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Abstract 
Massive Open Online Courses (MOOCs) brings great oppor-
tunities to millions of learners. However, the size of the learn-
er population and the heterogeneity of the learners' back-
grounds make conventional one-size-fits-all pedagogy insuffi-
cient. For example, learners lacking in prior knowledge may 
struggle with different concepts. In this paper, we propose a 
framework - educational content linking, to address the chal-
lenges. By linking and organizing scattered educational mate-
rials for a given MOOC into an easily accessible structure, this 
framework can provide guidance and recommendation of these 
contents, as well as improve navigation. Thus, learners can 
select appropriate supporting materials to suit their individual-
ized needs and achieve self-exploring remediation. This paper 
describes an end-to-end case study, which found that learners, 
especially novices, can search learning materials faster without 
sacrificing accuracy, and can retain concepts more readily with 
our proposed approach. We have also obtained encouraging 
preliminary results that suggest that content linking can be 
achieved automatically using human language technology and 
stochastic modeling techniques. 

Index Terms: MOOCs, learning at scale, automatic educa-
tional resource organization, hidden Markov model 

1. Introduction  
Since 2011, the revolution called MOOC (Massive Open 
Online Courses) has taken the world by storm [1, 2]. Today, 
there are thousands of courses, from science and engineering 
to humanities and law, being offered on the Internet using sev-
eral platforms – Coursera, edX, etc. These platforms allow 
millions of learners around the world to take courses from top 
universities without the need for physical presence, thus poten-
tially achieving the democratization of knowledge dissemina-
tion. At the same time, the openness of these platforms has 
also created a set of challenges. For example, the sheer size of 
the learner body, and the heterogeneity of their background – 
e.g., demographics, course preparedness, learning goals, moti-
vation, etc., make it extremely difficult to meet everyone’s 
learning needs [3, 4, 5]. 

Today’s courseware on MOOC platforms typically con-
sists of a myriad of high-quality materials that vary in type 
(e.g., lecture, slides, textbooks, discussion forum, problem 
sets), course level (e.g., college preparatory courses, graduate 
level courses), and pedagogy (e.g., active learning, mastery 
learning). These materials can potentially provide remediation 
for learners’ heterogeneous needs. However, since these mate-
rials are conventionally made available to the students as dis-
joint entities, it is difficult to navigate them efficiently and find 
remediation. For example, a student interested in learning 
more about a specific topic described by the lecturer cannot 

easily look up relevant materials, such as from notes/slides to 
sections of the textbook, or from introductory materials to ad-
vanced ones, to broaden and reinforce his/her learning. 

To address the challenges, we propose a framework - edu-
cational content linking [6]. By linking and organizing scat-
tered educational materials for a given MOOC into an easily 
accessible structure, this framework can provide guidance and 
recommendation of these contents, as well as improving navi-
gation. Thus, learners can potentially tailor the learning pro-
cess to suit their background, and achieve self-exploring re-
mediation for their heterogeneous learning needs (i.e., find 
appropriate supporting materials for their learning needs in a 
self-regulated way). To be more specific, one can imagine the 
linked courseware as a tree, in which the trunk corresponds to 
the curriculum that reflects the organization of concepts from 
instructors/experts, and the branches correspond to learning 
segments about the same topic but from various learning 
sources. 

Fig. 1 below illustrates the two interfaces for navigating 
the course materials in our user studies (‘baseline’ vs. 
‘linked’). These interfaces have an identical search module but 
different strategies for presenting retrieved result. The left 
panel of Fig. 1 illustrates how the search results are displayed 
to the user in ’baseline’ condition, i.e., the conventional way 
of delivering materials where each type of courseware is 
shown monolithically. By clicking the icon, the corresponding 
content will appear in a call-out box independently. In con-
trast, the right panel of Fig. 1 illustrates the ’linked’ interface. 
It is powered by our content linking result, which is described 
in the following. In this case, materials that are linked can be 
accessed together with one click, for learners to peruse at will.  

 

Figure 1: An example of the ‘baseline’ and ‘linked’ in-
terface used in our experiments. 

This paper is organized as follows. First, we summarize 
the results of a pilot study [6] comparing the two interfaces on 
“information search” tasks. We then substantially expand the 
previous experiment with more tasks and subjects, and extend 
the study to include a “concept retention” scenario for more 
evidence supporting our framework. In all the users studies, 
experts accomplished linking manually. With the assurance of 
the results that our framework is beneficial, we investigate an 
automatic linking method based on hidden Markov models 
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(HMM) to meet the scale issue. Lastly, we end this paper with 
a brief summary.  

2. Pilot Study 
Before building a system that can automatically link various 
course materials, we must first validate our hypothesis that 
linking educational materials will lead to better learning for the 
students. This section will briefly summarize some of our pre-
viously published findings, which will help set the stage for 
our expanded experiments. 

2.1. The Course Material 

We have chosen to focus our investigation on materials around 
a single MOOC – Stat2.1x: Introduction to Statistics, offered 
by UC Berkeley on edX in 2013 [6, 7]. This course comes 
with three types of courseware common to many MOOCs – 
lecture videos, slides, and (electronic) textbook. There are 31 
lectures totaling 7 hours of video, and 157 pages of slides. The 
suggested textbook [8] contains 77 sections, providing inde-
pendent support to the lecture material. 

2.2. Methodology for Content Linking 

To create the ‘linked’ interface, we must first delineate con-
tents in each type of material into segments. These segments 
are subsequently organized into a proper curriculum. Finally, 
relevant topic segments from each type of material must then 
be linked, as shown in Fig. 1. 

Proper segmentation will result in vignettes that are large 
enough to be self-contained as a learning unit, yet small 
enough to enable learners to search/browse effectively across 
material types. We start by segmenting the textbook into sec-
tions, and slides into pages. Since there are no clear structural 
breaks in videos, we recruited two researchers with expertise 
in statistics to manually align the video transcription to the 
deck of slides from the same lecture. Thus, the videos are 
segmented into vignettes, where each vignette corresponds to 
one aligned page of slides. 

Then, these segments are organized into a proper curricu-
lum and linked. First, we concatenate the 31 lectures together, 
and take the sequence of slides as the shared curriculum. The 
aligned video vignettes are linked to the slides accordingly. 
For each page of slides, the same two researchers also label 
the most relevant section in the textbook, and link the segment 
to the slide page. If there is a disagreement, the two research-
ers have to discuss until consensus is reached. With these 
steps, we can obtain a shared curriculum, and link the separate 
materials around the curriculum. 

2.3. Pilot Experiment 

The goal of our pilot experiment [6] is to provide early indica-
tion of whether linked content would lead to better learning. 
However, learning is a combination of mental processes such 
as attention, memory, problem solving, thinking, etc., it may 
be too elusive to ascertain in one set of experiments. Similar to 
[10], we thus adopted a specific set of learning-relevant activi-
ties – educational content navigation, as a proxy for learning. 
In this pilot experiment, we measured the subjects’ perfor-
mance on the task of ‘information search’, in which a learner 
in our experiment is given a question, and asked to retrieve a 
learning segment (in videos, slides, or Textbook) that can be 
used to solve the given question. This scenario attempts to 

emulate a situation where a learner is trying to review educa-
tional content and searching for useful information for prob-
lem solving. 

For this pilot experiment, four questions (similar to the 
ones shown in Table 1) are sampled from the problem set in 
Stat2.1x, and 100 unique online workers on Amazon Mechan-
ical Turk (AMT) are recruited for each question, resulting in 
400 tasks. A total of 151 unique AMT workers participate in 
the experiment, instead of 400, since we allow a given worker 
to solve more than one task.  The workers differ in their back-
ground – education level, exposure to MOOC, and familiarity 
with statistics. Such diversity allows us to understand the use-
fulness of our proposed model to a heterogeneous learner 
body. We randomly assign a worker in each task with either of 
the two interfaces shown in Fig. 1, and we measure the work-
er’s performance in task completion time and the accuracy of 
the retrieved segment. By analyzing the difference in perfor-
mance using each interface, we investigate whether our model 
benefits learners in navigating across educational contents. 

Table 1. Example tasks posed to the AMT workers. 

Instructions – “select a learning segment (a textbook section, a vid-
eo chunk, or a page of slides) that helps you solve a given problem.” 

Task 1 What is the formal definition for Xth percentile, where X 
is a general, real number between 0 and 100? 

Task 2 Based on the given data, please plot a histogram of the 
distribution. 

Table 2. Learner performance on ‘information search’ tasks 
using ‘baseline’ or ‘linked’ interface. We measure the per-
formance by computing task completion time and accuracy. 

Learner  
background 

Time consumed Task accuracy 
Seconds P-value 

% of correct tasks 
(# tasks) P-value 

Baseline Linked Baseline Linked 
≥ Bachelor 306 284 0.16 52 (96) 65 (98) 0.03 
≤ Some college 322 257 < 0.01 66 (98) 55 (96) 0.94 
MOOCs 277 286 0.63 70 (40) 63 (34) 0.74 
No MOOCs 323 267 < 0.01 55 (154) 59 (160) 0.21 
Statistics 294 268 0.10 60 (120) 61 (120) 0.45 
No Statistics 346 276 0.01 57 (74) 58 (74) 0.44 
Overall 315 271 < 0.01 58 (194) 60 (194) 0.38 

2.4. The Results 

Table 2 summarizes the learner performance in these tasks. 
The average task completion time and accuracy along with the 
significance test results are shown. We highlight, in boldface, 
the result where the differences are significant at P=0.01 level. 

Focusing first on the last row of Table 2, we see that the 
overall performance suggests that the averaged search time 
using the linked interface is 14% less than using the baseline 
interface (cf. 315 vs. 271), and this improvement is statistically 
significant. In contrast, there is no significant difference in 
task accuracy for using the two interfaces. Looking over the 
top six rows of Table 2 for the individual results of the three 
demographic groups, we observe that the linked interface re-
duces search time in five of the six cases. The difference is 
statistically significant in two out of the three groups of novice 
learners (i.e., learners who are less educated and less experi-
enced with MOOC), with the last one barely missing it (i.e., 
learners who are less familiar with the subject materials). Sim-
ilarly, we compare the difference in the retrieval correctness, 
and no statistically significant degradation is observed. Thus, 



we conclude that, by having the educational content linked, we 
allow learners, especially novices, to find supporting learning 
segments more efficiently for solving problems, without sacri-
ficing the searching correctness. This fact shows that our 
framework can potentially benefit educational content naviga-
tion.  

Our results indicate that linking has little impact on task 
accuracy in most cases. This could be due to the fact that the 
difference between the two interfaces is about how the materi-
als are presented, rather than the information itself. Therefore, 
learners can always find the correct learning segments with 
sufficient time and persistence.  

3. New Experiments and Results 
While the results of the pilot study were tantalizing, we were 
concerned about several shortcomings.  We only measured one 
aspect of learning – the speed and accuracy of information 
search. As such, the number of tasks was relatively small. Al-
lowing some workers to perform more tasks than others may 
have skewed the results.  Therefore we expanded our experi-
ment substantially in several dimensions.  

3.1. Information Search Experiments 

In this paper, we expand the previous ‘information search’ ex-
periment and conduct user study on a larger scale. With more 
data, we expect to provide stronger evidence to show the bene-
fit of linking. We increase the number of questions from four 
to ten, and recruit 200 unique AMT workers for each of the 
questions for a total of 2,000 tasks. In Table 3, we show the 
number of tasks completed by subjects with various back-
grounds. In all, 497 distinct workers participate in the experi-
ment. The experimental protocols remain the same as before.  

Table 3. Number of tasks completed by each subject group. 

Learner background Number of tasks 
Baseline Linked 

≥ Bachelor 573 522 
≤ Some college 427 478 
MOOCs 295 249 
No MOOCs 705 751 
Statistics 714 704 
No Statistics 286 296 
Overall 1,000 1,000 

Table 4. Learner performance on the expanded ‘information 
search’ tasks using ‘baseline’ or ‘linked’ interface. 

Learner  
background 

Time consumed Task accuracy 
Seconds P-value % of correct tasks P-value Baseline Linked Baseline Linked 

≥ Bachelor 198 163 < 0.01 70.7 70.6 0.98 
≤ Some college 208 136 < 0.01 67.5 68.5 0.79 
MOOCs 166 139 0.06 72.0 70.6 0.76 
No MOOCs 225 154 < 0.01 68.2 68.9 0.80 
Statistics 166 147 0.05 71.1 70.5 0.81 
No Statistics 295 160 < 0.01 64.9 67.1 0.64 
Overall 206 152 < 0.01 69.2 69.5 0.89 

Learner performance on the expanded ‘information search’ 
experiment is shown in Table 4. The average amount of time 
workers spend on completing the tasks with the ‘baseline’ and 
‘linked’ interfaces is summarized in the first two columns of 
the table, respectively, and the significance test result of the 
time difference between the two interfaces is listed in the third 

column. Columns 4 and 5 tabulate the percentage of tasks 
where the retrieved segments are correct for the two interfaces, 
respectively.  Column 6 shows the significance test results. 

Compared to the previous results in Table 2, we observe in 
Table 4 a stronger evidence of the usefulness of linking.  The 
overall search time is reduced by 36% (cf. 206 vs. 152), and 
this trend holds for all sub-categories of workers.  The differ-
ence is statistically significant for five of the seven groups, 
including all three novice groups. As for task accuracy, the 
‘linked’ interface yields some improvement (ranging from 
+0.7% to +2.2%) in the three novice groups, and a smaller dif-
ference (ranging from -0.1% to -1.4%) in the experienced 
counterparts. Similar to the results in our previous study, none 
of the differences are statistically significant.  

Thus, we reach the same conclusion as before, except with 
greater confidence that learners can search desired information 
more efficiently without sacrificing the accuracy when learn-
ing materials are linked.  Since our experiments are conducted 
remotely, it is inevitable that studies based on crowdsourcing 
have to deal with outliers and spammers in the collected data. 
By increasing the scale of user study, we can mitigate the 
noise from spammers and achieve more reliable conclusions. 

3.2. Concept Retention Experiments 

With similar experimental setup [6], we also design another 
set of experiments – ‘concept retention,’ to explore whether 
the ’linked’ interface can benefit learning from a different as-
pect. In this scenario, we attempt to measure how efficiently a 
learner could peruse the materials to capture, memorize, and 
recall key concepts.  Specifically, each subject is first assigned 
a topic. Then, the subject has ten minutes to learn about the 
topic with either of the two interfaces shown in Fig. 1. After 
the learning session, he/she is asked to write a short essay to 
summarize what he/she learned about the topic. We then eval-
uate the learner performance in this scenario by counting the 
number of unique key concepts mentioned in the essay, where 
key concepts are extracted from the textbook glossary and de-
fined as the entries belonging to the corresponding topic.  

For this scenario, we also sample ten topics, and recruit 
200 unique AMT workers for each topic. Several examples are 
shown in Table 5. A total of 751 different AMT workers are 
recruited. 

Table 5. Example tasks for the ‘concept retention’ scenario 
and the task hint given to experimental subjects. 

Instruction – “learn the given topic based on the content you can 
find in the interface, and write an essay to summarize what you 

have learned and remembered about the topic” 
Topic 1 Regression Topic 2 Standard deviation 
Topic 3 Correlation Topic 4 Mean 

Table 6 summarizes learner performance on the ‘concept 
retention’ scenario. The first two columns of the table contain 
the average number of unique concepts in the subjects’ essay 
for the two interfaces, respectively, for each subject group. We 
also list the P-values in column 3, and the number of tasks for 
each group of subjects in columns 4 and 5. 

 



Table 6. Learner performance on ‘concept retention’ 
tasks using ‘baseline’ or ‘linked’ interface. 

Learner  
background 

# unique key concepts # tasks 
Baseline Linked P-value Baseline Linked 

≥ Bachelor 4.73 5.23 < 0.01 549 519 
≤ Some college 3.98 4.60 < 0.01 451 481 
MOOCs 4.83 5.14 0.27 205 287 
No MOOCs 4.27 4.77 < 0.01 795 713 
Statistics 4.71 5.11 0.02 594 597 
No Statistics 3.98 4.60 < 0.01 406 403 
Overall 4.39 4.91 < 0.01 1,000 1,000 

Focusing first on the last row of Table 6, we see that, 
overall, subjects are able to produce a greater number (~12%) 
of key concepts while using the ‘linked’ interface (cf. 4.39 vs. 
4.91), and the difference is statistically significant. Looking 
over the top six rows of Table 6, we observe that there is a 
similar trend to that in the ‘information search’ scenario, 
where the ‘linked‘ interface yields consistent improvement 
over each group of subjects, and the novice learners benefit 
more than their experienced counterparts. In four of the six 
cases (including all the three novice groups), the improvement 
passes the statistical significance test. These findings reveal 
another benefit of linking in navigating content and learning. 

From the results in the two sets of experiments, we notice 
that the ‘linked‘ interface yields better performance, especially 
for novice subjects. This fact is perhaps not surprising. Be-
cause of the shortcomings of these subjects - less education, 
less experience with MOOC, and less familiarity with the sub-
ject matter, they may lack a broad perspective to explore the 
various resources on their own. By organizing the learning 
materials in a ‘linked‘ interface, which is easy to visualize and 
manipulate, we can potentially enhance their ability to navi-
gate through the knowledge space more effectively, which 
could lead to improved knowledge acquisition. This is con-
sistent with previous study that shows “guidance” is particu-
larly crucial for learners who are likely to struggle [11]. 

In conclusion, with educational content linking, learners 
can find supporting learning segments faster with no degrada-
tion in searching accuracy. They can also review materials and 
capture concepts in a topic more efficiently. Furthermore, the 
improvement from linking is more significant in novices. This 
fact shows the potential of our linking framework in reducing 
the knowledge gap among the heterogeneous learners in 
MOOCs. We interpret these findings as evidence that the pro-
posed framework benefits learners in navigating content and 
exploring remediation. 

4. Automatic Linking Using HLT 
In this section, we investigate methods to link courseware au-
tomatically. Due to the heterogeneous learner body, students 
have various prior knowledge and learning needs (e.g., they 
can struggle for a myriad of different reasons and require vari-
ous remediation). We show linking can potentially help learn-
ers navigate course materials in the previous section. Howev-
er, it is cost-prohibitive and not scalable to manually link all 
available course contents for covering every possible learning 
need for remediation (e.g., link the tens of thousands of forum 
discussions). Thus, we propose a human language technology 
(HLT) based method to generate linking automatically and at 
scale. HLT is a major focus here, since human language is an 
integral part in education for knowledge transferring, and HLT 

has been proved successful in many applications of infor-
mation retrieval [12-17]. Thus, we believe methods based on 
HLT will be more generalizable to different courses, and more 
likely to provide high-quality automatic linking. 

4.1. Hidden Markov Model 

We employ HMM to link various types of course materials 
automatically. HMM is a special case of graphical model [18]. 
Conventional information retrieval methods in HLT, e.g., co-
sine similarity, infer the relation among a repository of docu-
ments based on lexical cues of the content [12]. As compared 
to that, a graphical model can additionally express the ontolo-
gy and global structure behind the repository. This characteris-
tic allows us to understand the curriculum and extract global 
information for more accurate linking prediction among learn-
ing materials. Thus, we adopt HMM to model the sequential 
structure of the curriculum. 

 
Figure 2: The graphical representation of HMM. 

Fig. 3 is an illustration of HMMs. First, we denote an or-
dered sequence of learning segments extracted from a type of 
course materials (e.g., a deck of slides) as D = {di}, where i = 
{1, 2, ..., |D|}. For this sequence, we assume there is a corre-
sponding sequence of hidden state variables, Z = {zi}, mapped 
to these segments. Given a list of hidden states, the value of 
variable zi is the list index of the hidden state generating di. A 
hidden state s can be interpreted as the red rectangle in the 
right panel of Fig. 1. If zi = s, we link di (can be interpreted as 
the video/textbook icons in the red rectangle) to the state. 
Therefore, to generate the linking automatically, all we need is 
to infer the values of the hidden variable sequence Z, based on 
the observation of segments D. 

We model the inference problem with maximization of the 
probability P(D, Z |π), where the parameter set π is learned 
from a training corpus. To expand the probability, we first no-
tice that, with the first-order Markov assumption made in 
HMM, each hidden variable zi depends only on the hidden var-
iable for its preceding segments di-1, and the observation of di 
is independent of other segments given zi. In addition, we rep-
resent each observed segment di with its word occurrence Wi = 
{wij}, where j = {1, 2, ..., |Wi|}, and wij is the word index of the 
jth word in di. With this representation, P(di |π, zi) can be ex-
pressed as 𝑃(𝑤!"|𝜋, 𝑧!)

|𝑾!|
!!! . Thus, we can rewrite the proba-

bility P(D, Z |π) to: 
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The two types of dependence, P(zi |π, zi-1) and P(wij |π, zi), 
are used to model the sequential structure of the curriculum, 
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and the lexical information in each hidden state variable (e.g., 
the word distribution) respectively. 

To solve the inference problem and predict linking with 
HMM, we first have to train the model to find the parameter 
setting, 𝜋, which maximizes the probability P(D, Z |π) over all 
possible settings π on the training corpus D. The EM algo-
rithm is adopted for estimating 𝜋. Then, we predict linking 
with the learned setting 𝜋. For a sequence of testing segments 
D', we find the value assignment 𝑍, which maximizes the 
probability P(D', Z| 𝜋) over Z. With 𝑍, we can link each seg-
ment di' to the hidden state according to the value 𝑧!, and thus 
to the corresponding part in the curriculum. 

4.2. Experimental Results and Findings 

We then evaluate our automatic linking generation method on 
Stat2.1x. Two linking tasks are studied - video-to-slide linking 
and video-to-textbook linking. In the video-to-slide task, we 
adopt the 157 pages of slides as the training set due to the clear 
structural breaks in slides, and select the seven-hour video 
transcription as the test set. Then, we define a hidden state as a 
page of slides. We train the HMM parameter setting with the 
lexical information (e.g., the word occurrence counts in each 
page of slides) and the material structure (e.g., P(zi = si |π, zi-1 
= si-1) = 1 if si and si-1 are adjacent pages of slides, otherwise 
the probability is 0) in the training set. With the learned pa-
rameter setting, we predict the hidden state for every sentence 
in the test set. Each sentence is then linked to the page of 
slides represented by the predicted states. As for the video-to-
textbook task, we conduct an experiment with similar design, 
except that we replace the slides with the 77 textbook sections 
as the training set and define a section as a hidden state. These 
tasks allow us to study our model performance when the mate-
rials to be linked are matched (i.e., video and slides) or mis-
matched (i.e., video and textbook). 

Table 7. The sentence accuracy (%) of the predicted 
linking from video transcription to slides or textbook. 

 Video-to-slide Linking Video-to-textbook Linking 
Models \ Features  Word frequency TFIDF Word frequency TFIDF 
Cosine similarity 73.3 75.5 19.1 25.7 
HMM 80.6 84.1 31.8 33.0 

We take the expert-labeled linking described in section 2.2 
as ground truth for evaluation, and compute two performance 
metrics for the two tasks respectively - the percentage of sen-
tences that are linked to the correct 1) page of slides, or 2) 
textbook section. Table 7 summarizes the results. As a refer-
ence, we also implement a baseline method – cosine similarity, 
in which we link each sentence to the page/section with the 
most similar bag-of-word representation measured by cosine 
similarity. 

In the video-to-slide tasks (first two columns), with the 
additional information from material structure, our method 
yields a 7.3% absolute linking accuracy improvement over the 
baseline method. After normalizing the times a word appears 
in a learning segment with the frequency of the word in the 
corpus (i.e., TF-IDF, or term frequency-inverse document fre-
quency), we obtain a feature that can better discriminate be-
tween function and topic words. The TF-IDF feature further 
improves the accuracy by 3.5%. As for the video-to-textbook 
tasks (last two columns), similar trends can be observed - our 
method yields a 12.7% improvement over the baseline with 

additional modeling of the structure information; by using a 
more discriminating feature (the TF-IDF), we further improve 
the performance by 1.2%. However, the accuracy here is sig-
nificantly lower than that of the video-to-slide task with com-
parable experimental settings.  

In summary, by modeling structure and lexical information 
simultaneously, our HMM-based method yields a significant 
improvement over the baseline in generating linking automati-
cally. The performance can be further improved with the TF-
IDF feature. We believe that, with refined models and fea-
tures, the proposed method is likely to achieve comparable 
performance to manual linking. Thus, this method is a promis-
ing solution to link MOOC contents automatically and support 
learners finding remediation at scale. 

5. Summary and Future Work 
This paper describes a continuation of our effort to provide 
students with diverse background the ability to enhance their 
learning through a ‘linked’ interface. We extend our previous 
study [6] and provide more evidence to validate the benefit of 
the proposed framework in learning. With the assurance of the 
results, an automatic linking method based on HMM is further 
investigated for our framework to scale well at MOOC setting. 

Our results suggest that learners, especially novices, can 
be more efficient in reviewing materials and capturing con-
cepts in a topic with the ‘linked’ interface. Combined with our 
previous findings in [6], these results provide evidence that the 
proposed framework is beneficial in educational content navi-
gation. Thus, our framework can potentially help learners find 
materials for remediating confusion or broadening their learn-
ing. We believe our linking framework is well suited to 
MOOC, in which there is a high demand for providing multi-
ple alternatives of materials in order to accommodate the di-
verse background of learners. It is the novice learners who will 
need the most help and who stand the most to benefit [11].  

Furthermore, we observe that the proposed HMM method 
outperforms the baseline in generating linking automatically. 
Structure information and more discriminating features are 
two key factors yielding the improvement. This encouraging 
result suggests that linking can be achieved at scale with such 
automatic methodology.  

Future work for our research will follow several direc-
tions. First, we plan to refine our experimental procedure and 
expand our repertoire of learning tasks. Similar experiments 
will be conducted with various educational materi-
als/modalities (e.g., speech, text, and video) and on other 
MOOCs, to further validate our findings and investigate the 
generalizability. Second, we will explore advanced features 
(e.g., click-through information) and models to refine our au-
tomatic linking generation. We will strive to replace human 
with a machine in linking, and help learners in MOOCs find 
remediation at scale. 
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