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Abstract

Massive Open Online Courses (MOOCs) brings great oppor-
tunities to millions of learners. However, the size of the learn-
er population and the heterogeneity of the learners' back-
grounds make conventional one-size-fits-all pedagogy insuffi-
cient. For example, learners lacking in prior knowledge may
struggle with different concepts. In this paper, we propose a
framework - educational content linking, to address the chal-
lenges. By linking and organizing scattered educational mate-
rials for a given MOOC into an easily accessible structure, this
framework can provide guidance and recommendation of these
contents, as well as improve navigation. Thus, learners can
select appropriate supporting materials to suit their individual-
ized needs and achieve self-exploring remediation. This paper
describes an end-to-end case study, which found that learners,
especially novices, can search learning materials faster without
sacrificing accuracy, and can retain concepts more readily with
our proposed approach. We have also obtained encouraging
preliminary results that suggest that content linking can be
achieved automatically using human language technology and
stochastic modeling techniques.

Index Terms: MOOC:s, learning at scale, automatic educa-
tional resource organization, hidden Markov model

1. Introduction

Since 2011, the revolution called MOOC (Massive Open
Online Courses) has taken the world by storm [1, 2]. Today,
there are thousands of courses, from science and engineering
to humanities and law, being offered on the Internet using sev-
eral platforms — Coursera, edX, etc. These platforms allow
millions of learners around the world to take courses from top
universities without the need for physical presence, thus poten-
tially achieving the democratization of knowledge dissemina-
tion. At the same time, the openness of these platforms has
also created a set of challenges. For example, the sheer size of
the learner body, and the heterogeneity of their background —
e.g., demographics, course preparedness, learning goals, moti-
vation, etc., make it extremely difficult to meet everyone’s
learning needs [3, 4, 5].

Today’s courseware on MOOC platforms typically con-
sists of a myriad of high-quality materials that vary in type
(e.g., lecture, slides, textbooks, discussion forum, problem
sets), course level (e.g., college preparatory courses, graduate
level courses), and pedagogy (e.g., active learning, mastery
learning). These materials can potentially provide remediation
for learners’ heterogeneous needs. However, since these mate-
rials are conventionally made available to the students as dis-
joint entities, it is difficult to navigate them efficiently and find
remediation. For example, a student interested in learning
more about a specific topic described by the lecturer cannot

easily look up relevant materials, such as from notes/slides to
sections of the textbook, or from introductory materials to ad-
vanced ones, to broaden and reinforce his/her learning.

To address the challenges, we propose a framework - edu-
cational content linking [6]. By linking and organizing scat-
tered educational materials for a given MOOC into an easily
accessible structure, this framework can provide guidance and
recommendation of these contents, as well as improving navi-
gation. Thus, learners can potentially tailor the learning pro-
cess to suit their background, and achieve self-exploring re-
mediation for their heterogeneous learning needs (i.e., find
appropriate supporting materials for their learning needs in a
self-regulated way). To be more specific, one can imagine the
linked courseware as a tree, in which the trunk corresponds to
the curriculum that reflects the organization of concepts from
instructors/experts, and the branches correspond to learning
segments about the same topic but from various learning
sources.

Fig. 1 below illustrates the two interfaces for navigating
the course materials in our user studies (‘baseline’ vs.
‘linked’). These interfaces have an identical search module but
different strategies for presenting retrieved result. The left
panel of Fig. 1 illustrates how the search results are displayed
to the user in ’haseline’ condition, i.e., the conventional way
of delivering materials where each type of courseware is
shown monolithically. By clicking the icon, the corresponding
content will appear in a call-out box independently. In con-
trast, the right panel of Fig. 1 illustrates the ’linked’ interface.
It is powered by our content linking result, which is described
in the following. In this case, materials that are linked can be
accessed together with one click, for learners to peruse at will.
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Figure 1: An example of the ‘baseline’ and ‘linked’ in-
terface used in our experiments.

This paper is organized as follows. First, we summarize
the results of a pilot study [6] comparing the two interfaces on
“information search” tasks. We then substantially expand the
previous experiment with more tasks and subjects, and extend
the study to include a “concept retention” scenario for more
evidence supporting our framework. In all the users studies,
experts accomplished linking manually. With the assurance of
the results that our framework is beneficial, we investigate an
automatic linking method based on hidden Markov models



(HMM) to meet the scale issue. Lastly, we end this paper with
a brief summary.

2. Pilot Study

Before building a system that can automatically link various
course materials, we must first validate our hypothesis that
linking educational materials will lead to better learning for the
students. This section will briefly summarize some of our pre-
viously published findings, which will help set the stage for
our expanded experiments.

2.1. The Course Material

We have chosen to focus our investigation on materials around
a single MOOC - Stat2.1x: Introduction to Statistics, offered
by UC Berkeley on edX in 2013 [6, 7]. This course comes
with three types of courseware common to many MOOCs —
lecture videos, slides, and (electronic) textbook. There are 31
lectures totaling 7 hours of video, and 157 pages of slides. The
suggested textbook [8] contains 77 sections, providing inde-
pendent support to the lecture material.

2.2. Methodology for Content Linking

To create the ‘/linked’ interface, we must first delineate con-
tents in each type of material into segments. These segments
are subsequently organized into a proper curriculum. Finally,
relevant topic segments from each type of material must then
be linked, as shown in Fig. 1.

Proper segmentation will result in vignettes that are large
enough to be self-contained as a learning unit, yet small
enough to enable learners to search/browse effectively across
material types. We start by segmenting the textbook into sec-
tions, and slides into pages. Since there are no clear structural
breaks in videos, we recruited two researchers with expertise
in statistics to manually align the video transcription to the
deck of slides from the same lecture. Thus, the videos are
segmented into vignettes, where each vignette corresponds to
one aligned page of slides.

Then, these segments are organized into a proper curricu-
lum and linked. First, we concatenate the 31 lectures together,
and take the sequence of slides as the shared curriculum. The
aligned video vignettes are linked to the slides accordingly.
For each page of slides, the same two researchers also label
the most relevant section in the textbook, and link the segment
to the slide page. If there is a disagreement, the two research-
ers have to discuss until consensus is reached. With these
steps, we can obtain a shared curriculum, and link the separate
materials around the curriculum.

2.3. Pilot Experiment

The goal of our pilot experiment [6] is to provide early indica-
tion of whether linked content would lead to better learning.
However, learning is a combination of mental processes such
as attention, memory, problem solving, thinking, etc., it may
be too elusive to ascertain in one set of experiments. Similar to
[10], we thus adopted a specific set of learning-relevant activi-
ties — educational content navigation, as a proxy for learning.
In this pilot experiment, we measured the subjects’ perfor-
mance on the task of ‘information search’, in which a learner
in our experiment is given a question, and asked to retrieve a
learning segment (in videos, slides, or Textbook) that can be
used to solve the given question. This scenario attempts to

emulate a situation where a learner is trying to review educa-
tional content and searching for useful information for prob-
lem solving.

For this pilot experiment, four questions (similar to the
ones shown in Table 1) are sampled from the problem set in
Stat2.1x, and 100 unique online workers on Amazon Mechan-
ical Turk (AMT) are recruited for each question, resulting in
400 tasks. A total of 151 unique AMT workers participate in
the experiment, instead of 400, since we allow a given worker
to solve more than one task. The workers differ in their back-
ground — education level, exposure to MOOC, and familiarity
with statistics. Such diversity allows us to understand the use-
fulness of our proposed model to a heterogencous learner
body. We randomly assign a worker in each task with either of
the two interfaces shown in Fig. 1, and we measure the work-
er’s performance in task completion time and the accuracy of
the retrieved segment. By analyzing the difference in perfor-
mance using each interface, we investigate whether our model
benefits learners in navigating across educational contents.

Table 1. Example tasks posed to the AMT workers.

Instructions — “select a learning segment (a textbook section, a vid-
eo chunk, or a page of slides) that helps you solve a given problem.”

Task 1 What is the formal definition for X™ percentile, where X
is a general, real number between 0 and 100?
Based on the given data, please plot a histogram of the
Task 2 PR
distribution.

Table 2. Learner performance on ‘information search’ tasks
using ‘baseline’ or ‘linked’ interface. We measure the per-
formance by computing task completion time and accuracy.

Time consumed Task accuracy
Learner Seconds % of correct tasks
background P-value| (# tasks) P-value

Baseline Linked Baseline  Linked
> Bachelor 306 284 0.16 §52(96) 65(98) 0.03
< Some college§ 322 257 | <0.01Q66(98) 55(96) 0.94
MOOCs 277 286 0.63 §70(40) 63 (34) 0.74
No MOOCs 323 267 | <0.01§55(154) 59(160) | 0.21
Statistics 294 268 0.10 §60 (120) 61(120) | 0.45
No Statistics 346 276 0.01 §57(74) 5874 0.44
Overall 315 271 <0.0158(194) 60(194) | 0.38

2.4. The Results

Table 2 summarizes the learner performance in these tasks.
The average task completion time and accuracy along with the
significance test results are shown. We highlight, in boldface,
the result where the differences are significant at P=0.01 level.

Focusing first on the last row of Table 2, we see that the
overall performance suggests that the averaged search time
using the linked interface is 14% less than using the baseline
interface (cf. 315 vs. 271), and this improvement is statistically
significant. In contrast, there is no significant difference in
task accuracy for using the two interfaces. Looking over the
top six rows of Table 2 for the individual results of the three
demographic groups, we observe that the linked interface re-
duces search time in five of the six cases. The difference is
statistically significant in two out of the three groups of novice
learners (i.e., learners who are less educated and less experi-
enced with MOOC), with the last one barely missing it (i.e.,
learners who are less familiar with the subject materials). Sim-
ilarly, we compare the difference in the retrieval correctness,
and no statistically significant degradation is observed. Thus,



we conclude that, by having the educational content linked, we
allow learners, especially novices, to find supporting learning
segments more efficiently for solving problems, without sacri-
ficing the searching correctness. This fact shows that our
framework can potentially benefit educational content naviga-
tion.

Our results indicate that linking has little impact on task
accuracy in most cases. This could be due to the fact that the
difference between the two interfaces is about how the materi-
als are presented, rather than the information itself. Therefore,
learners can always find the correct learning segments with
sufficient time and persistence.

3. New Experiments and Results

While the results of the pilot study were tantalizing, we were
concerned about several shortcomings. We only measured one
aspect of learning — the speed and accuracy of information
search. As such, the number of tasks was relatively small. Al-
lowing some workers to perform more tasks than others may
have skewed the results. Therefore we expanded our experi-
ment substantially in several dimensions.

3.1. Information Search Experiments

In this paper, we expand the previous ‘information search’ ex-
periment and conduct user study on a larger scale. With more
data, we expect to provide stronger evidence to show the bene-
fit of linking. We increase the number of questions from four
to ten, and recruit 200 unigue AMT workers for each of the
questions for a total of 2,000 tasks. In Table 3, we show the
number of tasks completed by subjects with various back-
grounds. In all, 497 distinct workers participate in the experi-
ment. The experimental protocols remain the same as before.

Table 3. Number of tasks completed by each subject group.

Number of tasks

Learner background Baseline Linked
> Bachelor 573 522
< Some college 427 478
MOOCs 295 249
No MOOCs 705 751
Statistics 714 704
No Statistics 286 296
Overall 1,000 1,000

Table 4. Learner performance on the expanded ‘information
search’ tasks using ‘baseline’ or ‘linked’ interface.

column. Columns 4 and 5 tabulate the percentage of tasks
where the retrieved segments are correct for the two interfaces,
respectively. Column 6 shows the significance test results.

Compared to the previous results in Table 2, we observe in
Table 4 a stronger evidence of the usefulness of linking. The
overall search time is reduced by 36% (cf. 206 vs. 152), and
this trend holds for all sub-categories of workers. The differ-
ence is statistically significant for five of the seven groups,
including all three novice groups. As for task accuracy, the
‘linked’ interface yields some improvement (ranging from
+0.7% to +2.2%) in the three novice groups, and a smaller dif-
ference (ranging from -0.1% to -1.4%) in the experienced
counterparts. Similar to the results in our previous study, none
of the differences are statistically significant.

Thus, we reach the same conclusion as before, except with
greater confidence that learners can search desired information
more efficiently without sacrificing the accuracy when learn-
ing materials are linked. Since our experiments are conducted
remotely, it is inevitable that studies based on crowdsourcing
have to deal with outliers and spammers in the collected data.
By increasing the scale of user study, we can mitigate the
noise from spammers and achieve more reliable conclusions.

3.2. Concept Retention Experiments

With similar experimental setup [6], we also design another
set of experiments — ‘concept retention,” to explore whether
the ’linked’ interface can benefit learning from a different as-
pect. In this scenario, we attempt to measure how efficiently a
learner could peruse the materials to capture, memorize, and
recall key concepts. Specifically, each subject is first assigned
a topic. Then, the subject has ten minutes to learn about the
topic with either of the two interfaces shown in Fig. 1. After
the learning session, he/she is asked to write a short essay to
summarize what he/she learned about the topic. We then eval-
uate the learner performance in this scenario by counting the
number of unique key concepts mentioned in the essay, where
key concepts are extracted from the textbook glossary and de-
fined as the entries belonging to the corresponding topic.

For this scenario, we also sample ten topics, and recruit
200 unique AMT workers for each topic. Several examples are
shown in Table 5. A total of 751 different AMT workers are
recruited.

Table 5. Example tasks for the ‘concept retention’ scenario
and the task hint given to experimental subjects.

Time consumed Task accuracy InStl‘l.lCtiOI‘l - “learn the givel'l topic based on the cor'ltent you can
i | semas otk T || et andwrie an sy o sy o
groun . - - - - -

> Bachelor Bals Sgne Llln 6k3ed <0.01 Ba;sg.l;ne L;r(l)l.(gd 0.98 Topic 1 Regression Topic 2 Standard deviation
< Some college] 208 136 | <0.01 | 67.5 68.5 0.79 Topic 3 Correlation Topic 4 Mean
MOOCs 166 139 0.06 72.0 70.6 0.76 . .
No MOOCs 225 154 | <001 1 632 689 0.80 Table 6 summarizes learner performance on the ‘concept
Statistics 166 147 0.05 711 705 0381 retention’ scenario. The first two columns of the table contain
No Statistics 295 160 | <0.01 | 649 67.1 0.64 the average number of unique concepts in the subjects’ essay
Overall 206 152 | <0.01 69.2 69.5 0.89 for the two interfaces, respectively, for each subject group. We

Learner performance on the expanded ‘information search’
experiment is shown in Table 4. The average amount of time
workers spend on completing the tasks with the ‘baseline’ and
‘linked’ interfaces is summarized in the first two columns of
the table, respectively, and the significance test result of the
time difference between the two interfaces is listed in the third

also list the P-values in column 3, and the number of tasks for
each group of subjects in columns 4 and 5.




Table 6. Learner performance on ‘concept retention’
tasks using ‘baseline’ or ‘linked’ interface.

Learner # unique key concepts # tasks

background QW Baseline | Linked | P-value §Baseline | Linked
> Bachelor 4.73 5.23 <0.01 549 519
< Some college 3.98 4.60 <0.01 451 481
MOOCs 4.83 5.14 0.27 205 287
No MOOCs 4.27 4.77 <0.01 795 713
Statistics 4.71 5.11 0.02 594 597
No Statistics 3.98 4.60 <0.01 406 403
Overall 4.39 491 <0.01 1,000 1,000

Focusing first on the last row of Table 6, we see that,
overall, subjects are able to produce a greater number (~12%)
of key concepts while using the ‘/inked’ interface (cf. 4.39 vs.
4.91), and the difference is statistically significant. Looking
over the top six rows of Table 6, we observe that there is a
similar trend to that in the ‘information search’ scenario,
where the ‘linked‘ interface yields consistent improvement
over each group of subjects, and the novice learners benefit
more than their experienced counterparts. In four of the six
cases (including all the three novice groups), the improvement
passes the statistical significance test. These findings reveal
another benefit of linking in navigating content and learning.

From the results in the two sets of experiments, we notice
that the ‘linked interface yields better performance, especially
for novice subjects. This fact is perhaps not surprising. Be-
cause of the shortcomings of these subjects - less education,
less experience with MOOC, and less familiarity with the sub-
ject matter, they may lack a broad perspective to explore the
various resources on their own. By organizing the learning
materials in a ‘/linked* interface, which is easy to visualize and
manipulate, we can potentially enhance their ability to navi-
gate through the knowledge space more effectively, which
could lead to improved knowledge acquisition. This is con-
sistent with previous study that shows “guidance” is particu-
larly crucial for learners who are likely to struggle [11].

In conclusion, with educational content linking, learners
can find supporting learning segments faster with no degrada-
tion in searching accuracy. They can also review materials and
capture concepts in a topic more efficiently. Furthermore, the
improvement from linking is more significant in novices. This
fact shows the potential of our linking framework in reducing
the knowledge gap among the heterogeneous learners in
MOOCs. We interpret these findings as evidence that the pro-
posed framework benefits learners in navigating content and
exploring remediation.

4. Automatic Linking Using HLT

In this section, we investigate methods to link courseware au-
tomatically. Due to the heterogeneous learner body, students
have various prior knowledge and learning needs (e.g., they
can struggle for a myriad of different reasons and require vari-
ous remediation). We show linking can potentially help learn-
ers navigate course materials in the previous section. Howev-
er, it is cost-prohibitive and not scalable to manually link all
available course contents for covering every possible learning
need for remediation (e.g., link the tens of thousands of forum
discussions). Thus, we propose a human language technology
(HLT) based method to generate linking automatically and at
scale. HLT is a major focus here, since human language is an
integral part in education for knowledge transferring, and HLT

has been proved successful in many applications of infor-
mation retrieval [12-17]. Thus, we believe methods based on
HLT will be more generalizable to different courses, and more
likely to provide high-quality automatic linking.

4.1. Hidden Markov Model

We employ HMM to link various types of course materials
automatically. HMM is a special case of graphical model [18].
Conventional information retrieval methods in HLT, e.g., co-
sine similarity, infer the relation among a repository of docu-
ments based on lexical cues of the content [12]. As compared
to that, a graphical model can additionally express the ontolo-
gy and global structure behind the repository. This characteris-
tic allows us to understand the curriculum and extract global
information for more accurate linking prediction among learn-
ing materials. Thus, we adopt HMM to model the sequential
structure of the curriculum.
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Figure 2: The graphical representation of HMM.

Fig. 3 is an illustration of HMMs. First, we denote an or-
dered sequence of learning segments extracted from a type of
course materials (e.g., a deck of slides) as D = {d,}, where i =
{1, 2, ..., |D|}. For this sequence, we assume there is a corre-
sponding sequence of hidden state variables, Z = {z;}, mapped
to these segments. Given a list of hidden states, the value of
variable z; is the list index of the hidden state generating d;. A
hidden state s can be interpreted as the red rectangle in the
right panel of Fig. 1. If z; = s, we link d; (can be interpreted as
the video/textbook icons in the red rectangle) to the state.
Therefore, to generate the linking automatically, all we need is
to infer the values of the hidden variable sequence Z, based on
the observation of segments D.

We model the inference problem with maximization of the
probability P(D, Z |11), where the parameter set TT is learned
from a training corpus. To expand the probability, we first no-
tice that, with the first-order Markov assumption made in
HMM, each hidden variable z; depends only on the hidden var-
iable for its preceding segments d;.;, and the observation of d;
is independent of other segments given z;. In addition, we rep-
resent each observed segment d; with its word occurrence W; =
{wy}, where j = {1, 2, ..., |W}}, and wy; is the word index of the
j™ word in d;. With this representation, P(d; |TT, z;) can be ex-
pressed as l_[ljlilil| P(w;j|m, z;). Thus, we can rewrite the proba-
bility P(D, Z |T7) to:

W, |D| Wi
P(z,|m) nP(wljln, zl) nl_[P(wijln, Zi)P(Zi|T[, z;_1) (D).
j=1 i=2 j=1

The two types of dependence, P(z; |TT, z;;) and P(w; |TT, z;),
are used to model the sequential structure of the curriculum,



and the lexical information in each hidden state variable (e.g.,
the word distribution) respectively.

To solve the inference problem and predict linking with
HMM, we first have to train the model to find the parameter
setting, 77, which maximizes the probability P(D, Z |TT) over all
possible settings TT on the training corpus D. The EM algo-
rithm is adopted for estimating 7. Then, we predict linking
with the learned setting 7. For a sequence of testing segments
D', we find the value assignment Z, which maximizes the
probability P(D’, Z| &) over Z. With Z, we can link each seg-
ment d;' to the hidden state according to the value Z,, and thus
to the corresponding part in the curriculum.

4.2. Experimental Results and Findings

We then evaluate our automatic linking generation method on
Stat2.1x. Two linking tasks are studied - video-to-slide linking
and video-to-textbook linking. In the video-to-slide task, we
adopt the 157 pages of slides as the training set due to the clear
structural breaks in slides, and select the seven-hour video
transcription as the test set. Then, we define a hidden state as a
page of slides. We train the HMM parameter setting with the
lexical information (e.g., the word occurrence counts in each
page of slides) and the material structure (e.g., P(z;= s; |TT, z;;
=s;7) = 1 if s; and s;; are adjacent pages of slides, otherwise
the probability is 0) in the training set. With the learned pa-
rameter setting, we predict the hidden state for every sentence
in the test set. Each sentence is then linked to the page of
slides represented by the predicted states. As for the video-to-
textbook task, we conduct an experiment with similar design,
except that we replace the slides with the 77 textbook sections
as the training set and define a section as a hidden state. These
tasks allow us to study our model performance when the mate-
rials to be linked are matched (i.e., video and slides) or mis-
matched (i.e., video and textbook).

Table 7. The sentence accuracy (%) of the predicted
linking from video transcription to slides or textbook.

Video-to-slide Linking |Video-to-textbook Linking
Models \ Features|Word frequency| TFIDF | Word frequency | TFIDF
Cosine similarity 73.3 75.5 19.1 25.7
HMM 80.6 84.1 31.8 33.0

We take the expert-labeled linking described in section 2.2
as ground truth for evaluation, and compute two performance
metrics for the two tasks respectively - the percentage of sen-
tences that are linked to the correct 1) page of slides, or 2)
textbook section. Table 7 summarizes the results. As a refer-
ence, we also implement a baseline method — cosine similarity,
in which we link each sentence to the page/section with the
most similar bag-of-word representation measured by cosine
similarity.

In the video-to-slide tasks (first two columns), with the
additional information from material structure, our method
yields a 7.3% absolute linking accuracy improvement over the
baseline method. After normalizing the times a word appears
in a learning segment with the frequency of the word in the
corpus (i.e., TF-IDF, or term frequency-inverse document fre-
quency), we obtain a feature that can better discriminate be-
tween function and topic words. The TF-IDF feature further
improves the accuracy by 3.5%. As for the video-to-textbook
tasks (last two columns), similar trends can be observed - our
method yields a 12.7% improvement over the baseline with

additional modeling of the structure information; by using a
more discriminating feature (the TF-IDF), we further improve
the performance by 1.2%. However, the accuracy here is sig-
nificantly lower than that of the video-to-slide task with com-
parable experimental settings.

In summary, by modeling structure and lexical information
simultaneously, our HMM-based method yields a significant
improvement over the baseline in generating linking automati-
cally. The performance can be further improved with the TF-
IDF feature. We believe that, with refined models and fea-
tures, the proposed method is likely to achieve comparable
performance to manual linking. Thus, this method is a promis-
ing solution to link MOOC contents automatically and support
learners finding remediation at scale.

5. Summary and Future Work

This paper describes a continuation of our effort to provide
students with diverse background the ability to enhance their
learning through a ‘/linked’ interface. We extend our previous
study [6] and provide more evidence to validate the benefit of
the proposed framework in learning. With the assurance of the
results, an automatic linking method based on HMM is further
investigated for our framework to scale well at MOOC setting.

Our results suggest that learners, especially novices, can
be more efficient in reviewing materials and capturing con-
cepts in a topic with the ‘/inked’ interface. Combined with our
previous findings in [6], these results provide evidence that the
proposed framework is beneficial in educational content navi-
gation. Thus, our framework can potentially help learners find
materials for remediating confusion or broadening their learn-
ing. We believe our linking framework is well suited to
MOOC, in which there is a high demand for providing multi-
ple alternatives of materials in order to accommodate the di-
verse background of learners. It is the novice learners who will
need the most help and who stand the most to benefit [11].

Furthermore, we observe that the proposed HMM method
outperforms the baseline in generating linking automatically.
Structure information and more discriminating features are
two key factors yielding the improvement. This encouraging
result suggests that linking can be achieved at scale with such
automatic methodology.

Future work for our research will follow several direc-
tions. First, we plan to refine our experimental procedure and
expand our repertoire of learning tasks. Similar experiments
will be conducted with various educational materi-
als/modalities (e.g., speech, text, and video) and on other
MOOC:s, to further validate our findings and investigate the
generalizability. Second, we will explore advanced features
(e.g., click-through information) and models to refine our au-
tomatic linking generation. We will strive to replace human
with a machine in linking, and help learners in MOOCs find
remediation at scale.
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