, 248
rational, 247
solver, 249

clock
inference, 256
partition, 246
base-, 246
sub-, 246

variable, 245
clocked

algorithm, 256
base-clock partition, 257
discrete-time expression, 244
equation, 256
expression, 260
state variable, 250
variability, 260
variable, 245
when-clause, 255

clocked discrete-time, 246
Color, 293

347

Modelica Language Specification 3.7-dev
Index

comment, 11
compatible interface, 80
component, 9, 41

declaration, 41
expression (argument restriction), 246
reference, 12

component variability, 47
constant, 47
continuous-time, 47
discrete-time, 47
evaluable parameter, 47
non-evaluable parameter, 47

connect
equation, 128
overconstrained equation operator, 141

connection equation, 134
connection equations

connection graph, 143
stream, 237

connection graph equations, 143
Connections, 68
Connections.branch, 141
Connections.isRoot, 142
Connections.potentialRoot, 141
Connections.root, 141
Connections.rooted, 142
connector, 55, 128
connectorSizing, 307
constant

expression, 37
variable, 47

constant, 47
constrainedby, 104
continuous-time

discretized, 246
expression, 39
variable, 47

conversion, 310
conversion-operators

base-clock, 251
sub-clock, 252

convertClass, 312
convertClassIf, 312
convertElement, 313
convertMessage, 315
convertModifiers, 313
CoordinateSystem, 292
cos, 25
cosh, 25
cross, 154
Curve, 285

DAE, 338
dateModified, 316
declaration equation, 43, 111
declared variability, 47
default connectable, 85
defaultComponentName, 304

defaultComponentPrefixes, 304
defaultConnectionStructurallyInconsistent,

305
definite root node, 141
delay, 24
delayed transition, 268
delimited comment, 11
der, 26

partial derivative, 197
derivative, 190, 191
derivative-function, 191
derived class, 90
derived from, 90
deselection

selective model extension, 108
diagonal, 150
Diagram, 292
DiagramMap, 297
Dialog, 306
discrete, 47, 50
discrete-time

clocked, 246
expression, 38
sub-partition, 260
variable, 47

discrete-valued equation variability rule, 38
discretized

sub-partition, 259, 260
discretized continuous-time, 246
displayUnit

attribute of Real, 63
div, 23
Documentation, 281

figures sub-annotation, 282
info sub-annotation, 281
revisions sub-annotation, 282
styleSheets sub-annotation, 282

DocumentationClass, 304
DrawingUnit, 292

each, 97
edge, 35
element, 9, 51

primitive, 134
element modification, 93
element-redeclaration, 93
Ellipse, 300
EllipseClosure, 293
else

if-equation, 113
if-expression, 19
if-statement, 171

elseif
if-equation, 113
if-expression, 20
if-statement, 171

elsewhen
when-equation, 114

348

Modelica Language Specification 3.7-dev
Index

when-statement, 172
empty class, 53
encapsulated, 70, 71
encryption

access control, 317
end, 159
enhancement

specialized class, 54
enumeration, 65

conversion operator, 22
unspecified, 67

EnumType, 63
equalityConstraint, 140
equation, 111

clocked, 256
equation, 111
escape sequence

string literal, 14
text markup, 285

evaluable expression, 37
Evaluate, 288
event, 120
event clock, 249
exp, 25
expandable, 129
expandable connector, 129
experiment, 289
expression, 15

clocked, 260
expression variability, 36

clocked, 260
clocked discrete-time, 244
constant, 37
continuous-time, 39
discrete-time, 38
evaluable, 37
non-discrete-time, 39
parameter, 37

extends, 90
Extent, 292
external, 203
ExternalObject, 216

fallback value, 63
false, 14
features, 320
Figure, 283
figures, 282
fill, 151
FilledShape, 294
FillPattern, 293
final, 98
firstTick, 264
fixed

attribute of Boolean, 64
attribute of Integer, 64
attribute of Real, 63
attribute of String, 65

flattening, 9, 74
floor, 24
flow, 135

in expandable connector, 131
for

equation, 112
reduction expression, 153
statement, 168

function, 174
function, 55
function compatible interface, 80
function subtype, 80
function-compatibility, 86

GenerateEvents, 201
getInstanceName, 28
globally balanced, 58
GraphicItem, 292

HideResult, 289
hold, 251
homotopy, 27
hybrid DAE, 338

Icon, 291
IconMap, 297
identifier, 12
identity, 150
if

equation, 113
expression, 19
statement, 171

immediate transition, 268
import, 219
import name, 70
impure, 178
in

for-equation, 112
reduction expression, 153

Include, 209
IncludeDirectory, 210
index, 158
inferred clock, 247
info, 281
inheritance interface, 80, 83
initial, 34
initial algorithm, 123
initial equation, 123
initial value problem, 9

seetransient analysis, 9
initialization, 9
initialization problem, 122
initialState, 268
Inline, 200
InlineAfterIndexReduction, 201
inner, 71
input, 44, 174
inside connector, 129
instance, 51

349

Modelica Language Specification 3.7-dev
Index

instance tree, 75
inStream, 27
Integer, 64

conversion operator, 22
reserved name, 63

integer, 24
IntegerType, 63
interface, 80, 82

compatible, 80
function compatible, 80
inheritance, 80, 83
plug compatible, 80

interval, 264
inverse, 191, 197

keyword, 12

LateInline, 200
Library, 209
LibraryDirectory, 210
License, 320–322

authorization file, 321
external function annotation, 211
top-level class annotation, 322

licensing
access control, 317

Line, 299
connect annotation, 298

Linear (axis scale), 284
LinePattern, 293
linspace, 151
literal, 13
local equation size, 57
local number of unknowns, 56
locally balanced, 57
Log (axis scale), 284
log, 25
log10, 25
loop

for-equation, 112
for-statement, 168
while-statement, 170

matrix, 146
matrix, 150
max

attribute of Integer, 64
attribute of Real, 63
binary function, 152
of array, 152
reduction expression, 152

mayOnlyConnectOnce, 291
min

attribute of Integer, 64
attribute of Real, 63
binary function, 151
of array, 151
reduction expression, 152

missingInnerMessage, 304

mod, 24
model, 54
Modelica, 1

URI scheme, 223
ModelicaAllocateString, 215
ModelicaAllocateStringWithErrorReturn, 215
ModelicaDuplicateString, 215
ModelicaDuplicateStringWithErrorReturn, 216
ModelicaError, 215
ModelicaFormatError, 215
ModelicaFormatMessage, 215
ModelicaFormatWarning, 215
ModelicaMessage, 215
MODELICAPATH, 221
ModelicaVFormatError, 215
ModelicaVFormatMessage, 215
ModelicaVFormatWarning, 215
ModelicaWarning, 215
modification, 93
modification environment, 94
modification equation, 93, 111
mustBeConnected, 290

name, 12
named element, 51
ndims, 149
noClock, 255
noEvent, 34
nominal

attribute of Real, 63
non-discrete-time expression, 39
non-expandable connector, 129
noneFromVersion, 311
not, 18
nthRoot, 22

obfuscation
access control, 317

obsolete, 305
ones, 151
OnMouseDownEditInteger, 303
OnMouseDownEditReal, 303
OnMouseDownEditString, 303
OnMouseDownSetBoolean, 302
OnMouseMoveXSetReal, 302
OnMouseMoveYSetReal, 303
OnMouseUpSetBoolean, 302
operator, 55
operator function, 55
operator record, 55, 228
optional spanning-tree edge, 141
or, 18
outer, 71
outerProduct, 154
output, 44, 174
outside connector, 129
overdetermined

connector, 140
record, 140

350

Modelica Language Specification 3.7-dev
Index

type, 140

package, 55
package.order, 222
parameter

evaluable, 47
evaluated, 47
expression, 37
non-evaluable, 47

parameter, 47
parametric variability, see parameter, expression
partial, 42
partial derivative, 197
partially instantiated, 76
partition

discretized, 259
unclocked, 257

perfect matching rule, 120
piecewise-constant variable, 244
Placement, 296
Plot, 283
plug compatible interface, 80
plug-compatibility, 85
Point, 292
Polygon, 299
potential root node, 141
pre, 35
preferredView, 303
prefix, 43
previous, 250
primitive element, 134
primitive type, 63
product

of array, 152
reduction expression, 152

promote, 149
protected, 40
Protection, 317

License sub-annotation, 320
access sub-annotation, 317
features sub-annotation, 320

protection
access control, 317

public, 40
pure, 177

quantity
attribute of Boolean, 64
attribute of Integer, 64
attribute of Real, 63
attribute of String, 65
connect set rule, 137

rational interval clock, 247
Real, 63

reserved name, 63
real interval clock, 248
RealType, 63
record, 54

Rectangle, 299
redeclaration

element, 93
redeclare, 100
reduction expression, 153
reinit, 35
rem, 24
replaceable, 101
replaceable, 93, 100
required spanning-tree edge, 141
rest-of-line comment, 11
restricted class, see specialized class
restricted subtype, 80, see also plug-compatibility
return, 175
revisionId, 316
revisions, 282
root node

definite, 141
potential, 141

sample
clocked, 251
event-generating, 35

scalar, 146
scalar, 150
Selector, 307
semiLinear, 27
shiftSample, 253
short class definition, 52
sign, 21
simple type, 53
simulation, 9
simulation model, 8
sin, 25
single assignment rule, see perfect matching rule
singleInstance, 290
sinh, 25
size

of all array dimensions, 149
of single array dimension, 150

sizeless array component, 132
skew, 154
Smooth, 293
smooth, 34
smoothOrder, 190
solver clock, 249
SourceDirectory, 210
spatialDistribution, 27
specialized class, 54
sqrt, 22
start

attribute of Boolean, 64
attribute of Integer, 64
attribute of Real, 63
attribute of String, 65

state variable
clocked, 250

StateSelect, 68

351

Modelica Language Specification 3.7-dev
Index

stateSelect
attribute of Real, 63

stream
connector, 236
variable, 236

stream, 236
stream connection equations, 237
String, 65

conversion operator, 22
reserved name, 63

StringType, 63
structural parameter, 50
styleSheets, 282
sub-clock

conversion-operators, 252
partition, 246

sub-partition, 246
discrete-time, 260
discretized, 260

subSample, 252
subscript, 158
subtype, 80

function, 80
functions, 86
restricted, 80

sum
of array, 152
reduction expression, 152

superSample, 253
supertype, 80
symmetric, 154

tan, 25
tanh, 25
terminal, 34
terminate

equation, 119
statement, 173

TestCase, 289
Text, 300
connect annotation, 298

text markup escape sequence, 285
TextAlignment, 294
TextStyle, 294
then

if-equation, 113
if-expression, 19
if-statement, 171
when-equation, 114
when-statement, 172

ticksInState, 268
time, 20
timeInState, 268
Transformation, 297
transient analysis, 9
transition

delayed, 268
immediate, 268

transition, 268
transitively non-replaceable, 83
translation

multilingual libraries, 224
of simulation model, 9

transpose, 154
true, 14
type, 82

class, 80, 83
interface, 80

type, 54

unassignedMessage, 305
unbounded

attribute of Real, 63
unclocked

base-partition, the, 257
unit

attribute of Real, 63
URI

Modelica, 223
uses, 311

variability
declared, see declared variability
expression, see expression variability
prefix, 45

variable, 41
vector, 146
vector, 150
vendor-specific annotation, 281
Vendor-specific markup, 285
version, 310
versionBuild, 316
versionDate, 315

when
equation, 114
statement, 172

when-clause
clocked, 255

while
statement, 170

within, 222

zeros, 151

352

	 Preface
	1 Introduction
	1.1 Overview of Modelica
	1.2 Scope of the Specification
	1.3 Some Definitions
	1.4 Notation

	2 Lexical Structure
	2.1 Character Set
	2.2 Comments
	2.3 Identifiers, Names, and Keywords
	2.3.1 Identifiers
	2.3.2 Names
	2.3.3 Modelica Keywords

	2.4 Literals
	2.4.1 Floating Point Numbers
	2.4.2 Integer Literals
	2.4.3 Boolean Literals
	2.4.4 Strings

	2.5 Operator Symbols

	3 Operators and Expressions
	3.1 Expressions
	3.2 Operator Precedence and Associativity
	3.3 Evaluation Order
	3.4 Arithmetic Operators
	3.5 Equality, Relational, and Logical Operators
	3.6 Miscellaneous Operators and Variables
	3.6.1 String Concatenation
	3.6.2 Array Constructor Operator
	3.6.3 Array Concatenation Operator
	3.6.4 Array Range Operator
	3.6.5 If-Expressions
	3.6.6 Member Access Operator
	3.6.7 Built-in Variable time

	3.7 Built-in Operators and Functions
	3.7.1 Numeric Functions and Conversion Operators
	3.7.2 Event Triggering Mathematical Functions
	3.7.3 Elementary Mathematical Functions
	3.7.4 Derivative and Special Purpose Operators with Function Syntax
	3.7.5 Event-Related Operators with Function Syntax

	3.8 Variability of Expressions
	3.8.1 Function Variability
	3.8.2 Constant Expressions
	3.8.3 Evaluable Expressions
	3.8.4 Parameter Expressions
	3.8.5 Discrete-Time Expressions
	3.8.6 Continuous-Time and Non-Discrete-Time Expressions

	4 Classes, Predefined Types, and Declarations
	4.1 Access Control – Public and Protected Elements
	4.2 Double Declaration not Allowed
	4.3 Declaration Order
	4.4 Component Declarations
	4.4.1 Syntax
	4.4.2 Static Semantics
	4.4.3 Component Variability Prefixes
	4.4.4 Acyclic Bindings of Constants and Parameters
	4.4.5 Conditional Component Declaration

	4.5 Component Variability
	4.5.1 Constants
	4.5.2 Parameters
	4.5.3 Discrete-Time Variables
	4.5.4 Continuous-Time Variables
	4.5.5 Variability of Structured Entities

	4.6 Class Declarations
	4.6.1 Short Class Definitions
	4.6.2 Combining Base Classes and Other Elements
	4.6.3 Local Class Definitions – Nested Classes

	4.7 Specialized Classes
	4.8 Balanced Models
	4.9 Predefined Types and Classes
	4.9.1 Real Type
	4.9.2 Integer Type
	4.9.3 Boolean Type
	4.9.4 String Type
	4.9.5 Enumeration Types
	4.9.6 Attributes start, fixed, nominal, and unbounded
	4.9.7 Other Predefined Types

	5 Scoping, Name Lookup, and Flattening
	5.1 Flattening Context
	5.2 Enclosing Classes
	5.3 Static Name Lookup
	5.3.1 Simple Name Lookup
	5.3.2 Composite Name Lookup
	5.3.3 Global Name Lookup
	5.3.4 Lookup of Imported Names

	5.4 Inner Declarations - Instance Hierarchy Name Lookup
	5.4.1 Field Functions Using Inner/Outer

	5.5 Simultaneous Inner/Outer Declarations
	5.6 Flattening Process
	5.6.1 Instantiation
	5.6.2 Generation of the Flat Equation System

	6 Interface or Type Relationships
	6.1 Interface Terminology
	6.2 The Concepts of Type, Interface and Subtype
	6.3 Interface or Type
	6.3.1 Transitively Non-Replaceable
	6.3.2 Inheritance Interface or Class Type

	6.4 Interface Compatibility or Subtyping
	6.5 Plug-Compatibility or Restricted Subtyping
	6.6 Function-Compatibility or Function-Subtyping for Functions
	6.7 Type Compatible Expressions

	7 Inheritance, Modification, and Redeclaration
	7.1 Inheritance – Extends Clause
	7.1.1 Multiple Inheritance
	7.1.2 Inheritance of Protected and Public Elements
	7.1.3 Restrictions on the Kind of Base Class
	7.1.4 Require Transitively Non-Replaceable

	7.2 Modifications
	7.2.1 Syntax of Modifications and Redeclarations
	7.2.2 Modification Environment
	7.2.3 Merging of Modifications
	7.2.4 Single Modification
	7.2.5 Modifiers for Array Elements
	7.2.6 Final Element Modification Prevention
	7.2.7 Removing Modifiers – break

	7.3 Redeclaration
	7.3.1 The ``class extends'' Redeclaration Mechanism
	7.3.2 Constraining Type
	7.3.3 Restrictions on Redeclarations
	7.3.4 Annotations for Redeclaration and Modification

	7.4 Selective Model Extension

	8 Equations
	8.1 Equation Categories
	8.2 Flattening and Lookup in Equations
	8.3 Equations in Equation Sections
	8.3.1 Simple Equality Equations
	8.3.2 For-Equations – Repetitive Equation Structures
	8.3.3 Connect-Equations
	8.3.4 If-Equations
	8.3.5 When-Equations
	8.3.6 reinit
	8.3.7 assert
	8.3.8 terminate
	8.3.9 Equation Operators for Overconstrained Connection-Based Equation Systems

	8.4 Synchronous Data-Flow Principle and Single Assignment Rule
	8.5 Events and Synchronization
	8.6 Initialization, initial equation, and initial algorithm
	8.6.1 Equations Needed for Initialization
	8.6.2 Start Value Recommended Priority

	9 Connectors and Connections
	9.1 Connect-Equations and Connectors
	9.1.1 Connection Sets
	9.1.2 Inside and Outside Connectors
	9.1.3 Expandable Connectors

	9.2 Generation of Connection Equations
	9.3 Restrictions of Connections and Connectors
	9.3.1 Balancing Restriction and Size of Connectors

	9.4 Overconstrained Connections
	9.4.1 Connection Graphs and Their Operators
	9.4.2 Generation of Connection Graph Equations
	9.4.3 Examples

	10 Arrays
	10.1 Array Declarations
	10.1.1 Lower and Upper Index Bounds

	10.2 Flexible Array Sizes
	10.3 Built-in Array Operators and Functions
	10.3.1 Dimension and Size Functions
	10.3.2 Dimensionality Conversion Functions
	10.3.3 Specialized Array Constructor Functions
	10.3.4 Reduction Functions and Operators
	10.3.5 Matrix and Vector Algebra Functions

	10.4 Vector, Matrix and Array Constructors
	10.4.1 Constructor with Iterators
	10.4.2 Concatenation
	10.4.3 Vector Construction

	10.5 Indexing
	10.5.1 Boolean or Enumeration Indices
	10.5.2 Indexing with end

	10.6 Scalar, Vector, Matrix, and Array Operator Functions
	10.6.1 Equality and Assignment
	10.6.2 Addition, Subtraction, and String Concatenation
	10.6.3 Element-wise Multiplication
	10.6.4 Multiplication of Matrices and Vectors
	10.6.5 Division by Numeric Scalars
	10.6.6 Element-wise Division
	10.6.7 Element-wise Exponentiation
	10.6.8 Scalar Exponentiation of Matrices
	10.6.9 Slice Operation
	10.6.10 Relational Operators
	10.6.11 Boolean Operators
	10.6.12 Vectorized Calls of Functions
	10.6.13 Standard Type Coercion

	10.7 Empty Arrays

	11 Statements and Algorithm Sections
	11.1 Algorithm Sections
	11.1.1 Initial Algorithm Sections
	11.1.2 An Algorithm in a Model
	11.1.3 The Algorithm in a Function

	11.2 Statements
	11.2.1 Simple Assignment Statements
	11.2.2 For-Statement
	11.2.3 While-Statement
	11.2.4 Break-Statement
	11.2.5 Return-Statements
	11.2.6 If-Statement
	11.2.7 When-Statements
	11.2.8 Special Statements

	12 Functions
	12.1 Function Declaration
	12.1.1 Ordering of Formal Parameters
	12.1.2 Function Return-Statements
	12.1.3 Inheritance of Functions

	12.2 Function as a Specialized Class
	12.3 Pure Modelica Functions
	12.4 Function Call
	12.4.1 Positional or Named Input Arguments
	12.4.2 Functional Input Arguments
	12.4.3 Output Formal Parameters
	12.4.4 Initialization and Binding Equations
	12.4.5 Flexible Array Sizes and Resizing of Arrays
	12.4.6 Automatic Vectorization
	12.4.7 Empty Function Calls

	12.5 Built-in Functions
	12.6 Record Constructor Functions
	12.6.1 Casting to Record

	12.7 Derivatives and Inverses of Functions
	12.7.1 Using the Derivative Annotation
	12.7.2 Partial Derivatives of Functions
	12.7.3 Using the Inverse Annotation

	12.8 Function Inlining and Event Generation
	12.9 External Function Interface
	12.9.1 Argument type Mapping
	12.9.2 Return Type Mapping
	12.9.3 Aliasing
	12.9.4 Annotations for External Functions
	12.9.5 Examples
	12.9.6 Utility Functions
	12.9.7 External Objects

	13 Packages
	13.1 Package as Specialized Class
	13.2 Importing Definitions from a Package
	13.2.1 Lookup of Imported Names
	13.2.2 Rules for Import-Clauses

	13.3 The Modelica Library Path – MODELICAPATH
	13.4 File System Mapping of Package/Class
	13.4.1 Directory Hierarchy Mapping
	13.4.2 Single File Mapping
	13.4.3 The within Clause

	13.5 Stored Definitions Containing Multiple Class Definitions
	13.6 External Resources
	13.7 Multilingual Descriptions

	14 Overloaded Operators
	14.1 Overview of Overloaded Operators
	14.2 Matching Function
	14.3 Overloaded Constructors
	14.4 Overloaded String Conversions
	14.5 Overloaded Binary Operations
	14.6 Overloaded Unary Operations
	14.7 Example of Overloading for Complex Numbers

	15 Stream Connectors
	15.1 Definition of Stream Connectors
	15.2 inStream and Connection Equations
	15.3 actualStream

	16 Synchronous Language Elements
	16.1 Rationale for Clocked Semantics
	16.2 Definitions
	16.2.1 Clocks and Clocked Variables
	16.2.2 Base- and Sub-Partitions
	16.2.3 Argument Restrictions (Component Expression)

	16.3 Clock Constructors
	16.4 Clocked State Variables
	16.5 Partitioning Operators
	16.5.1 Base-Clock Conversion Operators
	16.5.2 Sub-Clock Conversion Operators

	16.6 Clocked When-Clause
	16.7 Clock Partitioning
	16.7.1 Flattening of Model
	16.7.2 Connected Components of the Equations and Variables Graph
	16.7.3 Base-Partitioning
	16.7.4 Sub-Partitioning
	16.7.5 Sub-Clock Inferencing

	16.8 Discretized Sub-Partition
	16.8.1 Discrete-time and Discretized Sub-Partitions
	16.8.2 Solver Methods
	16.8.3 Associating a Solver to a Sub-Partition
	16.8.4 Inferencing of solverMethod

	16.9 Initialization of Clocked Partitions
	16.10 Other Operators
	16.11 Semantics

	17 State Machines
	17.1 Transitions
	17.2 State Machine Graphics
	17.3 State Machine Semantics
	17.3.1 State Activation
	17.3.2 Reset Handling
	17.3.3 Activation Handling
	17.3.4 Semantics Summary
	17.3.5 Merging Variable Definitions
	17.3.6 Merging Connections to Outputs
	17.3.7 Example

	18 Annotations
	18.1 Notation for Annotation Definitions
	18.2 Semantic Restrictions of Annotation Syntax
	18.3 Expression Evaluation Inside Annotations
	18.3.1 Enumerations for Use in Annotations

	18.4 Vendor-Specific Annotations
	18.5 Documentation
	18.5.1 Class Description and Revision History
	18.5.2 Figures

	18.6 Symbolic Processing
	18.7 Simulations
	18.8 Usage Restrictions
	18.9 Graphical Objects
	18.9.1 Common Definitions
	18.9.2 Component Instance
	18.9.3 Extends-Clause
	18.9.4 Connections
	18.9.5 Graphical Primitives
	18.9.6 Variable Graphics and Schematic Animation
	18.9.7 User Input

	18.10 Graphical User Interface
	18.10.1 Connector Sizing

	18.11 Versions
	18.11.1 Version Numbering
	18.11.2 Version Handling
	18.11.3 Versions in the File System
	18.11.4 Version Date and Build Information

	18.12 Access Control to Protect Intellectual Property
	18.12.1 Protection of Classes
	18.12.2 Licensing

	18.13 License Texts
	18.14 Functions
	18.15 Choices for Modifications and Redeclarations

	19 Unit Expressions
	19.1 The Syntax of Unit Expressions

	20 The Modelica Standard Library
	A Modelica Concrete Syntax
	A.1 Lexical conventions
	A.2 Grammar
	A.2.1 Stored Definition – Within
	A.2.2 Class Definition
	A.2.3 Extends
	A.2.4 Component Clause
	A.2.5 Modification
	A.2.6 Equations
	A.2.7 Expressions

	B Modelica DAE Representation
	C Derivation of Stream Equations
	C.1 Mixing Enthalpy
	C.2 Rationale for inStream
	C.3 Special Cases Covered by inStream Definition
	C.3.1 Unconnected Stream Connector – 1 Stream Connector
	C.3.2 One to One Connections – Connection of 2 Stream Connectors
	C.3.3 Zero Mass Flow Rate – Connection of 3 Stream Connectors
	C.3.4 Ideal Splitting Junction for Uni-Directional Flow - Connection of 3 Stream Connectors where Two Mass Flow Rates are Positive

	D Modelica Revision History
	Bibliography
	Index

