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Chapter 1

Introduction

This is the LaTeX “Blueprint” form of the analytic number theory exponent database (AN-
TEDB), which is an ongoing project to record (both in a human-readable and computer-
executable formats) the latest known bounds, conjectures, and other relationships concerning
several exponents of interest in analytic number theory. It can be viewed as an expansion of
the paper [279]. Currently, the database is recording information on the following exponents:

• Exponent pairs (𝑘, ℓ).
• The exponential sum function 𝛽(𝛼) dual to exponent pairs.

• The growth exponent 𝜇(𝜎) of the zeta function 𝜁(𝜎 + 𝑖𝑡).
• The moment exponents 𝑀(𝜎, 𝐴) of the zeta function.

• Large value exponents LV(𝜎, 𝜏) for Dirichlet polynomials ∑𝑛∈[𝑁,2𝑁] 𝑎𝑛𝑛−𝑖𝑡.

• Large value exponents LV𝜁(𝜎, 𝜏) of the zeta polynomials ∑𝑛∈𝐼 𝑛−𝑖𝑡.

• Large value additive energy exponents LV∗(𝜎, 𝜏), LV∗
𝜁(𝜎, 𝜏) for Dirichlet and zeta

polynomials.

• Zero density exponents A(𝜎) for the zeta function.

• Zero density additive energy exponents A∗(𝜎) for the zeta function.

• The regions ℰ, ℰ𝜁 of exponent tuples (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) recording possible large values,
large value additive energy, and double zeta sums for Dirichlet and zeta polynomials.

• Exponents 𝛼𝑘 for the Dirichlet divisor problem.

• The primitive Pythagorean triple exponent 𝜃Pythag.

• Exponents 𝜃PNT, 𝜃PNT−AA for the prime number theorem in all or almost all short
intervals.

• Exponents related to prime gaps, such as the maximal prime gap exponent 𝜃gap, the
prime gap second moment exponent 𝜃gap,2 as well as extremal results on small and
large prime gaps (including narrow prime k-tuples).
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• Results on the de Bruijn-Newman constant Λ.

• Error terms in the prime number theorem, and in the prime number theorem in arith-
metic progressions.

• Zero-free regions for the Riemann zeta function and L-functions.

• Brun-Titchmarsh type theorems and Linnik’s constant.

• Goldbach and Waring type problems.

• The Gauss circle problem and its generalizations.

By an exponent, we mean one or more real numbers, possibly depending on other exponent
parameters, that occur as an exponent in an analytic number theory estimate, for instance
as the exponent in some scale parameter 𝑇 that bounds some other quantity of interest.
(See also [63] for a recent discussion of a similar class of exponents.)
Possible future directions for expansion include

• Exponents for 𝐿-functions (in both 𝑞 and 𝑇 aspects).

• Zero density exponents for 𝐿-functions (this topic is currently claimed).

• More exponents relating to prime gaps.

• Exponents relating to sieve theory.

• Integration with the TME-EMT project.

• Log-free estimates, or estimates with explicit constants (this topic is currently claimed).

• Lean certification of some of the calculations in the database.

• Upper and lower bounds on gaps between zeroes of zeta or 𝐿-functions (assuming RH
if necessary), for instance incorporating results obtained via the Montgomery-Odlyzko
method.

• Character sum bounds (such as the Polya-Vinogradov and Burgess bounds) and the
least quadratic residue problem.

• Level of distribution of the primes and other multiplicative functions, possibly with
restrictions on the moduli.

• Error terms in the Titchmarsh divisor problem.

• The proportion of zeroes on the critical line, and estimates on mollifiers for the zeta
function.

• Vinogradov mean value type theorems.

The database aims to enumerate, as comprehensively as possible, all the various known or
conjectured facts about these exponents, including “trivial” or “obsolete” such facts. Of
particular interest are implications that allow new bounds on exponents to be established
from existing bounds on other exponents.
Each of the facts in the database can be supported with a reference, or one or more proofs,
or with executable code in Python; ideally one should have all three (and with a preference
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for proofs that rely as much as possible on other facts in the database). In the future we
could also expand this database to support as many of these facts as possible with formal
derivations in proof assistant languages such as Lean.
In order to facilitate the dependency tree of the python code, as well as to assist readers
who wish to derive the facts in this database from first principles, the blueprint is arranged
in linear order. Thus, the statement and proof of a proposition in the blueprint is only per-
mitted to use propositions and definitions that are located earlier in the blueprint, although
we do allow forward-referencing references in the remarks. As a consequence, the material
relating to a single topic will not necessarily be located in a single chapter, but could be
spread out over multiple chapters, depending on how much advanced material is needed to
state or prove the required results. Additionally, a single proposition may occur multiple
times in the blueprint, if it has multiple proofs with varying prerequisites. In the future, one
could hope to implement a search feature that will allow the reader to locate all propositions
of relevance to a given topic (e.g., all propositions whose statement involves the concept of
an exponent pair).
This is intended to be a living database, and we hope to gain community support for updating
it. As such, corrections, suggestions, and new contributions are very welcome, either via
email to one of us (Terence Tao, Timothy Trudgian, or Andrew Yang), or by a direct pull
request to the Github repository. Instructions for contributing can be found here.
A paper describing the ANTEDB, and the new bounds that were already obtained as a
result of compiling the database, can be found at [270].
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Chapter 2

Basic notation

We freely assume the axiom of choice in this blueprint.
Throughout this blueprint we adopt following notation. If 𝜃 is a real number, then we write

𝑒(𝜃) ∶= 𝑒2𝜋𝑖𝜃

where 𝑖 is the imaginary unit. The indicator function 1𝐼(𝑛) of a set 𝐼 is defined to equal 1
when 𝑛 ∈ 𝐼 , and 0 otherwise.
We adopt the convention that an empty supremum is −∞, and an empty infimum is +∞.
Thus, for instance, sup𝜎0≤𝜎≤𝜎1

𝑓(𝜎) would equal −∞ if 𝜎1 < 𝜎0. Related to this, we also
adopt the convention that 𝑁−∞ = 0 when 𝑁 > 1.
The cardinality of a finite set 𝑊 will be denoted |𝑊|.
A sequence 𝑎𝑛, 𝑛 ∈ 𝐼 of real or complex numbers indexed by some index set is said to be 1-
bounded if |𝑎𝑛| ≤ 1 for all 𝑛 ∈ 𝐼 . Similarly, a set 𝑊 of real numbers is said to be 1-separated
if |𝑡 − 𝑡′| ≥ 1 for all distinct 𝑡, 𝑡′ ∈ 𝑊 . One can define more general notions of 𝜆-bounded or
𝜆-separated for other 𝜆 > 0 in the obvious fashion.

2.1 Asymptotic (or “cheap nonstandard”) notation
It is convenient to use a “cheap nonstandard analysis” framework for asymptotic notation,
in the spirit of [269], as this will reduce the amount of “epsilon management” one has to do
in the arguments. This framework is inspired by nonstandard analysis, but we will avoid
explicitly using such nonstandard constructions as ultraproducts in the discussion below,
relying instead on the more familiar notion of sequential limits.
In this framework, we assume there is some ambient index parameter i, which ranges over
some ambient sequence of natural numbers going to infinity. All mathematical objects 𝑋
(numbers, sequences, sets, functions, etc.), will either be fixed - i.e., independent of i - or
variable - i.e., dependent on i. (These correspond to the notions of standard and non-
standard objects in nonstandard analysis.) Of course, fixed objects can be considered as
special cases of variable objects, in which the dependency is constant. By default, objects
should be understood to be variable if not explicitly declared to be fixed. For emphasis, we
shall sometimes write 𝑋 = 𝑋i to explicitly indicate that an object 𝑋 is variable; however,
to reduce clutter, we shall generally omit explicit mention of the parameter i in most of our
arguments. We will often reserve the right to refine the ambient sequence to a subsequence
as needed, usually in order to apply a compactness theorem such as the Bolzano–Weierstrass
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theorem; we refer to this process as “passing to a subsequence if necessary”. When we say
that a statement involving variable objects is true, we mean that it is true for all i in the
ambient sequence. For instance, a variable set 𝐸 of real numbers is a set 𝐸 = 𝐸i indexed by
the ambient parameter i, and by an element of such a set, we mean a variable real number
𝑥 = 𝑥i such that 𝑥i ∈ 𝐸i for all i in the ambient sequence.
We isolate some special types of variable numerical quantities 𝑋 = 𝑋i (which could be a
natural number, real number, or complex number):

• 𝑋 is bounded if there exists a fixed 𝐶 such that |𝑋| ≤ 𝐶. In this case we also write
𝑋 = 𝑂(1).

• 𝑋 is unbounded if |𝑋i| → ∞ as i → ∞; equivalently, for every fixed 𝐶, one has |𝑋| ≥ 𝐶
for i sufficiently large.

• 𝑋 is infinitesimal if |𝑋i| → 0 as i → ∞; equivalently, for every fixed 𝜀 > 0, one has
|𝑋| ≤ 𝜀 for i sufficiently large. In this case we also write 𝑋 = 𝑜(1).

Note that any quantity 𝑋 will be either bounded or unbounded, after passing to a subse-
quence if necessary; similarly, by the Bolzano–Weierstrass theorem, any bounded (variable)
quantity 𝑋 will be of the form 𝑋0 +𝑜(1) for some fixed 𝑋0, after passing to a subsequence if
necessary. Thus, for instance, if 𝑇 , 𝑁 > 1 are (variable) quantities with 𝑁 = 𝑇 𝑂(1) (or equiv-
alently, 𝑇 −𝐶 ≤ 𝑁 ≤ 𝑇 𝐶 for some fixed 𝐶), then, after passing to a subsequence if necessary,
we may write 𝑁 = 𝑇 𝛼+𝑜(1) for some fixed real number 𝛼. Note that any further passage
to subsequences do not alter these concepts; quantities that are bounded, unbounded, or
infinitesimal remain so under any additional restriction to subsequences.
We observe the underspill principle: if 𝑋, 𝑌 are (variable) real numbers, then the relation

𝑋 ≤ 𝑌 + 𝑜(1)

is equivalent to the relation
𝑋 ≤ 𝑌 + 𝜀 + 𝑜(1)

holding for all fixed 𝜀 > 0.
We can develop other standard asymptotic notation in the natural fashion: given two (vari-
able) quantities 𝑋, 𝑌 , we write 𝑋 = 𝑂(𝑌 ), 𝑋 ≪ 𝑌 , or 𝑌 ≫ 𝑋 if |𝑋| ≤ 𝐶𝑌 for some fixed 𝐶,
and 𝑋 = 𝑜(𝑌 ) if |𝑋| ≤ 𝑐𝑌 for some infinitesimal 𝑐. We also write 𝑋 ≍ 𝑌 for 𝑋 ≪ 𝑌 ≪ 𝑋.
A convenient property of this asymptotic formalism, analogous to the property of 𝜔-saturation
in nonstandard analysis, is that certain asymptotic bounds are automatically uniform in
variable parameters.

Proposition 2.1 (Automatic uniformity). Let 𝐸 = 𝐸i be a non-empty variable set, and let
𝑓 = 𝑓i ∶ 𝐸 → C be a variable function.

(i) Suppose that 𝑓(𝑥) = 𝑂(1) for all (variable) 𝑥 ∈ 𝐸. Then after passing to a subsequence
if necessary, the bound is uniform, that is to say, there exists a fixed 𝐶 such that
|𝑓(𝑥)| ≤ 𝐶 for all 𝑥 ∈ 𝐸.

(ii) Suppose that 𝑓(𝑥) = 𝑜(1) for all (variable) 𝑥 ∈ 𝐸. Then after passing to a subsequence
if necessary, the bound is uniform, that is to say, there exists an infinitesimal 𝑐 such
that |𝑓(𝑥)| ≤ 𝑐 for all 𝑥 ∈ 𝐸.

Proof. We begin with (i). Suppose that there is no uniform bound. Then for any fixed
natural number 𝑛, one can find arbitrarily large i𝑛 in the sequence and 𝑥i𝑛

∈ 𝐸i𝑛
such that
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|𝑓i𝑛
(𝑥i𝑛

)| ≥ 𝑛. Clearly one can arrange matters so that the sequence i𝑛 is increasing. If one
then restricts to this sequence and sets 𝑥 to be the variable element 𝑥i𝑛

of 𝐸, then 𝑓(𝑥) is
unbounded, a contradiction.
Now we prove (ii). We can assume for each fixed 𝑛 that there exists i𝑛 in the ambient
sequence such that |𝑓i(𝑥i)| ≤ 1/𝑛 for all i ≥ i𝑛 and 𝑥i ∈ 𝐸i, since if this were not the case
one can construct an 𝑥 = 𝑥i ∈ 𝐸 such that |𝑓i(𝑥i)| ≥ 1/𝑛 for i sufficiently large, contradicting
the hypothesis. Again, we may take the i𝑛 to be increasing. Restricting to this sequence,
and writing 𝑐i𝑛

∶= 1/𝑛, we see that 𝑐 = 𝑜(1) and |𝑓(𝑥)| ≤ 𝑐 for all 𝑥 ∈ 𝐸, as required.

Remark 2.2. It is important in Proposition 2.1 that the hypotheses in (i), (ii) are assumed
for all variable 𝑥 ∈ 𝐸, rather than merely all fixed 𝑥 ∈ 𝐸. For instance, let 𝐸 = R and
consider the variable function 𝑓i(𝑥) ∶= 𝑥/i. Then 𝑓(𝑥) = 𝑜(1) for any fixed 𝑥 ∈ 𝐸, but the
decay rate is not uniform, and we do not have 𝑓(𝑥) = 𝑜(1) for all variable 𝑥 ∈ 𝐸 (e.g.,
𝑥i ∶= i is a counterexample).

Remark 2.3. There are two caveats to keep in mind when using this asymptotic formalism.
Firstly, the law of the excluded middle is only valid after passing to subsequences. For
instance, it is possible for a nonstandard natural number to neither be even or odd, since
it could be even for some i and odd for others. However, one can pass to a subsequence in
which it becomes either even or odd. Secondly, one cannot combine the “external” concepts
of asymptotic notation with the “internal” framework of (variable) set theory. For instance,
one cannot view the collection of all bounded (variable) real numbers as a variable set, since
the notion of boundedness is not “pointwise” to each index i, but instead describes the “global”
behavior of this index set. Thus, for instance, set builder notation such as {𝑥 ∶ 𝑥 = 𝑂(1)}
should be avoided.
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Chapter 3

Basic Fourier estimates

Lemma 3.1 (𝐿2 integral estimate). Let 𝜉1, … , 𝜉𝑅 be real numbers that are 1/𝑁-separated.
Then for any interval 𝐼 of length 𝑇 , and any sequence 𝑎1, … , 𝑎𝑅 of complex numbers one
has

∫
𝐼

|
𝑅

∑
𝑟=1

𝑎𝑟𝑒(𝜉𝑟𝑡)|2 𝑑𝑡 = (𝑇 + 𝑂(𝑁))
𝑅

∑
𝑟=1

|𝑎𝑟|2.

Proof. We adapt the proof of [149, Theorem 9.1]. Without loss of generality we may nor-
malize ∑𝑅

𝑟=1 |𝑎𝑟|2 = 1. From the Plancherel identity we have

∫
R

|
𝑅

∑
𝑟=1

𝑎𝑟𝑒(𝜉𝑟𝑡)|2| ̂𝜓((𝑡 − 𝑡0)/𝑁)|2 𝑑𝑡 = 𝑁 (3.1)

whenever 𝑡0 ∈ R and 𝜓 is a smooth function supported on [−1/4, 1/4] of 𝐿2 norm 1. By
suitable choice of 𝜓, this implies that

∫
𝐽

|
𝑅

∑
𝑟=1

𝑎𝑟𝑒(𝜉𝑟𝑡)|2 𝑑𝑡 ≪ 𝑁 (3.2)

whenever 𝐽 is an interval of length 𝑁 . If one integrates (3.1) for all 𝑡0 ∈ 𝐼 , we see that

∫
𝐼

|
𝑅

∑
𝑟=1

𝑎𝑟𝑒(𝜉𝑟𝑡)|2 𝑑𝑡 = 𝑇 − ∫
R

|
𝑅

∑
𝑟=1

𝑎𝑟𝑒(𝜉𝑟𝑡)|2 (∫
𝐼

| ̂𝜓((𝑡 − 𝑡0)/𝑁)|2 𝑑𝑡0 − 1𝐼(𝑡)) 𝑑𝑡.

Since ̂𝜓 is rapidly decreasing and has 𝐿2 norm 1, one can compute

∫
𝐼

| ̂𝜓((𝑡 − 𝑡0)/𝑁)|2 𝑑𝑡0 − 1𝐼(𝑡) ≪ (1 + dist(𝑡, 𝜕𝐼)/𝑁)−10

and hence by (3.2) and the triangle inequality

∫
R

|
𝑅

∑
𝑟=1

𝑎𝑟𝑒(𝜉𝑟𝑡)|2 (∫
𝐼

| ̂𝜓((𝑡 − 𝑡0)/𝑁)|2 𝑑𝑡0 − 1𝐼(𝑡)) 𝑑𝑡 ≪ 𝑁

giving the claim.
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Chapter 4

Exponential sum growth
exponents

4.1 Phase functions
Definition 4.1 (Phase function). A phase function is a (variable) smooth function 𝐹 ∶ [1, 2] →
R. A phase function 𝐹 will be called a model phase function if there exists a fixed exponent
𝜎 > 0 with the property that

𝐹 (𝑝+1)(𝑢) − 𝑑𝑝

𝑑𝑢𝑝 𝑢−𝜎 = 𝑜(1) (4.1)

for all (variable) 𝑢 ∈ [1, 2] and all fixed 𝑝 ≥ 0, where 𝐹 (𝑝+1) denotes the (𝑝 + 1)st derivative
of 𝐹 .

For instance, 𝑢 ↦ log 𝑢 is a model phase function (with 𝜎 = 1), and for any fixed 𝜎 ≠ 1,
𝑢 ↦ 𝑢1−𝜎/(1 − 𝜎) is also a model phase function. Informally, a model phase function is a
function which asymptotically behaves like 𝑢 ↦ log 𝑢 (for 𝜎 = 1) or 𝑢 ↦ 𝑢1−𝜎/(1 − 𝜎) (for
𝜎 ≠ 1), up to constants. This turns out to be a good class for exponential sum estimates,
as it is stable under Weyl differencing and Legendre transforms, which show up in the van
der Corput A-process and B-process respectively.
Note from Proposition 2.1 that the 𝑜(1) decay rate in (4.1) can be made uniform, after
passing to a subsequence if necessary.

4.2 Exponential sum exponent
The main purpose of this chapter is to introduce and establish the basic properties of the
following exponent function.

Definition 4.2 (Exponent sum growth exponent). For any fixed 𝛼 ≥ 0, let 𝛽(𝛼) ∈ R denote
the least possible (fixed) exponent for which the following claim holds: whenever 𝑁, 𝑇 ≥ 1
are (variable) quantities with 𝑇 unbounded and 𝑁 = 𝑇 𝛼+𝑜(1), 𝐹 is a model phase function,
and 𝐼 ⊂ [𝑁, 2𝑁] is an interval, then

∑
𝑛∈𝐼

𝑒(𝑇 𝐹(𝑛/𝑁)) ≪ 𝑇 𝛽(𝛼)+𝑜(1).
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Implemented at bound_beta.py as:
Bound_beta

It is easy to see that the set of possible candidates for 𝛽(𝛼) is closed (thanks to under-
spill), non-empty, and bounded from below, so 𝛽 is well-defined as a (fixed) function from
[0, +∞) to R. Specializing to the logarithmic phase 𝐹(𝑢) = log 𝑢, and performing a complex
conjugation, we see in particular that

∑
𝑛∈𝐼

𝑛−𝑖𝑇 ≪ 𝑇 𝛽(𝛼)+𝑜(1) (4.2)

whenever 𝑇 is unbounded, 𝑁 = 𝑇 𝛼+𝑜(1), and 𝐼 is an interval in [𝑁, 2𝑁]. Thus it is clear
that knowledge of 𝛽 is of relevance to understanding the Riemann zeta function.
The quantity 𝛽(𝛼) can also be formulated without asymptotic notation, but at the cost of
introducing some “epsilon and delta” parameters:

Lemma 4.3 (Non-asymptotic definition of 𝛽). Let 𝛼 ≥ 0 and 𝛽 ∈ R be fixed. Then the
following are equivalent:

(i) 𝛽(𝛼) ≤ 𝛽.

(ii) For every (fixed) 𝜀 > 0 and 𝜎 > 0 there exists (fixed) 𝛿 > 0, 𝑃 ≥ 1, 𝐶 ≥ 1 with the
following property: if 𝑇 ≥ 𝐶, 𝑇 𝛼−𝛿 ≤ 𝑁 ≤ 𝑇 𝛼+𝛿 are (fixed) real numbers, 𝐼 ⊂ [𝑁, 2𝑁]
is a (fixed) interval, and 𝐹 is a (fixed) phase function such that

∣𝐹 (𝑝+1)(𝑢) − 𝑑𝑝

𝑑𝑢𝑝 𝑢−𝜎∣ ≤ 𝛿 (4.3)

for all (fixed) 0 ≤ 𝑝 ≤ 𝑃 and 𝑢 ∈ [1, 2], then

| ∑
𝑛∈𝐼

𝑒(𝑇 𝐹(𝑛/𝑁))| ≤ 𝐶𝑇 𝛽+𝜀.

Proof. It is easy to see that (ii) implies (i) by expanding out all the definitions (and using
Proposition 2.1 to resolve any uniformity issues). Conversely, suppose that (ii) fails. Care-
fully negating all the quantifiers, we conclude that there exists a fixed 𝜀, 𝜎 > 0 such that for
any (fixed) natural number i, one can find real numbers 𝑇 = 𝑇i ≥ i, 𝑇 𝛼−1/i ≤ 𝑁 = 𝑁i ≤
𝑇 𝛼+1/i, an interval 𝐼 = 𝐼i ⊂ [𝑁i, 2𝑁i], and a phase function 𝐹 = 𝐹i such that

|𝐹 (𝑝+1)
i (𝑢) − 𝑑𝑝

𝑑𝑢𝑝 𝑢−𝜎| ≤ 1/i

for all (fixed) 0 ≤ 𝑝 ≤ i and 𝑢 ∈ [1, 2], but that

| ∑
𝑛∈𝐼

𝑒(𝑇 𝐹(𝑛/𝑁))| ≥ i𝑇 𝛽+𝜀.

But then 𝐹 = 𝐹i is a model phase function which gives a counterexample to the claim
𝛽(𝛼) ≤ 𝛽.

We will however work with the asymptotic formulation of 𝛽 throughout this database, as it
makes the proofs somewhat cleaner.
We record the trivial bounds on 𝛽:
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Lemma 4.4 (Trivial bounds on 𝛽). For any fixed 𝛼 > 1, we have

𝛽(𝛼) = 𝛼 − 1.

For fixed 0 ≤ 𝛼 ≤ 1, we have 𝛼
2 ≤ 𝛽(𝛼) ≤ 𝛼.

In particular
𝛽(0) = 0. (4.4)

Implemented at bound_beta.py as:
trivial_beta_bound_1
trivial_beta_bound_2

Proof. Let 𝑇 > 1 be unbounded, 𝑁 = 𝑇 𝛼+𝑜(1), 𝐼 ⊂ [𝑁, 2𝑁] an interval, and 𝐹 a model
phase function.
For 𝛼 > 1, the Euler–Maclaurin formula (see e.g. [277, (2.1.2)]) gives

∣ ∑
𝑁≤𝑛≤2𝑁

𝑛𝑖𝑇 ∣ = ∣2
1+𝑖𝑇 − 1
1 + 𝑖𝑇 𝑁1+𝑖𝑇 + 𝑂(1)∣ ≍ 𝑁

𝑇 (4.5)

which gives the lower bound 𝛽(𝛼) ≥ 𝛼 − 1; applying the Euler–Maclaurin formula for model
phase functions 𝐹 then gives the matching upper bound.
The triangle inequality bound

∑
𝑛∈𝐼

𝑒(𝑇 𝐹(𝑛/𝑁)) ≪ 𝑁

gives the upper bound 𝛽(𝛼) ≤ 𝛼. Next, if 0 ≤ 𝛼 ≤ 1, then from Lemma 3.1 (and the
≫ 1/𝑁 -separated nature of the 𝐹(𝑛/𝑁) for model phase functions 𝐹 , after passing to a
subsequence if necessary) that

∫
𝑇 2𝑇

∣ ∑
𝑛∈[𝑁,2𝑁]

𝑒(𝑡𝐹(𝑛/𝑁))∣
2

𝑑𝑡 ≍ 𝑇 𝑁

for 𝑁 = 𝑐𝑇 𝛼 for 𝑐 a fixed small enough constant, which by the pigeonhole principle implies
that

∣ ∑
𝑛∈[𝑁,2𝑁]

𝑒(𝑡𝐹(𝑛/𝑁))∣
2

𝑑𝑡 ≫ 𝑁1/2 = 𝑇 𝛼/2

for at least one 𝑡 ≍ 𝑇 , giving the claim.

As we shall see, the exponent pair conjecture is equivalent to the lower bound here being
sharp, thus it is conjectured that

𝛽(𝛼) = {𝛼/2, 0 ≤ 𝛼 ≤ 1
𝛼 − 1, 𝛼 > 1 .

Note the discontinuity at 1. Despite this, we have:
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Lemma 4.5 (Upper semicontinuity). 𝛽 is an upper semicontinuous function.

Proof. Routine from the definition.

We record the classical bounds on 𝛽:

Lemma 4.6 (Van der Corput 𝐴 process for 𝛽). If 0 ≤ 𝛼 ≤ 2/3 and ℎ ≥ 0 then

2𝛽(𝛼) ≤ max (2𝛼 − ℎ, 2ℎ, 𝛼 − ℎ + sup
2𝛼−1≤ℎ′≤ℎ

((ℎ′ + 1 − 𝛼)𝛽 ( 𝛼
ℎ′ + 1 − 𝛼) + ℎ′)) .

Implemented at bound_beta.py as:
apply_van_der_corput_process_for_beta(bounds)

Proof. By definition, there exists an unbounded 𝑇 , 𝑁 = 𝑇 𝛼+𝑜(1), 𝐹 a model phase function,
and 𝐼 ⊂ [𝑁, 2𝑁] such that

∑
𝑛∈𝐼

𝑒(𝑇 𝐹(𝑛/𝑁)) = 𝑇 𝛽(𝛼)+𝑜(1).

Applying [144, (2.54)] with 𝐻 ∶= 𝑇 ℎ, as well as the ensuing computations to dispose of the
𝑗 ≪ 𝑇 /𝑁2 terms, one then has

𝑇 2𝛽(𝛼)+𝑜(1) ≪ 𝑁2𝐻−1 + 𝐻2 + 𝑁𝐻−1 ∑
𝑇 /𝑁2≪𝑗≪𝐻

| ∑
𝑛∈𝐼∩𝐼−𝑗

𝑒(𝑇 (𝐹((𝑛 + 𝑗)/𝑁) − 𝐹(𝑛/𝑁)))|

and hence by the pigeonhole principle

𝑇 2𝛽(𝛼)+𝑜(1) ≪ 𝑁2𝐻−1 + 𝐻2 + 𝑇 𝑜(1)𝑁𝐻−1 ∑
𝑗=𝑇 ℎ′+𝑜(1)

| ∑
𝑛∈𝐼∩𝐼−ℎ

𝑒(𝑇 (𝐹((𝑛 + 𝑗)/𝑁) − 𝐹(𝑛/𝑁)))|

for some 2𝛼 − 1 ≤ ℎ′ ≤ ℎ (one can delete this term if ℎ < 2𝛼 − 1). One can verify that
− 1

𝜎
𝑁
𝑗 (𝐹(𝑢 + 𝑗/𝑁) − 𝐹(𝑢)) is a model phase function. Thus, by Definition 4.2, one has

∑
𝑛∈𝐼∩𝐼−ℎ

𝑒(𝑇 (𝐹((𝑛 + 𝑗)/𝑁) − 𝐹(𝑛/𝑁))) ≪ (𝑇 1+ℎ′+𝑜(1)/𝑁)𝛽(𝛼/(ℎ′+1−𝛼))+𝑜(1),

and the claim follows after evaluating all terms as powers of 𝑇 .

Proposition 4.7 (Van der Corput inequality). For any natural number 𝑘 ≥ 2 and any
𝛼 > 0, one has

𝛽(𝛼) ≤ max (𝛼 + 1 − 𝑘𝛼
2𝑘 − 2 , (1 − 22−𝑘)𝛼 − 1 − 𝛼

2𝑘 − 2) .

Thus for instance when 𝑘 = 2 we have

𝛽(𝛼) ≤ max (1
2, 2𝛼 − 1

2 ) ,

so in particular
𝛽(1) = 1

2, (4.6)
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by Lemma 4.4, when 𝑘 = 3 one has

𝛽(𝛼) ≤ max (1 + 3𝛼
6 , 6𝛼 − 1

3 ) ,

and when 𝑘 = 4 one has

𝛽(𝛼) ≤ max (10𝛼 + 1
14 , 29𝛼 − 2

28 ) .

This form of upper bound of 𝛽(𝛼) - as the maximum of a finite number of linear functions
of 𝛼 - is extremely common in the literature.

Proof. Follows from [149, Theorem 8.20]. It is also possible to prove this by induction on 𝑘
using Lemma 4.6.

Corollary 4.8 (Optimizing the van der Corput inequality). For any 𝛼 > 0 one has

𝛽(𝛼) ≤ inf
𝑘∈N∶𝑘≥2

𝛼 + 1 − 𝑘𝛼
2𝑘 − 2 .

Thus for instance
𝛽(𝛼) ≤ min (1

2, 1 + 3𝛼
6 , 10𝛼 + 1

14 ) .

Proof. Let 𝛽𝑘(𝛼) = 𝛼 + (1 − 𝑘𝛼)/(2𝑘 − 2) and

𝛼𝑘 = 2𝑘

(𝑘 − 1)2𝑘 + 2.

Via a routine computation, 𝛽𝑘+1(𝛼) ≤ 𝛽𝑘(𝛼) for 𝛼 ≥ 𝛼𝑘 and any 𝑘 ≥ 2. Thus, to verify
that 𝛽(𝛼) ≤ 𝛽𝑘(𝛼) for 0 ≤ 𝛼 ≤ 1/2, it suffices to just show that the same result holds for
0 ≤ 𝛼 ≤ 𝛼𝑘. However, for 0 ≤ 𝛼 ≤ 𝛼𝑘 and 𝑘 ≥ 2, we have

0 ≤ 𝛼 ≤ 𝛼𝑘 ≤ 2𝑘+1

(𝑘 − 3)2𝑘 + 8
which rearranges to give

𝛼 + 1 − 𝑘𝛼
2𝑘 − 2 ≥ (1 − 22−𝑘)𝛼 − 1 − 𝛼

2𝑘 − 2, (0 ≤ 𝛼 ≤ 𝛼𝑘, 𝑘 ≥ 2)

which completes the proof in view of Proposition 4.7. See Figure 4.1.

We can remove the role of 𝐼 in the definition of 𝛽:

Lemma 4.9. In Definition 4.2, one can take the interval 𝐼 to be [𝑁, 2𝑁].
Proof. Suppose that 𝛼, 𝛽 are fixed quantities such that the bounds in Definition 4.2 hold
just for 𝐼 = [𝑁, 2𝑁], thus whenever 𝑇 > 1 is unbounded, 𝑁 = 𝑇 𝛼+𝑜(1), and 𝐹 is a model
phase function one has

∑
𝑁≤𝑛≤2𝑁

𝑒(𝑇 𝐹(𝑛/𝑁)) ≪ 𝑇 𝛽+𝑜(1). (4.7)

Our task is then to show that

∑
𝑛∈𝐼

𝑒(𝑇 𝑓𝐹(𝑛/𝑁)) ≪ 𝑇 𝛽+𝑜(1)
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Figure 4.1: The bounds in Proposition 4.7 for 𝑘 = 2, 3, 4, 5, compared against the optimized
bound in Corollary 4.8.

under the same hypotheses. Similarly with 𝛼 = 1 we can use the proof of Lemma 4.7 to
obtain 𝛽 ≥ 1/2, and we are again done. Thus we may assume that 𝛼 < 1.
For 𝑛 ∈ [𝑁, 2𝑁], the constraint 𝑛 ∈ 𝐼 is equivalent to restricting 𝐹(𝑛/𝑁) to an interval 𝐽 of
length 𝑂(1), which we can also smooth out by 𝑂(1/𝑁) without affecting the sum. Applying
a Fourier expansion and the triangle inequality, we can thus bound the left-hand side by

≪ 𝑇 𝑜(1) + ∫
𝑁1+𝑜(1)

−𝑁1+𝑜(1)
∣ ∑
𝑛∈[𝑁,2𝑁]

𝑒(𝑇 𝐹(𝑛/𝑁) − 𝑡𝐹(𝑛/𝑁))∣ 𝑑𝑡
1 + |𝑡| .

Since 𝛼 > 1, we have |𝑡 − 𝑇 | ≤ 𝑇 /2 for all 𝑡 in the integral if 𝑇 is large enough. From
hypothesis (4.7) (with 𝑇 replaced by 𝑇 − 𝑡)we have

∣ ∑
𝑛∈[𝑁,2𝑁]

𝑒(𝑇 𝐹(𝑛/𝑁) − 𝑡𝐹(𝑛/𝑁))∣ ≪ 𝑇 𝛽+𝑜(1)

for all such 𝑡, and the claim follows. See also Sargos [258, p 310].

Lemma 4.10 (Reflection). For any 0 < 𝛼 < 1, we have 𝛽(𝛼) − 𝛼
2 = 𝛽(1 − 𝛼) − 1−𝛼

2 , or
equivalently 𝛽(1 − 𝛼) = 1

2 − 𝛼 + 𝛽(𝛼).
TODO: implement this in python

Proof. This is the van der Corput 𝐵-process. See e.g., [129, p 370].

4.3 Known bounds on 𝛽
We remark that this corollary also follows from Proposition 5.10.

Theorem 4.11 (1989 Watt bound). For any 3/7 ≤ 𝛼 ≤ 1/2, one has

𝛽(𝛼) ≤ 89
560 + 1

2𝛼.

Recorded in literature.py as:
add_beta_bound_watt_1989()
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Figure 4.2: The bound in Corollary 4.8, compared against the trivial upper and lower bounds
in Lemma 4.4.

Proof. See [293, Theorem 5].

Theorem 4.12 (1991 Huxley–Kolesnik bound). For any 2/5 ≤ 𝛼 ≤ 1/2 one has

𝛽(𝛼) ≤ max (1 + 8𝛼
22 , 11 + 112𝛼

158 , 1 + 17𝛼
22 ) .

Recorded in literature.py as:
add_beta_bound_huxley_kolesnik_1991()

Proof. See [132, Theorem 3]. Note that the paper contains an error, however this result was
reinstated with the corrections given in [133].

Theorem 4.13 (1993 Huxley bound). For any 0 ≤ 𝛼 ≤ 49/114, one has

𝛽(𝛼) ≤ max (13
60 + 7

20𝛼, 11
120 + 13

20𝛼) .

Furthermore, for any 49/114 ≤ 𝛼 ≤ 1/2, one has

𝛽(𝛼) ≤ 89
570 + 1

2𝛼.

Recorded in literature.py as:
add_beta_bound_huxley_1993()

Proof. See [128, Theorem 1].
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Theorem 4.14 (Second 1993 Huxley bound). If 0 ≤ 𝛼 ≤ 1, then 𝛽(𝛼) is bounded by

1
146(13 + 94𝛼) for 𝛼 ≤ 87

275
1

244(11 + 191𝛼) for 87
275 ≤ 𝛼 ≤ 423

1295
1

1282(89 + 908𝛼) for 423
1295 ≤ 𝛼 ≤ 227

601
1

280(29 + 173𝛼) for 227
601 ≤ 𝛼 ≤ 12

31
1

128(4 + 103𝛼) for 12
31 ≤ 𝛼 ≤ 1.

Recorded in literature.py as:
add_beta_bound_huxley_1993_3()

Proof. See [128, Theorem 3].

Theorem 4.15 (1995 Sargos bound). [258, Théorème 2.4, Lemme 2.6] For any 0 ≤ 𝛼 ≤ 1,
one has

𝛽(𝛼) ≤ max (𝛼 + 3(1 − 4𝛼)
40 , 7

8𝛼, 1
3𝛼 − 1 − 4𝛼

6 , 0)

and
𝛽(𝛼) ≤ max (𝛼 + 1 − 4𝛼

14 , 5
6𝛼, 1

3𝛼 − 1 − 4𝛼
6 , 0) .

Recorded in literature.py as:
add_beta_bound_sargos_1995()

Theorem 4.16 (1996 Huxley table). One can bound 𝛽(𝛼) by 𝛽0(𝛼) for 𝑋 ≤ 𝛼 ≤ 𝑌 for
𝛽0, 𝑋, 𝑌 given by Tables 4.3, 4.3.

Recorded in literature.py as:
add_beta_bound_huxley_1996()

add_beta_bound_huxley_1996_2()

Proof. See [129, Table 17.1, Table 19.2] (and also [279, §3.0.2, 3.0.3] for some verification of
the technical conditions on the phase).

Theorem 4.17 (2001 Huxley–Kolesnik bound). For any 2/5 ≤ 𝛼 ≤ 1/2 one has

𝛽(𝛼) ≤ max ( 7
80 + 79

120𝛼, 3
32 + 103

160𝛼, 9
40 + 13

40𝛼) .

Recorded in literature.py as:
add_beta_bound_huxley_kolesnik_2001()

Proof. See [134, Theorem 1].
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Table 4.1: Huxley table 17.1.
𝛽0(𝛼) 𝑋 𝑌
4+39𝛼

60
7

12
517
873 = 0.5922 …

29+42𝛼
120

65
114

7
12 = 0.5833 …

89+285𝛼
570

49
114

65
114 = 0.5701 …

11+78𝛼
120

5
12

49
114 = 0.4298 …

13+21𝛼
60

356
873

5
12 = 0.4166 …

4+103𝛼
128

12
31

356
873 = 0.4546 …

29+173𝛼
280

227
601

12
31 = 0.3870 …

89+908𝛼
1282

423
1295

227
601 = 0.3777 …

11+191𝛼
244

87
275

423
1295 = 0.3266 …

13+94𝛼
146

1424
4747

87
275 = 0.3163 …

4+235𝛼
264

120
419

1424
4747 = 0.2999 …

49+1351𝛼
1614

967
3428

120
419 = 0.2863 …

29+464𝛼
600

199
716

967
3428 = 0.2820 …

89+2243𝛼
2706

19
74

199
716 = 0.2779 …

11+428𝛼
492

161
646

19
74 = 0.2567 …

13+253𝛼
318

2848
12173 = 0.2339 … 161

646 = 0.2492 …

Theorem 4.18 (2002 Robert–Sargos bound). For any 𝛼 > 0 one has

𝛽(𝛼) ≤ max (𝛼 + 1 − 4𝛼
13 , −7(1 − 4𝛼)

13 ) .

Recorded in literature.py as:
add_beta_bound_robert_sargos_2002()

Proof. See [254, Theorem 1].

Theorem 4.19 (Sargos 2003 bound). For any 𝛼 > 0 one has

𝛽(𝛼) ≤ max (𝛼 + 1 − 8𝛼
204 , −95(1 − 8𝛼)

204 )

and
𝛽(𝛼) ≤ max (𝛼 + 7(1 − 9𝛼)

2640 , −1001(1 − 9𝛼)
2640 ) .

Recorded in literature.py as:
add_beta_bound_sargos_2003()

Proof. See [259, Theorems 3, 4].

Theorem 4.20 (Huxley bound). For any 1/3 ≤ 𝛼 ≤ 1/2, one has

𝛽(𝛼) ≤ max (37 + 59𝛼
170 , 63 + 449𝛼

690 ) .
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Table 4.2: Huxley table 19.2.
𝛽0(𝛼) 𝑋 𝑌

89+285𝛼
570

106822
246639

139817
246639 = 0.5668 …

2387+17972𝛼
27290

675
1574

106822
246639 = 0.4331 …

2819+19177𝛼
29855

699371
1647930

675
1574 = 0.4288 …

11897+88442𝛼
134680

156527
370694

699371
1647930 = 0.4243 …

113+897𝛼
1345

263
638

156527
370694 = 0.4222 …

491+3624𝛼
5530

143
349

263
638 = 0.4122 …

569+1053𝛼
2800

307
761

143
349 = 0.4097 …

1273+2484𝛼
6410

68682
171139

307
761 = 0.4034 …

4+103𝛼
128

12
31

68682
171139 = 0.4013 …

29+173𝛼
280

227
601 = 0.3777 … 12

31 = 0.3870 …

Recorded in literature.py as:
add_beta_bound_huxley_2005()

Proof. See [131, Proposition 1, Theorem 1].

Theorem 4.21 (2016 Robert bound). For any 0 < 𝛼 ≤ 3/7 one has

𝛽(𝛼) ≤ max (𝛼 + 1 − 4𝛼
12 , 11

12𝛼) .

Recorded in literature.py as:
add_beta_bound_robert_2016()

Proof. See [251, Theorem 1].

Theorem 4.22 (Second 2016 Robert bound). If 𝑘 ≥ 4 and 𝛼 ≥ −(1 − 𝑘𝛼) 𝑘−1
2𝑘−3 then

𝛽(𝛼) ≤ 𝛼 + max( 1 − 𝑘𝛼
2(𝑘 − 1)(𝑘 − 2) , − 1

2(𝑘 − 1)(𝑘 − 2)).

Recorded in literature.py as:
add_beta_bound_robert_2016_2(Constants.BETA_TRUNCATION)

Proof. See [252, Theorem 10].

Theorem 4.23 (2017 Heath-Brown bound). For any 𝛼 > 0 and any natural number 𝑘 ≥ 3
one has

𝛽(𝛼) ≤ 𝛼 + max ( 1 − 𝑘𝛼
𝑘(𝑘 − 1) , − 𝛼

𝑘(𝑘 − 1) , − 2𝛼
𝑘(𝑘 − 1) − 2(1 − 𝑘𝛼)

𝑘2(𝑘 − 1) ) .

Recorded in literature.py as:
add_beta_bound_heath_brown_2017(Constants.BETA_TRUNCATION)

17

https://github.com/teorth/expdb/blob/main/blueprint/src/python/literature.py
https://github.com/teorth/expdb/blob/main/blueprint/src/python/literature.py
https://github.com/teorth/expdb/blob/main/blueprint/src/python/literature.py
https://github.com/teorth/expdb/blob/main/blueprint/src/python/literature.py


Figure 4.3: The bounds in Proposition 4.7, compared against the best-known bound on
𝛽(𝛼).

Proof. See [113, Theorem 1].

Theorem 4.24 (2017 Bourgain bound). One has

𝛽(𝛼) ≤

⎧{{{{
⎨{{{{⎩

2
9 + 1

3𝛼, 1
3 < 𝛼 ≤ 5

12,

1
12 + 2

3𝛼, 5
12 < 𝛼 ≤ 3

7 ,

13
84 + 1

2𝛼, 3
7 < 𝛼 ≤ 1

2.

Recorded in literature.py as:
add_beta_bound_bourgain_2017()

Proof. See [23, Equation (3.18)].

Theorem 4.25 (2020 Heath-Brown bound). [58, Theorem 11.2] If 𝛼 is fixed with 1 ≤
4𝛼 − 1 ≤ 2 (i.e., 1/2 ≤ 𝛼 ≤ 3/4), then

𝛽(𝛼) ≤ max (𝛼 (1 − 4𝛼 − 1
4(4𝛼 − 1) + 8) , 8

9𝛼) .

TODO: implement this in python

Theorem 4.26 (Combined bound). For 𝑋 ≤ 𝛼 ≤ 𝑌 , one has 𝛽(𝛼) ≤ 𝛽0(𝛼), where 𝛽0, 𝑋, 𝑌
are given by Table 4.3.

Proof. See [279, Table 3].

Recorded in literature.py as:
add_beta_bound_trudgian_yang_2024()
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Table 4.3: Bounds on 𝛽(𝛼) of the form 𝛽(𝛼) ≤ 𝛽0(𝛼), (𝑋 ≤ 𝛼 ≤ 𝑌 )
𝛽0(𝛼) 𝑋 𝑌 Reference

13
414 + 346

414 𝛼 0 2848
12173 = 0.2339 … Exponent pair 𝐴2( 13

84 , 55
84 )

13
318 + 253

318 𝛼 2848
12173

161
646 = 0.2492 … Theorem 4.16

11
492 + 107

123 𝛼 161
646

19
74 = 0.2567 … Theorem 4.16

89
2706 + 2243

2706 𝛼 19
74

199
716 = 0.2779 … Theorem 4.16

29
600 + 58

75 𝛼 199
716

967
3428 = 0.2820 … Theorem 4.16

49
1614 + 1351

1614 𝛼 967
3428

120
419 = 0.2863 … Theorem 4.16

1
66 + 235

264 𝛼 120
419

1328
4447 = 0.2986 … Theorem 4.16

13
194 + 139

194 𝛼 1328
4447

104
343 = 0.3032 … Exponent pair 𝐴( 13

84 , 55
84 )

13
146 + 47

73 𝛼 104
343

87
275 = 0.3163 … Theorem 4.16

11
244 + 191

244 𝛼 87
275

423
1295 = 0.3266 … Theorem 4.16

89
1282 + 454

641 𝛼 423
1295

227
601 = 0.3777 … Theorem 4.16

29
280 + 173

280 𝛼 227
601

12
31 = 0.3870 … Theorem 4.16

1
32 + 103

128 𝛼 12
31

1508
3825 = 0.3942 … Theorem 4.16

18
199 + 521

796 𝛼 1508
3825

62831
155153 = 0.4049 … Exponent pair 𝐷( 13

84 , 55
84 )

569
2800 + 1053

2800 𝛼 62831
155153

143
349 = 0.4097 … Theorem 4.16

491
5530 + 1812

2765 𝛼 143
349

263
638 = 0.4122 … Theorem 4.16

113
1345 + 897

1345 𝛼 263
638

1673
4038 = 0.4143 … Theorem 4.16

2
9 + 1

3 𝛼 1673
4038

5
12 = 0.4166 … Theorem 4.24

1
12 + 2

3 𝛼 5
12

3
7 = 0.4285 … Theorem 4.24

13
84 + 1

2 𝛼 3
7

1
2 Theorem 4.24
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Chapter 5

Exponent pairs

Definition 5.1 (Exponent pair). An exponent pair is a (fixed) element (𝑘, ℓ) of the triangle

{(𝑘, ℓ) ∈ R2 ∶ 0 ≤ 𝑘 ≤ 1/2 ≤ ℓ ≤ 1, 𝑘 + ℓ ≤ 1} (5.1)

with the following property: for all model phase functions 𝐹 , all 𝑇 ≥ 𝑁 ≥ 1, and all intervals
𝐼 ⊂ [𝑁, 2𝑁], one has

∑
𝑛∈𝐼

𝑒(𝑇 𝐹(𝑛/𝑁)) ≪ (𝑇 /𝑁)𝑘+𝑜(1)𝑁 ℓ+𝑜(1) (5.2)

whenever 𝑇 ≥ 𝑁 ≥ 1, 𝐼 is an interval in [𝑁, 2𝑁], and 𝐹 ∈ 𝒰.

Implemented at exponent_pair.py as:
Exp_pair

One can formulate the notion of an exponent pair without recourse to asymptotic notation:

Lemma 5.2 (Non-asymptotic definition of exponent pair). Let (𝑘, ℓ) be a fixed element of
(5.1). Then the following are equivalent:

(i) (𝑘, ℓ) is an exponent pair.

(ii) For every (fixed) 𝜀 > 0 there exist (fixed) 𝐶, 𝑃 > 0 such that, whenever 𝑇 ≥ 𝑁 ≥ 1,
𝐼 ⊂ [𝑁, 2𝑁], and 𝐹 is a phase function obeying (4.3) for all (fixed) 0 ≤ 𝑝 ≤ 𝑃 and
𝑢 ∈ [1, 2], then

| ∑
𝑛∈𝐼

𝑒(𝑇 𝐹(𝑛/𝑁))| ≤ 𝐶(𝑇 /𝑁)𝑘+𝜀𝑁 ℓ+𝜀.

The proof of this lemma is similar to that of Lemma 4.3 and is omitted.
Exponent pairs are closely related to the function 𝛽 from the previous chapter:

Lemma 5.3 (Duality between exponent pairs and 𝛽). Let (𝑘, ℓ) be in the triangle (5.1).
Then the following are equivalent:

(i) (𝑘, ℓ) is an exponent pair.

(ii) 𝛽(𝛼) ≤ 𝑘 + (ℓ − 𝑘)𝛼 for all 0 ≤ 𝛼 ≤ 1.
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Implemented at exponent_pair.py as:
exponent_pairs_to_beta_bounds()
beta_bounds_to_exponent_pairs()

Thus exponent pairs are dual to the convex hull of the graph of 𝛽. But 𝛽 is not known to be
convex, so one could have bounds on 𝛽 that do not directly correspond to exponent pairs.
We remark that in the case ℓ − 𝑘 ≥ 1/2, one only needs to check the case 0 ≤ 𝛼 ≤ 1/2 in
(ii) above, since the remaining regime 1/2 ≤ 𝛼 ≤ 1 then follows from Lemma 4.10 and some
algebra. Conversely, if ℓ − 𝑘 ≤ 1/2, one only needs to check the region 1/2 ≤ 𝛼 ≤ 1.

Proof. If (i) holds, then for any 0 < 𝛼 < 1, any unbounded 𝑇 ≥ 1, any 𝑁 = 𝑇 𝛼+𝑜(1), interval
𝐼 ⊂ [𝑁, 2𝑁], and model phase function 𝐹 , we have from (i) that

∑
𝑛∈𝐼

𝑒(𝑇 𝐹(𝑛/𝑁)) ≪ (𝑇 /𝑁)𝑘+𝑜(1)𝑁 ℓ+𝑜(1) = 𝑇 𝑘+(ℓ−𝑘)𝛼+𝑜(1).

From Definition 4.2 we conclude that 𝛽(𝛼) ≤ 𝑘 + (ℓ − 𝑘)𝛼. Also since (𝑘, ℓ) lies in (5.1), we
see from (4.4), (4.6) that we also have 𝛽(𝛼) ≤ 𝑘 + (ℓ − 𝑘)𝛼 for 𝛼 = 0, 1.
Now suppose that (ii) holds. Let 𝐹, 𝑇 , 𝑁, 𝐼 be as in Definition 5.1. By underspill it suffices
to show that

∑
𝑛∈𝐼

𝑒(𝑇 𝐹(𝑛/𝑁)) ≪ (𝑇 /𝑁)𝑘+𝜀+𝑜(1)𝑁 ℓ+𝜀+𝑜(1)

for any fixed 𝜀 > 0. We may assume that 𝑇 ≤ 𝑁1/𝜀+1, since the claim follows from the trivial
bound ∑𝑛∈𝐼 𝑒(𝑇 𝐹(𝑛/𝑁)) ≪ 𝑁 otherwise. We may also assume that 𝑁 is unbounded, since
the claim is clear for 𝑁 bounded; this forces 𝑇 to be unbounded as well.
By passing to a subsequence we may assume that 𝑁 = 𝑇 𝛼+𝑜(1) for some fixed 0 ≤ 𝛼 ≤ 1.
By Definition 4.2 we then have

∑
𝑛∈𝐼

𝑒(𝑇 𝐹(𝑛/𝑁)) ≪ 𝑇 𝛽(𝛼)+𝑜(1)

and hence by (ii)
∑
𝑛∈𝐼

𝑒(𝑇 𝐹(𝑛/𝑁)) ≪ (𝑇 /𝑁)𝑘+𝑜(1)𝑁 ℓ+𝑜(1)

giving the claim.

Corollary 5.4 (Exponent pairs closed and convex). The set of exponent pairs is closed and
convex.

Proof. Immediate from Lemma 5.3.

Proposition 5.5 (Trivial exponent pairs). (0, 1) and (1/2, 1/2) are exponent pairs.

Implemented at exponent_pair.py as:
trivial_exp_pair

Proof. Immediate from Lemma 5.3 and Lemma 4.4.

Conjecture 5.6 (Exponent pairs conjecture). (0, 1/2) is an exponent pair. (Equivalently,
by Corollary 5.4 and Proposition 5.5, every point in the triangle (5.1) is an exponent pair.)
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Implemented at exponent_pair.py as:
exponent_pair_conjecture

Lemma 5.7. The exponent pair conjecture is equivalent to 𝛽(𝛼) = 𝛼/2 holding true for all
0 ≤ 𝛼 ≤ 1.

Proof. Clear from Lemma 5.3 and Lemma 4.4.

Proposition 5.8 (Van der Corput 𝐴-process). If (𝑘, ℓ) is an exponent pair, then so is

𝐴(𝑘, ℓ) ∶= ( 𝑘
2𝑘 + 2, ℓ

2𝑘 + 2 + 1
2) .

Recorded in literature.py as:
A_transform_hypothesis

Proof. See [144, Lemma 2.8]. It can also be deduced from Lemma 4.6 and Lemma 5.3.

Proposition 5.9 (Van der Corput 𝐵-process). If (𝑘, ℓ) is an exponent pair, then so is

𝐵(𝑘, ℓ) ∶= (ℓ − 1
2, 𝑘 + 1

2) .

Recorded in literature.py as:
B_transform_hypothesis

Proof. See [144, Lemma 2.9]. Alternatively, this can be derived from Lemma 4.10 and
Lemma 5.3.

5.1 Known exponent pairs
Proposition 5.10 (Classical van der Corput exponent pairs). For any natural number
𝑘 ≥ 2,

𝐴𝑘−2𝐵(0, 1) = ( 1
2𝑘 − 2, 1 − 𝑘 − 1

2𝑘 − 2)

is an exponent pair. In particular,

(1
2, 1

2) , (1
6 , 2

3) , ( 1
14 , 11

14)

are exponent pairs.

Proof. Follows by induction from Proposition 5.8 and Proposition 5.5; alternatively, follows
from (and is equivalent to) Corollary 4.8 and Lemma 5.3.

Derived in derived.py as:
van_der_corput_pair()
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Corollary 5.11 (Additional exponent pairs). The pairs

(13
31 , 16

31) , ( 4
11 , 6

11) , (2
7 , 4

7) , ( 5
24 , 15

24) , ( 4
18 , 11

18)

are all exponent pairs.

Derived in derived.py as:
best_proof_of_exponent_pair(frac(13, 31), frac(16, 31))
best_proof_of_exponent_pair(frac(4, 11), frac(6, 11))
best_proof_of_exponent_pair(frac(2, 7), frac(4, 7))
best_proof_of_exponent_pair(frac(5, 24), frac(15, 24))
best_proof_of_exponent_pair(frac(4, 18), frac(11, 18))

Proof. We have (2/7, 4/7) = 𝐵𝐴(1/6, 2/3), (4/18, 11/18) = 𝐵𝐴𝐵𝐴(1/6, 2/3), and (13/31, 16/31) =
𝐵𝐴𝐵2𝐴2(1/6, 2/3), so these cases follow from Propositions 5.10, 5.8, 5.9. Finally, (4/11, 6/11)
is a convex combination of (1/2, 1/2) and (2/7, 4/7), and (5/24, 15/24) is a convex combi-
nation of (1/6, 2/3) and (4/18, 11/18), so these cases follow from Corollary 5.4.

Theorem 5.12 (Exponent pairs on the line of symmetry). (𝑘, 𝑘 + 1/2) is an exponent pair
for

(i) 𝑘 = 9/56 [135, Theorem 1];

(ii) 𝑘 = 89/560 [293, Theorem 6];

(iii) 𝑘 = 17/108 [132, p. 467];

(iv) 𝑘 = 89/570 [128, p. 40];

(v) 𝑘 = 32/205 [131, Theorem 1];

(vi) 𝑘 = 13/84 [23, p. 206].

Recorded in literature.py as:
add_literature_exponent_pairs()

Theorem 5.13 (Exponent pairs from the Bombieri–Iwaniec method). The following pairs
are exponent pairs:

(i) ( 2
13 , 35

52 ) [136];

(ii) ( 6299
43860 , 29507

43860 ) [129, Table 17.3];

(iii) ( 771
8116 , 1499

2029 ) [258, p. 285];

(iv) ( 21
232 , 173

232 ) [258, p. 286];

(v) ( 1959
21656 , 16135

21656 ) [258, p. 286];

(vi) ( 516247
6629696 , 5080955

6629696 ) [134], [129, Table 19.2], [254].

Recorded in literature.py as:
add_literature_exponent_pairs()
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Theorem 5.14 (Exponent pairs from derivative tests). (𝑘, 1−𝑚𝑘) is an exponent pair when

(i) 𝑘 = 1
13 and 𝑚 = 3 [254, Theorem 1];

(ii) 𝑘 = 1
204 and 𝑚 = 7 [259, p. 231];

(iii) 𝑘 = 1
130 and 𝑚 = 8 [249, (1.1)];

(iv) 𝑘 = 7
2640 and 𝑚 = 8 [259, p. 231];

(v) 𝑘 = 1
716 and 𝑚 = 9 [259, p. 231];

(vi) 𝑘 = 1
649 and 𝑚 = 9 [253];

(vii) 𝑘 = 7
4540 and 𝑚 = 9 [249, (1.2)];

(viii) 𝑘 = 1
615 and 𝑚 = 9 [249, (1.1)];

(ix) 𝑘 = 1
915 and 𝑚 = 10 [250, Théorème 2].

Recorded in literature.py as:
add_literature_exponent_pairs()

Theorem 5.15 (Huxley sequence). [129, Table 17.3] For any integer 𝑚 ≥ 1, the pair

( 169
1424 × 2𝑚 − 338, 1 − 169

1424 × 2𝑚 − 338
712𝑚 + 1577

712 )

is an exponent pair.

Recorded in literature.py as:
add_huxley_exponent_pairs(Constants.EXP_PAIR_TRUNCATION)

Theorem 5.16 (1996 Heath–Brown sequence). [277, (6.17.4)] For any integer 𝑚 ≥ 3, the
pair

( 1
25𝑚2(𝑚 − 2) log 𝑚, 1 − 1

25𝑚2 log 𝑚)

is an exponent pair.

(Currently not implemented in python due to the irrational exponents.)

Theorem 5.17 (2017 Heath–Brown sequence). [113, Theorem 2] For any integer 𝑚 ≥ 3,
the pair

(𝑝𝑚, 𝑞𝑚) ∶= ( 2
(𝑚 − 1)2(𝑚 + 2) , 1 − 3𝑚 − 2

𝑚(𝑚 − 1)(𝑚 + 2))

is an exponent pair.

Recorded in literature.py as:
add_heath_brown_exponent_pairs(Constants.EXP_PAIR_TRUNCATION)

Proof. This follows from Theorem 4.23 and Lemma 5.3, after some computation.
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Theorem 5.18 (Sargos 𝐶-process). [259, Theorem 5] If (𝑘, ℓ) is an exponent pair, then so
is

( 𝑘
12(1 + 4𝑘) , 11(1 + 4𝑘) + ℓ

12(1 + 4𝑘) ) .

Recorded in literature.py as:
C_transform_hypothesis

The following process is not quite a process to automatically transform one exponent pair
to another, but it often achieves this in practice:

Theorem 5.19 (Sargos 𝐷-process). [258, Theorem 7.1] If (𝑘, ℓ) is an exponent pair, then
one has

𝛽(𝛼) ≤ max (𝑘1 + 𝛼(ℓ1 − 𝑘1), 1
12 + 2

3𝛼)

for all 0 ≤ 𝛼 ≤ 1, where (𝑘1, ℓ1) = 𝐷(𝑘, ℓ) is the pair

𝐷(𝑘, ℓ) ∶= ( 5𝑘 + ℓ + 2
8(5𝑘 + 3ℓ + 2) , 29𝑘 + 21ℓ + 10

8(5𝑘 + 3ℓ + 2) ) .

Recorded in literature.py as:
D_transform_hypothesis

Theorem 5.20. [279, Lemma 1.1] The following are exponent pairs:

(𝑘1, ℓ1) ∶= ( 4742
38463 , 35731

51284)

(𝑘2, ℓ2) ∶= ( 18
199 , 593

796)

(𝑘3, ℓ3) ∶= ( 2779
38033 , 58699

76066)

(𝑘4, ℓ4) ∶= ( 715
10238 , 7955

10238) .

Recorded in literature.py as:
add_literature_exponent_pairs()

Proof. For the pair (18/199, 593/796), apply Theorem 5.19 with the pair (13/84, 55/84) from
Theorem 5.12 to conclude that

𝛽(𝛼) ≤ 18/199 + 521𝛼/796

for all 0 ≤ 𝛼 ≤ 1/2, from which the claim follows from Lemma 5.3 (and Lemma 4.10). The
remaining pairs come from Lemma 5.3 and the remaining components of Theorem 4.26.

Corollary 5.21 (Set of exponent pairs). [279, Theorem 1.3] Let 𝐻 be the convex hull (0, 1),
(1/2, 1/2), and of (𝑘𝑛, ℓ𝑛) for 𝑛 ∈ Z, where (𝑘0, ℓ0) ∶= 13/84, (𝑘𝑛, ℓ𝑛) for 𝑛 = 1, 2, 3, 4 is
defined by Theorem 5.20, (𝑘𝑛, ℓ𝑛) ∶= 𝐴(𝑘𝑛−4, ℓ𝑛−4) for 5 ≤ 𝑛 ≤ 8, (𝑘𝑛, ℓ𝑛) ∶= (𝑝𝑛, 𝑞𝑛) for
𝑛 > 9 (with (𝑝𝑛, 𝑞𝑛) defined by Theorem 5.17), and (𝑘−𝑛, ℓ−𝑛) ∶= 𝐵(𝑘𝑛, ℓ𝑛) for 𝑛 ≥ 0. Then
all elements of 𝐻 are exponent pairs.
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Indeed, as of [279] the set 𝐻 represented all known exponent pairs, until Theorem 5.22
below.

Proof. Clear from Corollary 5.4, Proposition 5.5, 5.20, and Theorem 5.17.

The following new exponent pairs were derived using this database:

Theorem 5.22 (New exponent pairs). The following are exponent pairs:

( 89
1282 , 997

1282) , ( 652397
9713986 , 7599781

9713986) , ( 10769
351096 , 609317

702192) , ( 89
3478 , 15327

17390) .

Derived in derived.py as:
prove_exponent_pair(frac(89,1282), frac(997,1282))
prove_exponent_pair(frac(652397,9713986), frac(7599781,9713986))
prove_exponent_pair(frac(10769,351096), frac(609317,702192))
prove_exponent_pair(frac(89,3478), frac(15327,17390))

Proof. Using the bounds on 𝛽(𝛼) collected in Table 5.1, one may verify (after a tedious
calculation) that for each of the claimed exponent pairs (𝑘, ℓ) in the lemma statement, one
has 𝛽(𝛼) ≤ 𝑘 + (ℓ − 𝑘)𝛼 for 0 ≤ 𝛼 ≤ 1/2. The result then follows from Lemma 4.10 and
Lemma 5.3.

Furthermore, more exponent pairs can be derived upon incorporating Lemma 4.6.

Theorem 5.23 (Cushing (2025) exponent pairs). The following are exponent pairs:

( 311
4822 , 3799

4822) , ( 80219
1298878 , 515638

649439) .

Implemented at examples.py as:
beta_bound_examples2()

In summary, the current set of known exponent pairs is the convex hull with vertices (0, 1),
(1/2, 1/2) and the points (𝑘𝑛, ℓ𝑛) for 𝑛 ∈ Z that are recorded in Table 5.1.
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Figure 5.1: The convex hull of known exponent pairs, whose vertices (𝑘𝑛, ℓ𝑛) are given in
Table 5.1.

27



Table 5.1: Bounds on 𝛽(𝛼)
𝛽(𝛼) bound 𝛼 range Reference

1
20 + 3

4𝛼 0 ≤ 𝛼 < 1
4 Theorem 4.23 with 𝑘 = 5

19
20𝛼 1

4 ≤ 𝛼 < 890
3277 Theorem 4.23 with 𝑘 = 5

89
2706 + 2243

2706𝛼 890
3277 ≤ 𝛼 < 199

716 Table 4.3
1
66 + 235

264𝛼 120
419 ≤ 𝛼 < 754

2579 Table 4.3
9

217 + 1389
1736𝛼 754

2579 ≤ 𝛼 < 251324
841245 Exponent pair ( 9

217 , 1461
1736) = 𝐴𝐷(13

84 , 55
84)

2371
43205 + 52209

69128𝛼 251324
841245 ≤ 𝛼 < 861996

2811205
Exponent pair ( 2371

43205 , 280013
345640)

= 𝐴( 4742
38463 , 35731

51284) and Theorem 5.20
13
146 + 47

73𝛼 861996
2811205 ≤ 𝛼 < 87

275 Table 4.3
11
244 + 191

244𝛼 87
275 ≤ 𝛼 < 423

1295 Table 4.3
89

1282 + 454
641𝛼 423

1295 ≤ 𝛼 < 227
601 Table 4.3

715
10238 + 3620

5119𝛼 227
601 ≤ 𝛼 < 227

601
Exponent pair ( 715

10238 , 7955
10238)

in Theorem 5.20
29
280 + 173

280𝛼 227
601 ≤ 𝛼 < 12

31 Table 4.3
1
32 + 103

128𝛼 12
31 ≤ 𝛼 < 1508

3825 Table 4.3
18
199 + 521

796𝛼 1508
3825 ≤ 𝛼 < 62831

155153 Exponent pair ( 18
199 , 593

796) = 𝐷(13
84 , 55

84)
569
2800 + 1053

2800𝛼 62831
155153 ≤ 𝛼 < 143

349 Table 4.3
1
12 + 2

3𝛼 5
12 ≤ 𝛼 < 3

7 Theorem 4.24
13
84 + 1

2𝛼 3
7 ≤ 𝛼 ≤ 1

2 Theorem 4.24
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Table 5.2: Vertices of the convex hull of known exponent pairs.

𝑛 (𝑘𝑛, ℓ𝑛) Reference

0 (13
84 , 55

84) [23, p. 307]

1 ( 4742
38463 , 35731

51284) Theorem 5.20

2 ( 18
199 , 593

796) Theorem 5.20

3 ( 2779
38033 , 58699

76066) Theorem 5.20

4 ( 89
1282 , 997

1282) Theorem 5.22

5 ( 311
4822 , 3799

4822) Theorem 5.23

6 ( 80219
1298878 , 515638

649439) Theorem 5.23

7 ( 9
217 , 1461

1736) 𝐴(𝑘2, ℓ2)

8 ( 10769
351096 , 609317

702192) Theorem 5.22

9 ( 89
3478 , 15327

17390) Theorem 5.22

𝑛 ≥ 10
(𝑝𝑛−4, 𝑞𝑛−4), where

(𝑝𝑚, 𝑞𝑚) = ( 2
(𝑚 − 1)2(𝑚 + 2) , 1 − 3𝑚 − 2

𝑚(𝑚 − 1)(𝑚 + 2))
Theorem 5.17

𝑛 < 0 𝐵(𝑘−𝑛, ℓ−𝑛) Proposition 5.9
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Chapter 6

Growth exponents for the
Riemann zeta function

Definition 6.1 (Growth rate of zeta). For any fixed 𝜎 ∈ R, let 𝜇(𝜎) denote the least possible
(fixed) exponent for which one has the bound

|𝜁(𝜎 + 𝑖𝑡)| ≪ |𝑡|𝜇(𝜎)+𝑜(1)

for all unbounded 𝑡.
One can check that for each 𝜎, the set of possible candidates for 𝜇(𝜎) is closed (by underspill),
non-empty, and bounded from below, so that 𝜇(𝜎) is well-defined as a real number. An
equivalent definition without asymptotic notation, is that 𝜇(𝜎) is the least real number such
that for every 𝜀 > 0 there exists 𝐶 > 0 such that

|𝜁(𝜎 + 𝑖𝑡)| ≤ 𝐶|𝑡|𝜇(𝜎)+𝜀

for all 𝑡 with |𝑡| ≥ 𝐶; equivalently, one has

𝜇(𝜎) = lim sup
|𝑡|→∞

log |𝜁(𝜎 + 𝑖𝑡)|
log |𝑡| .

Implemented at bound_mu.py as:
Bound_mu

Lemma 6.2 (Trivial bound). One has 𝜇(𝜎) = 0 for all 𝜎 ≥ 1.

Implemented at bound_mu.py as:
apply_trivial_mu_bound()

Proof. Immediate from the absolute convergence of the Dirichlet series for both 𝜁(𝑠) and
1/𝜁(𝑠); see e.g., [144, Theorem 1.9].

Lemma 6.3 (Convexity). 𝜇 is convex.

Implemented at bound_mu.py as:
bound_mu_convexity()
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Proof. Immediate from the Phragmén–Lindelöf principle; see e.g., [144, §A.8].

Lemma 6.4 (Functional equation). One has 𝜇(1 − 𝜎) = 𝜇(𝜎) + 𝜎 − 1/2 for all 0 ≤ 𝜎 ≤ 1/2.

Implemented at bound_mu.py as:
apply_functional_equation()

Proof. Immediate from the functional equation for 𝜁 and asymptotics of the Gamma func-
tion; see e.g., [144, (1.23), (1.25)].

Lemma 6.5 (Left of critical strip). One has 𝜇(𝜎) = 1/2 − 𝜎 for 𝜎 ≤ 0.

Implemented at bound_mu.py as:
apply_trivial_mu_bound()

Proof. Immediate from Lemmas 6.2, 6.4.

Lemma 6.6 (Convexity bounds). One has max(0, 1/2−𝜎) ≤ 𝜇(𝜎) ≤ (1−𝜎)/2 for 0 ≤ 𝜎 ≤ 1.

Implemented at bound_mu.py as:
apply_trivial_mu_bound()

Proof. Immediate from Lemma 6.2, Lemma 6.5, and Lemma 6.6.

6.1 Connection with exponent pairs and dual exponent
pairs

Lemma 6.7 (Connection with dual exponent pairs). For any 1/2 ≤ 𝜎 ≤ 1, one has

𝜇(𝜎) ≤ sup
0≤𝛼≤1/2

𝛽(𝛼) − 𝛼𝜎.

Proof. Let 𝑡 be unbounded. From the Riemann–Siegel formula (see [144, Theorem 4.1]) one
has

𝜁(𝜎 + 𝑖𝑡) ≪ ∣ ∑
𝑛≤√𝑡/2𝜋

1
𝑛𝜎+𝑖𝑡 ∣ + |𝑡|1/2−𝜎 ∣ ∑

𝑛≤√𝑡/2𝜋

1
𝑛1−𝜎−𝑖𝑡 ∣ + 𝑂(1).

From dyadic decomposition and Definition 4.2 (and Lemma 2.1) one has for any fixed 𝜀 > 0
that

∑
𝑡𝜀≤𝑛≤√𝑡/2𝜋

1
𝑛𝜎+𝑖𝑡 ≪ |𝑡|sup𝜀≤𝛼≤1/2 𝛽(𝛼)−𝛼𝜎+𝑜(1),

while from the triangle inequality one has the crude bound

∑
𝑛<𝑡𝜀

1
𝑛𝜎+𝑖𝑡 ≪ |𝑡|𝜀.
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Combining the bounds and using underspill, we conclude that

∑
𝑛≤√𝑡/2𝜋

1
𝑛𝜎+𝑖𝑡 ≪ |𝑡|sup0≤𝛼≤1/2 𝛽(𝛼)−𝛼𝜎+𝑜(1).

A similar argument gives

∑
𝑛≤√𝑡/2𝜋

1
𝑛1−𝜎−𝑖𝑡 ≪ |𝑡|sup0≤𝛼≤1/2 𝛽(𝛼)−𝛼(1−𝜎)+𝑜(1)

Since 𝜎 ≥ 1/2 and 𝛼 ≤ 1/2, one has (1/2 − 𝜎) − 𝛼(1 − 𝜎) ≤ −𝛼𝜎, and hence

𝜁(𝜎 + 𝑖𝑡) ≪ |𝑡|sup0≤𝛼≤1/2 𝛽(𝛼)−𝛼𝜎+𝑜(1)

giving the claim.

We remark that this inequality is morally an equality (indeed, it would be if one would
restrict the model phases in Definition 4.2 to purely the logarithmic phase 𝑢 ↦ log 𝑢).
The following form of Lemma 6.7 is convenient for applications:

Corollary 6.8 (Exponent pairs and 𝜇). If (𝑘, ℓ) is an exponent pair, then

𝜇(ℓ − 𝑘) ≤ 𝑘.

Implemented at bound_mu.py as:
exponent_pair_to_mu_bound(exp_pair)

Proof. Immediate from Lemma 6.7 and Lemma 5.3. See also [144, (7.57)].

Conjecture 6.9 (Lindelöf hypothesis). One has 𝜇(1/2) = 0.

Implemented at bound_mu.py as:
bound_mu_Lindelof()

Lemma 6.10. The exponent pair conjecture implies the Lindelöf hypothesis.

Proof. Immediate from Corollary 6.8.

Proposition 6.11 (Conjectured value of 𝜇). We have the lower bound

𝜇(𝜎) ≥ max (0, 1
2 − 𝜎) (6.1)

for all 𝜎 ∈ R, and equality holds everywhere in (6.1) if and only if the Lindelöf hypothesis
holds.

We remark that this proposition explains why there are no further lower bounds on 𝜇 in the
literature beyond (6.1); all the remaining known results revolve around upper bounds.
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Proof. Clearly equality in (6.1) implies the Lindelöf hypothesis, while from the trivial bounds
in Propositions 6.2, 6.5 and convexity (Lemma 6.6) one we see that the Lindelöf hypothesis
implies the upper bound

𝜇(𝜎) ≤ max (0, 1
2 − 𝜎)

for all 𝜎. So it suffices to establish the lower bound unconditionally. By the functional
equation (Proposition 6.4) it suffices to do this for 𝜎 ≥ 1/2; in fact by convexity it suffices
to establish the claim when 1/2 < 𝜎 < 1. In this regime, the 𝐿2 mean value theorem (see
[144, Theorem 1.11]) gives

∫
𝑇

0
|𝜁(𝜎 + 𝑖𝑡)|2 𝑑𝑡 ≍ 𝑇

for large 𝑇 , giving the claim.

6.2 Known bounds on 𝜇
Theorem 6.12 (Historical bounds). The upper bounds on 𝜇(𝜎) given by Table 6.2 are
known.

TODO: supplement as many of these citations as possible with derivations from
other exponents and relations in the database
Recorded in literature.py as:
add_literature_bounds_mu()

Some additional bounds are recorded in [279] by combining various exponential sum esti-
mates.

Theorem 6.13. [279, Theorems 2.4-2.6] We have

𝜇(𝜎) ≤

⎧{{{{{{{{
⎨{{{{{{{{⎩

(31 − 36𝜎)/84, 1
2 ≤ 𝜎 < 88225

153852 = 0.5734 … ,
(220633 − 251324𝜎)/620612, 88225

153852 ≤ 𝜎 < 521
796 = 0.6545 … ,

(1333 − 1508𝜎)/3825, 521
796 ≤ 𝜎 < 53141

76066 = 0.6986 … ,
(405 − 454𝜎)/1202, 53141

76066 ≤ 𝜎 < 3620
5119 = 0.7071 … ,

(49318855 − 52938216𝜎)/170145110, 3620
5119 ≤ 𝜎 < 52209

69128 = 0.7552 … ,
(471957 − 502648𝜎)/1682490, 52209

69128 ≤ 𝜎 < 1389
1736 = 0.8001 … ,

(2841 − 3016𝜎)/10316, 1389
1736 ≤ 𝜎 < 134765

163248 = 0.8255 … ,
(859 − 908𝜎)/3214, 134765

163248 ≤ 𝜎 < 18193
21906 = 0.8305 … ,

5(8707 − 9067𝜎)/180277, 18193
21906 ≤ 𝜎 < 249

280 = 0.8892 … ,
(29 − 30𝜎)/130, 249

280 ≤ 𝜎 ≤ 9
10 .

Furthermore, for 1/2 ≤ 𝜎 ≤ 1, we have

𝜇(𝜎) ≤ 2
13

√
10(1 − 𝜎)3/2 = 0.4865 … (1 − 𝜎)3/2,

and
𝜇(𝜎) ≤ 2

33/2 (1 − 𝜎)3/2 + 103
300(1 − 𝜎)2, 117955

118272 ≤ 𝜎 ≤ 1.
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Table 6.1: Historical bounds on 𝜇(𝜎) for 1/2 ≤ 𝜎 ≤ 1, and the exponent pair generating
them (if applicable).

Reference Results Exponent pair
Hardy–Littlewood (1923) [97] 𝜇(1/2) ≤ 1/6 (1/6, 2/3)

Walfisz (1924) [287] 𝜇(1/2) ≤ 193/988
Titchmarsh (1932) [273] 𝜇(1/2) ≤ 27/164

Phillips (1933) [232] 𝜇(1/2) ≤ 229/1392
Titchmarsh (1942) [276] 𝜇(1/2) ≤ 19/116

Min (1949) [216] 𝜇(1/2) ≤ 15/92
Haneke (1962) [92] 𝜇(1/2) ≤ 6/37

Kolesnik (1973) [170] 𝜇(1/2) ≤ 173/1067
Kolesnik (1982) [172] 𝜇(1/2) ≤ 35/216
Kolesnik (1985) [173] 𝜇(1/2) ≤ 139/858

Bombieri–Iwaniec (1985) [18] 𝜇(1/2) ≤ 9/56 (9/56, 1/2 + 9/56)
Watt (1989) [293] 𝜇(1/2) ≤ 89/560 (89/560, 1/2 + 89/560)

Huxley–Kolesnik (1991) [132] 𝜇(1/2) ≤ 17/108 (17/108, 1/2 + 17/108)
Huxley (1993) [128] 𝜇(1/2) ≤ 89/570 (89/570, 1/2 + 89/570)
Huxley (1996) [129] 𝜇(1934/3655) ≤ 6299/43860
Sargos (2003) [259] 𝜇(49/51) ≤ 1/204, 𝜇(361/370) ≤ 1/370
Huxley (2005) [131] 𝜇(1/2) ≤ 32/205 (32/205, 1/2 + 32/205)

Lelechenko (2014) [177] 𝜇(3/5) ≤ 1409/12170, 𝜇(4/5) ≤ 3/71
Bourgain (2017) [23] 𝜇(1/2) ≤ 13/84 (13/84, 1/2 + 13/84)

Heath-Brown (2017) [113] 𝜇(𝜎) ≤ 8
63

√
15(1 − 𝜎)3/2 for 1/2 ≤ 𝜎 ≤ 1

Heath-Brown (2020) [58] 𝜇(11/15) ≤ 1/15

Recorded in literature.py as:
add_literature_bounds_mu()

Additionally, the series of exponent pairs in Theorem 5.17 imply the following bounds on
𝜇(𝜎) close to 𝜎 = 1.

Theorem 6.14 (Heath-Brown [113] 𝜇 bounds). For any integer 𝑘 ≥ 3, one has

𝜇 (1 − 3𝑘2 − 3𝑘 + 2
𝑘(𝑘 − 1)2(𝑘 + 2)) ≤ 2

(𝑘 − 1)2(𝑘 + 2) .

Proof. Follows from substituting Theorem 5.17 into (6.8).

The new exponent pairs in Theorem 5.22 may be used to obtain sharper bounds on 𝜇(𝜎) in
certain ranges. The current sharpest bounds on 𝜇(𝜎) are recorded in Table 6.2 and graphed
in Figure 6.1.
Derived in derived.py as:
compute_best_mu_bound()

34

https://github.com/teorth/expdb/blob/main/blueprint/src/python/literature.py
https://github.com/teorth/expdb/blob/main/blueprint/src/python/derived.py


Table 6.2: Current sharpest known bound on 𝜇(𝜎) for 1/2 ≤ 𝜎 ≤ 1

Upper bound on 𝜇(𝜎) Range of 𝜎 Reference

𝜇(𝜎) ≤ 31
84 − 3

7𝜎 1
2 ≤ 𝜎 ≤ 88225

153852 = 0.5734 … Theorem 6.13

𝜇(𝜎) ≤ 220633
620612 − 62831

155153𝜎 88225
153852 ≤ 𝜎 ≤ 521

796 = 0.6545 … Theorem 6.13

𝜇(𝜎) ≤ 1333
3825 − 1508

3825𝜎 521
796 ≤ 𝜎 ≤ 53141

76066 = 0.6986 … Theorem 6.13

𝜇(𝜎) ≤ 405
1202 − 227

601𝜎 53141
76066 ≤ 𝜎 ≤ 454

641 = 0.7082 … Theorem 6.13

𝜇(𝜎) ≤ 779
2590 − 423

1295𝜎 454
641 ≤ 𝜎 ≤ 1744

2411 = 0.7234 … Theorem 5.22, Corollary 6.8

𝜇(𝜎) ≤ 179
622 − 96

311𝜎 1744
2411 ≤ 𝜎 ≤ 951057

1298878 = 0.7322 … Theorem 5.23, Corollary 6.8

𝜇(𝜎) ≤ 157319
560830 − 251324

841245𝜎 951057
1298878 ≤ 𝜎 ≤ 1389

1736 = 0.8001 … Theorem 5.22, Corollary 6.8

𝜇(𝜎) ≤ 2841
10316 − 754

2579𝜎 1389
1736 ≤ 𝜎 ≤ 587779

702192 = 0.8370 … Theorem 6.13

𝜇(𝜎) ≤ 1691
6554 − 890

3277𝜎 587779
702192 ≤ 𝜎 ≤ 7441

8695 = 0.8557 … Theorem 5.22, Corollary 6.8

𝜇(𝜎) ≤ 29
130 − 3

13𝜎 7441
8695 ≤ 𝜎 ≤ 277

300 = 0.9233 … Theorem 5.22, Theorem 6.14

𝜇(𝜎) ≤ 𝜆𝜇𝑛 + (1 − 𝜆)𝜇𝑛+1

𝜇𝑛 = 2
(𝑛 − 1)2(𝑛 + 2)

𝜆 = (𝜎𝑛+1 − 𝜎)/(𝜎𝑛+1 − 𝜎𝑛)

𝜎𝑛 ≤ 𝜎 ≤ 𝜎𝑛+1

𝜎𝑛 = 1 − 3𝑛2 − 3𝑛 + 2
𝑛(𝑛 − 1)2(𝑛 + 2) , (𝑛 ≥ 7)

Theorem 6.14

6.3 Connection to the Riemann hypothesis
It is well known that the Riemann hypothesis implies the Lindelöf hypothesis. Here is a
sharper version, essentially due to Backlund [2]:

Lemma 6.15 (Growth exponent and zeroes). Let 1/2 ≤ 𝜎0 < 1 be fixed. Then the assertion
𝜇(𝜎0) = 0 is equivalent to the assertion that for any fixed 𝜀 > 0 and unbounded 𝑇 > 0, the
number of zeroes 𝜎 + 𝑖𝑡 of the zeta function with 𝜎 ≥ 𝜎0 + 𝜀 and 𝑇 ≤ 𝑡 ≤ 𝑇 + 1 is 𝑜(log 𝑇 ).
Proof. This is a routine adaptation of Theorem 2 of https://terrytao.wordpress.com/
2015/03/01.
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Figure 6.1: Current sharpest known bound on 𝜇(𝜎) for 1/2 ≤ 𝜎 ≤ 1.

36



Chapter 7

Large value estimates

The theory of zero density estimates for the Riemann zeta function (and other 𝐿-functions)
rests on the study of what will be called large value patterns in this blueprint.

Definition 7.1 (Large value pattern). A large value pattern is a tuple (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊),
where 𝑁 > 1 and 𝑇 , 𝑉 > 0 are real numbers, 𝑎𝑛 is a 1-bounded sequence on [𝑁, 2𝑁], 𝐽 is
an interval of length 𝑇 , and 𝑊 is a 1-separated subset of 𝐽 such that

∣ ∑
𝑛∈[𝑁,2𝑁]

𝑎𝑛𝑛−𝑖𝑡∣ ≥ 𝑉 (7.1)

for all 𝑡 ∈ 𝑊 .
A Zeta large value pattern is a large value pattern in which 𝐽 = [𝑇 , 2𝑇 ] and 𝑎𝑛 = 1𝐼(𝑛) for
some interval 𝐼 ⊂ [𝑁, 2𝑁].
The choice of interval 𝐽 is not too important for a large value pattern, since one can translate
𝐽 and 𝑊 by any shift 𝑡0 if we also modulate the coefficients 𝑎𝑛 by 𝑛𝑖𝑡0 to compensate.
However, this modulation freedom is not available for zeta large value patterns, as it destroys
the form 𝑎𝑛 = 1𝐼(𝑛) of the coefficients. The cardinality |𝑊| of 𝑊 is traditionally called 𝑅
in the literature.
It is common in the literature to relax the 1-boundedness hypothesis on 𝑎𝑛 slightly, for in-
stance to 𝑎𝑛 ≪ 𝑇 𝑜(1), but this does not significantly affect the analysis here. Similarly, the
1-separation hypothesis is sometimes strengthened slightly to a 𝜆-separation hypothesis for
some 𝜆 = 𝑇 𝑜(1), but again this does not make much difference. For some estimates, the uni-
form bound on 𝑎𝑛 can be relaxed to an ℓ2 hypothesis ∑𝑛∈[𝑁,2𝑁] |𝑎𝑛|2 ≪ 𝑁 (and this second
moment is traditionally called 𝐺 in the literature), but we will not study such relaxations
systematically here, as they are less relevant for the theory of zero density estimates.

Definition 7.2 (Large value exponent). Let 1/2 ≤ 𝜎 ≤ 1 and 𝜏 ≥ 0 be fixed. We define
LV(𝜎, 𝜏) to be the least fixed quantity for which the following claim is true: whenever
(𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) is a large value pattern with 𝑁 > 1 unbounded, 𝑇 = 𝑁𝜏+𝑜(1),
and 𝑉 = 𝑁𝜎+𝑜(1), then

|𝑊| ≪ 𝑁LV(𝜎,𝜏)+𝑜(1).
Implemented at large_values.py as:
Large_Value_Estimate
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One can check that the set of possible candidates for LV(𝜎, 𝜏) is closed (by underspill),
non-empty, and bounded from below, so LV(𝜎, 𝜏) is well-defined as a real number. As usual,
we have an equivalent non-asymptotic definition:

Lemma 7.3 (Asymptotic form of large value exponent). Let 1/2 ≤ 𝜎 ≤ 1, 𝜏 ≥ 0, and 𝜌 ≥ 0
be fixed. Then the following are equivalent:

(i) LV(𝜎, 𝜏) ≤ 𝜌.

(ii) For every (fixed) 𝜀 > 0 there exists 𝐶, 𝛿 > 0 such that if (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊)
is a large value pattern with 𝑁 ≥ 𝐶 and 𝑁𝜏−𝛿 ≤ 𝑇 ≤ 𝑁𝜏+𝛿, 𝑁𝜎−𝛿 ≤ 𝑉 ≤ 𝑁𝜎+𝛿, then
one has

|𝑊| ≤ 𝐶𝑁𝜌+𝜀.

The proof of Lemma 7.3 is similar to that of Lemma 4.3, and is left to the reader.

Lemma 7.4 (Basic properties). (i) (Monotonicity in 𝜎) For any 𝜏 ≥ 0, 𝜎 ↦ LV(𝜎, 𝜏) is
upper semicontinuous and monotone non-increasing.

(ii) (Huxley subdivision) For any 1/2 ≤ 𝜎 ≤ 1 and 𝜏 ′ ≥ 𝜏 one has

LV(𝜎, 𝜏) ≤ LV(𝜎, 𝜏 ′) ≤ LV(𝜎, 𝜏) + 𝜏 ′ − 𝜏.

In particular, 𝜏 ↦ LV(𝜎, 𝜏) is Lipschitz continuous.

(iii) (𝜏 = 0 endpoint) One has LV(𝜎, 0) = 0 for all 1/2 ≤ 𝜎 ≤ 1, and hence by (ii)
0 ≤ LV(𝜎, 𝜏) ≤ 𝜏 for all 1/2 ≤ 𝜎 ≤ 1 and 𝜏 ≥ 0.

TODO: implement Huxley subdivision as a way to transform a large values
estimate into a better estimate

Proof. All claims are clear except perhaps for the upper bound

LV(𝜎, 𝜏 ′) ≤ LV(𝜎, 𝜏) + 𝜏 ′ − 𝜏,

but this follows because any interval of length 𝑁𝜏′+𝑜(1) may be subdivided into 𝑁𝜏′−𝜏+𝑜(1)

intervals of length 𝑁𝜏+𝑜(1), so on applying Definition 7.2 to each subinterval and summing
(using Lemma 2.1 to ensure uniformity), one obtains the claim.

Lemma 7.5 (Lower bound). For any 1/2 < 𝜎 ≤ 1 and 𝜏 ≥ 0, one has LV(𝜎, 𝜏) ≥
min(2 − 2𝜎, 𝜏), while for 𝜎 = 1/2 one has LV(𝜎, 𝜏) = 𝜏 .

Proof. In view of Lemma 7.4(ii), it suffices to show that LV(𝜎, 2−2𝜎) ≥ 2−2𝜎. By definition,
it suffices to find a large value pattern (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) is a large value pattern
with 𝑁 unbounded, 𝑉 = 𝑁𝜎+𝑜(1), 𝑇 = 𝑁2−2𝜎+𝑜(1), and |𝑊| ≫ 𝑁2−2𝜎−𝑜(1).
In the endpoint case 𝜎 = 1 one can achieve this by setting 𝑎𝑛 = 1 for all 𝑛 and taking
𝑊 = {0}, so now we assume that 1/2 < 𝜎 < 1.
We use the probabilistic method. We divide [𝑁, 2𝑁] into ≍ 𝑁2−2𝜎 intervals 𝐼 of length ≍
𝑁2𝜎−1. On each interval 𝐼 , we choose 𝑎𝑛 to equal some randomly chosen sign 𝜖𝐼 ∈ {−1, +1},
with the 𝜖𝐼 chosen independently in 𝐼 . If 𝑡 = 𝑜(𝑁2−2𝜎), then ∑𝑛∈𝐼 𝑎𝑛𝑛−𝑖𝑡 is equal to 𝜖𝐼
times a deterministic quantity 𝑐𝑡,𝐼 of magnitude ≍ 𝑁2𝜎−1 (the point being that the phase
𝑡 log 𝑛 is close to constant in this range). By the Chernoff bound, we thus see that for any
such 𝑡, ∑𝑛∈[𝑁,2𝑁] 𝑎𝑛𝑛𝑖𝑡 will have size ≫ 𝑁 (2𝜎−1)+(2−2𝜎)/2 = 𝑁𝜎 with probability ≫ 1. By
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linearity of expectation, we thus see that with positive probability, a ≫ 1 fraction of integers
𝑡 with 𝑡 = 𝑜(𝑁2−2𝜎) will have this property, giving the claim.
Finally, let 𝜎 = 1/2. In this case we just take each 𝑎𝑛 to be a random sign, then by the
Chernoff bound one has for each 𝑡 that | ∑𝑛∈[𝑁,2𝑁] 𝑎𝑛𝑛𝑖𝑡| ≍ 𝑁1/2 with positive probability,
which by linearity of expectation as before gives the lower bound LV(𝜎, 𝜏) ≥ 𝜏 , while the
upper bound is trivial from Lemma 7.4(iii).

We conjecturally have a complete description of the function LV:
Conjecture 7.6 (Montgomery conjecture). One has

LV(𝜎, 𝜏) ≤ 2 − 2𝜎 (7.2)
for all fixed 1/2 < 𝜎 ≤ 1 and 𝜏 ≥ 0. Equivalently (by Lemma 7.4(ii), (iii) and Lemma 7.5),
one has LV(𝜎, 𝜏) = min(2 − 2𝜎, 𝜏) for all 1/2 < 𝜎 ≤ 1 and 𝜏 ≥ 0.
Implemented at large_values.py as:
montgomery_conjecture

We refer to [19] for further discussion of this conjecture, including some counterexamples to
strong versions of the conjecture in which certain epsilon losses are omitted. In view of this
conjecture, we do not expect any further lower bounds on LV(𝜎, 𝜏) to be proven, and the
literature is instead focused on upper bounds.
The following application of subdivision is useful:
Lemma 7.7 (Subdivision and the Montgomery conjecture). If 𝜎 is fixed, and the Mont-
gomery conjecture holds for all fixed 𝜏 < 𝜏0, then

LV(𝜎, 𝜏) ≤ max(2 − 2𝜎, 𝜏 − 𝜏0 + 2 − 2𝜎) (7.3)
for all fixed 𝜏 ≥ 0.
Proof. Clear from Lemma 7.4(ii).

The following basic property of LV(𝜎, 𝜏) is extremely useful in applications:
Lemma 7.8 (Raising to a power). For any 1/2 ≤ 𝜎 ≤ 1, 𝜏 ≥ 0, and natural number 𝑘, one
has

LV(𝜎, 𝑘𝜏) ≤ 𝑘LV(𝜎, 𝜏).
Implemented at large_values.py as:
raise_to_power_hypothesis()

Proof. Let (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) be a large value pattern with 𝑇 = 𝑁𝑘𝜏+𝑜(1) and
𝑉 = 𝑁𝜎+𝑜(1), Raising (7.1) the 𝑘th power, we conclude that

∣ ∑
𝑛∈[𝑁𝑘,2𝑘𝑁𝑘]

𝑏𝑛𝑛−𝑖𝑡∣ ≥ 𝑉 𝑘

for all 𝑡 ∈ 𝑊 , where 𝑏𝑛 is the Dirichlet convolution of 𝑘 copies of 𝑎𝑛, and thus is bounded
by 𝑁𝑜(1) thanks to divisor bounds. Subdividing [𝑁𝑘, 2𝑘𝑁𝑘] into 𝑘 intervals of the form
[𝑁 ′, 2𝑁 ′] for 𝑁 ′ ≍ 𝑁𝑘 and applying Definition 7.2 (with 𝑁, 𝑇 , 𝑉 replaced by 𝑁 ′, 𝑇 , 𝑉 𝑘) we
conclude that

|𝑊| ≪ 𝑁𝑘LV(𝜎,𝜏)+𝑜(1)

and the claim then follows.
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7.1 Known upper bounds on LV(𝜎, 𝜏)
Similarly to upper bounds on 𝛽(𝛼), upper bounds on LV(𝜎, 𝜏) in the literature (also known
as large value theorems) tend to be piecewise linear functions of 𝜎 and 𝜏 . Such bounds
often tend to be convex initially (i.e., the maximum of several linear functions), but when
one combines multiple large value theorems together, the bound is usually neither convex
nor concave, though it often remains piecewise linear, and continuous in 𝜏 (though jump
discontinuities in 𝜎 are possible).
Listed below are some examples of such bounds.

Theorem 7.9 (𝐿2 mean value theorem). For any fixed 1/2 ≤ 𝜎 ≤ 1 and 𝜏 ≥ 0 one has

LV(𝜎, 𝜏) ≤ max(2 − 2𝜎, 1 + 𝜏 − 2𝜎).

In particular, the Montgomery conjecture (7.2) holds for 𝜏 ≤ 1.

Implemented at large_values.py as:
large_value_estimate_L2

Proof. Let (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) be a large value pattern with 𝑇 = 𝑁𝜏+𝑜(1), 𝑉 =
𝑁𝜎+𝑜(1). Applying [149, Theorem 9.4] (with 𝑁 , 𝑇 replaced with 2𝑁 , 2𝑇 respectively and
taking 𝑎𝑛 = 0 for 𝑛 < 𝑁) one has

|𝑊|𝑉 2 ≤ ∑
𝑡∈𝑊

∣ ∑
𝑁≤𝑛≤2𝑁

𝑎𝑛𝑛−𝑖𝑡∣
2

≪ 𝑁1+𝑜(1)(𝑇 + 𝑁)

from which the result follows.

Theorem 7.10 (Montgomery large values theorem). If 1/2 ≤ 𝜎 ≤ 1 and 𝜏 ≥ 0 is such that

sup
1≤𝜏′≤𝜏

𝛽(1/𝜏 ′)𝜏 ′ < 2𝜎 − 1 (7.4)

(this condition is vacuous for 𝜏 < 1) then the Montgomery conjecture (7.2) holds for this
choice of parameters.

For a stronger version of this inequality, see Lemma 8.12.

Proof. Set 𝜌 ∶= LV(𝜎, 𝜏); we may assume without loss of generality that 𝜌 ≥ 0. Then by
Definition 7.2, we can find a large value pattern (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) with 𝑁 > 1
unbounded, 𝑇 = 𝑁𝜏+𝑜(1), 𝑉 = 𝑁𝜎+𝑜(1), and |𝑊| = 𝑁𝜌+𝑜(1). From (7.1) we have

∑
𝑡∈𝑊

∣ ∑
𝑛∈[𝑁,2𝑁]

𝑎𝑛𝑛𝑖𝑡∣ ≥ |𝑊|𝑉

hence for some 1-bounded coefficients 𝑐𝑡

∣∑
𝑡∈𝑊

𝑐𝑡 ∑
𝑛∈[𝑁,2𝑁]

𝑎𝑛𝑛𝑖𝑡∣ ≥ |𝑊|𝑉
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We apply the Halász argument. Interchanging the summations and applying Cauchy–
Schwarz, we conclude that

|𝑊|𝑉 ≤ 𝑁1/2 ∣ ∑
𝑡,𝑡′∈𝑊

𝑐𝑡𝑐𝑡′ ∑
𝑛∈[𝑁,2𝑁]

𝑛𝑖(𝑡−𝑡′)∣
1/2

hence on squaring and using the triangle inequality

𝑁2𝜌 ≪ 𝑁1−2𝜎+𝑜(1) ∑
𝑡,𝑡′∈𝑊

∣ ∑
𝑛∈[𝑁,2𝑁]

𝑛𝑖(𝑡−𝑡′)∣ .

In the case |𝑡 − 𝑡′| ≤ 𝑁1−𝜀 for any fixed 𝜀 > 0, one can use Lemma 4.4 to obtain the bound

∑
𝑛∈[𝑁,2𝑁]

𝑛𝑖(𝑡−𝑡′) ≪ 𝑁𝑜(1) 𝑁
1 + |𝑡 − 𝑡′| .

The total contribution of this case can then be bounded by 𝑁1+𝑜(1)𝑅 = 𝑁1+𝜌+𝑜(1), thanks
to the 1-separation. In the remaining cases |𝑡 − 𝑡′| ≥ 𝑁1−𝑜(1), we use Definition 4.2 to see
that

∑
𝑛∈[𝑁,2𝑁]

𝑛𝑖(𝑡−𝑡′) ≪ 𝑁 sup1≤𝜏′≤𝜏 𝛽(1/𝜏′)𝜏′+𝑜(1)

and thus
𝑁2𝜌 ≪ 𝑁2−2𝜎+𝜌+𝑜(1) + 𝑁2𝜌+1−2𝜎+sup1≤𝜏′≤𝜏 𝛽(1/𝜏′)𝜏′+𝑜(1).

By hypothesis, the second term on the right-hand side is asymptotically smaller than the
left-hand side, and so we obtain 𝜌 ≤ 2 − 2𝜎 as required.

Corollary 7.11 (Converting an exponent pair to a large values theorem). If (𝑘, ℓ) is an
exponent pair, and 1/2 ≤ 𝜎 ≤ 1, and 𝜏 ≥ 0 are fixed, then

LV(𝜎, 𝜏) ≤ max (2 − 2𝜎, 2 − 2𝜎 + 𝜏 − 2𝜎 + 𝑘 − ℓ − 1
𝑘 ) .

In particular, the Montgomery conjecture holds for 𝜏 ≤ 2𝜎+𝑘−ℓ−1
𝑘 .

One can also obtain a similar implication starting from a bound on 𝜇: see Lemma 8.13.

Proof. By Lemma 7.7 it suffices to prove the latter claim. From Lemma 5.3 one has
𝛽(1/𝜏 ′)𝜏 ′ ≤ 𝑘𝜏 ′ + (ℓ − 𝑘) and so the condition (7.4) holds whenever

𝜏 < 2𝜎 + 𝑘 − ℓ − 1
𝑘 .

The claim follows.

Theorem 7.12 (Huxley large values theorem). [122, Equation (2.9)] Let 1/2 ≤ 𝜎 ≤ 1 and
𝜏 ≥ 0 be fixed. Then one has

LV(𝜎, 𝜏) ≤ max(2 − 2𝜎, 4 + 𝜏 − 6𝜎).

In particular, one has the Montgomery conjecture for 𝜏 ≤ 4𝜎 − 2.
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Recorded in literature.py as:
add_huxley_large_values_estimate()

Proof. Apply Corollary 7.11 with the pair (𝑘, ℓ) = (1/2, 1/2) from Lemma 5.10.

Theorem 7.13 (Heath-Brown large values theorem, preliminary form). Let 1/2 ≤ 𝜎 ≤ 1
and 𝜏 ≥ 0 be fixed. If LV(𝜎, 𝜏) ≤ 𝜌 then

LV(𝜎, 𝜏) ≤ max (2 − 2𝜎, 11
12𝜌 + 3

2 + 𝜏
6 − 2𝜎)

Proof. Follows from [107, Lemma 1].

Theorem 7.14 (Heath-Brown large values theorem, optimized). Let 1/2 ≤ 𝜎 ≤ 1 and 𝜏 ≥ 0
be fixed. One has

LV(𝜎, 𝜏) ≤ max(2 − 2𝜎, 10 + 𝜏 − 13𝜎).
In particular, the Montgomery conjecture holds for 𝜏 ≤ 11𝜎 − 8.

Recorded in literature.py as:
add_heath_brown_large_values_estimate()

Proof. By Lemma 7.7 it suffices to show that LV(𝜎, 𝜏) ≤ 2 − 2𝜎 for 𝜏 ≤ 11𝜎 − 8. From the
previous theorem, and setting 𝜌 = LV(𝜎, 𝜏), we have either

LV(𝜎, 𝜏) ≤ 2 − 2𝜎

or
LV(𝜎, 𝜏) ≤ 11

12LV(𝜎, 𝜏) + 3
2 + 𝜏

6 − 2𝜎.

The latter bound can be rearranged as

LV(𝜎, 𝜏) ≤ 2𝜏 + 18 − 24𝜎

and thus
LV(𝜎, 𝜏) ≤ min(2 − 2𝜎, 2𝜏 + 18 − 24𝜎),

and the claim follows. (See also the arguments in the first paragraph of [107, p. 226].)

Lemma 7.15 (Second Heath-Brown large values theorem). If 3/4 < 𝜎 ≤ 1 and 𝜏 ≥ 0 are
fixed, then

LV(𝜎, 𝜏) ≤ max(2 − 2𝜎, 𝑘𝜏 + 𝑘(2 − 4𝜎), 2𝜏/3 + 𝑘(12 − 16𝜎)/3)

for any positive integer 𝑘.

Proof. Let (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) be a large value pattern with 𝑁 ≥ 1 be unbounded,
𝑇 = 𝑁𝜏+𝑜(1), 𝑉 = 𝑁𝜎+𝑜(1), and |𝑊| = 𝑁𝜌+𝑜(1). By [106, Lemma 6] we have

(|𝑊|𝑉 )2 ≪ 𝑇 𝑜(1)(|𝑊|𝑁 + |𝑊|2𝑁1/2 + |𝑊|2−1/2𝑘𝑇 1/2 + |𝑊|2−3/8𝑘𝑁1/2𝑇 1/4𝑘)𝑁

and thus

2(𝜌 + 𝜎) ≤ max(𝜌 + 1, 2𝜌 + 1/2, (2 − 1/2𝑘)𝜌 + 𝜏/2, (2 − 3/8𝑘)𝜌 + 1/2 + 𝜏/4𝑘).
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Since 𝜎 > 3/4, we can delete the second term 2𝜌 + 1/2 on the right-hand side. Solving for
𝜌, we conclude that

𝜌 ≤ max(2 − 2𝜎, 𝑘𝜏 + 𝑘(2 − 4𝜎), 2𝜏/3 + 𝑘(12 − 16𝜎)/3),

and taking suprema in 𝜌, we obtain the claim.

Theorem 7.16 (Jutila large values theorem). For any integer 𝑘 ≥ 1, one has

LV(𝜎, 𝜏) ≤ max(2 − 2𝜎, 𝜏 + (4 − 2/𝑘) − (6 − 2/𝑘)𝜎, 𝜏 + (6 − 8𝜎)𝑘).

Thus for instance with 𝑘 = 2 we have

LV(𝜎, 𝜏) ≤ max(2 − 2𝜎, 𝜏 + 3 − 5𝜎, 𝜏 + 12 − 16𝜎)

and with 𝑘 = 3 we have

LV(𝜎, 𝜏) ≤ max(2 − 2𝜎, 𝜏 + 10 − 16𝜎
3 , 𝜏 + 18 − 24𝜎).

In particular, the Montgomery conjecture holds for

𝜏 ≤ min((4 − 2/𝑘)𝜎 − (2 − 2/𝑘), (8𝑘 − 2)𝜎 − 6𝑘 + 2).

Recorded in literature.py as:
add_jutila_large_values_estimate(Constants.LARGE_VALUES_TRUNCATION)

Proof. See [160, (1.4)] (setting 𝑉 = 𝑁𝜎+𝑜(1), 𝑇 = 𝑁𝜏+𝑜(1), and 𝐺 ≤ 𝑁). We remark that
this form is an optimized form of the inequality after (3.2) in Jutila’s paper, which in our
notation would read that

2LV(𝜎, 𝜏) + 2𝜎 ≤ max (2 + 𝜌, 3
2 + (2 − 1

𝑘) 𝜌 + 𝜌 + 1
2𝑘 max (𝑘(𝜏 − 1), 𝜌 + 𝜏

2 ) , 2𝜌 + 1)

whenever LV(𝜎, 𝜏) ≤ 𝜌. The optimization follows from Lemma 7.7 and routine calculations.

Some additional large values theorems are established in Chapter 10.
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Chapter 8

Large value theorems for zeta
partial sums

Now we study a variant of the exponent LV(𝜎, 𝜏), specialized to the Riemann zeta function.

Definition 8.1 (Large value zeta exponent). Let 1/2 ≤ 𝜎 ≤ 1 and 𝜏 ≥ 0 be fixed. We
define LV𝜁(𝜎, 𝜏) ∈ [−∞, +∞) to be the least (fixed) exponent for which the following claim
is true: if (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) is a zeta large value pattern with 𝑁 is unbounded,
𝑇 = 𝑁𝜏+𝑜(1), and 𝑉 = 𝑁𝜎+𝑜(1), then |𝑊| ≪ 𝑁𝜌+𝑜(1).

Implemented at large_values.py as:
Large_Value_Estimate

We will primarily be interested in the regime 𝜏 ≥ 2 (as this is the region connected to the
Riemann-Siegel formula for 𝜁(𝜎 + 𝑖𝑡)), but for sake of completeness we develop the theory
for the entire range 𝜏 ≥ 0. (The range 0 ≤ 𝜏 ≤ 1 can be worked out exactly by existing
tools, while the region 1 < 𝜏 < 2 can be reflected to the region 2 < 𝜏 < ∞ by Poisson
summation.)
As usual, we have a non-asymptotic formulation of LV𝜁(𝜎, 𝜏):
Lemma 8.2 (Asymptotic form of large value exponent at zeta). Let 1/2 ≤ 𝜎 ≤ 1, 𝜏 ≥ 0,
and 𝜌 ≥ 0 be fixed. Then the following are equivalent:

(i) LV𝜁(𝜎, 𝜏) ≤ 𝜌.

(ii) For every 𝜀 > 0 there exists 𝐶, 𝛿 > 0 such that if (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) is a
zeta large value pattern with 𝑁 > 𝐶, 𝑁𝜏−𝛿 ≤ 𝑇 ≤ 𝑁𝜏+𝛿, and 𝑁𝜎−𝛿 ≤ 𝑉 ≤ 𝑁𝜎+𝛿, then
one has

|𝑊| ≤ 𝐶𝑁𝜌+𝜀.

The proof of Lemma 8.2 proceeds as in previous sections and is omitted.

Lemma 8.3 (Basic properties). (i) (Monotonicity in 𝜎) For any 𝜏 ≥ 0, 𝜎 ↦ LV𝜁(𝜎, 𝜏)
is upper semicontinuous and monotone non-increasing.

(ii) (Trivial bound) For any 1/2 ≤ 𝜎 ≤ 1 and 𝜏 ≥ 0, we have LV𝜁(𝜎, 𝜏) ≤ 𝜏 .
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(iii) (Domination by large values) We have LV𝜁(𝜎, 𝜏) ≤ LV(𝜎, 𝜏) for all 1/2 ≤ 𝜎 ≤ 1 and
𝜏 ≥ 0.

(iv) (Reflection) For 1/2 ≤ 𝜎 ≤ 1 and 𝜏 > 1, one has

sup
𝜎≤𝜎′≤1

LV𝜁 (1
2 + 1

𝜏 − 1(𝜎′ − 1
2), 𝜏

𝜏 − 1)+ 1
𝜏 − 1(𝜎′−𝜎) = 1

𝜏 − 1 sup
𝜎≤𝜎′≤1

(LV𝜁(𝜎′, 𝜏)+𝜎′−𝜎).

Implemented at zeta_large_values.py as:
get_trivial_zlv()

We note that in practice, bounds for LV𝜁(𝜎′, 𝜏) + 𝜎′ are monotone decreasing1 in 𝜎′, so the
reflection property in Lemma 8.3(iv) morally simplifies2 to

LV𝜁 (1
2 + 1

𝜏 − 1(𝜎 − 1
2), 𝜏

𝜏 − 1) = 1
𝜏 − 1LV𝜁(𝜎, 𝜏). (8.1)

TODO: implement a python method for reflection

Proof. The claims (i), (ii) are obvious. The claim (iii) is clear by setting 𝑎𝑛 = 1𝐼 in Definition
7.2.
Now we turn to (iv). By symmetry it suffices to prove the upper bound. Actually it suffices
to just show

LV𝜁 (1
2 + 1

𝜏 − 1(𝜎 − 1
2), 𝜏

𝜏 − 1) ≤ 1
𝜏 − 1 sup

𝜎≤𝜎′≤1
(LV𝜁(𝜎′, 𝜏) + 𝜎′ − 𝜎)

as this easily implies the general upper bound.
Let (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) be a zeta large value pattern with 𝑁 unbounded, 𝑇 =
𝑁 𝜏

𝜏−1 +𝑜(1), and 𝑉 = 𝑁 1
2 + 1

𝜏−1 (𝜎− 1
2 )+𝑜(1). By definition, it suffices to show the bound

|𝑊| ≪ 𝑁 1
𝜏−1 (LV𝜁(𝜎′,𝜏)+𝜎′−𝜎)+𝑜(1). (8.2)

for some 𝜎 ≤ 𝜎′ ≤ 1. By definition, 𝑎𝑛 = 1𝐼(𝑛). By a Fourier expansion of (𝑛/𝑁)1/2 in
log 𝑛, we can bound

| ∑
𝑛∈𝐼

𝑛−𝑖𝑡𝑟 | ≪𝐴 𝑁1/2 ∫
R

| ∑
𝑛∈𝐼

𝑛−1/2−𝑖𝑡|(1 + |𝑡 − 𝑡𝑟|)−𝐴 𝑑𝑡

and hence by the pigeonhole principle, we can find 𝑡′ = 𝑡 + 𝑂(𝑁𝑜(1)) for each 𝑡 ∈ 𝑊 such
that

| ∑
𝑛∈𝐼

𝑛−1/2−𝑖𝑡′ | ≫ 𝑁−1/2−𝑜(1)𝑉

for 𝑡 ∈ 𝑊 . By refining 𝑊 by 𝑁𝑜(1) if necessary, we may assume that the 𝑡′ are 1-separated.
Now we use the approximate functional equation

𝜁(1/2 + 𝑖𝑡′) = ∑
𝑛≤𝑥

𝑛−1/2−𝑖𝑡′ + 𝜒(1/2 + 𝑖𝑡′) ∑
𝑚≤𝑡′/2𝜋𝑥

𝑚−1/2+𝑖𝑡′ + 𝑂(𝑁−1/2) + 𝑂((𝑇 /𝑁)−1/2)

1This reflects the fact that large value theorems usually relate to 𝑝th moment bounds for 𝑝 ≥ 1 (e.g.,
𝑝 = 2, 4, 6, 12) rather than for 0 < 𝑝 < 1.

2Alternatively, one can redefine LV𝜁 to use smooth cutoffs in the 𝑛 variable rather than rough cutoffs
1𝐼(𝑛), in which case one can obtain the analogue of (8.1) rigorously, but we will not do so here.
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for 𝑥 ∼ 𝑁 ; see [144, Theorem 4.1]. Applying this to the two endpoints of 𝐼 and subtracting,
we conclude that

∑
𝑛∈𝐼

𝑛−1/2−𝑖𝑡′ = 𝜒(1/2 + 𝑖𝑡′) ∑
𝑚∈𝐽𝑡′

𝑚−1/2+𝑖𝑡′ + 𝑂(𝑁−1/2) + 𝑂((𝑇 /𝑁)−1/2)

where 𝐽𝑡′ ∶= {𝑚 ∶ 𝑡′/2𝜋𝑚 ∈ 𝐼}. Since 𝜒(1/2 + 𝑖𝑡′) has magnitude one, we conclude that

| ∑
𝑚∈𝐽𝑟

𝑚−1/2−𝑖𝑡′ | ≫ 𝑁−1/2−𝑜(1)𝑉 .

Writing 𝑀 ∶= 𝑇 /𝑁 = 𝑁 1
𝜏−1 +𝑜(1), we see that 𝐽𝑟 ⊂ [𝑀/10, 10𝑀] and

| ∑
𝑚∈𝐽𝑟

(𝑀/𝑚)1/2𝑚−𝑖𝑡′ | ≫ 𝑀1/2𝑁−1/2−𝑜(1)𝑉 = 𝑀𝜎+𝑜(1).

Performing a Fourier expansion of (𝑀/𝑚)1/21𝐽𝑟
(𝑚) (smoothed out at scale 𝑂(1)) in log 𝑚,

we can bound

| ∑
𝑚∈𝐽𝑟

(𝑀/𝑚)1/2𝑚−𝑖𝑡′ | ≪ ∫
10𝑇

𝑇 /10
| ∑

𝑚∈[𝑀/10,10𝑀]
𝑚−𝑖𝑡1 |(1 + |𝑡1 − 𝑡′|)−1 𝑑𝑡1 + 𝑇 −10

and hence
∫

10𝑇

𝑇 /10
| ∑

𝑚∈[𝑀/10,10𝑀]
𝑚−𝑖𝑡1 |(1 + |𝑡1 − 𝑡′|)−1 𝑑𝑡1 ≫ 𝑀𝜎+𝑜(1).

If we let 𝐸 denote the set of 𝑡1 ∈ [𝑇 /10, 10𝑇 ] for which | ∑𝑚∈[𝑀/10,10𝑀] 𝑚−𝑖𝑡1 | ≥ 𝑀𝜎−𝑜(1)

for a suitably chosen 𝑜(1) error, then we have

∫
𝐸

| ∑
𝑚∈[𝑀/10,10𝑀]

𝑚−𝑖𝑡1 |(1 + |𝑡1 − 𝑡′|)−1 𝑑𝑡 ≫ 𝑀𝜎+𝑜(1).

Summing in 𝑡′, we obtain

∫
𝐸

| ∑
𝑚∈[𝑀/10,10𝑀]

𝑚−𝑖𝑡1 | 𝑑𝑡1 ≫ 𝑀𝜎+𝑜(1)𝑅

and so by dyadic pigeonholing we can find 𝑀𝜎−𝑜(1) ≪ 𝑉 ″ ≪ 𝑀 and a 1-separated subset
𝑊 ″ of 𝐸 such that

| ∑
𝑚∈[𝑀/10,10𝑀]

𝑚−𝑖𝑡″ | 𝑑𝑡 ≍ 𝑉 ″

for all 𝑡″ ∈ 𝑊 ″, and
𝑉 ″|𝑊 ″| ≫ 𝑀𝜎+𝑜(1)|𝑊|.

By passing to a subsequence we may assume that 𝑉 ″ = 𝑀𝜎′+𝑜(1) for some 𝜎 ≤ 𝜎′ ≤ 1.
Partitioning [𝑀/10, 10𝑀] into a bounded number of intervals each of which lies in a dyadic
range [𝑀 ′, 2𝑀 ′] for some 𝑀 ′ ≍ 𝑀 , and using Definition 8.1, we have

|𝑊 ″| ≪ 𝑀LV𝜁(𝜎′,𝜏)+𝑜(1)

and (8.2) follows.
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Note in comparison with LV(𝜎, 𝜏), that LV𝜁(𝜎, 𝜏) can be −∞, and is indeed conjectured to
do so whenever 𝜎 > 1/2 and 𝜏 ≥ 1. Indeed:

Lemma 8.4 (Characterization of negative infinite value). Let 1/2 ≤ 𝜎 ≤ 1 and 𝜏 ≥ 0 be
fixed. Then the following are equivalent:

(i) LV𝜁(𝜎, 𝜏) = −∞.

(ii) LV𝜁(𝜎, 𝜏) < 0.

(iii) There exists a fixed 𝜀 > 0 such that if 𝑁 is unbounded and 𝐼 is a subinterval of [𝑁, 2𝑁],
then one has

∑
𝑛∈𝐼

𝑛−𝑖𝑡 ≪ 𝑁𝜎−𝜀+𝑜(1)

whenever |𝑡| = 𝑁𝜏+𝑜(1).

Proof. Clearly (i) implies (ii). If (iii) holds, then in any zeta large value pattern (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊)
with 𝑁 unbounded and 𝑉 = 𝑁𝜎+𝑜(1), 𝑊 is necessarily empty, giving (i). Conversely, if (i)
fails, then there must be (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) with 𝑁 unbounded and 𝑉 = 𝑁𝜎+𝑜(1)

with 𝑊 non-empty, contradicting (ii).

Corollary 8.5. If 𝜏 ≥ 0 is fixed then LV𝜁(𝜎, 𝜏) = −∞ whenever 𝜎 > 𝜏𝛽(1/𝜏) is fixed. For
instance, by (4.6), one has LV𝜁(𝜎, 1) = −∞ whenever 𝜎 > 1/2 is fixed.

Proof. Suppose one has data 𝑁, 𝐼 obeying the hypotheses of Lemma 8.4(iii), then by (4.2)
(with 𝛼 = 1/𝜏) one has

∑
𝑛∈𝐼

𝑛−𝑖𝑡 ≪ |𝑡|𝛽(1/𝜏)+𝑜(1) = 𝑁𝜏𝛽(1/𝜏)+𝑜(1)

and the claim follows from Lemma 8.4.

Corollary 8.6. If 𝜏 > 0 and 1/2 ≤ 𝜎0 ≤ 1 are fixed, then LV𝜁(𝜎, 𝜏) = −∞ whenever
𝜎 > 𝜎0 + 𝜏𝜇(𝜎0).
Proof. From Definition 6.1 one has

𝜁(𝜎0 + 𝑖𝑡) ≪ |𝑡|𝜇(𝜎0)+𝑜(1)

for unbounded 𝑡. By standard arguments (see [144, (8.13)]), this implies that

∑
𝑛∈𝐼

1
𝑛𝜎0+𝑖𝑡 ≪ |𝑡|𝜇(𝜎0)+𝑜(1)

for unbounded 𝑁 , if 𝐼 ⊂ [𝑁, 2𝑁] and |𝑡| = 𝑁𝜏+𝑜(1). By partial summation this gives

∑
𝑛∈𝐼

𝑛−𝑖𝑡 ≪ 𝑁𝜎0 |𝑡|𝜇(𝜎0)+𝑜(1) = 𝑁𝜎0+𝜏𝜇(𝜎0)+𝑜(1).

The claim now follows from Lemma 8.4.

Corollary 8.7. If (𝑘, ℓ) is an exponent pair, then LV𝜁(𝜎, 𝜏) = −∞ whenever 1/2 ≤ 𝜎 ≤ 1,
𝜏 ≥ 0 are fixed quantities with 𝜎 > 𝑘𝜏 + ℓ − 𝑘.
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Proof. Immediate from Corollary 8.5 and Lemma 5.3; alternatively, one can use Corollary
8.6 and Corollary 6.8.

Corollary 8.8. Assuming the Lindelof hypothesis, one has LV𝜁(𝜎, 𝜏) = −∞ whenever
𝜎 > 1/2 and 𝜏 ≥ 1.

Proof. Apply Corollary 8.6 with 𝜎0 = 1/2, so that 𝜇(𝜎0) vanishes from the Lindelof hypoth-
esis.

For completeness, we now work out the values of LV𝜁(𝜎, 𝜏) in the remaining cases not covered
by the above corollary.

Lemma 8.9 (Value at 𝜎 = 1/2). One has LV𝜁(1/2, 𝜏) = 𝜏 for all 𝜏 ≥ 1.

Proof. The upper bound LV𝜁(1/2, 𝜏) ≤ 𝜏 follows from Lemma 8.3(ii), so it suffices to prove
the lower bound. Accordingly, let 𝑁 be unbounded, let 𝑇 = 𝐶𝑁 for a large fixed constant
𝐶, and set 𝐼 ∶= [𝑁, 2𝑁]. In the case 𝜎 = 1, we see from the 𝐿2 mean value theorem
(Lemma 3.1) that the expression ∑𝑛∈𝐼 𝑛−𝑖𝑡 has an 𝐿2 mean of ≍ 𝑁1/2 for 𝑡 ∈ [𝑇 , 2𝑇 ];
on other hand, from (4.6) we also have an 𝐿∞ norm of 𝑂(𝑁1/2+𝑜(1)). We conclude that
| ∑𝑛∈𝐼 𝑛−𝑖𝑡| ≫ 𝑁1/2+𝑜(1) for 𝑡 in a subset of [𝑇 , 2𝑇 ] of measure 𝑇 1−𝑜(1), and hence on a
1-separated subset of cardinality ≫ 𝑇 1−𝑜(1). This gives the claim LV(1/2, 1) ≥ 1.
Next, we establish the 𝜏 ≥ 2 case. Let 𝑁 be unbounded, set 𝑇 ∶= 𝑁𝜏 , and set 𝐼 ∶= [𝑁, 2𝑁].
From Lemma 3.1 we see that the 𝐿2 mean of ∑𝑛∈𝐼 𝑛−𝑖𝑡 is ≍ 𝑁1/2. Also, by squaring this
Dirichlet series and applying Lemma 3.1 again we see that the 𝐿4 mean is 𝑂(𝑁1/2+𝑜(1)). We
may now argue as before to give the desired claim LV(1/2, 𝜏) ≥ 𝜏 .
Finally we need to handle the case 1 < 𝜏 < 2. By Lemma 8.3(iv) with 𝜎 = 1/2 we have

LV𝜁 (1
2, 𝜏

𝜏 − 1) = 1
𝜏 − 1 sup

1/2≤𝜎′≤1
(LV𝜁(𝜎′, 𝜏) + 𝜎′ − 1/2).

By the 𝜏 ≥ 2 case, the left-hand side is at least 𝜏/(𝜏 − 1), thus

sup
1/2≤𝜎′≤1

(LV𝜁(𝜎′, 𝜏) + 𝜎′ − 1/2) ≥ 𝜏.

On the other hand, from Theorem 7.9 and Lemma 8.3(iii) we have

LV𝜁(𝜎′, 𝜏) + 𝜎′ − 1/2 ≤ 𝜏 + 1/2 − 𝜎′.

We conclude that the supremum is in fact attained asymptotically at 𝜎′ = 1/2, in the sense
that

lim sup
𝜎′→1/2+

LV𝜁(𝜎′, 𝜏) + 𝜎′ − 1/2 ≥ 𝜏.

By the monotonicity of LV𝜁 in 𝜎, this implies that LV𝜁(1/2, 𝜏) ≥ 𝜏 , as required.

Lemma 8.10 (Value at 𝜏 < 1). If 0 ≤ 𝜏 < 1, then LV𝜁(𝜎, 𝜏) is equal to −∞ for 𝜎 > 1 − 𝜏
and equal to 𝜏 for 𝜎 ≤ 1 − 𝜏 .

Proof. The first claim follows from Corollary 8.5 and Lemma 4.4. For the second claim, it
suffices by Lemma 8.3(ii) to establish the lower bound LV𝜁(𝜎, 𝜏) ≥ 𝜏 . But this is clear from
(4.5).

One can use exponent pairs to control LV𝜁(𝜎, 𝜏):
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Lemma 8.11 (From exponent pairs to zeta large values estimate). [144, Theorem 8.2] If
(𝑘, ℓ) is an exponent pair with 𝑘 > 0, then for any 1/2 ≤ 𝜎 ≤ 1 and 𝜏 ≥ 0 one has

LV𝜁(𝜎, 𝜏) ≤ max (𝜏 − 6(𝜎 − 1/2), 𝑘 + ℓ
𝑘 𝜏 − 2(1 + 2𝑘 + 2ℓ)

𝑘 (𝜎 − 1/2)) .

By applying this lemma to the exponent pairs in Corollary 5.11, one recovers the bounds in
[144, Corollary 8.1, 8.2] (up to epsilon losses in the exponents).
A useful connection between large values estimates and large values estimates for the zeta
function is the following strengthening of Theorem 7.10.

Lemma 8.12 (Halász–Montgomery inequality). For any 1/2 ≤ 𝜎 ≤ 1 and 𝜏 ≥ 0, we have

LV(𝜎, 𝜏) ≤ max
⎛⎜⎜
⎝

2 − 2𝜎, 1 − 2𝜎 + sup
1≤𝜏′≤𝜏

max(1/2,2𝜎−1)≤𝜎′≤1

𝜎′ + LV𝜁(𝜎′, 𝜏 ′)⎞⎟⎟
⎠

.

Note from Lemma 8.5 one could also impose the restriction 𝜎′ ≤ 𝜏 ′𝛽(1/𝜏 ′) in the supremum
if desired, at which point one recovers Theorem 7.10. Similarly, from Corollary 8.6 one could
also impose the restriction 𝜎′ ≤ 𝜎0 + 𝜏 ′𝜇(𝜎0) for any fixed 1/2 ≤ 𝜎0 ≤ 1.

Proof. It suffices to show that

LV(𝜎, 𝜏) ≤ max
⎛⎜⎜
⎝

2 − 2𝜎, 1 − 2𝜎 + sup
1≤𝜏′≤𝜏

1/2≤𝜎′≤1

𝜎′ + min(LV𝜁(𝜎′, 𝜏 ′), LV(𝜎, 𝜏))⎞⎟⎟
⎠

since the terms with 𝜎′ < 2𝜎−1 are less than the left-hand side and can thus be dropped. We
repeat the proof of Lemma 7.10. We can find a large value pattern (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊)
with 𝑁 unbounded, 𝑉 = 𝑁𝜎+𝑜(1), 𝑇 = 𝑁𝜏+𝑜(1), and |𝑊| = 𝑁LV(𝜎,𝜏)+𝑜(1), and we have

|𝑊|𝑉 ≤ 𝑁1/2 ∣ ∑
𝑡,𝑡′∈𝑊

𝑐𝑡𝑐𝑡′ ∑
𝑛∈[𝑁,2𝑁]

𝑛𝑖(𝑡−𝑡′)∣
1/2

for some 1-bounded 𝑐𝑡, and hence by the triangle inequality

|𝑊|𝑉 ≤ 𝑁1/2|𝑊|1/2 sup
𝑡′

∣∑
𝑡∈𝑊

| ∑
𝑛∈[𝑁,2𝑁]

𝑛𝑖(𝑡−𝑡′)|∣
1/2

which we rearrange as

|𝑊| ≤ 𝑁1−2𝜎+𝑜(1) sup
𝑡′

∑
𝑡∈𝑊

| ∑
𝑛∈[𝑁,2𝑁]

𝑛𝑖(𝑡−𝑡′)|.

As in the proof of Lemma 7.10, the contribution of the case |𝑡−𝑡′| ≤ 𝑁1−𝜀 to the right-hand
side is 𝑁2−2𝜎+𝑜(1), so we can restrict attention to the case |𝑡 − 𝑡′| ≥ 𝑁1−𝑜(1). By a dyadic
decomposition and the pigeonhole principle, we may then assume that

|𝑊| ≤ 𝑁1−2𝜎+𝑜(1) ∑
𝑡∈𝑊∶|𝑡−𝑡′|≍𝑇 ′

| ∑
𝑛∈[𝑁,2𝑁]

𝑛𝑖(𝑡𝑟−𝑡𝑟′ )|
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for some 𝑁1−𝑜(1) ≪ 𝑇 ′ ≪ 𝑇 and some 𝑟′; by passing to a subsequence we may assume
that 𝑇 ′ = 𝑁𝜏′+𝑜(1) for some 1 ≤ 𝜏 ′ ≤ 𝜏 . By further dyadic decomposition, we may also
assume that | ∑𝑛∈[𝑁,2𝑁] 𝑛𝑖(𝑡−𝑡′)| ≍ 𝑁𝜎′+𝑜(1) for some 𝜎′ ≤ 1; the cardinality of the sum is
then bounded both by |𝑊| and by 𝑁LV𝜁(𝜎′,𝜏′)+𝑜(1), hence

|𝑊| ≤ 𝑁1−2𝜎+𝜎′+min(LV(𝜎,𝜏),LV𝜁(𝜎′,𝜏′))+𝑜(1).

The case 𝜎′ < 1/2 is dominated by that of 𝜎′ = 1/2. The claim now follows.

Corollary 8.13 (Converting a bound on 𝜇 to a large values theorem). If 1/2 ≤ 𝜎 ≤ 1,
𝜎′ ≤ 1, and 𝜏 ≥ 0 are fixed, then

LV(𝜎, 𝜏) ≤ max (2 − 2𝜎, 2 − 2𝜎 + 𝜏 − 2𝜎 − 1 − 𝜎′

𝜇(𝜎′) ) .

In particular, the Montgomery conjecture holds for 𝜏 ≤ 2𝜎−1−𝜎′
𝜇(𝜎′) .

Proof. By Lemma 7.7 it suffices to verify the claim for 𝜏 < 2𝜎−1−𝜎′
𝜇(𝜎′) . The claim now follows

from Lemma 8.12 and Corollary 8.6.

Theorem 8.14 (Halász-Turán large values theorem). [91, Theorem 1] On the Lindelöf
hypothesis, one has the Montgomery conjecture whenever 𝜎 > 3/4.

Proof. Immediate from Corollary 8.13, since 𝜇(1/2) = 0 in this case.

Theorem 8.15 (First Ivic large values theorem). [144, Lemma 8.2] If 𝜏 ≥ 0 and 1/2 <
𝜎 < 𝜎′ < 1 are fixed, then

LV(𝜎′, 𝜏) ≤ max(2 − 2𝜎′, 𝜏 − 𝑓(𝜎)(𝜎′ − 𝜎))

where 𝑓(𝜎) is equal to

2
3 − 4𝜎 for 1/2 < 𝜎 ≤ 2/3;

10
7 − 8𝜎 for 2/3 ≤ 𝜎 ≤ 11/14;
34

15 − 16𝜎 for 11/14 ≤ 𝜎 ≤ 13/15;
98

31 − 32𝜎 for 13/15 ≤ 𝜎 ≤ 57/62;
5

1 − 𝜎 for 57/62 ≤ 𝜎 < 1.

In particular, the Montgomery conjecture holds for this choice of 𝜎′ if

𝜏 ≤ sup
1/2<𝜎<𝜎′

𝑓(𝜎)(𝜎′ − 𝜎) + 2 − 2𝜎′.

Proof. We set 𝜃 to equal

(3𝜎 − 2)/(2𝜎 − 1) for 1/2 < 𝜎 ≤ 2/3;

(9𝜎 − 6)/(4𝜎 − 1) for 2/3 ≤ 𝜎 ≤ 11/14;
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(25𝜎 − 16)/(8𝜎 + 1) for 11/14 ≤ 𝜎 ≤ 13/15;
(65𝜎 − 40)/(16𝜎 + 9) for 13/15 ≤ 𝜎 ≤ 57/62;

(12𝜎 − 7)/(2𝜎 + 3) for 57/62 ≤ 𝜎 < 1,
and then from the bounds 𝜇(1/2) ≤ 1/6, 𝜇(5/7) ≤ 1/14, 𝜇(5/6) ≤ 1/30 one can bound 𝜇(𝜃)
by the quantity 𝑐(𝜃), defined to equal

1/2 − 𝜃 for 𝜃 ≤ 0
(3 − 4𝜃)/6 for 0 ≤ 𝜃 ≤ 1/2

(7 − 8𝜃)/18 for 1/2 ≤ 𝜃 ≤ 5/7
(15 − 16𝜃)/50 for 5/7 ≤ 𝜃 ≤ 5/6

(1 − 𝜃)/5 for 5/6 ≤ 𝜃 ≤ 1.
By Corollary 8.13, we have LV(𝜎′, 𝜏) ≤ 2 − 2𝜎′ for

𝜏 ≤ 2𝜎′ − 1 − 𝜃
𝑐(𝜃) .

The right-hand side can be computed to equal 𝑓(𝜎)(𝜎′ − 𝜎) + 2 − 2𝜎′, giving the claim.

Another typical application of the Halász-Montgomery inequality is

Lemma 8.16 (Second Ivic large values theorem). [144, (11.40)] For any 1/2 ≤ 𝜎 ≤ 1 and
𝜏 ≥ 0, one has

LV(𝜎, 𝜏) ≤ max(2 − 2𝜎, 𝜏 + 9 − 12𝜎, 3𝜏 + 19(3 − 4𝜎)/2).
In particular, optimizing using subdivision (Lemma 7.7) we have

LV(𝜎, 𝜏) ≤ max (2 − 2𝜎, 𝜏 + 9 − 12𝜎, 𝜏 − 84𝜎 − 65
6 ) .

This implies the Montgomery conjecture for

𝜏 ≤ min (10𝜎 − 7, 12𝜎 − 53
6 ) .

Proof. Write 𝜌 ∶= LV(𝜎, 𝜏), and let 𝜀 > 0 be arbitrary. By Lemma 8.12, we may assume
without loss of generality that

𝜌 ≤ max(2 − 2𝜎, 1 − 2𝜎 + 𝜎′ + min(𝜌, LV𝜁(𝜎′, 𝜏 ′))) + 𝜀
for some 1/2 ≤ 𝜎′ ≤ 1 and 1 ≤ 𝜏 ′ ≤ 𝜏 . On the other hand, from Lemma 8.11 applied to the
exponent pair (2/7, 4/7) from Lemma 5.11, and bounding 𝜏 ′ by 𝜏 , one has

LV𝜁(𝜎′, 𝜏 ′) ≤ max(𝜏 − 6(𝜎′ − 1/2), 3𝜏 − 19(𝜎′ − 1/2))
and thus on taking convex combinations

min(𝜌, LV𝜁(𝜎′, 𝜏 ′)) ≤ max(5
6𝜌 + 1

6𝜏 − (𝜎′ − 1/2), 18
19𝜌 + 3

19𝜏 − (𝜎′ − 1/2)),

hence 𝜌 is bounded by either 2 − 2𝜎, 1 − 2𝜎 + 5
6 𝜌 + 1

6 𝜏 + 1
2 , or 1 − 2𝜎 + 18

19 𝜌 + 3
19 𝜏 + 1

2 . The
claim then follows after solving for 𝜌.
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Chapter 9

Moment growth for the zeta
function

Definition 9.1 (Zeta moment exponents). For fixed 𝜎 ∈ R and 𝐴 ≥ 0, we define 𝑀(𝜎, 𝐴)
to be the least (fixed) exponent for which the bound

∫
2𝑇

𝑇
|𝜁(𝜎 + 𝑖𝑡)|𝐴 𝑑𝑡 ≪ 𝑇 𝑀(𝜎,𝐴)+𝑜(1)

holds for all unbounded 𝑇 > 1.

Such moments may be interpreted as the “average” order of the Riemann zeta function. It
is not difficult to show that 𝑀(𝜎, 𝐴) is a well-defined (fixed) real number. A non-asymptotic
definition is that it is the least constant such that for every 𝜀 > 0 there exists 𝐶 > 0 such
that

∫
2𝑇

𝑇
|𝜁(𝜎 + 𝑖𝑡)|𝐴 𝑑𝑡 ≤ 𝐶𝑇 𝑀(𝜎,𝐴)+𝜀

holds for all 𝑇 ≥ 𝐶.

Lemma 9.2 (Basic properties of 𝑀(𝜎, 𝐴)).
(i) 𝑀(𝜎, 𝐴) is convex in 𝜎.

(ii) For any 𝜎, 𝑎(𝑀(𝜎, 1/𝑎) − 1) is convex non-increasing in 𝑎.

(iii) 𝑀(𝜎, 𝐴) = 1 for all 𝐴 ≥ 0 and 𝜎 ≥ 1.

(iv) 𝑀(𝜎, 𝐴) ≥ 1 for all 𝐴 ≥ 0 and 1/2 ≤ 𝜎 ≤ 1.

(v) 𝑀(𝜎, 0) = 1 for all 𝜎.

(vi) 𝑀(1 − 𝜎, 𝐴) = 𝑀(1 − 𝜎, 𝐴) + (1/2 − 𝜎)𝐴 for all 𝜎 ∈ R and 𝐴 ≥ 0.

(vii) For any 𝜎, 𝑎(𝑀(𝜎, 1/𝑎) − 1) converges to 𝜇(𝜎) as 𝑎 → 0. In particular (by previous
properties), 𝑀(𝜎, 𝐴) ≤ 𝐴𝜇(𝜎) + 1 for all 𝜎 ≥ 0 and 𝐴 ≥ 0, and also 𝑀(𝜎, 𝐴) ≤
𝑀(𝜎, 𝐴0) + 𝜇(𝜎)(𝐴 − 𝐴0) for 𝜎 ≥ 0 and 𝐴 ≥ 𝐴0 ≥ 0.
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Proof. The claim (i) follows from the Phragmen-Lindelöf principle. The claim (ii) follows
from Hölder. The claim (iii) follows from standard upper and lower bounds on 𝜁(𝜎 + 𝑖𝑡) for
𝜎 ≥ 1. The claim (iv) follows from (i)-(iii), and (v) is trivial. The claim (vi) follows easily
from the functional equation.
For (vii), the bound 𝑀(𝜎, 𝐴) ≤ 𝐴𝜇(𝜎) + 1 is trivial, which implies that

lim
𝑎→0

𝑎(𝑀(𝜎, 1/𝑎) − 1) ≤ 𝜇(𝜎).

Suppose for contradiction that

lim
𝑎→0

𝑎(𝑀(𝜎, 1/𝑎) − 1) < 𝜇(𝜎),

thus there is 𝛿 > 0 such that

𝑀(𝜎, 𝐴) ≤ 𝐴(𝜇(𝜎) − 𝛿) + 1
for all 𝐴 ≥ 0. By convexity, this gives

𝑀(𝜎 + 𝜀, 𝐴) ≤ 𝐴(𝜇(𝜎) − 𝛿/2) + 1
for all sufficiently small 𝜀, and then by the Cauchy integral formula and Hölder’s inequality
we can conclude that

|𝜁(𝜎 + 𝜀/2 + 𝑖𝑡)| ≪ |𝑡|𝜇(𝜎)−𝛿/2+𝑂(1/𝐴)+𝑜(1)

for unbounded |𝑡|, leading to

𝜇(𝜎 + 𝜀/2) ≤ 𝜇(𝜎) − 𝛿/2 + 𝑂(1/𝐴).
Sending 𝐴 to infinity and 𝜀 to zero, we obtain a contradiction.

Corollary 9.3 (Relationship with Lindelöf hypothesis). If the Lindelöf hypothesis holds,
then 𝑀(𝜎, 𝐴) = 1+max(1/2−𝜎, 0)𝐴 for all 𝜎 ∈ R and 𝐴 ≥ 0. Conversely, if 𝑀(1/2, 𝐴) = 1
for arbitrarily large 𝐴 ≥ 0, then the Lindelöf hypothesis is true.

Note from Lemma 9.2 that we always have the lower bound 𝑀(𝜎, 𝐴) ≥ 1+max(1/2−𝜎, 0)𝐴.
Thus there are not expected to be any further lower bound results for 𝑀(𝜎, 𝐴), and we focus
now on upper bounds. Compared to the pointwise estimates 𝜇(𝜎) of 𝜁(𝜎 + 𝑖𝑡), which are
currently open for all 0 < 𝜎 < 1, more are known about moment estimates 𝑀(𝜎, 𝐴). In
particular,

Lemma 9.4. One has 𝑀(1/2, 𝐴) = 1 for all 0 ≤ 𝐴 ≤ 4.

Proof. Follows from Hölder’s inequality and the standard estimates

∫
2𝑇

𝑇
|𝜁(1/2 + 𝑖𝑡)|2 𝑑𝑡 = 𝑇 1+𝑜(1)

and
∫

2𝑇

𝑇
|𝜁(1/2 + 𝑖𝑡)|4 𝑑𝑡 = 𝑇 1+𝑜(1)

for any unbounded 𝑇 > 1, due to [95] and [96] respectively.

From Lemma 9.2 and Lemma 9.4 we may restrict attention to the region 1/2 ≤ 𝜎 ≤ 1 and
𝐴 ≥ 4.
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9.1 Relationship to zeta large value estimates
We can relate 𝑀(𝜎, 𝐴) to LV𝜁(𝜎, 𝜏):
Lemma 9.5. If 1/2 ≤ 𝜎0 ≤ 1 and 𝐴 ≥ 1, then

𝑀(𝜎0, 𝐴) = sup
𝜏≥2;𝜎≥1/2

(𝐴(𝜎 − 𝜎0) + LV𝜁(𝜎, 𝜏))/𝜏. (9.1)

In particular, one has
LV𝜁(𝜎, 𝜏) ≤ 𝜏𝑀(𝜎0, 𝐴) − 𝐴(𝜎 − 𝜎0)

whenever 𝜎 ≥ 1/2 and 𝜏 ≥ 2.

Proof. We first show the lower bound, or equivalently that

𝐴(𝜎 − 𝜎0) + LV𝜁(𝜎, 𝜏) ≤ 𝜏𝑀(𝜎0, 𝐴) − 𝐴(𝜎 − 𝜎0)

whenever 𝜏 ≥ 2 and 𝜎 ≥ 1/2. Accordingly, let 𝑁 be unbounded, 𝑇 = 𝑁𝜏+𝑜(1), 𝐼 ⊂ [𝑁, 2𝑁],
and 𝑊 be a 1-separated subset of [𝑇 , 2𝑇 ] such that

| ∑
𝑛∈𝐼

𝑛−𝑖𝑡| ≫ 𝑁𝜎+𝑜(1)

for 𝑡 ∈ 𝑊 . By standard Fourier analysis (or by Perron’s formula and contour shifting), this
gives

∫
3𝑇

𝑇 /2
|𝜁(𝜎0 + 𝑖𝑡′)| 𝑑𝑡

1 + |𝑡′ − 𝑡| ≫ 𝑁𝜎−𝜎0+𝑜(1)

and hence by Hölder

∫
3𝑇

𝑇 /2
|𝜁(𝜎0 + 𝑖𝑡′)|𝐴 𝑑𝑡′

1 + |𝑡′ − 𝑡| ≫ 𝑁𝐴(𝜎−𝜎0)+𝑜(1)

so on summing in 𝑟

∫
3𝑇

𝑇 /2
|𝜁(𝜎0 + 𝑖𝑡′)|𝐴 𝑑𝑡′ ≫ |𝑊|𝑁𝐴(𝜎−𝜎0)+𝑜(1).

By Definition 9.1, the left-hand side is ≪ 𝑇 𝑀(𝜎0,𝐴)+𝑜(1). Since 𝑇 = 𝑁𝛼+𝑜(1), we obtain

|𝑊| ≪ 𝑁𝜏𝑀(𝜎0,𝐴)−𝐴(𝜎−𝜎0),

giving the claim.
For the converse bound, let 𝑀 be the right-hand side of (9.1). From Lemma 8.9 we have
𝑀 ≥ 1. By [144, §8.1] it will suffice to show that for any 𝑉 > 0 and any 1-separated
𝑊 ⊂ [𝑇 , 2𝑇 ] with

|𝜁(𝜎0 + 𝑖𝑡)| ≥ 𝑉
for all 𝑡 ∈ 𝑊 , one has

|𝑊| ≪ 𝑇 𝑀+𝑜(1)𝑉 −𝐴.
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The claim is clear if 𝑉 ≥ 𝑇 𝐶 or 𝑉 ≤ 𝑇 𝐶 for some sufficiently large 𝐶, so we may assume
that 𝑉 = 𝑇 𝑂(1). We also clearly can assume |𝑊| ≥ 1. Using the Riemann–Siegel formula
[144, Theorem 4.1] and dyadic decomposition, we have either

| ∑
𝑛∈𝐼

1
𝑛𝜎0+𝑖𝑡 ≫ 𝑇 −𝑜(1)𝑉

or
𝑇 1/2−𝜎0 | ∑

𝑛∈𝐼

1
𝑛1−𝜎0−𝑖𝑡 | ≫ 𝑇 −𝑜(1)𝑉

for some 𝐼 ⊂ [𝑁, 2𝑁] and 1 ≤ 𝑁 ≪ 𝑇 1/2, and all 𝑡 ∈ 𝑊 . In either case, we can perform
summation by parts and conclude that

| ∑
𝑛∈𝐼′

𝑛−𝑖𝑡| ≫ 𝑇 −𝑜(1)𝑉 𝑁𝜎0

or
| ∑

𝑛∈𝐼′
𝑛−𝑖𝑡| ≫ 𝑇 −𝑜(1)𝑉 𝑁1−𝜎0𝑇 𝜎0−1/2

for some 𝐼′ in [𝑁, 2𝑁] and all 𝑡 ∈ 𝑊 . As 𝜎0 ≥ 1/2, the letter hypothesis is stronger than the
former, so we may assume the former. If 𝑁 = 𝑇 𝑜(1) then this would imply that 𝑉 ≪ 𝑇 𝑜(1),
and we would be done from the trivial bound 𝑅 ≪ 𝑇 since 𝑀 ≥ 1. Hence, after passing to
a subsequence, we can assume that 𝑁 = 𝑇 1/𝜏+𝑜(1) for some 2 < 𝜏 < ∞. We can also assume
that 𝑉 = 𝑁𝜎−𝜎0+𝑜(1) for some 𝜎 ∈ R. If 𝜎 ≤ 𝜎0 then 𝑉 ≪ 𝑇 𝑜(1) and we are done as before,
so we may assume 𝜎 > 𝜎0; in particular, 𝜎 ≥ 1/2. From Lemma 8.2 we have

|𝑊| ≪ 𝑁LV𝜁(𝜎,𝜏)+𝑜(1)

and hence by definition of 𝑀

|𝑊| ≪ 𝑁𝑀𝜏−𝐴(𝜎−𝜎0)+𝑜(1) = 𝑇 𝑀+𝑜(1)𝑉 −𝐴

as required.

Corollary 9.6 (Fourth moment bound). One has LV𝜁(𝜎, 𝜏) ≤ 𝜏 − 4(𝜎 − 1/2) for all
1/2 ≤ 𝜎 ≤ 1 and 𝜏 ≥ 2.

Proof. Apply Lemma 9.5 with 𝜎0 = 1/2 and 𝐴 = 4, using Lemma 9.2(iv).

We have an important twelfth moment estimate of Heath-Brown:

Theorem 9.7 (Heath-Brown twelfth moment estimate). [103] 𝑀(1/2, 12) ≤ 2. Equivalently
(by Lemma 9.5), one has LV𝜁(𝜎, 𝜏) ≤ 2𝜏 − 12(𝜎 − 1/2) for all 𝜏 ≥ 2 and 1/2 ≤ 𝜎 ≤ 1.

Proof. From Lemma 8.11 with the exponent pair (1/2, 1/2) from Lemma 5.10 we have

LV𝜁(𝜎, 𝜏) ≤ min(𝜏 − 6(𝜎 − 1/2), 2𝜏 − 12(𝜎 − 1/2)).

If 2𝜏 − 12(𝜎 − 1/2) ≥ 0, the claim is immediate; if instead 2𝜏 − 12(𝜎 − 1/2) < 0, use Lemma
8.4.

We also have a variant bound, which is slightly better when 𝜏 is close to 6(𝜎 − 1/2):
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Theorem 9.8 (Auxiliary Heath-Brown estimate). For 𝜏 ≥ 2 and 1/2 ≤ 𝜎 ≤ 1, one has

LV𝜁(𝜎, 𝜏) ≤ min(𝜏 − 6(𝜎 − 1/2), 5𝜏 − 32(𝜎 − 1/2)).

Proof. Let (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) be a zeta large value pattern with 𝑁 , 𝑉 = 𝑁𝜎+𝑜(1),
𝑇 = 𝑁𝜏+𝑜(1) and 𝑊 = 𝑁LV𝜁(𝜎,𝜏)+𝑜(1). Our task is to show that

|𝑊| ≪ 𝑇 𝑜(1)(𝑇 (𝑁−1/2𝑉 )−6 + 𝑇 5(𝑁−1/2𝑉 )−32).

Write 𝑎(𝑛) = 1𝐼(𝑛). By a Fourier analytic expansion we can bound

𝑁−1/2| ∑
𝑛∈𝐼

𝑛−𝑖𝑡| ≪ 𝑇 𝑜(1) ∫
3𝑇

𝑇 /4
|𝜁(1/2 + 𝑖𝑡1)| 𝑑𝑡1

1 + |𝑡1 − 𝑡| + 𝑁−𝜀

for some fixed 𝜀 > 0 and all 𝑡 ∈ 𝑊 , hence

∫
3𝑇

𝑇 /4
|𝜁(1/2 + 𝑖𝑡1)| 𝑑𝑡

1 + |𝑡1 − 𝑡| ≫ 𝑇 −𝑜(1)𝑁−1/2𝑉 .

In particular, we can truncate to large values of 𝜁(1/2 + 𝑖𝑡1), in the sense that

∫
3𝑇

𝑇 /4
|𝜁(1/2 + 𝑖𝑡1)|1|𝜁(1/2+𝑖𝑡1)|≥𝑇 −𝑜(1)𝑁−1/2𝑉

𝑑𝑡1
1 + |𝑡1 − 𝑡| ≫ 𝑇 −𝑜(1)𝑁−1/2𝑉 .

Summing in 𝑡 and using the 1-separation to bound the sum of 1/(1 + |𝑡1 − 𝑡|) by 𝑇 𝑜(1), we
conclude that

∫
3𝑇

𝑇 /4
|𝜁(1/2 + 𝑖𝑡1)|1|𝜁(1/2+𝑖𝑡1)|≥𝑇 −𝑜(1)𝑁−1/2𝑉 𝑑𝑡1 ≫ 𝑇 −𝑜(1)𝑅𝑁−1/2𝑉 .

Hence by dyadic pigeonholing we have

𝑉 ′ ∫
3𝑇

𝑇 /4
|𝜁(1/2 + 𝑖𝑡1)|1|𝜁(1/2+𝑖𝑡1)|≍𝑉 ′ 𝑑𝑡 ≫ 𝑇 −𝑜(1)𝑅𝑁−1/2𝑉

for some 𝑉 ′ ≥ 𝑇 −𝑜(1)𝑁−1/2𝑉 , and thus

|𝜁(1/2 + 𝑖𝑡′)| ≍ 𝑉 ′

for all 𝑡′ in some 1-separated subset 𝑊 ′ of [𝑇 /4, 3𝑇 ] with

|𝑊 ′| ≫ 𝑇 −𝑜(1)|𝑊|𝑁−1/2𝑉 /𝑉 ′.

Applying [103, Theorem 2] (treating different cases using the bounds [103, (7), (8), (9)]), we
have the bound

|𝑊 ′| ≪ 𝑇 𝑜(1)(𝑇 (𝑉 ′)−6 + 𝑇 5(𝑉 ′)−32)
and thus

|𝑊| ≪ 𝑇 𝑜(1)(𝑇 (𝑁−1/2𝑉 )−1(𝑉 ′)−5 + 𝑇 5(𝑁−1/2𝑉 )−1(𝑉 ′)−31)
and the claim now follows from the lower bound on 𝑉 ′.
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9.2 Known moment growth bounds
Lemma 9.9 (Ivic’s table of moment bounds). [144, Theorem 8.4] We have 𝑀(𝜎, 𝐴) = 1
when 𝐴 is equal to

4
3 − 4𝜎 for 1/2 < 𝜎 ≤ 5/8;

10
5 − 6𝜎 for 5/8 < 𝜎 ≤ 35/54;

19
6 − 6𝜎 for 35/54 < 𝜎 ≤ 41/60;

2112
859 − 948𝜎 for 41/60 < 𝜎 ≤ 3/4;

12408
4537 − 4890𝜎 for 3/4 ≤ 𝜎 ≤ 5/6;

4324
1031 − 1044𝜎 for 5/6 ≤ 𝜎 ≤ 7/8;

98
31 − 32𝜎 for 7/8 ≤ 𝜎 ≤ 0.91591 … ;

24𝜎 − 9
(4𝜎 − 1)(1 − 𝜎) for 0.91591 ⋯ ≤ 𝜎 < 1.

Additionally, for 𝜎 = 2/3 one can take 𝐴 = 9.6187 … , for 𝜎 = 7/10 one can take 𝐴 = 11,
and for 𝜎 = 5/7 one can take 𝐴 = 12.

Proof. This is a computation using Lemma 8.11, Theorem 8.15, and Lemma 9.5; see [144]
for details.

Theorem 9.10 (Moment bounds for 𝜎 = 1/2). [279, Theorems 2.1, 2.2] We have

𝑀(1/2, 𝐴) ≤

⎧{{{{{{{{{{{
⎨{{{{{{{{{{{⎩

(16𝐴 + 35)/114, 866
65 ≤ 𝐴 < 14,

(176677𝐴 + 358428)/1246476, 14 ≤ 𝐴 < 122304
7955 = 15.37 … ,

(779𝐴 + 1398)/5422, 122304
7955 ≤ 𝐴 < 910020

58699 = 15.50 … ,
3(1661𝐴 + 2856)/34532, 910020

58699 ≤ 𝐴 < 9604
593 = 16.19 … ,

(405277𝐴 + 677194)/2800950, 9604
593 ≤ 𝐴 < 629068

35731 = 17.60 … ,
(40726597𝐴 + 64268678)/280113282, 629068

35731 ≤ 𝐴 < 13789
709 = 19.44 … ,

3(46𝐴 + 49)/926, 13789
709 ≤ 𝐴 < 204580

10333 = 19.79 … ,
(3475𝐴 + 3236)/23168, 204580

10333 ≤ 𝐴 < 4252
195 = 21.80 … ,

7(39945𝐴 + 33704)/1857036, 4252
195 ≤ 𝐴 < 812348

30267 = 26.83 … ,
(37𝐴 + 24)/244, 812348

30267 ≤ 𝐴 < 440
13 = 33.84 … ,

(31𝐴 − 24)/196, 440
13 ≤ 𝐴 < 203087

4742 = 42.82 … ,
7(31519𝐴 − 33704)/1385180, 203087

4742 ≤ 𝐴 < 3516129
65729 = 53.49 … ,

1 + 13(𝐴 − 6)/84, 3516129
65729 ≤ 𝐴.

and also
𝑀(1/2, 12 + 𝛿) ≤ 2 + 𝛿

8 + 3
√

510
7568 𝛿3/2, 0 < 𝛿 ≤ 86

65 .
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In particular, we have

𝑀(1/2, 13) ≤ 2.1340, 𝑀(1/2, 14) ≤ 2.2720, 𝑀(1/2, 15) ≤ 2.4137,
𝑀(1/2, 16) ≤ 2.5570, 𝑀(1/2, 17) ≤ 2.7016, 𝑀(1/2, 18) ≤ 2.8466.

9.3 Large values of 𝜁 moments
It is also of interest to control large values of the moments.

Definition 9.11 (Mixed moments). For fixed 1/2 ≤ 𝜎 ≤ 1, 𝐴 ≥ 0, and ℎ ≥ 0, let
𝑀(𝜎, 𝐴, ≥ ℎ) be the least (fixed) exponent for which the bound

∫
0≤𝑡≤𝑇 ∶|𝜁(𝜎+𝑖𝑡)|≥𝑇 ℎ

|𝜁(𝜎 + 𝑖𝑡)|𝐴 𝑑𝑡 ≪ 𝑇 𝑀(𝜎,𝐴,ℎ)+𝑜(1)

holds for unbounded 𝑇 . Similarly, let 𝑀(𝜎, 𝐴, ≤ ℎ) be the least exponent for which

∫
0≤𝑡≤𝑇 ∶|𝜁(𝜎+𝑖𝑡)|<𝑇 ℎ

|𝜁(𝜎 + 𝑖𝑡)|𝐴 𝑑𝑡 ≪ 𝑇 𝑀(𝜎,𝐴,ℎ)+𝑜(1)

holds for unbounded 𝑇 .

Lemma 9.12 (Mixed moments and large values of zeta). If 1/2 ≤ 𝜎0 ≤ 1, 𝐴 ≥ 1, and
ℎ ≥ 0 are fixed, then

𝑀(𝜎0, 𝐴, ≥ ℎ) ≤ sup
𝜏≥2;𝜎≥1/2,ℎ𝜏

(𝐴(𝜎 − 𝜎0) + LV𝜁(𝜎, 𝜏))/𝜏. (9.2)

and
𝑀(𝜎0, 𝐴, ≤ ℎ) ≤ sup

𝜏≥2;𝜎≤1/2,ℎ𝜏
(𝐴(𝜎 − 𝜎0) + LV𝜁(𝜎, 𝜏))/𝜏. (9.3)

That is to say, any bound of the form

LV𝜁(𝜎, 𝜏) ≤ 𝑀𝜏 − 𝐴(𝜎 − 𝜎0)

whenever 𝜏 ≥ 2 and 𝜎 ≥ 1/2, ℎ𝜏 , gives rise to a bound

𝑀(𝜎0, 𝐴, ≥ ℎ) ≤ 𝑀.

Similarly for 𝑀(𝜎0, 𝐴, ≥ ℎ), in which we replace the condition 𝜎 ≥ ℎ𝜏 by 𝜎 ≤ ℎ𝜏 .

Proof. This is a routine modification of the proof of Lemma 9.5.

Corollary 9.13 (Mixed moments and exponent pairs). If (𝑘, ℓ) is an exponent pair with
𝑘 > 0, then

𝑀(1/2, 6, ≥ ℎ) ≤ 1
and

𝑀 (1/2, 2(1 + 2𝑘 + 2ℓ)
𝑘 , ≤ ℎ) ≤ 𝑘 + ℓ

𝑘
where

ℎ ∶= ℓ
2 + 4𝑙 − 2𝑘 .
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Proof. From Lemma 8.11 with the exponent pair (𝑘, ℓ) we have

LV𝜁(𝜎, 𝜏) ≤ min(𝜏 − 6(𝜎 − 1/2), 𝑘 + ℓ
𝑘 𝜏 − 2(1 + 2𝑘 + 2ℓ)

𝑘 (𝜎 − 1/2)).

In particular, for 𝜎 − 1/2 ≤ ℎ𝜏 one has

LV𝜁(𝜎, 𝜏) ≤ 𝜏 − 6(𝜎 − 1/2)

and for 𝜎 − 1/2 ≥ ℎ𝜏 one has

𝑘 + ℓ
𝑘 𝜏 − 2(1 + 2𝑘 + 2ℓ)

𝑘 (𝜎 − 1/2).

The claim then follows from Lemma 9.12.

Corollary 9.14 (Specific mixed moments). [144, (8.56)] 𝑀(1/2, 6, ≥ 11/72) ≤ 1 and
𝑀(1/2, 24, ≤ 11/72) ≤ 15/4.

Proof. Apply Corollary 9.13 with the exponent pair (4/18, 11/18) = 𝐵𝐴𝐵𝐴(1/6, 2/3) from
Corollary 5.11.

Lemma 9.15 (Large value theorems from mixed moment bounds). [20, Proposition 2]
Suppose that 𝑀(1/2, 𝐴, ≥ ℎ) ≤ 1 for some 𝐴 ≥ 4 and ℎ ≥ 0. Then one has

LV(𝜎, 𝜏) ≤ max(𝛼 + 2 − 2𝜎, −𝛼 + 𝜏 + 𝐴/2 − 2𝐴(𝜎 − 1/2))

whenever 1/2 ≤ 𝜎 ≤ 1, 𝜏 > 0, and 0 ≤ 𝛼 ≤ 1 − 𝜎 is such that

𝜎 − 1
2 > 𝜏ℎ

2 + 1
4.

Lemma 9.16 (Zero density theorems from mixed moment bounds). [20, Proposition 5]
Suppose that 𝑀(1/2, 6, ≥ ℎ) ≤ 1 for some ℎ ≥ 0. Then for any 1/2 ≤ 𝛼 < 𝜎 < 1, one has

A(𝜎) ≤ max (4𝜇(𝛼)
𝜎 − 𝛼 , 3

8𝜎 − 5, 6ℎ
4𝜎 − 3) .

It is remarked in [20] that this proposition could lead to some improvements in current zero
density estimate bounds.

Lemma 9.17 (Chen-Debruyne-Vidas large values theorem). [32, Lemma A.1] Let 1/2 ≤
𝜎 ≤ 1 and 𝜏 ≥ 30𝜎−11

8 be fixed. Let 𝑞0, 𝐴0, 𝑞1, 𝐴1, ℎ be fixed quantities such that 𝑀(1/2, 𝑞0, ≥
ℎ) ≤ 𝐴0 and 𝑀(1/2, 𝑞0, ≤ ℎ) ≤ 𝐴1. Suppose that 𝜌 ≤ LV(𝜎, 𝜏) is such that

24(1 − 𝜎)
30𝜎 − 11 𝜏 ≤ 𝜌 ≤ 1.

Then for any 𝛼1 ≥ 0 and 0 ≤ 𝛼2 ≤ 𝜏 , one has

𝜌 ≤ max(2−2𝜎+𝛼2, −2𝛼1−(𝐴0−1)𝛼2+𝐴0𝜏+(3−4𝜎)𝑞0/2, −2𝛼1+(𝐴1−1)𝛼2+𝐴1𝜏+(3−4𝜎)𝑞1/2, 8𝛼1/7+4𝛼2/7+16(1−𝜎)/7+6(10𝜎−9)𝜏/7(30𝜎−11), 16𝛼1/3+4(3−4𝜎)/3+2(10𝜎−9)𝜏/(30𝜎−11), 5𝛼1/3+𝛼2/6+2(3−4𝜎)/3+(1/3+(10𝜎−9)/(30𝜎−11))𝜏).

In [32] this lemma is applied with (𝑞0, 𝐴0) = (6, 1) and (𝑞1, 𝐴1) = (19, 3) with ℎ = 2/13,
which follows from Corollary 9.13 applied to the exponent pair (2/7, 4/7) = 𝐵𝐴(1/6, 2/3)
from Corollary 5.11.
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Chapter 10

Large value additive energy

10.1 Additive energy
Definition 10.1 (Additive energy). Let 𝑊 be a finite set of real numbers. The additive
energy 𝐸1(𝑊) of such a set is defined to be the number of quadruples (𝑡1, 𝑡2, 𝑡3, 𝑡4) ∈ 𝑊 such
that

|𝑡1 + 𝑡2 − 𝑡3 − 𝑡4| ≤ 1.
We remark that in additive combinatorics, the variant 𝐸0(𝑊) of the additive energy is often
studied, in which 𝑡1 +𝑡2 −𝑡3 −𝑡4 is not merely required to be 1-bounded, but in fact vanishes
exactly. However, this version of additive energy is less relevant for analytic number theory
applications.

Lemma 10.2 (Basic properties of additive energy). (i) If 𝑊 is a finite set of reals, then

𝐸1(𝑊) ≍ ∫
R

|#{(𝑡1, 𝑡2) ∈ 𝑊 ∶ |𝑡1 + 𝑡2 − 𝑥| ≤ 1}|2 𝑑𝑥.

More generally, for any 𝑟 > 0 we have

𝐸1(𝑊) ≍ 𝑟𝑂(1) ∫
R

|#{(𝑡1, 𝑡2) ∈ 𝑊 ∶ |𝑡1 + 𝑡2 − 𝑥| ≤ 𝑟}|2 𝑑𝑥.

(ii) If 𝑊 is a finite set of reals, then

𝐸1(𝑊) ≍ ∫
1

−1
| ∑

𝑡∈𝑊
𝑒(𝑡𝜃)|4 𝑑𝜃.

(iii) If 𝑊1, … , 𝑊𝑘 are finite sets of reals, then

𝐸1(𝑊1 ∪ ⋯ ∪ 𝑊𝑘)1/4 ≪ 𝐸1(𝑊1)1/4 + ⋯ + 𝐸1(𝑊𝑘)1/4.

(iv) If 𝑊 is 1-separated and contained in an interval of length 𝑇 ≥ 1, then

(#𝑊)2, (#𝑊)4/𝑇 ≪ 𝐸1(𝑊) ≪ (#𝑊)3.
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(v) If 𝑊 is contained in an interval 𝐼, which is in turn split into 𝐾 equally sized subintervals
𝐽1, … , 𝐽𝐾, then

𝐸1(𝑊)1/3 ≪
𝐾

∑
𝑘=1

𝐸1(𝑊 ∩ 𝐽𝑘)1/3.

Note that the lower bound of (#𝑊)4/𝑇 would be expected to be attained if the set 𝑊 is
distributed “randomly” and is reasonably large (of size ≫

√
𝑇 ). So getting upper bounds of

the additive energy of similar strength to this lower bound can be viewed as a statement of
“pseudorandomness” (or “Gowers uniformity”) of this set.

Proof. For (i), we just prove the first estimate, as the second follows from the first by several
applications of the triangle inequality. The right-hand side can be expanded as

∑
𝑡1,𝑡2,𝑡3,𝑡4∈𝑊

|{𝑥 ∶ |𝑡1 + 𝑡2 − 𝑥|, |𝑡3 + 𝑡4 − 𝑥| ≤ 1}|.

Every quadruple contributing to 𝐸1(𝑊) then contributes ≫ 1 to the right-hand side, giving
the upper bound. To get the matching lower bound, note that

∑
𝑡1,𝑡2,𝑡3,𝑡4∈𝑊

|{𝑥 ∶ |𝑡1 + 𝑡2 − 𝑥|, |𝑡3 + 𝑡4 − 𝑥| ≤ 1/2} ≤ 𝐸1(𝑊)

and hence
𝐸1(𝑊) ≫ ∫

R
|#{(𝑡1, 𝑡2) ∈ 𝑊 ∶ |𝑡1 + 𝑡2 − 𝑥| ≤ 1/2}|2 𝑑𝑥.

The upper bound then follows from the triangle inequality.
For (ii), we can upper bound the indicator function of [−1, 1] by the Fourier transform of a
non-negative bump function 𝜑, so that the right-hand side is bounded by

∑
𝑡1,𝑡2,𝑡3,𝑡4∈𝑊

𝜑(𝑡1 + 𝑡2 − 𝑡3 − 𝑡4)

which is then bounded by 𝑂(𝐸1(𝑊)) by choosing the support of 𝜑 appropriately. The lower
bound is established similarly (using the arguments in (i) to adjust the error tolerance 1 in
the constraint |𝑡1 + 𝑡2 − 𝑥| ≤ 1 as necessary.)
For (iii), first observe we may remove duplicates and assume that the 𝑊𝑖 are disjoint, then
we can use (ii) and the triangle inequality.
For (iv), the first lower bound comes from considering the diagonal case 𝑡1 = 𝑡3, 𝑡2 = 𝑡4
and the upper bound comes from observing that once 𝑡1, 𝑡2, 𝑡3 are fixed, there are only 𝑂(1)
choices for 𝑡4 thanks to the 1-separated hypothesis. Finally, observe that

∫
R

|#{(𝑡1, 𝑡2) ∈ 𝑊 ∶ |𝑡1 + 𝑡2 − 𝑥| ≤ 1}| 𝑑𝑥 = (2#𝑊)2

hence by Cauchy–Schwarz

∫
R

|#{(𝑡1, 𝑡2) ∈ 𝑊 ∶ |𝑡1 + 𝑡2 − 𝑥| ≤ 1}|2 𝑑𝑥 ≫ (#𝑊)2/𝑇

and the claim follows from (i).
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For (v), write 𝑎𝑘 ∶= 𝐸1(𝑊 ∩ 𝐽𝑘)1/4. Each tuple (𝑡1, 𝑡2, 𝑡3, 𝑡4) that contributes to 𝐸1(𝑊)
is associated to a tuple 𝐽𝑘1

, 𝐽𝑘2
, 𝐽𝑘3

, 𝐽𝑘4
of intervals with 𝑘1 + 𝑘2 − 𝑘3 − 𝑘4 = 𝑂(1). By

modifying the proof of (ii), the total contribution of such a tuple of intervals is

≪ ∫
R

4
∏
𝑗=1

| ∑
𝑡∈𝑊∩𝐽𝑘𝑗

𝑒(𝑡𝜃)| 𝑑𝜃

which by Cauchy–Schwarz is bounded by

≪ 𝑎𝑘1
𝑎𝑘2

𝑎𝑘3
𝑎𝑘4

.

Thus we see that
𝐸1(𝑊) ≪ ∑

𝑚=𝑂(1)
𝑎 ∗ 𝑎 ∗ ̃𝑎 ∗ ̃𝑎(𝑚)

where ̃𝑎𝑘 ∶= 𝑎−𝑘 and ∗ denotes convolution on the integers. By Young’s inequality we then
have

𝐸1(𝑊) ≪ ‖𝑎‖4
ℓ4/3

and the claim follows.
We remark that (v) can also be proven using [42, Lemma 4.8, (4.2)].

We will also study the following related quantity. Given a set 𝑊 and a scale 𝑁 > 1, let
𝑆(𝑁, 𝑊) denote the double zeta sum

𝑆(𝑁, 𝑊) ∶= ∑
𝑡,𝑡′∈𝑊

∣ ∑
𝑛∈[𝑁,2𝑁]

𝑛−𝑖(𝑡−𝑡′)∣
2

. (10.1)

We caution that this normalization differs from the one in [144], where 𝑛−1/2−𝑖(𝑡−𝑡′) is used
in place of 𝑛−𝑖(𝑡−𝑡′). This sum may also be rearranged as

𝑆(𝑁, 𝑊) = ∑
𝑛,𝑚∈[𝑁,2𝑁]

|𝑅𝑊 (𝑛/𝑚)|2 (10.2)

where 𝑅𝑊 is the exponential sum

𝑅𝑊 (𝑥) ∶= ∑
𝑡∈𝑊

𝑥𝑖𝑡.

From the first formula it is clear that 𝑆(𝑁, 𝑊) is monotone non-decreasing in 𝑊 , and from
the second formula one has the triangle inequality

𝑆 (𝑁,
𝑘

⋃
𝑖=1

𝑊𝑖)
1/2

≤
𝑘

∑
𝑖=1

𝑆(𝑁, 𝑊𝑖)1/2 (10.3)

when the 𝑊𝑖 are disjoint, and hence also when they are not assumed to be disjoint, thanks
to the monotonicity.
The following Cauchy–Schwarz inequality is also useful:
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Lemma 10.3 (Cauchy–Schwarz and double 𝜁-sums). [22, Lemma 3.4] If 𝑊, 𝑊 ′ are finite
sets of reals, 𝑁 > 1, and 𝑎𝑛 is a 1-bounded sequence for 𝑛 ∈ [𝑁, 2𝑁], then

∑
𝑡∈𝑊,𝑡′∈𝑊 ′

∣ ∑
𝑛∈[𝑁,2𝑁]

𝑎𝑛𝑛−𝑖𝑡∣
2

≤ 𝑆(𝑁, 𝑊)1/2𝑆(𝑁, 𝑊 ′)1/2. (10.4)

In particular

∑
𝑡∈𝑊

∣ ∑
𝑛∈[𝑁,2𝑁]

𝑎𝑛𝑛−𝑖𝑡∣
2

≤ 𝑆(𝑁, 𝑊).

Proof. The left-hand side of (10.4) can be rewritten as

∑
𝑛,𝑚∈[𝑁,2𝑁]

𝑎𝑛𝑎𝑚𝑅𝑊 (𝑛/𝑚)𝑅𝑊 ′(𝑛/𝑚).

The claim is now immediate from (10.2) and the Cauchy–Schwarz inequality.

To relate 𝑆(𝑁, 𝑊) to 𝐸1(𝑊), we first observe the following lemma, implicit in [104] and
made more explicit in [88, Lemma 11.4].

Lemma 10.4 (Energy controlled by third moment). Suppose that (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊)
is a large value pattern with 𝑇 ≥ 1 and 1 ≤ 𝑁 ≪ 𝑇 𝑂(1). Then

𝑉 2𝐸1(𝑊) ≪ 𝑇 𝑜(1) ∑
𝑛,𝑚∈[𝑁,2𝑁]

|𝑅𝑊 (𝑛/𝑚)|3 + 𝑇 −50.

Proof. By hypothesis, we have

𝑉 2𝐸1(𝑊) ≤ ∑
𝑡1,𝑡2,𝑡3,𝑡4∈𝑊∶|𝑡1+𝑡2−𝑡3−𝑡4|≤1

∣ ∑
𝑛∈[𝑁,2𝑁]

𝑎𝑛𝑛−𝑖𝑡4 ∣
2

.

By standard Fourier arguments (see [88, Lemma 11.3]), we can bound

∣ ∑
𝑛∈[𝑁,2𝑁]

𝑎𝑛𝑛−𝑖𝑡4 ∣ ≪ 𝑇 𝑜(1) ∫
𝑡∶|𝑡−𝑡4|≤𝑇 𝑜(1)

∣ ∑
𝑛∈[𝑁,2𝑁]

𝑎𝑛𝑛−𝑖𝑡∣ 𝑑𝑡 + 𝑇 −100.

Since each 𝑡1, 𝑡2, 𝑡3 generates at most 𝑂(1) choices for 𝑡4, we conclude that

𝑉 2𝐸1(𝑊) ≪ 𝑇 𝑜(1) ∑
𝑡1,𝑡2,𝑡3∈𝑊

∫
𝑠∶|𝑠|≤𝑇 𝑜(1)

∣ ∑
𝑛∈[𝑁,2𝑁]

𝑎𝑛𝑛−𝑖(𝑡1+𝑡2−𝑡3+𝑠)∣
2

𝑑𝑠 + 𝑇 −50,

The right-hand side can be rewritten as

𝑇 𝑜(1) ∑
𝑛,𝑚∈[𝑁,2𝑁]

𝑎𝑛𝑎𝑚(𝑛/𝑚)−𝑖𝑠𝑅𝑊 (𝑛/𝑚)2𝑅𝑊 (𝑛/𝑚) + 𝑇 −50,

and the claim then follows from the triangle inequality.
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Thus, 𝑆(𝑁, 𝑊) involves a second moment of 𝑅𝑊 , while the energy 𝐸1(𝑊) is related to the
third moment. Using the trivial bound |𝑅𝑊 (𝑥)| ≤ |𝑊| we can then obtain the trivial bound

𝑉 2𝐸1(𝑊) ≪ 𝑇 𝑜(1)|𝑊|𝑆(𝑁, 𝑊) + 𝑇 −50 (10.5)

It is then natural to introduce the fourth moment

𝑆4(𝑁, 𝑊) ∶= ∑
𝑛,𝑚∈[𝑁,2𝑁]

|𝑅𝑊 (𝑛/𝑚)|4

since from Hölder’s inequality one now has

𝑉 2𝐸1(𝑊) ≪ 𝑇 𝑜(1)𝑆(𝑁, 𝑊)1/2𝑆4(𝑁, 𝑊)1/2 + 𝑇 −50 (10.6)

(cf. [104, Lemma 3]). The quantity 𝑆4(𝑁, 𝑊) can also be expressed as

𝑆4(𝑁, 𝑊) = ∑
𝑡1,𝑡2,𝑡3,𝑡4∈𝑊

∣ ∑
𝑛∈[𝑁,2𝑁]

𝑛−𝑖(𝑡1+𝑡2−𝑡3−𝑡4)∣
2

.

One can bound this quantity by an 𝑆(𝑁, 𝑊) type expression:

Lemma 10.5. If 𝑊 ⊂ [−𝑇 , 𝑇 ] is 1-separated and 1 ≤ 𝑁 ≪ 𝑇 𝑂(1), then one has

𝑆4(𝑁, 𝑊) ≪ 𝑇 𝑜(1)𝑢2𝑆(𝑁, 𝑈) + 𝑇 −100

for some 1 ≤ 𝑢 ≪ |𝑊| and 1-separated subset 𝑈 of [−2𝑇 , 2𝑇 ] with

𝑢|𝑈| ≪ |𝑊|2 (10.7)

and
𝑢2|𝑈| ≪ 𝐸1(𝑊). (10.8)

This result appears implicitly in [104, p. 229], and is made more explicit in the proof of [88,
Lemma 11.6].

Proof. One can bound

𝑆4(𝑁, 𝑊) ≪ 𝑇 𝑜(1) ∑
𝑡1,𝑡2,𝑡3,𝑡4∈𝑊

∫
𝑡=𝑡1+𝑡2−𝑡3−𝑡4+𝑂(𝑇 𝑜(1))

∣ ∑
𝑛∈[𝑁,2𝑁]

𝑛−𝑖𝑡∣
2

𝑑𝑡 + 𝑇 −100,

and hence

𝑆4(𝑁, 𝑊) ≪ 𝑇 𝑜(1) ∑
𝑡1,𝑡2∈[−2𝑁,2𝑁]∩Z

𝑓(𝑡1)𝑓(𝑡2) ∫
𝑡=𝑡1−𝑡2+𝑂(𝑇 𝑜(1))

∣ ∑
𝑛∈[𝑁,2𝑁]

𝑛−𝑖𝑡∣
2

𝑑𝑡 + 𝑇 −100

where 𝑓 is the counting function

𝑓(𝑡) ∶= |{(𝑡1, 𝑡2) ∈ 𝑊 ∶ |𝑡 − 𝑡1 − 𝑡2| ≤ 1}|.
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Note that 𝑓 is integer valued and bounded above by |𝑊|. By dyadic decomposition, one can
then find 1 ≤ 𝑢 ≪ |𝑊| and a subset 𝑈 of [−2𝑁, 2𝑁] ∩ Z such that 𝑓(𝑡) ≍ 𝑢 for 𝑡 ∈ 𝑈 , and

𝑆4(𝑁, 𝑊) ≪ 𝑇 𝑜(1) ∑
𝑡1,𝑡2∈𝑈

𝑢2 ∫
𝑡=𝑡1−𝑡2+𝑂(𝑇 𝑜(1))

∣ ∑
𝑛∈[𝑁,2𝑁]

𝑛−𝑖𝑡∣
2

𝑑𝑡 + 𝑇 −100

which we can rearrange as

𝑆4(𝑁, 𝑊) ≪ 𝑇 𝑜(1)𝑢2 ∫
𝑠=𝑂(𝑇 𝑜(1))

∑
𝑛,𝑚∈[𝑁,2𝑀]

(𝑛/𝑚)𝑖𝑠|𝑅𝑈(𝑛/𝑚)|2 𝑑𝑠 + 𝑇 −100

and hence by the triangle inequality

𝑆4(𝑁, 𝑊) ≪ 𝑇 𝑜(1)𝑣2𝑆(𝑁, 𝑉 ) + 𝑇 −100.

Also, by double counting one easily verifies the claims (10.7), (10.8). The claim follows.

10.2 Large value additive energy region
Because the cardinality |𝑊| and additive energy 𝐸1(𝑊) of a set 𝑊 are correlated with each
other, as well as with the double zeta sum 𝑆(𝑁, 𝑊), we will not be able to consider them
separately, and instead we will need to consider the possible joint exponents for these two
quantities. We formalize this via the following set:

Definition 10.6 (Large value energy region). The large value energy region ℰ ⊂ R5 is
defined to be the set of all fixed tuples (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) with 1/2 ≤ 𝜎 ≤ 1, 𝜏, 𝜌, 𝜌′ ≥ 0, such
that there exists a large value pattern (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) with 𝑁 > 1 unbounded,
𝑉 = 𝑁𝜎+𝑜(1), 𝑇 = 𝑁𝜏+𝑜(1), 𝑉 = 𝑁𝜎+𝑜(1), |𝑊| = 𝑁𝜌+𝑜(1), 𝐸1(𝑊) = 𝑁𝜌∗+𝑜(1) and 𝑆(𝑁, 𝑊) =
𝑁𝑠+𝑜(1).
We define the zeta large value energy region ℰ𝜁 ⊂ R5 similarly, but where now (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊)
is required to be a zeta large value pattern.

Clearly we have

Lemma 10.7 (Trivial containment). We have ℰ𝜁 ⊂ ℰ.

These regions are related to LV(𝜎, 𝜏) and LV𝜁(𝜎, 𝜏) as follows:

Lemma 10.8. For any fixed 1/2 ≤ 𝜎 ≤ 1, 𝜏 ≥ 0, we have

LV(𝜎, 𝜏) = sup{𝜌 ∶ (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ}

and
LV𝜁(𝜎, 𝜏) = sup{𝜌 ∶ (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ𝜁}

In particular, we have 𝜌 ≤ LV(𝜎, 𝜏) for all (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ, and 𝜌 ≤ LV𝜁(𝜎, 𝜏) for all
(𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ𝜁.

Proof. Clear from definition.

Inspired by this, we can define
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Definition 10.9. For any fixed 1/2 ≤ 𝜎 ≤ 1, 𝜏 ≥ 0, we define

LV∗(𝜎, 𝜏) ∶= sup{𝜌∗ ∶ (𝜎, 𝜏 , 𝜌, 𝜌∗, 𝑠) ∈ ℰ}

and
LV∗

𝜁(𝜎, 𝜏) ∶= sup{𝜌∗ ∶ (𝜎, 𝜏 , 𝜌, 𝜌∗, 𝑠) ∈ ℰ𝜁}.
Thus these exponents are upper bounds for the additive energy of large values of Dirichlet
polynomials which may or may not be of zeta function type.
As usual, we have an equivalent non-asymptotic definition of the large value energy region:

Lemma 10.10 (Non-asymptotic form of large value energy region). Let 1/2 ≤ 𝜎 ≤ 1, 𝜏 ≥ 0,
𝜌, 𝜌∗ ≥ 0, and 𝑠 ∈ R be fixed. Then the following are equivalent:

(i) (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ.

(ii) For every 𝜀 > 0 there exists 𝐶, 𝛿 > 0 such that there is a large value pattern
(𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) with 𝑁 ≥ 𝐶, 𝑁𝜏−𝛿 ≤ 𝑇 ≤ 𝑁𝜏+𝛿, 𝑁𝜎−𝛿 ≤ 𝑉 ≤ 𝑁𝜎+𝛿,
𝑁𝜌−𝜀 ≤ |𝑊| ≤ 𝑁𝜌+𝜀, 𝑁𝜌∗−𝜀 ≤ 𝐸1(𝑊) ≤ 𝑁𝜌∗+𝜀, and 𝑁𝑠−𝜀 ≤ 𝑆(𝑁, 𝑊) ≤ 𝑁𝑠+𝜀.

Similarly with ℰ replaced by ℰ𝜁, and with (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) required to be a zeta
large value pattern.

This lemma is proven by a routine expansion of the definitions, and is omitted.

Lemma 10.11 (Basic properties).

(i) (Monotonicity in 𝜎) If (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ, then (𝜎′, 𝜏 ′, 𝜌, 𝜌∗, 𝑠) ∈ ℰ for all 1/2 ≤ 𝜎′ ≤ 𝜎
and 𝜏 ′ ≥ 𝜏 .

(ii) (Subdivision) If (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ and 0 ≤ 𝜏 ′ ≤ 𝜏 , then amongst all tuples (𝜎, 𝜏 ′, 𝜌′, (𝜌′)∗, 𝑠′) ∈
ℰ with 𝜌′ ≤ 𝜌, (𝜌′)∗ ≤ 𝜌∗, and 𝑠′ ≤ 𝑠, there exists a tuple with

𝜌 ≤ 𝜌′ + 𝜏 − 𝜏 ′;

there exists a tuple with

𝜌∗ ≤ 𝜌′ + 3 min(𝜌 − 𝜌′, 𝜏 − 𝜏 ′);

and there exists a tuple with

𝑠 ≤ 𝑠′ + 2 min(𝜌 − 𝜌′, 𝜏 − 𝜏 ′).

(But it may not be the same tuple that satisfies all three properties.)

(iii) (Trivial bounds) If (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ, one has

2𝜌, 4𝜌 − 𝜏 ≤ 𝜌∗ ≤ 3𝜌.

Proof. The claim (i) is trivial, so we turn to (ii). By definition, there exists a large value
pattern (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) with 𝑁 > 1 unbounded, 𝑇 = 𝑁𝜏+𝑜(1), 𝑉 = 𝑁𝜎+𝑜(1),
|𝑊| = 𝑁𝜌+𝑜(1), 𝐸1(𝑊) = 𝑁𝜌∗+𝑜(1), and 𝑆(𝑁, 𝑊) = 𝑁𝑠+𝑜(1). We now partition 𝐽 into
𝑁𝜏−𝜏′+𝑜(1) subintervals 𝐼 of length 𝑁𝜏′+𝑜(1), and subdivide 𝑊 into 𝑊𝐼 accordingly. By dyad-
ically pigeonholing, we can then subdivide this collection 𝐼 of intervals into 𝑁𝑜(1) subcollec-
tions, where on each subcollection there exists fixed 𝜌′, (𝜌′)∗, 𝑠′ such that |𝑊𝐼 | = 𝑁𝜌′+𝑜(1),
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𝐸1(𝑊𝐼) = 𝑁 (𝜌′)∗+𝑜(1), and 𝑆(𝑁, 𝑊𝐼) = 𝑁𝑠′+𝑜(1). Since 𝑊𝐼 ⊂ 𝑊 , this forces 𝜌′ ≤ 𝜌,
(𝜌′)∗ ≤ 𝜌∗, and 𝑠′ ≤ 𝑠. From Definition 10.6 we see that (𝜎, 𝜏 ′, 𝜌′, (𝜌′)∗, 𝑠′) ∈ ℰ.
By the pigeonhole principle, one of these subcollections must contribute at least 𝑁−𝑜(1) of
the cardinality of 𝑊 . Since there are at most 𝑁𝜏−𝜏′+𝑜(1) intervals in this collection, we must
have 𝜌 ≤ 𝜌′ + 𝜏 − 𝜏 ′ in this case.
By Lemma 10.2(iii), we also know that a (possibly different subcollection) must contribute
at least 𝑁−𝑜(1) of the additive energy of 𝑊 . The number of intervals in this subcollection
is at most min(𝑁𝜏−𝜏′+𝑜(1), 𝑁𝜌−𝜌′+𝑜(1)). Applying Lemma 10.2(iii) again, we conclude 𝜌∗ ≤
(𝜌∗)′ + 3 min(𝜌 − 𝜌′, 𝜏 − 𝜏 ′).
Finally, from (10.3), we know that a (possibly yet another subcollection) must contribute at
least 𝑁−𝑜(1) of the double zeta sum 𝑆(𝑁, 𝑊). The number of intervals in this subcollection
is at most min(𝑁𝜏−𝜏′+𝑜(1), 𝑁𝜌−𝜌′+𝑜(1)). Applying Lemma 10.3(iii) again, we conclude 𝑠 ≤
𝑠′ + 2 min(𝜌 − 𝜌′, 𝜏 − 𝜏 ′).
Lemma 10.12 (Raising to a power). If (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ, and 𝑘 ≥ 1, then amongst all
tuples (𝜎, 𝜏/𝑘, 𝜌′, (𝜌′)∗, 𝑠′) ∈ ℰ with 𝜌′ ≤ 𝜌/𝑘, (𝜌′)∗ ≤ 𝜌∗/𝑘, and 𝑠′ ≤ 𝑠/𝑘, there exists a
tuple with 𝜌′ = 𝜌/𝑘, there exists a tuple with (𝜌′)∗ = 𝜌∗/𝑘, and there exists a tuple with
𝑠′ = 𝑠/𝑘. (These may be three different tuples.)
Proof. By definition, there exists a large value pattern (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) with
𝑁 > 1 unbounded, 𝑇 = 𝑁𝜏+𝑜(1), 𝑉 = 𝑁𝜎+𝑜(1), |𝑊| = 𝑁𝜌+𝑜(1), 𝐸1(𝑊) = 𝑁𝜌∗+𝑜(1), and
𝑆(𝑁, 𝑊) = 𝑁𝑠+𝑜(1). Observe that

⎛⎜
⎝

∑
𝑛∈[𝑁,2𝑁]

𝑎𝑛𝑛−𝑖𝑡⎞⎟
⎠

𝑘

= ∑
𝑛∈[𝑁𝑘,2𝑘𝑁𝑘]

𝑏𝑛𝑛−𝑖𝑡

for some coefficients 𝑏𝑛 = 𝑂(𝑛𝑜(1)). In particular, partitioning [𝑁𝑘, 2𝑘𝑁𝑘] into 𝑂(1) sub-
intervals [𝑁 ′, 2𝑁 ′] with 𝑁 ′ = 𝑁𝑘+𝑜(1), we can partition 𝑊 into 𝑂(1) subcollections 𝑊𝑁′ ,
such that

∣ ∑
𝑛∈[𝑁′,2𝑁′]

𝑏𝑛𝑛−𝑖𝑡∣ ≫ 𝑉 𝑘 = (𝑁 ′)𝜎+𝑜(1)

for all 𝑡 ∈ 𝑊𝑁′ . Again by the pigeonhole principle, one of the 𝑊𝑁′ must have cardinality
𝑁𝜌+𝑜(1), one must have energy 𝑁𝜌∗+𝑜(1), and one must have double zeta sum 𝑁𝑠+𝑜(1) (but
these may be different 𝑊𝑁′). Each of these 𝑊𝑁′ then give the different conclusions to the
lemma.

Morally speaking, one should be able to obtain equality in all three conclusions of Lemma
10.12 simultaneously, i.e. that (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ essentially implies (𝜎, 𝜏/𝑘, 𝜌/𝑘, 𝜌∗/𝑘, 𝑠/𝑘) ∈
ℰ. This is because in practice one frequently controls ℰ by computing a containment region
ℰ1 that possesses precisely the required monotonicity property. Specifically, we have
Lemma 10.13 (Monotonicity criterion). Let ℰ1 be the intersection of sets 𝐸𝑖, each of the
form

{(𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ R5 ∶ 𝜌 ≤ 𝑓1(𝜌∗, 𝑠), 𝜌∗ ≤ 𝑓2(𝜌, 𝑠), 𝑠 ≤ 𝑓3(𝜌, 𝜌∗)}
for some monotonically increasing functions 𝑓1, 𝑓2, 𝑓3 (that possibly also depend on 𝜎 and
𝜏).
Suppose amongst all tuples (𝜎, 𝜏, 𝜌′, (𝜌∗)′, 𝑠′) ∈ ℰ1 with 𝜌′ ≤ 𝜌, (𝜌∗)′ ≤ 𝜌∗ and 𝑠′ ≤ 𝑠, there
exists a tuple with 𝜌′ = 𝜌, a tuple with (𝜌∗)′ = 𝜌∗ and a tuple with 𝑠′ = 𝑠 (not necessarily
the same tuple each time). Then, (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ1.
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Proof. Suppose that (𝜎, 𝜏, 𝜌, (𝜌∗)′, 𝑠′) ∈ ℰ1 for some (𝜌∗)′ ≤ 𝜌∗ and 𝑠 ≤ 𝑠′ so that also
(𝜎, 𝜏, 𝜌, (𝜌∗)′, 𝑠′) ∈ 𝐸𝑖. Then by definition 𝜌 ≤ 𝑓1((𝜌∗)′, 𝑠′). Since 𝑓1 is monotonically
increasing (with respect to both 𝜌∗ and 𝑠), one has 𝜌 ≤ 𝑓1(𝜌∗, 𝑠). Similarly, (𝜎, 𝜏, 𝜌′, 𝜌∗, 𝑠′) ∈
ℰ1 implies 𝜌∗ ≤ 𝑓2(𝜌, 𝑠) and (𝜎, 𝜏, 𝜌′, (𝜌∗)′, 𝑠) ∈ ℰ1 implies 𝑠 ≤ 𝑓3(𝜌, 𝜌∗), which together
imply (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ 𝐸𝑖 by definition. Hence (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ1 since ℰ1 is the intersection
of sets 𝐸𝑖.

Lemma 10.14 (Raising to a power, alternative formulation). Let 𝑘 be a positive integer,
ℰ1 ⊆ R5 be a set satisfying the monotonicity criterion of Lemma 10.13 and

ℰ𝑘 ∶= {(𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ R5 ∶ (𝜎, 𝜏/𝑘, 𝜌/𝑘, 𝜌∗/𝑘, 𝑠/𝑘) ∈ ℰ1}.

If ℰ ⊆ ℰ1 then ℰ ⊆ ℰ𝑘.

Proof. Suppose that (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ ⊆ ℰ1. By Lemma 10.12 and Lemma 10.13, (𝜎, 𝜏/𝑘, 𝜌/𝑘, 𝜌∗/𝑘, 𝑠/𝑘) ∈
ℰ1, hence by definition (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ𝑘.

10.3 Known relations for the large value energy region
Theorem 10.15 (Reflection principle). [144, §11.5] If (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ with 𝜎 ≥ 3/4 and
𝜏 > 1, then for any integer 𝑘 ≥ 1, either 𝜌 ≤ 2 − 2𝜎, or there exists 0 < 𝛼 ≤ 𝑘(𝜏 − 1) and
(𝜎, 𝜏/𝛼, 𝜌/𝛼, 𝜌∗/𝛼, 𝑠′/𝛼) ∈ ℰ such that

𝜌 ≤ min(2 − 2𝜎, 𝑘(3 − 4𝜎)/2 + 𝑠′ − 1).

Proof. By definition, there exists a large value pattern (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) with
𝑁 > 1 unbounded, 𝑇 = 𝑁𝜏+𝑜(1), |𝑊| = 𝑁𝜌+𝑜(1), 𝐸1(𝑊) = 𝑁𝜌∗+𝑜(1) and 𝑆(𝑁, 𝑊) = 𝑁𝑠+𝑜(1).
By [144, (11.58)], one has

|𝑊|2 ≪ 𝑇 𝑜(1) ⎛⎜
⎝

|𝑊|𝑁2−2𝜎 + 𝑁1−2𝜎|𝑊|2 + 𝑁 (3−4𝜎)/2 ∫
𝑣=𝑂(𝑇 𝑜(1))

∑
𝑡,𝑡′∈𝑊

∣ ∑
𝑛≤4𝑇 /𝑁

𝑛−1/2+𝑖𝑡−𝑖𝑡′+𝑖𝑣∣ 𝑑𝑣⎞⎟
⎠

.

Since 𝜎 > 1/2, the 𝑁1−2𝜎|𝑊|2 term can be dropped. Applying Hölder’s inequality and
dyadic pigeonholing as in [144, (11.59)], we conclude that

|𝑊| ≪ 𝑇 𝑜(1)
⎛⎜⎜⎜
⎝

𝑁2−2𝜎 + 𝑁𝑘(3−4𝜎)/2 ⎛⎜⎜
⎝

∑
𝑡,𝑡′∈𝑊

∣ ∑
𝑛∈[𝑁′,2𝑁′]

𝑏𝑛𝑛−1/2+𝑖𝑡−𝑖𝑡′+𝑖𝑣∣
2
⎞⎟⎟
⎠

1/2
⎞⎟⎟⎟
⎠

for some 𝑣 = 𝑂(𝑇 𝑜(1)) and coefficients 𝑏𝑛 = 𝑂(𝑇 𝑜(1)), and some 𝑁 ′ ≪ (4𝑇 /𝑁)𝑘. After
passing to a subsequence if necessary, we may assume that 𝑁 ′ = 𝑁𝛼+𝑜(1) for some 0 ≤ 𝛼 ≤
𝑘(𝜏 −1). If 𝛼 = 0 then the second term here is negligible compared to the first and we obtain
𝜌 ≤ 2 − 2𝜎, so suppose that 𝛼 > 0. Using [144, Lemma 11.1] to eliminate the 𝑏𝑛𝑛−1/2+𝑖𝑣

coefficients, we conclude that

|𝑊| ≪ 𝑇 𝑜(1)(𝑁2−2𝜎 + 𝑁𝑘(3−4𝜎)/2−1𝑆(𝑁 ′, 𝑊)).

By construction, we have 𝑆(𝑁 ′, 𝑊) = (𝑁 ′)𝑠′/𝛼+𝑜(1) = 𝑁𝑠′+𝑜(1) for some tuple (𝜎, 𝜏/𝛼, 𝜌/𝛼, 𝜌∗/𝛼, 𝑠′/𝛼) ∈
ℰ. The claim follows.
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Heuristically one expects 𝑠 ≤ max(𝜌 + 1, 2𝜌) + 1 (see [144, (11.63)]). There is one easy case
in which this is true:

Lemma 10.16. If (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ with 𝜏 < 1, then 𝑠 ≤ max(𝜌 + 1, 2𝜌) + 1.

Recorded in literature.py as:
add_lver_ivic_1985()

Proof. By definition, there exists a large value pattern (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) with
𝑁 > 1 unbounded, 𝑇 = 𝑁𝜏+𝑜(1), |𝑊| = 𝑁𝜌+𝑜(1), 𝐸1(𝑊) = 𝑁𝜌∗+𝑜(1) and 𝑆(𝑁, 𝑊) = 𝑁𝑠+𝑜(1).
By the discussion after [144, (11.63)], we have

𝑁−1𝑆(𝑁, 𝑊) ≪ 𝑇 𝜀(|𝑊|𝑁 + |𝑊|2)

for any fixed 𝜀 > 0, which gives the claim. .

Another bound is

Lemma 10.17. [144, Lemma 11.2] If (𝑘, ℓ) is an exponent pair with 𝑘 > 0, and (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈
ℰ, then

𝑠 ≤ max (𝜌 + 1, 5𝜌/3 + 𝜏/3, 2 + 3𝑘 + 4ℓ
1 + 2𝑘 + 2ℓ𝜌 + 𝑘 + ℓ

1 + 2𝑘 + 2ℓ𝜏) + 1.

Proof. By definition, there exists a large value pattern (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) with
𝑁 > 1 unbounded, 𝑇 = 𝑁𝜏+𝑜(1), |𝑊| = 𝑁𝜌+𝑜(1), 𝐸1(𝑊) = 𝑁𝜌∗+𝑜(1) and 𝑆(𝑁, 𝑊) = 𝑁𝑠+𝑜(1).
From [144, Lemma 11.2] we have

𝑁−1𝑆(𝑁, 𝑊) ≪ |𝑊|𝑁 + |𝑊|5/3𝑇 1/3+𝜀 + |𝑊| 2+3𝑘+4ℓ
1+2𝑘+2ℓ 𝑇 𝑘+ℓ+𝜀

1+2𝑘+2ℓ

for any fixed 𝜀 > 0, which gives the claim.

Finally, we have the useful

Lemma 10.18 (Heath-Brown bound on double sums). If (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ, then

𝑠 ≤ max(𝜌 + 1, 2𝜌, 5𝜌/4 + 𝜏/2) + 1.

Note that if 𝜏 ≤ 3/2, the 5𝜌/4 + 𝜏/2 term is bounded by the convex combination (3/4)(𝜌 +
1) + (1/4)(2𝜌) and may therefore be omitted.
Recorded in literature.py as:
add_lver_heath_brown_1979()

Proof. By definition, there exists a large value pattern (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) with
𝑁 > 1 unbounded, 𝑇 = 𝑁𝜏+𝑜(1), |𝑊| = 𝑁𝜌+𝑜(1), 𝐸1(𝑊) = 𝑁𝜌∗+𝑜(1) and 𝑆(𝑁, 𝑊) = 𝑁𝑠+𝑜(1).
From [106, Theorem 1] or [144, Lemma 11.5], one has

𝑁−1𝑆(𝑁, 𝑊) ≪ 𝑇 𝜀(|𝑊|𝑁 + |𝑊|2 + |𝑊|5/4𝑇 1/2),

giving the claim.

Lemma 10.5 can be formulated in terms of the large value energy region as follows.
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Lemma 10.19. If (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ, then there exists (𝜎, 𝜏, 𝜌′, (𝜌′)∗, 𝑠′) ∈ ℰ and 0 ≤ 𝜅 ≤ 𝜌
such that

𝜅 + 𝜌′ ≤ 2𝜌
2𝜅 + 𝜌′ ≤ 𝜌∗

and
𝜌∗ + 2𝜎 ≤ 𝜅 + (𝑠 + 𝑠′)/2.

Proof. By definition, there exists a large value pattern

(𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊)

with 𝑁 ≥ 1 unbounded, 𝑇 = 𝑁𝜏+𝑜(1), 𝑉 = 𝑁𝜎+𝑜(1), |𝑊| = 𝑁𝜌+𝑜(1), 𝐸1(𝑊) = 𝑁𝜌∗+𝑜(1), and
𝑆(𝑁, 𝑊) = 𝑁𝑠+𝑜(1). From (10.6) we have

𝑉 2𝐸1(𝑊) ≪ 𝑇 𝑜(1)𝑆(𝑁, 𝑊)1/2𝑆4(𝑁, 𝑊)1/2 + 𝑇 −50.

By Lemma 10.5, there exists 1 ≤ 𝑢 ≪ |𝑊| and a 1-separated subset 𝑈 of [−2𝑇 , 2𝑇 ] such
that such that

𝑉 2𝐸1(𝑊) ≪ 𝑇 𝑜(1)𝑢𝑆(𝑁, 𝑊)1/2𝑆(𝑁, 𝑈)1/2 + 𝑇 −50

with (10.7), (10.8) holding. Since 𝑊 is non-empty, 𝐸1(𝑊) ≥ 1 and 𝑉 ≥ 𝑁1/2 ≥ 1, so
the 𝑇 −50 error here may be discarded. Passing to a subsequence, we may assume that
𝑢 = 𝑁𝜅+𝑜(1) for some 0 ≤ 𝜅 ≤ 𝜌, and that |𝑈| = 𝑁𝜌′+𝑜(1) for some 𝜌′ ≥ 0. Then we have
𝑆2(𝑁, 𝑈) = 𝑠′ for some (𝜎, 𝜏, 𝜌′, (𝜌′)∗, 𝑠′) ∈ ℰ, and the claim follows.

These bounds on the double zeta sums can be used to control additive energies:

Theorem 10.20 (Heath-Brown relation). [107, (33)] If (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ, then one has

𝜌∗ ≤ 1 − 2𝜎 + 1
2 max (𝜌 + 1, 2𝜌, 5

4𝜌 + 𝜏
2) + 1

2 max (𝜌∗ + 1, 4𝜌, 3
4𝜌∗ + 𝜌 + 𝜏

2) .

Recorded in literature.py as:
add_lver_heath_brown_1979b1()

Proof. By Lemma 10.19 we have

𝜌∗ + 2𝜎 ≤ 𝜅 + (max(𝜌 + 1, 2𝜌, 5𝜌/4 + 𝜏/2) + max(𝜌′ + 1, 2𝜌′, 5𝜌′/4 + 𝜏/2))/2 + 1

for some 0 ≤ 𝜅 ≤ 𝜌 with
𝜅 + 𝜌′ ≤ 2𝜌
2𝜅 + 𝜌′ ≤ 𝜌∗

In particular,
2𝜅 + 5𝜌′/4 ≤ 3𝜌∗/4 + 𝜌

and the claim follows after moving the 𝜅 inside the second maximum and performing some
algebra.

Corollary 10.21 (Simplified Heath-Brown relation). If (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ and 𝜏 ≤ 3/2,
then

𝜌∗ ≤ max(3𝜌 + 1 − 2𝜎, 𝜌 + 4 − 4𝜎, 5𝜌/2 + (3 − 4𝜎)/2).

70

https://github.com/teorth/expdb/blob/main/blueprint/src/python/literature.py


Recorded in literature.py as:
add_lver_heath_brown_1979b2()

This result essentially appears as [107, Lemma 3].

Proof. Apply the previous result. For 𝜏 ≤ 3/2 we observe that 5𝜌/4 + 𝜏/2 is less than
5𝜌/4 + 3/4, which is a convex combination of 𝜌 + 1 and 2𝜌. Similarly 3𝜌∗/4 + 𝜌 + 𝜏/2 is less
than 3𝜌∗/4 + 𝜌 + 3/4, which is a convex combination of 𝜌∗ + 1 and 4𝜌. We conclude that

𝜌∗ ≤ 1 − 2𝜎 + max(𝜌 + 1, 2𝜌)/2 + max(𝜌∗ + 1, 4𝜌)/2.
Thus 𝜌∗ is less than one of

1 − 2𝜎 + (𝜌 + 𝜌∗ + 2)/2, 1 − 2𝜎 + (5𝜌 + 1)/2, 1 − 2𝜎 + (2𝜌 + 𝜌∗ + 1)/2, 1 − 2𝜎 + (6𝜌)/2;
solving for 𝜌∗, we conclude

𝜌∗ ≤ max(4 − 4𝜎 + 𝜌, (3 − 4𝜎)/2 + 5𝜌/2, 3 − 4𝜎 + 2𝜌, 1 − 2𝜎 + 3𝜌).
But since 𝜎 ≥ 1/2, 3 − 4𝜎 + 2𝜌 is less than 5/2 − 3𝜎 + 2𝜌, which is the mean of 4 − 4𝜎 + 𝜌
and 1 − 2𝜎 + 3𝜌. Thus

𝜌∗ ≤ max(4 − 4𝜎 + 𝜌, (3 − 4𝜎)/2 + 5𝜌/2, 1 − 2𝜎 + 3𝜌),
which gives the claim.

Similarly, using Lemma 10.17 and Lemma 10.19, one has

Theorem 10.22. If (𝑘, ℓ) be an exponent pair with 𝑘 > 0 and (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ, then

𝜌∗ ≤ 1 − 2𝜎 + 1
2 max (𝜌 + 1, 5

3𝜌 + 𝜏
3 , 2 + 3𝑘 + 4ℓ

1 + 2𝑘 + 2ℓ𝜌 + 𝑘 + ℓ
1 + 2𝑘 + 2ℓ𝜏)

+ 1
2 max (𝜌∗ + 1, 4𝜌, 3

4𝜌∗ + 𝜌 + 𝜏
2) .

Implemented at additive_energy.py as:
ep_to_lver(eph)

Proof. By Lemma 10.19 and Lemma 10.17, there exists some (𝜎, 𝜏, 𝜌′, (𝜌∗)′, 𝑠′) ∈ ℰ satisfying

0 ≤ 𝜅 ≤ 𝜌, 𝜅 + 𝜌′ ≤ 2𝜌, 2𝜅 + 𝜌′ ≤ 𝜌∗ (10.9)

and

𝜌∗ + 2𝜎 ≤ 𝜅 + 1
2 max (𝜌 + 1, 5𝜌/3 + 𝜏/3, 2 + 3𝑘 + 4ℓ

1 + 2𝑘 + 2ℓ𝜌 + 𝑘 + ℓ
1 + 2𝑘 + 2ℓ𝜏)

+ 1
2 max (𝜌′ + 1, 2𝜌′, 5

4𝜌′ + 𝜏
2) + 1.

The result follows by moving the 𝜅 term into the second maximum and applying (10.9).

Lemma 10.23 (Second Heath-Brown relation). If (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ then

𝜌 ≤ max(2 − 2𝜎, 𝜌∗/4 + max(𝜏/4 + 𝑘(3 − 4𝜎)/4, 𝑘𝜏/4 + 𝑘(1 − 2𝜎)/2))
for any positive integer 𝑘.
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Recorded in literature.py as:
add_lver_heath_brown_1979c(K)

Proof. By definition, there exists a large value pattern (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) with
𝑁 > 1 unbounded, 𝑇 = 𝑁𝜏+𝑜(1), |𝑊| = 𝑁𝜌+𝑜(1), 𝐸1(𝑊) = 𝑁𝜌∗+𝑜(1) and 𝑆(𝑁, 𝑊) = 𝑁𝑠+𝑜(1).
From [107, Lemma 4], we have

|𝑊| ≪ 𝑇 𝜀 (𝑁2−2𝜎 + 𝐸1(𝑊)1/4(𝑇 1/4𝑁𝑘(3−4𝜎)/4 + 𝑇 𝑘/4𝑁𝑘(1−2𝜎)/2))

for any fixed 𝜀 > 0, giving the claim.

Lemma 10.24 (Guth-Maynard relation). If (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ then

𝜌 ≤ max(2 − 2𝜎, 1 − 2𝜎 + max(𝑆1, 𝑆2, 𝑆3)/3)

where 𝑆1, 𝑆2, 𝑆3 are real numbers with

𝑆1 ≤ −10,

𝑆2 ≤ max(2 + 2𝜌, 𝜏 + 1 + (2 − 1/𝑘)𝜌, 2 + 2𝜌 + (𝜏/2 − 3𝜌/4)/𝑘)
for any positive integer 𝑘 and

𝑆3 ≤ 2𝜏 + 𝜌/2 + 𝜌∗/2
and also

𝑆3 ≤ max(2𝜏 + 3𝜌/2, 𝜏 + 1 + 𝜌/2 + 𝜌∗/2).
Recorded in literature.py as:
add_lver_guth_maynard_2024a()

Proof. By definition, there exists a large value pattern (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) with
𝑁 > 1 unbounded, 𝑇 = 𝑁𝜏+𝑜(1), |𝑊| = 𝑁𝜌+𝑜(1), 𝐸1(𝑊) = 𝑁𝜌∗+𝑜(1) and 𝑆(𝑁, 𝑊) = 𝑁𝑠+𝑜(1).
By [88, Proposition 4.6, (5.5)], one may bound

|𝑊| ≪ 𝑁2−2𝜎 + 𝑁1−2𝜎(𝑆1 + 𝑆2 + 𝑆3)1/3

for three expressions 𝑆1, 𝑆2, 𝑆3 defined after [88, (5.5)]. From [88, Proposition 5.1] we have

𝑆1 ≪ 𝑇 −10.

From [88, Proposition 6.1] we have

𝑆2 ≪ 𝑇 𝑜(1)(𝑁2|𝑊|2 + 𝑇 𝑁|𝑊|2−1/𝑘 + 𝑁2|𝑊|2( 𝑇 1/2

|𝑊|3/4 )1/𝑘).

From [88, Proposition 8.1] we have

𝑆3 ≪ 𝑇 2+𝑜(1)|𝑊|1/2𝐸1(𝑊)1/2

while from [88, Proposition 10.1] we have

𝑆3 ≪ 𝑇 2+𝑜(1)|𝑊|3/2 + 𝑇 1+𝑜(1)𝑁|𝑊|1/2𝐸1(𝑊)1/2.

Combining all these bounds, we obtain the claim.
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Lemma 10.25 (Second Guth-Maynard relation). [88, Lemma 1.7] If (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ then

𝜌∗ ≤ 𝜌 + 𝑠 − 2𝜎.

In particular, from Lemma 10.18 we see for 𝜏 ≤ 3/2 that

𝜌∗ ≤ max(3𝜌 + 1 − 2𝜎, 2𝜌 + 2 − 2𝜎).

Recorded in literature.py as:
add_lver_guth_maynard_2024b()

Proof. By definition, we can find a large value pattern (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) with
𝑁 > 1 unbounded, 𝑇 = 𝑁𝜏+𝑜(1), 𝑉 = 𝑁𝜎+𝑜(1), |𝑊| = 𝑁𝜌+𝑜(1), 𝐸1(𝑊) = 𝑁𝜌∗+𝑜(1), and
𝑆(𝑁, 𝑊) = 𝑁𝑠+𝑜(1). From (10.5) one has

𝑉 2𝐸1(𝑊) ≪ 𝑇 𝑜(1)|𝑊|𝑆(𝑁, 𝑊) + 𝑇 −50.

Since 𝑊 is non-empty, 𝐸1(𝑊) ≥ 1, and 𝑉 ≫ 1, so the 𝑇 −50 error can be discarded. The
claim then follows.

Lemma 10.26 (Third Guth-Maynard relation). If (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ and 1 ≤ 𝜏 ≤ 4/3, then

𝜌∗ ≤ max(𝜌 + 4 − 4𝜎, 21𝜌/8 + 𝜏/4 + 1 − 2𝜎, 3𝜌 + 1 − 2𝜎).

Recorded in literature.py as:
add_lver_guth_maynard_2024c()

Proof. By definition, there exists a large value pattern (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑊) with
𝑁 > 1 unbounded, 𝑇 = 𝑁𝜏+𝑜(1), |𝑊| = 𝑁𝜌+𝑜(1), 𝐸1(𝑊) = 𝑁𝜌∗+𝑜(1) and 𝑆(𝑁, 𝑊) = 𝑁𝑠+𝑜(1).
Applying [88, Proposition 11.1], we conclude that

𝐸1(𝑊) ≪ 𝑇 𝑜(1)(|𝑊|𝑁4−4𝜎 + |𝑊|21/8𝑇 1/4𝑁1−2𝜎 + |𝑊|3𝑁1−2𝜎),

giving the claim.

We can put this all together to prove the Guth–Maynard large values theorem.

Theorem 10.27 (Guth–Maynard large values theorem). [88, Theorem 1.1] One has

LV(𝜎, 𝜏) ≤ max(2 − 2𝜎, 18/5 − 4𝜎, 𝜏 + 12/5 − 4𝜎).

Recorded in literature.py as:
add_guth_maynard_large_values_estimate()
Derived in derived.py as:
prove_guth_maynard_large_values_theorem()
prove_guth_maynard_lvt_from_intermediate_lemmas()
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Proof. For 𝜎 ≤ 7/10 this follows from Lemma 7.9, and for 𝜎 ≥ 8/10 it follows from Lemma
7.12. Thus we may assume that 7/10 ≤ 𝜎 ≤ 8/10. By subdivision (Lemma 7.7) it then
suffices to treat the case 𝜏 = 6/5, that is to say to show that

𝜌 ≤ 18/5 − 4𝜎

whenever (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ with 𝜏 = 6/5 and 7/10 ≤ 𝜎 ≤ 8/10.
Applying Lemma 10.24 and discarding the very negative 𝑆1 term, we have

𝜌 ≤ max(2 − 2𝜎, 1 − 2𝜎 + max(𝑆2, 𝑆3)/3)

where 𝑆2, 𝑆3 are real numbers with

𝑆2 ≤ max(2 + 2𝜌, 𝜏 + 1 + (2 − 1/𝑘)𝜌, 2 + 2𝜌 + (𝜏/2 − 3𝜌/4)/𝑘)

for any positive integer 𝑘 and
𝑆3 ≤ 2𝜏 + 𝜌/2 + 𝜌∗/2

and also
𝑆3 ≤ max(2𝜏 + 3𝜌/2, 𝜏 + 1 + 𝜌/2 + 𝜌∗/2).

From the latter bound and Lemma 10.26, one has

𝑆3 ≤ max(2𝜏 + 3𝜌/2, 𝜏 + 𝜌 + 3 − 2𝜎, 𝜏 + 2𝜌 + 3/2 − 𝜎, 9𝜏/8 + 29𝜌/16 + 3/2 − 𝜎).

Inserting this and the 𝑆2 bound (with 𝑘 = 4) into the bound for 𝜌 and simplifying (using
𝜏 = 6/5), we eventually obtain the desired bound 𝜌 ≤ 18/5 − 4𝜎.

We also record a variant of that theorem from the same paper:

Theorem 10.28 (Additional Guth–Maynard large values estimate). For any 1/2 < 𝜎 < 1,
𝜏 ≥ 1, and natural number 𝑘 one has

LV(𝜎, 𝜏) ≤ max (2 − 2𝜎, 5 − 6𝜎, (4 − 6𝜎) 𝑘
𝑘 + 1 + 𝑘

𝑘 + 1𝜏, (5 − 6𝜎) 4𝑘
4𝑘 + 3 + 2

4𝑘 + 3𝜏,

2 − 4𝜎 + 4
3𝜏, 3 − 4𝜎 + 𝜏

2 , 9
2 − 7𝜎 + 𝜏, 72 − 112𝜎

19 + 18
19𝜏). (10.10)

If one specializes to the case 𝜎 ≥ 7/10 and 1 ≤ 𝜏 ≤ 6/5, one then has

LV(𝜎, 𝜏) ≤ max (2 − 2𝜎, 3 − 4𝜎 + 𝜏
2 , (4 − 6𝜎) 𝑘

𝑘 + 1 + 𝑘
𝑘 + 1𝜏, (5 − 6𝜎) 4𝑘

4𝑘 + 3 + 2
4𝑘 + 3𝜏).

(10.11)
and also

LV(𝜎, 𝜏) ≤ max (2 − 2𝜎, 3 − 4𝜎 + 𝜏
2 , 46 − 60𝜎

5 + 30𝜎 − 21
5 𝜏). (10.12)

Recorded in literature.py as:
add_guth_maynard_large_values_estimate2(Constants.LARGE_VALUES_TRUNCATION)
Derived in derived.py as:
prove_guth_maynard_intermediate_lvt()
prove_guth_maynard_intermediate_lvt2()
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Proof. (Sketch) The first bound (10.10) is [88, (12.1)], and is proven by the same methods
used to prove Theorem 10.27. The second and third bounds (10.11), (10.12) are in [88,
Proposition 12.1]. The second bound (10.11) follows from the 𝑘 = 3 case of Theorem 7.16
when 𝜎 ≥ 39/50, and from (10.10) together with Theorems 7.9, 7.12 for 𝜎 < 39/50. The
third bound (10.12) follows from Theorems 7.9, 7.12 when 𝜏 ≤ 4 − 4𝜎, and for 𝜏 > 4 − 4𝜎
the bound follows from (10.11) after optimizing in 𝑘 (see the proof of [88, Proposition 12.1]
for details).

Now we turn to another application of double zeta sums to large value theorems.

Theorem 10.29 (Bourgain large values theorem). [21] Let 1/2 < 𝜎 < 1 and 𝜏 > 0, and let
𝜌 ∶= LV(𝜎, 𝜏). Let 𝛼1, 𝛼2 ≥ 0 be real numbers. Then either

𝜌 ≤ max(𝛼2 + 2 − 2𝜎, −𝛼2 + 2𝜏 + 4 − 8𝜎, −2𝛼1 + 𝜏 + 12 − 16𝜎) (10.13)

or else there exists 𝑠 ≥ 0 such that

1
2 max(𝜌 + 2, 2𝜌 + 1, 5𝜌/4 + 𝜏/2 + 1) + 1

2 max(𝑠 + 2, 2𝑠 + 1, 5𝑠/4 + 𝜏/2 + 1) ≥
max(−2𝛼1 + 2𝜎 + 𝑠 + 𝜌, −𝛼1 − 𝛼2/2 + 2𝜎 + 𝑠/2 + 3𝜌/2).

(10.14)

Proof. By Definition 7.2, we can find a large value pattern (𝑁, 𝑇 , 𝑉 , (𝑎𝑛)𝑛∈[𝑁,2𝑁], 𝐽 , 𝑅) with
𝑁 > 1 unbounded, 𝑁 ≥ 1, 𝑇 = 𝑁𝜏+𝑜(1), |𝑅| = 𝑁𝜌+𝑜(1), 𝑉 = 𝑁𝜎+𝑜(1); we use 𝑅 here instead
of 𝑊 to be consistent with the notation from [21]. Now set 𝛿1 ∶= 𝑁−𝛼1 , 𝛿2 ∶= 𝑁−𝛼2 . From
[21, (4.41), (4.42)], one has the inequality

|𝑅| ≤ |𝑅(1)| + |𝑅(2)|

for certain sets 𝑅(1) and 𝑅(2) with the former set obeying the bound

|𝑅(1)| ≪ 𝛿−1
2 𝑁2𝑉 −2 + 𝛿2𝑇 2𝑁4𝑉 −8 + 𝛿2

1𝑇 𝑁12𝑉 −16.

Hence, we either have

|𝑅| ≪ 𝛿−1
2 𝑁2𝑉 −2 + 𝛿2𝑇 2𝑁4𝑉 −8 + 𝛿2

1𝑇 𝑁12𝑉 −16

which implies (10.13), or else
|𝑅| ≪ |𝑅(2)|. (10.15)

Henceforth we assume that (10.15) holds. From [21, (4.53), (4.54)] we may upper bound

𝑇 −𝜀𝛿′(𝛿″)2𝑉 2|𝑆||𝑅(2)| + 𝑇 −𝜀𝛿1𝑉 2|𝑆|1/2 ∑
𝛼

|𝑅𝛼|3/2 (10.16)

by
≪ 𝑇 𝜀𝑆(𝑁, 𝑅(2))1/2𝑆(𝑁, 𝑆)1/2 (10.17)

for arbitrarily small fixed 𝜀, some 𝛿′, 𝛿″ > 0 with 𝛿′ > 𝑇 −𝜀(𝛿1/𝛿″)2 (see [21, (4.37)]), some
set 𝑆 (which will be non-empty by [21, (4.47)]), and some sets 𝑅𝛼 defined in [21, (4.39)],
where the double zeta sums 𝑆(𝑁, 𝑊) are defined in (10.2). Applying Lemma 10.18, the
latter expression is bounded by

≪ 𝑇 𝜀(|𝑅|𝑁2 + |𝑅|2𝑁 + |𝑅|5/4𝑇 1/2𝑁)1/2(|𝑆|𝑁2 + |𝑆|2𝑁 + |𝑆|5/4𝑇 1/2𝑁)1/2.
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Meanwhile, from [21, (4.57)], the expression (10.16) is bounded from below by

≫ 𝑇 −2𝜀(𝛿2
1𝑉 2|𝑆||𝑅| + 𝛿1𝛿1/2

2 𝑉 2|𝑆|1/2|𝑅|3/2).
After passing to a subsequence, we can ensure that |𝑆| = 𝑁𝑠+𝑜(1) for some 𝑠 > 0. Combining
these bounds and writing all expressions as powers of 𝑁 , we obtain the claim (after sending
𝜀 → 0).

Corollary 10.30 (Bourgain large values theorem, simplified version). [21, Lemma 4.60]
Let the notation be as above, but additionally assume 𝜌 ≤ min(1, 4 − 2𝜏). Then

𝜌 ≤ max(𝛼2+2−2𝜎, 𝛼1+𝛼2/2+2−2𝜎, −𝛼2+2𝜏+4−8𝜎, −2𝛼1+𝜏+12−16𝜎, 4𝛼1+2+max(1, 2𝜏−2)−4𝜎).
In [21] this bound is only established in the case 𝜏 ≤ 3/2 (in which case the condition on 𝜌
simplifies to 𝜌 ≤ 1, and the final term 4𝛼1 +2+max(1, 2𝜏 −2)−4𝜎 simplifies to 4𝛼1 +3−4𝜎),
but the argument extends to the 𝜏 > 3/2 case without significant difficulty.

Proof. With 𝜌 ≤ min(1, 4 − 2𝜏), 5𝜌/4 + 𝜏/2 + 1 and 2𝜌 + 1 are both bounded by 𝜌 + 2, hence

max(𝜌 + 2, 2𝜌 + 1, 5𝜌/4 + 𝜏/2 + 1) = 𝜌 + 2.
Furthermore, 5𝑠/4 + 𝜏/2 + 1 is a convex combination of 𝑠 + 2 and 2𝑠 + 2𝜏 − 2, hence

max(𝑠 + 2, 2𝑠 + 1, 5𝑠/4 + 𝜏/2 + 1) ≤ max(𝑠 + 2, 2𝑠 + max(1, 2𝜏 − 2)).
Thus (10.14) simplifies to

(𝜌+2)/2+max(𝑠+2, 2𝑠+max(1, 2𝜏−2))/2 ≥ max(−2𝛼1+2𝜎+𝑠+𝜌, −𝛼1−𝛼2/2+2𝜎+𝑠/2+3𝜌/2).
Thus either

(𝜌 + 2)/2 + (𝑠 + 2)/2 ≥ −𝛼1 − 𝛼2/2 + 2𝜎 + 𝑠/2 + 3𝜌/2
or

(𝜌 + 2)/2 + (2𝑠 + max(1, 2𝜏 − 2))/2 ≥ −2𝛼1 + 2𝜎 + 𝑠 + 𝜌.
In both cases we may eliminate 𝑠 and solve for 𝜌 to obtain

𝜌 ≤ 𝛼1 + 𝛼2/2 + 2 − 2𝜎
or

𝜌 ≤ 4𝛼1 + 2 + max(1, 2𝜏 − 2) − 4𝜎,
giving the claim.

With the aid of computer assistance, one is able to produce an optimized version of the
above large values theorem. We have

Corollary 10.31 (Bourgain large values theorem, optimized version). For each row (𝜌0, 𝛼1, 𝛼2, 𝒮)
of Table 10.1, one has

𝜌 ≤ 𝜌0(𝜎, 𝜏), (𝜎, 𝜏) ∈ 𝒮.
Recorded in literature.py as:
add_bourgain_large_values_estimate()

Derived in derived.py as:
prove_bourgain_large_values_theorem()
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Proof. Follows from substituting the specified values of 𝛼1 and 𝛼2 and a routine calculation.

The preprint of Kerr [165] contains additional large value theorems:

Lemma 10.32 (Kerr large values theorem).

(i) [165, Theorem 2] Let 3/4 < 𝜎 ≤ 1, 0 ≤ 𝜏 ≤ 3/2, and 0 ≤ 𝜌 ≤ LV(𝜎, 𝜏), 1 be fixed.
Then for any fixed 𝛼 ≥ 0, one has

𝜌 ≤ max(2 − 2𝜎 + 𝛼, 2𝜏 + 4 − 8𝜎 − 𝛼, 𝜏/3 + 16/3 − 20𝜎/3 + 𝛼/3, 2𝜏/3 + 9 − 12𝜎).

(ii) [165, Theorem 3] Under the same hypotheses as (i), we have for any fixed integer 𝑘 ≥ 2
obeying −𝛼 < 4𝑘𝜎 − (𝜏 + 3𝑘 − 1) and −𝛼 < 1 + 1

𝑘−1 − 𝜏 that

𝜌 ≤ max(2 − 2𝜎 + 𝛼, 𝜏/3 + (3𝑘 + 4)/3 − (4𝑘 + 4)𝜎/3 + 𝛼/3).

(iii) [165, Theorem 4] If 25/32 < 𝜎 ≤ 1, 𝜏 ≥ 0, and 0 ≤ 𝜌 ≤ LV(𝜎, 𝜏), 1, 4 − 2𝜏 are fixed,
then for any fixed 𝛼 with

26 − 32𝜎 − 𝜏 < −𝛼 < 16𝜎 − 11 − 𝜏

one has

𝜌 ≤ max(2 − 2𝜎 + 𝛼, 2𝜏 + 4 − 8𝜎 − 𝛼, −𝜏 + 8 − 8𝜎 + 2𝛼, 10 − 12𝜎 + 2𝛼/3).

(iv) [165, Theorem 5] If 1/2 < 𝜎 ≤ 1, 0 ≤ 𝜏 ≤ 3/2, and 0 ≤ 𝜌 ≤ LV(𝜎, 𝜏), 1 are fixed, then
for any fixed 𝛼 with

−𝛼 < −𝜏 + 8𝜎 − 5
one has

𝜌 ≤ max(2 − 2𝜎 + 𝛼, 4𝜏/3 + 23/3 − 12𝜎 − 2𝛼/3, 2𝜏/3 + 14/3 − 20/3).
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Table 10.1: Bounds on LV(𝜎, 𝜏) for 1/2 ≤ 𝜎 ≤ 1 and 𝜏 ≥ 1
𝜌0(𝜎, 𝜏) 𝛼1 𝛼2 𝒮

16
3 − 20

3 𝜎 + 1
3 𝜏 10

3 − 14
3 𝜎 + 𝜏

3 0

−1 + 𝜏 ≥ 0,
10 − 14𝜎 + 𝜏 ≥ 0,
4 + 4𝜎 − 5𝜏 ≥ 0,

−11 + 16𝜎 − 𝜏 ≥ 0.

5 − 7𝜎 + 3
4 𝜏 7

2 − 9
2 𝜎 + 𝜏

8 −1 − 𝜎 + 5
4 𝜏

8 − 8𝜎 − 𝜏 ≥ 0,
−16 + 20𝜎 + 1

3𝜏 ≥ 0,

−6 + 10𝜎 − 7
6𝜏 ≥ 0,

−4 − 4𝜎 + 5𝜏 ≥ 0.

3 − 5𝜎 + 𝜏 9
2 − 11

2 𝜎 1 − 3𝜎 + 𝜏

−8 + 8𝜎 + 𝜏 ≥ 0,
2 − 6𝜎 + 2𝜏 ≥ 0,

−10 + 14𝜎 − 2
3𝜏 ≥ 0,

6 − 2𝜎 − 2𝜏 ≥ 0.

−4𝜎 + 2𝜏 0 1 − 3𝜎 + 𝜏
−6 + 2𝜎 + 2𝜏 ≥ 0,

−12 + 12𝜎 + 𝜏 ≥ 0,
1 − 𝜎 ≥ 0.

8 − 12𝜎 + 4
3 𝜏 2 − 2𝜎 − 1

6 𝜏 6 − 10𝜎 + 4
3 𝜏

15 − 21𝜎 + 𝜏 ≥ 0,
12 − 12𝜎 − 𝜏 ≥ 0,

−3
2 + 𝜏 ≥ 0,

6 − 10𝜎 + 7
6𝜏 ≥ 0.

2 − 2𝜎 0 0

1 − 𝜎 ≥ 0,
−10 + 14𝜎 − 𝜏 ≥ 0,

−1 + 𝜏 ≥ 0,
−2 + 6𝜎 − 2𝜏 ≥ 0.

9 − 12𝜎 + 2
3 𝜏 3

2 − 2𝜎 + 1
6 𝜏 11 − 16𝜎 + 𝜏

3
2 − 𝜏 ≥ 0,

−1
2 + 𝜎 ≥ 0,

−1 + 𝜏 ≥ 0,
11 − 16𝜎 + 𝜏 ≥ 0,

16 − 20𝜎 − 1
3𝜏 ≥ 0.
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Chapter 11

Zero density theorems

Definition 11.1 (Zero density exponents). For 𝜎 ∈ R and 𝑇 > 0, let 𝑁(𝜎, 𝑇 ) denote the
number of zeroes 𝜌 of the Riemann zeta function with Re(𝜌) ≥ 𝜎 and |Im(𝜌)| ≤ 𝑇 .
If 1/2 ≤ 𝜎 < 1 is fixed, we define the zero density exponent A(𝜎) ∈ [−∞, ∞) to be the
infimum of all (fixed) exponents 𝐴 for which one has

𝑁(𝜎 − 𝛿, 𝑇 ) ≪ 𝑇 𝐴(1−𝜎)+𝑜(1)

whenever 𝑇 is unbounded and 𝛿 > 0 is infinitesimal.

The shift by 𝛿 is for technical convenience, it allows for A(𝜎) to control (very slightly) the
zeroes to the left of Re𝑠 = 𝜎. In non-asymptotic terms: A(𝜎) is the infimum of all 𝐴 such
that for every 𝜀 > 0 there exists 𝐶, 𝛿 > 0 such that

𝑁(𝜎 − 𝛿, 𝑇 ) ≤ 𝐶𝑇 𝐴(1−𝜎)+𝜀

whenever 𝑇 ≥ 𝐶.

Lemma 11.2 (Basic properties of 𝐴). (i) 𝜎 ↦ (1 − 𝜎)A(𝜎) is non-increasing and left-
continuous, with A(1/2) = 2.

(ii) If the Riemann hypothesis holds, then A(𝜎) = −∞ for all 1/2 < 𝜎 ≤ 1.

Proof. The claim (i) is clear using the Riemann-von Mangoldt formula [144, Theorem 1.7]
and the functional equation. The claim (ii) is also clear.

Remark 11.3. One can ask what happens if one omits the 𝛿 shift. Thus, define A0(𝜎) to
be the infimum of all fixed exponents 𝐴 for which 𝑁(𝜎, 𝑇 ) ≪ 𝑇 𝐴(1−𝜎)+𝑜(1) for unbounded 𝑇 .
Then it is not difficult to see that

lim
𝜎′→𝜎+

A(𝜎) ≤ A0(𝜎) ≤ A(𝜎)

for any fixed 1/2 < 𝜎 < 1; thus A0 is basically the same exponent at A, except possibly at
jump discontinuities of the left-continuous function A, in which case it could theoretically
take on a different value. (But we do not expect such discontinuities to actually exist.) Thus
there is not a major difference between A(𝜎) and A0(𝜎), but the former has some very slight
technical advantages (such as the aforementioned left continuity).
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The quantity ‖A‖∞ ∶= sup1/2≤𝜎<1 A(𝜎) is of particular importance to the theory of primes
in short intervals; see Section 15. From Lemma 11.2 we have ‖A‖∞ ≥ 2. It is conjectured
that this is an equality.

Conjecture 11.4 (Density hypothesis). One has ‖A‖∞ = 2. Equivalently, A(𝜎) ≤ 2 for all
1/2 ≤ 𝜎 < 1.

Indeed, the Riemann hypothesis implies the stronger assertion that A(𝜎) = −∞ for all
12 < 𝜎 < 1. However, for many applications to the prime numbers in short intervals, the
density hypothesis is almost as powerful; see Section 15.
Upper bounds on A(𝜎) can be obtained from large value theorems via the following relation.

Lemma 11.5 (Zero density from large values). Let 1/2 < 𝜎 < 1. Then

A(𝜎)(1 − 𝜎) ≤ max(sup
𝜏≥2

LV𝜁(𝜎, 𝜏)/𝜏, lim sup
𝜏→∞

LV(𝜎, 𝜏)/𝜏).

Proof. Write the right-hand side as 𝐵, then 𝐵 ≥ 0 (from Lemma 7.4(iii)) and we have

LV𝜁(𝜎, 𝜏) ≤ 𝐵𝜏 (11.1)

for all 𝜏 ≥ 1, and
LV(𝜎, 𝜏) ≤ (𝐵 + 𝜀)𝜏 (11.2)

whenever 𝜀 > 0 and 𝜏 is sufficiently large depending on 𝜀 (and 𝜎). It would suffice to show,
for any 𝜀 > 0, that 𝑁(𝜎 − 𝑜(1), 𝑇 ) ≪ 𝑇 𝐵+𝑂(𝜀)+𝑜(1) as 𝑇 → ∞.
By dyadic decomposition, it suffices to show for large 𝑇 that the number of zeroes with real
part at least 𝜎 − 𝑜(1) and imaginary part in [𝑇 , 2𝑇 ] is ≪ 𝑇 𝐵+𝑂(𝜀)+𝑜(1). From the Riemann-
von Mangoldt theorem, there are only 𝑂(log 𝑇 ) zeroes whose imaginary part is within 𝑂(1)
of a specified ordinate 𝑡 ∈ [𝑇 , 2𝑇 ], so it suffices to show that given some zeroes 𝜎𝑟 + 𝑖𝑡𝑟,
𝑟 = 1, … , 𝑅 with 𝜎 − 𝑜(1) ≤ 𝜎𝑟 < 1 and 𝑡𝑟 ∈ [𝑇 , 2𝑇 ] 1-separated, that 𝑅 ≪ 𝑇 𝐵+𝑂(𝜀)+𝑜(1).
Suppose that one has a zero 𝜎𝑟 + 𝑖𝑡𝑟 of this form. Then by a standard approximation to the
zeta function [144, Theorem 1.8], one has

∑
𝑛≤𝑇

1
𝑛𝜎𝑟+𝑖𝑡𝑟

≪ 𝑇 −1/2.

Let 0 < 𝛿1 < 𝜀 be a small quantity (independent of 𝑇 ) to be chosen later, and let 0 < 𝛿2 < 𝛿1
be sufficiently small depending on 𝛿1, 𝛿2. By the triangle inequality, and refining the sequence
𝑡𝑟 by a factor of at most 2, we either have

∣ ∑
𝑇 𝛿1 ≤𝑛≤𝑇

1
𝑛𝜎𝑟+𝑖𝑡𝑟

∣ ≫ 𝑇 −𝛿2

for all 𝑟, or
∑

𝑛≤𝑇 𝛿1

1
𝑛𝜎𝑟+𝑖𝑡𝑟

≪ 𝑇 −𝛿2 (11.3)

for all 𝑟.
Suppose we are in the former (“Type I”) case, we perform a smooth partition of unity, and
conclude that

∣ ∑
𝑇 𝛿1 ≤𝑛≤𝑇

𝜓(𝑛/𝑁)
𝑛𝜎𝑟+𝑖𝑡𝑟

∣ ≫ 𝑇 −𝛿2−𝑜(1)
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for some fixed bump function 𝜓 supported on [1/2, 1], and some 𝑇 𝛿1 ≪ 𝑁 ≪ 𝑇 .
We divide into several cases depending on the size of 𝑁 . First suppose that 𝑁 ≪ 𝑇 1/2. The
variable 𝑛 is restricted to the interval 𝐼 ∶= [max(𝑁/2, 𝑇 𝛿1), 𝑁]. We have

∣ ∑
𝑛∈𝐼

𝜓(𝑛/𝑁)(𝑛/𝑁)−𝜎𝑟𝑛−𝑖𝑡𝑟 ∣ ≫ 𝑁𝜎𝑇 −𝛿2−𝑜(1).

Performing a Fourier expansion of 𝜓(𝑛/𝑁)(𝑛/𝑁)−𝜎𝑟 in log 𝑛 and using the triangle inequal-
ity, we can bound

∑
𝑛∈𝐼

𝜓(𝑛/𝑁)(𝑛/𝑁)−𝜎𝑟𝑛−𝑖𝑡𝑟 ≪𝐴 ∫
R

∣ ∑
𝑛∈𝐼

1
𝑛𝑖𝑡 ∣(1 + |𝑡 − 𝑡𝑟|)−𝐴 𝑑𝑡

for any 𝐴 > 0, so by the triangle inequality we conclude that

∣ ∑
𝑛∈𝐼

𝑛−𝑖𝑡′
𝑟 ∣ ≫ 𝑁𝜎𝑇 −𝛿2−𝑜(1)

for some 𝑡′
𝑟 = 𝑡𝑟 + 𝑂(𝑇 𝑜(1)). By refining the 𝑡𝑟 by a factor of 𝑇 𝑜(1) if necessary, we may

assume that the 𝑡′
𝑟 are 1-separated, and by passing to a subsequence we may assume that

𝑇 = 𝑁𝜏+𝑜(1) for some 2 ≤ 𝜏 ≤ 1/𝛿1, then we conclude that

∣ ∑
𝑛∈𝐼

1
𝑛𝑖𝑡′𝑟

∣ ≫ 𝑁𝜎−𝛿2/𝛿1+𝑜(1)

for all remaining 𝑟. By Definition 8.1 we then have (for 𝛿2 small enough)

𝑅 ≪ 𝑁LV𝜁(𝜎,𝜏)+𝜀+𝑜(1) ≪ 𝑇 LV𝜁(𝜎,𝜏)/𝜏+𝜀+𝑜(1)

and the claim follows in this case from (11.1).
In the case 𝑁 ≍ 𝑇 , a standard application of the Euler–Maclaurin formula (see e.g., [277,
(2.1.2)]) yields

∑
𝑇 𝛿1 ≤𝑛≤𝑇

𝜓(𝑛/𝑁)
𝑛𝜎𝑟+𝑖𝑡𝑟

≪ 𝑇 −𝜎𝑟

which leads to a contradiction. So the only remaining case is when 𝑇 1/2 ≪ 𝑁 ≪ 𝑜(𝑇 ). Here
we can ignore the cutoffs on 𝑛 and obtain

∣∑
𝑛

𝜓(𝑛/𝑁)(𝑛/𝑁)−𝜎𝑟𝑛−𝑖𝑡𝑟 ∣ ≫ 𝑁𝜎𝑇 −𝛿2−𝑜(1).

Applying the van der Corput 𝐵-process (see, e.g., [149, §8.3]) or the approximate functional
equation we have

∑
𝑛

𝜓(𝑛/𝑁)(𝑛/𝑁)−𝜎𝑟𝑛−𝑖𝑡𝑟 = 𝑒( 𝑡𝑟
2𝜋 log 𝑡𝑟

2𝜋 − 𝑡𝑟
2𝜋 +1

8) ∑
𝑚

𝜓(2𝜋𝑡𝑟/𝑚𝑁)(2𝜋𝑡𝑟/𝑚𝑁)−𝜎𝑟𝑚𝑖𝑡𝑟(2𝜋𝑚2/𝑡𝑟)−1/2+𝑂(𝑇 𝑜(1))

and thus

∣∑
𝑚

𝜓(2𝜋𝑡𝑟/𝑚𝑁)(2𝜋𝑡𝑟/𝑚𝑁)1−𝜎𝑟𝑚−𝑖𝑡𝑟 ∣ ≫ 𝑀1/2𝑁𝜎−1/2𝑇 −𝛿2−𝑜(1);
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where 𝑀 ∶= 2𝜋𝑇 /𝑁 ≪ 𝑁1/2. In particular

∑
𝑚∈[𝑀/10,10𝑀]

𝜓(2𝜋𝑡𝑟/𝑚𝑁)(2𝜋𝑡𝑟/𝑚𝑁)1−𝜎𝑟𝑚−𝑖𝑡𝑟 ≫ 𝑀𝜎𝑇 −𝛿2−𝑜(1);

since 𝑁 ≫ 𝑇 1/2 and 𝜎 ≥ 1/2. Performing a Fourier expansion as before, we conclude that

∑
𝑚∈[𝑀/10,10𝑀]

𝑚−𝑖𝑡′
𝑟 ≪ 𝑀𝜎𝑇 −𝛿2−𝑜(1)

for some 𝑡′
𝑟 = 𝑡𝑟 + 𝑂(𝑇 𝑜(1)), and one can argue as in the 𝑁 ≪ 𝑇 1/2 case (partitioning

[𝑀/10, 10𝑀] into 𝑂(1) intervals each contained in some [𝑀 ′, 2𝑀 ′] with 𝑀 ′ ≪ 𝑇 1/2).
Now suppose instead we are in the latter (“Type II”) case (11.3). We multiply both sides
of (11.3) by the mollifier ∑𝑚≤𝑇 𝛿2/2

1
𝑚𝜎𝑟+𝑖𝑡𝑟 to obtain

∣1 + ∑
𝑇 𝛿2/2≤𝑛≤𝑇 𝛿1+𝛿2/2

𝑎𝑛
𝑛𝜎𝑟+𝑖𝑡𝑟

∣ = 𝑜(1)

where 𝑎𝑛 is some sequence with 𝑎𝑛 ≪ 𝑇 𝑜(1). By dyadic decomposition and the pigeonhole
principle, and refining the 𝑡𝑟 by a factor of 𝑂(𝑇 𝑜(1)) as needed, we can then find an interval
𝐼 in [𝑁, 2𝑁] with 𝑇 𝛿2/2 ≪ 𝑁 ≪ 𝑇 𝛿1+𝛿2/2 such that

∣ ∑
𝑛∈𝐼

𝑎𝑛
𝑛𝜎𝑟+𝑖𝑡𝑟

∣ ≫ 𝑇 −𝑜(1)

and hence by Fourier expansion of 1
𝑛𝜎𝑟 in log 𝑛

∣ ∑
𝑛∈𝐼

𝑎𝑛
𝑛𝑖𝑡′𝑟

∣ ≫ 𝑁𝜎𝑟𝑇 −𝑜(1)

for some 𝑡′
𝑟 = 𝑡𝑟 + 𝑂(𝑇 𝑜(1)); by refining the 𝑡𝑟 by a further factor of 𝑇 𝑜(1) we may assume

that the 𝑡′
𝑟 are also 1-separated; we can also pigeonhole so that 𝑇 = 𝑁𝜏+𝑜(1) for some

1
𝛿1+𝛿2/2 ≤ 𝜏 ≤ 1

𝛿2/2 . Applying Lemma 7.3, we conclude that

𝑅 ≪ 𝑁LV(𝜎,𝜏)+𝑜(1) = 𝑇 LV(𝜎,𝜏)/𝜏+𝑜(1)

and the claim follows in this case from (11.2).

Recently, a partial converse to the above lemma was established:

Lemma 11.6 (Large values from zero density). [206, Theorem 1.2] If 𝜏 > 0 and 1/2 ≤ 𝜎 ≤ 1
are fixed, then

LV𝜁(𝜎, 𝜏)/𝜏 ≤ max (1
2, sup

𝜎≤𝜎′≤1
A(𝜎′)(1 − 𝜎′) + 𝜎′ − 𝜎

2 ) .

Proof. Let 𝑁 ≥ 1 be unbounded, 𝑇 = 𝑁𝜏+𝑜(1), and 𝐼 ⊂ [𝑁, 2𝑁] be an interval, and
𝑡1, … , 𝑡𝑅 ∈ [𝑇 , 2𝑇 ] be 1-separated with

∣ ∑
𝑛∈𝐼

1
𝑛𝑖𝑡𝑟

∣ ≫ 𝑁𝜎−𝑜(1)
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uniformly for all 𝑟. By [206, Theorem 1.2], we have for any fixed 𝛿 > 0 that

𝑅 ≪ 𝑇 𝛿 sup
𝜎−𝛿≤𝜎′≤1

𝑇 𝜎′−𝜎
2 𝑁(𝜎′, 𝑂(𝑇 )) + 𝑇 1−𝜎

2 +𝛿.

Using Definition 11.1, we conclude that

𝑅 ≪ 𝑇 max( 1
2 ,sup𝜎−𝛿≤𝜎′≤1 A(𝜎′)(1−𝜎′)+ 𝜎′−𝜎

2 )+𝑂(𝛿)

and thus
LV𝜁(𝜎, 𝜏) ≤ 𝜏 max(1

2 , sup
𝜎−𝜀≤𝜎′≤1

A(𝜎′)(1 − 𝜎′) + 𝜎′ − 𝜎
2 ) + 𝑂(𝛿).

Here the implied constant in the 𝑂() notation is understood to be uniform in 𝛿. Letting 𝛿
go to zero, and using left-continuity of A, we obtain the claim.

The suprema in Lemma 11.5 require unbounded values of 𝜏 , but thanks to the ability to
raise to a power, we can reduce to a bounded range of 𝜏 . Here is a basic such reduction,
suited for machine-assisted proofs:

Corollary 11.7. Let 1/2 < 𝜎 < 1 and 𝜏0 > 0. Then

A(𝜎)(1 − 𝜎) ≤ max ( sup
2≤𝜏<𝜏0

LV𝜁(𝜎, 𝜏)/𝜏, sup
𝜏0≤𝜏≤2𝜏0

LV(𝜎, 𝜏)/𝜏)

with the convention that the first supremum is −∞ if it is vacuous (i.e., if 𝜏0 < 2).

Implemented at zero_density_estimate.py as:
lv_zlv_to_zd(hypotheses, sigma_interval, tau0)

Proof. Denote the right-hand side by 𝐵, thus

LV(𝜎, 𝜏) ≤ 𝐵𝜏

for all 𝜏0 ≤ 𝜏 ≤ 2𝜏0, and
LV𝜁(𝜎, 𝜏) ≤ 𝐵𝜏 (11.4)

whenever 2 ≤ 𝜏 < 𝜏0. From Lemma 7.8 we then have

LV(𝜎, 𝜏) ≤ 𝐵𝜏

for all 𝑘𝜏0 ≤ 𝜏 ≤ 2𝑘𝜏0 and natural numbers 𝑘. Note that the intervals [𝑘𝜏0, 2𝑘𝜏0] cover all
of [𝜏0, ∞), hence we have

LV(𝜎, 𝜏) ≤ 𝐵𝜏
for all 𝜏 ≥ 𝜏0. In particular

lim sup
𝜏→∞

LV(𝜎, 𝜏)/𝜏 ≤ 𝐵.

Also, combining the previous estimate with (11.4) using Lemma 8.3(iii) we have

LV𝜁(𝜎, 𝜏) ≤ 𝐵𝜏 (11.5)
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for all 𝜏 ≥ 2. By Lemma 8.3(iv), this implies that

LV𝜁(1
2 + 1

𝜏 − 1(𝜎 − 1
2), 𝜏

𝜏 − 1) ≤ 𝐵 𝜏
𝜏 − 1

for 𝜏 ≥ 2. Thus
sup
𝜏≥2

LV𝜁(𝜎, 𝜏)
𝜏 ≤ 𝐵.

The claim now follows from Lemma 11.5.

For machine assisted proofs, one can simply take 𝜏0 to be a sufficiently large quantity, e.g.,
𝜏0 = 3 for 𝜎 not too close to 1, and larger for 𝜎 approaching 1, to recover the full power of
Lemma 11.5. However, the amount of case analysis required increases with 𝜏0. For human
written proofs, the following version of Corollary 11.7 is more convenient:

Corollary 11.8. Let 1/2 < 𝜎 < 1 and 𝜏0 > 0. Then

A(𝜎)(1 − 𝜎) ≤ max ( sup
2≤𝜏<4𝜏0/3

LV𝜁(𝜎, 𝜏)/𝜏, sup
2𝜏0/3≤𝜏≤𝜏0

LV(𝜎, 𝜏)/𝜏) .

Implemented at zero_density_estimate.py as:
lv_zlv_to_zd2(hypotheses, sigma_interval, tau0)

Proof. Applying Corollary 11.7 with 𝜏 replaced by 4𝜏0/3, it suffices to show that

sup
4𝜏0/3≤𝜏≤8𝜏0/3

LV(𝜎, 𝜏)/𝜏 ≤ sup
2𝜏0/3≤𝜏≤𝜏0

LV(𝜎, 𝜏)/𝜏.

But this follows from Lemma 7.8, since the intervals [2𝑘𝜏0/3, 𝑘𝜏0] for 𝑘 = 2, 3 cover all of
[4𝜏0/3, 8𝜏0/3].
The following special case of the above corollary is frequently used in practice to assist with
the human readability of zero density proofs:

Corollary 11.9. Let 1/2 < 𝜎 < 1 and 𝜏0 > 0. Suppose that one has the bounds

LV(𝜎, 𝜏) ≤ (3 − 3𝜎) 𝜏
𝜏0

(11.6)

for 2𝜏0/3 ≤ 𝜏 ≤ 𝜏0, and
LV𝜁(𝜎, 𝜏) ≤ (3 − 3𝜎) 𝜏

𝜏0
(11.7)

for 2 ≤ 𝜏 < 4𝜏0/3. Then A(𝜎) ≤ 3
𝜏0

.

The reason why this particular special case is convenient is because the inequality

2 − 2𝜎 ≤ (3 − 3𝜎) 𝜏
𝜏0

(11.8)

obviously holds for 𝜏 ≥ 2𝜏0/3. That is to say, we automatically verify (11.6) in regimes where
the Montgomery conjecture holds. In fact, we can do a bit better, thanks to subdivision:
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Corollary 11.10. Let 1/2 < 𝜎 < 1 and 𝜏0 > 0. Suppose that one has the bound (11.7) for
2 ≤ 𝜏 < 4𝜏0/3, and the Montgomery conjecture LV(𝜎, 𝜏) ≤ 2−2𝜎 whenever 0 ≤ 𝜏 ≤ 𝜏0+𝜎−1.
Then A(𝜎) ≤ 3

𝜏0
.

Proof. We may assume that 𝜏0 ≥ 3−3𝜎, since otherwise the claim follows from the Riemann–
von Mangoldt bound

A(𝜎)(1 − 𝜎) ≤ A(1/2)(1 − 1/2) = 1.
By Lemma 7.4(ii) we have

LV(𝜎, 𝜏) ≤ max(2 − 2𝜎, 3 − 3𝜎 + 𝜏 − 𝜏0)

for all 𝜏 ≥ 0. But both expressions on the right-hand side are bounded by (3 − 3𝜎) 𝜏
𝜏0

for
2𝜏3 ≤ 𝜏 ≤ 𝜏0 and 𝜏0 ≥ 3 − 3𝜎, so the claim follows from Corollary 11.9.

11.1 Known zero density bounds
Let us see some examples of these corollaries in action.

Theorem 11.11. The Montgomery conjecture implies the density hypothesis.

Proof. Apply Corollary 11.9 with 𝜏0 = 3/2 (so that (11.7) is vacuously true).

Theorem 11.12. The Lindelof hypothesis implies the density hypothesis, and also that
A(𝜎) ≤ 0 for 3/4 < 𝜎 ≤ 1.

Proof. The first result is proved in [138], and the second result is due to [91]. We will apply
Corollary 11.8. From Corollary 8.8 we see that LV𝜁(𝜎, 𝜏) = −∞ whenever 𝜎 > 1/2 and
𝜏 ≥ 1, so for any choice of 𝜏0 we have

sup
2≤𝜏<4𝜏0/3

LV𝜁(𝜎, 𝜏)/𝜏 = −∞.

From Theorem 7.9 and Lemma 7.8 we have

LV(𝜎, 𝜏) ≤ max((2 − 2𝜎)𝑘, 𝜏 + (1 − 2𝜎)𝑘) (11.9)

for any natural number 𝑘 and 𝜏 ≥ 1; setting 𝑘 to be the integer part of 𝜏 we conclude in
particular that

LV(𝜎, 𝜏) ≤ (2 − 2𝜎)𝜏 + 𝑂(1),
and hence by taking 𝜏0 large enough, we can make sup2𝜏0/3≤𝜏≤𝜏0

LV(𝜎, 𝜏)/𝜏 bounded by
2 − 2𝜎 + 𝜀 for any 𝜀 > 0. This already gives the density hypothesis bound A(𝜎) ≤ 2.
For 𝜎 > 3/4, we may additionally apply Theorem 8.14 to make sup2𝜏0/3≤𝜏≤𝜏0

LV(𝜎, 𝜏)/𝜏
arbitrarily small, giving the bound A(𝜎) ≤ 0.

There are similar results assuming weaker versions of the Lindelof hypothesis. For instance,
we have

Theorem 11.13 (Ingham’s first bound). [137] (See also [277]) For any 1/2 < 𝜎 < 1, we
have

A(𝜎) ≤ 2 + 4𝜇(1/2).
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Proof. We give here a proof (somewhat different from the original proof) that passes through
Corollary 11.7. We apply Corollary 11.7 with 𝜏0 chosen so that 𝜇(1/2)𝜏0 < 𝜎 − 1/2. From
Corollary 8.6 we then have

A(𝜎)(1 − 𝜎) ≤ sup
𝜏0≤𝜏≤2𝜏0

LV(𝜎, 𝜏)/𝜏.

For any integer 𝑘 ≥ 0 and 𝑘 ≤ 𝜏 ≤ 𝑘 + 1, we see from (11.9) that

LV(𝜎, 𝜏) ≤ (2 − 2𝜎)(𝑘 + 1)

and
LV(𝜎, 𝜏) ≤ 𝜏 + (1 − 2𝜎)𝑘;

multiplying the first inequality by 2𝜎 − 1, the second by 2 − 2𝜎, and summing, we conclude
that

LV(𝜎, 𝜏) ≤ (𝜏 + 2𝜎 − 1)(2 − 2𝜎);
inserting this bound we have

A(𝜎) ≤ 2 + 2𝜎 − 1
𝜏0

.

Optimizing in 𝜏0, we obtain the claim.

Theorem 11.14 (Ingham’s second bound). [138] For any 1/2 < 𝜎 < 1, one has A(𝜎) ≤ 3
2−𝜎 .

Recorded in literature.py as:
add_zero_density_ingham_1940()
Derived in derived.py as:
prove_zero_density_ingham_1940()
prove_zero_density_ingham_1940_v2()

Proof. We apply Corollary 11.10 with 𝜏0 ∶= 2 − 𝜎. Here we have 4𝜏0/3 < 2 since 𝜎 > 1/2,
so the claim (11.7) is automatic; and the Montgomery conjecture hypothesis follows from
Theorem 7.9.

Either of Theorem 11.13 or Theorem 11.14 implies an older result of Carlson [29] that
A(𝜎) ≤ 4𝜎 for 1/2 < 𝜎 < 1. Recorded in literature.py as:
add_zero_density_carlson_1921()

Theorem 11.15 (Huxley bound). [122] For any 1/2 < 𝜎 < 1, one has A(𝜎) ≤ 3
3𝜎−1 . (In

particular, the density hypothesis holds for 𝜎 ≥ 5/6.)

Recorded in literature.py as:
add_zero_density_huxley_1972()
Derived in derived.py as:
prove_zero_density_huxley_1972()
prove_zero_density_huxley_1972_v2()
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Proof. We apply Corollary 11.10 with 𝜏0 ∶= 3𝜎 − 1. The Montgomery conjecture hypothesis
follows from Theorem 7.12. So it remains to show that (11.7) holds for 2 ≤ 𝜏 < 4𝜏0/3. For
𝜎 ≤ 5/6 we have 4𝜏0/3 ≤ 2, so the claim is vacuously true in this case. For 𝜎 > 5/6 we use
Corollary 8.6 and the bound 𝜇(1/2) ≤ 1/6 from Table 6.2 to conclude that LV𝜁(𝜎, 𝜏) = −∞
whenever 𝜎 > 1/2+𝜏/6, but this is precisely 𝜏 < 6𝜎−3. Since 6𝜎−3 > 4𝜏0/3 when 𝜎 > 5/6,
we obtain the claim.

Theorem 11.16 (Guth–Maynard bound). For any 1/2 < 𝜎 < 1, one has A(𝜎) ≤ 15
3+5𝜎 .

Recorded in literature.py as:
add_zero_density_guth_maynard_2024()
Derived in derived.py as:
prove_zero_density_guth_maynard_2024()
prove_zero_density_guth_maynard_2024_v2()

Proof. We may assume that 7/10 < 𝜎 < 8/10, since the bound follows from the Ingham and
Huxley bounds otherwise. We apply Corollary 11.9 with 𝜏0 ∶= 3+5𝜎

5 . We have 4𝜏0/3 < 2, so
the claim (11.7) is vacuous and we only need to establish (11.6). We split into the subranges
13/5 − 2𝜎 ≤ 𝜏 < 𝜏0 and 2𝜏0/3 ≤ 𝜏 ≤ 13/5 − 2𝜎. In the former range we use Theorem 10.27
(and (11.8)), and reduce to showing that

18/5 − 4𝜎 ≤ (3 − 3𝜎) 𝜏
𝜏0

,

and
𝜏 + 12/5 − 4𝜎 ≤ (3 − 3𝜎) 𝜏

𝜏0

for 13/5 − 2𝜎 ≤ 𝜏 < 𝜏0. The first inequality follows from

18/5 − 4𝜎 ≤ (3 − 3𝜎)13/5 − 2𝜎
𝜏0

(11.10)

which one can numerically check holds in the range 7/10 < 𝜎 < 8/10. Finally, the third
inequality is obeyed with equality when 𝜏 = 𝜏0 and the right-hand side has a larger slope in
𝜏 than the left (since 𝜏0 ≥ 3 − 3𝜎), so the claim follows as well.
In the remaining region 2𝜏0/3 ≤ 𝜏 ≤ 13/5 − 2𝜎, we use Theorem 7.9 and (11.8) to reduce
to showing that

𝜏 + 1 − 2𝜎 ≤ (3 − 3𝜎) 𝜏
𝜏0

in this range. This follows again from (11.10) which guarantees the inequality at the right
endpoint 𝜏 = 13/5 − 2𝜎.

Theorem 11.17 (Jutila zero density theorem). [160] The zero density hypothesis is true
for 𝜎 ≥ 11/14.

Derived in derived.py as:
prove_zero_density_jutila_1977()
prove_zero_density_jutila_1977_v2()
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Proof. We apply Corollary 11.8 with 𝜏0 ∶= 3/2, then it suffices to show that

LV(𝜎, 𝜏) ≤ (2 − 2𝜎)𝜏
for all 1 ≤ 𝜏 ≤ 3/2.
From the 𝑘 = 3 case of Theorem 7.16 we have

LV(𝜎, 𝜏) ≤ max (2 − 2𝜎, 𝜏 + 10 − 16𝜎
3 , 𝜏 + 18 − 24𝜎).

But all terms on the right-hand side can be verified to be less than or equal to (2 − 2𝜎)𝜏
when 1 ≤ 𝜏 ≤ 3/2 and 𝜎 ≥ 11/14, giving the claim.

In fact, we can do better:
Theorem 11.18 (Heath-Brown zero density theorem). [107] For 11/14 ≤ 𝜎 < 1, one has
A(𝜎) ≤ 9

7𝜎−1 (in particular, this recovers Theorem 11.17). For any 3/4 ≤ 𝜎 ≤ 1, one has
A(𝜎) ≤ max( 3

10𝜎−7 , 4
4𝜎−1 ) (which is a superior bound when 𝜎 ≥ 20/23).

Recorded in literature.py as:
add_zero_density_heathbrown_1979()
Derived in derived.py as:
prove_zero_density_heathbrown_1979a()
prove_zero_density_heathbrown_1979b()
prove_zero_density_heathbrown_1979a_v2()
prove_zero_density_heathbrown_1979b_v2()

Proof. For the first estimate, we apply Corollary 11.9 with 𝜏0 ∶= 7𝜎−1
3 . To verify (11.6), we

apply the 𝑘 = 3 version of Theorem 7.16, which gives

LV(𝜎, 𝜏) ≤ max (2 − 2𝜎, 𝜏 + 10 − 16𝜎
3 , 𝜏 + 18 − 24𝜎).

When 𝜎 ≥ 11/14 one has 18 − 24𝜎 ≤ 10−16𝜎
3 , so by (11.8) we need to show that

𝜏 + 10 − 16𝜎
3 ≤ (3 − 3𝜎) 𝜏

𝜏0

for 2𝜏0/3 ≤ 𝜏 ≤ 𝜏0. This holds with equality at 𝜏 = 𝜏0, hence holds for 𝜏 ≤ 𝜏0 as well since
𝜏0 ≥ 3 − 3𝜎. As for (11.7), we invoke Theorem 9.7 and reduce to showing that

2𝜏 + 6 − 12𝜎 ≤ (3 − 3𝜎) 𝜏
𝜏0

for 2 ≤ 𝜏 ≤ 4𝜏0/3. Since 6 − 12𝜎 is negative, the ratio of the left-hand side and right-hand
side is increasing in 𝜏 , so it suffices to verify this claim at the endpoint 𝜏 = 4𝜏0/3. The
claim then simplifies to 𝜏0 ≤ 3

4 (4𝜎 − 1), which one can verify from the choice of 𝜏0 and the
hypothesis 𝜎 ≥ 11/14.
For the second estimate, we take 𝜏0 ∶= min(10𝜎 − 7, 3

4 (4𝜎 − 1)). To verify (11.6), we now
use Theorem 7.14 and (11.8), and reduce to showing that

𝜏 + 10 − 13𝜎 ≤ (3 − 3𝜎) 𝜏
𝜏0

for 2𝜏0/3 ≤ 𝜏 ≤ 𝜏0. The inequality holds at 𝜏 = 𝜏0 since 𝜏0 ≤ 10𝜎 − 7, and hence for all
smaller 𝜏 since 𝜏0 ≥ 3 − 3𝜎. As for (11.7), we can repeat the previous arguments since
𝜏0 ≤ 3

4 (4𝜎 − 1).
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With the aid of computer assistance, we were able to strengthen the second claim here. We
first need a lemma:

Lemma 11.19. (3/40, 31/40) is an exponent pair. In particular, by Corollary 6.8, 𝜇(7/10) ≤
3/40.

Derived in derived.py as:
best_proof_of_exponent_pair(frac(3,40), frac(31,40))

Proof. This can be derived from the Watt exponent pair 𝑊 ∶= (89/560, 1/2 + 89/560) from
Theorem 5.12 as well as the 𝐴 and 𝐵 transforms and convexity (Lemmas 5.4, 5.8, 5.9) after
observing that

(3/40, 31/40) = 𝑥𝑦𝐴𝑊 + (1 − 𝑥)𝑦𝐴𝐵𝐴𝑊 + (1 − 𝑦)𝑊

with 𝑥 = 37081/40415 and 𝑦 = 476897/493711. (One could of course also use more recent
exponent pairs that are stronger, such as the Bourgain exponent pair (13/84, 1/2 + 13/84).)
We remark that one could also obtain this result from Lemma 5.3, after observing that
the required bound 𝛽(𝛼) ≤ 3/40 + 7𝛼/10 can be derived from Theorem 4.16 (as well as
the classical bounds in Corollary 4.8). We also note that the corollary 𝜇(7/10) ≤ 3/40 =
0.075 is immediate from [279, Theorem 2.4], which in fact gives the slightly stronger bound
𝜇(7/10) ≤ 218/3005 = 0.07254 … .

Theorem 11.20 (Improved Heath-Brown zero density theorem). For any 7/10 < 𝜎 ≤ 1,
one has A(𝜎) ≤ 3

10𝜎−7 .

Derived in derived.py as:
prove_zero_density_heathbrown_extended()

Proof. We apply Corollary 11.10 with 𝜏0 ∶= 10𝜎 − 7. The claim (11.6) again follows from
Theorem 7.14 and (11.8) as in the proof of Theorem 11.18. Meanwhile, from Lemma 11.19
and Corollary 8.7 we have LV𝜁(𝜎, 𝜏) = −∞ whenever 𝜎 > 3

40 𝜏 + 7
10 , or equivalently 𝜏 <

4
3 (10𝜎 − 7), which then immediately gives (11.7).

Theorem 11.21 (Bourgain result on density hypothesis). The density hypothesis holds for
𝜎 > 25/32.

Recorded in literature.py as:
add_zero_density_bourgain_2000()

Proof. The arguments below are a translation of the original arguments of Bourgain [21] to
our notational framework.
In view of Theorem 11.17 (or Theorem 11.18), we may assume that 25/32 < 𝜎 < 11/14. Set
𝜌 ∶= LV(𝜎, 𝜏). As in the proof of Theorem 11.17, it suffices to show that

𝜌 ≤ (2 − 2𝜎)𝜏 (11.11)

for all 1 ≤ 𝜏 ≤ 3/2.
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From the 𝑘 = 3 case of Theorem 7.16 we have

𝜌 ≤ max (2 − 2𝜎, 𝜏 + 10 − 16𝜎
3 , 𝜏 + 18 − 24𝜎) (11.12)

which in the 𝜎 < 11/14 regime simplifies to

𝜌 ≤ max(2 − 2𝜎, 𝜏 + 18 − 24𝜎) (11.13)

and this already suffices unless
𝜏 ≥ 24𝜎 − 18

2𝜎 − 1 . (11.14)

In the regime 𝜎 > 25/32 and 𝜏 ≤ 3/2, the bound (11.13) certainly implies

𝜌 ≤ min(1, 4 − 2𝜏)

and also
max(1, 2𝜏 − 2) = 1

so we may invoke Corollary 10.30 to conclude that

𝜌 ≤ max(𝛼2 +2−2𝜎, 𝛼1 +𝛼2/2+2−2𝜎, −𝛼2 +2𝜏 +4−8𝜎, −2𝛼1 +𝜏 +12−16𝜎, 4𝛼1 +3−4𝜎)
(11.15)

for any 𝛼1, 𝛼2 ≥ 0.
We now divide into cases. First suppose that 𝜏 ≤ 4(1+𝜎)

5 . In this case we set 𝛼1 ∶=
𝜏
3 − 2

3 (7𝜎 − 5) (which can be checked to be nonnegative using (11.14) and 𝜎 ≥ 25/32) and
𝛼2 = 0, and one can check that (11.15) implies (11.11) in this case (with some room to
spare).
Now suppose that 𝜏 > 4(1+𝜎)

5 . In this case we choose 𝛼1 = 𝜏
8 − 9𝜎−7

2 and 𝛼2 = 5𝜏
4 − (1 + 𝜎),

which can be checked to be nonnegative using the hypotheses on 𝜎, 𝜏 . In this case one can
again check that (11.15) implies (11.11).

We can improve this bound as follows:

Theorem 11.22 (Improved Bourgain density hypothesis bound). For 17/22 ≤ 𝜎 ≤ 4/5,
one has A(𝜎) ≤ max( 2

9𝜎−6 , 9
8(2𝜎−1) ). Thus one has A(𝜎) ≤ 9

8(2𝜎−1) for 38/49 ≤ 𝜎 ≤ 4/5 and
A(𝜎) ≤ 2

9𝜎−6 for 17/22 ≤ 𝜎 ≤ 38/49.

Derived in derived.py as:
prove_zero_density_bourgain_improved()

The arguments can be pushed to some 𝜎 below 17/22, but in that range the estimate in
Corollary 11.31 becomes superior, so we do not pursue this further.

Proof. We apply Corollary 11.10 with 𝜏0 ∶= min( 9(3𝜎−2)
2 , 8(2𝜎−1)

3 ). For future reference we
note that 1

3 < 3 − 3𝜎
𝜏0

< 1
2. (11.16)

It suffices to show that
LV(𝜎, 𝜏) ≤ 𝜏

𝜏0
(3 − 3𝜎) (11.17)
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for 2𝜏0/3 ≤ 𝜏 ≤ 𝜏0, as well as
LV𝜁(𝜎, 𝜏) ≤ 𝜏

𝜏0
(3 − 3𝜎) (11.18)

for 2 ≤ 𝜏 < 4𝜏0/3. For (11.18) we use the twelfth moment bound in Theorem 9.7. Since the
slope of 2𝜏 − 12(𝜎 − 1/2) in 𝜏 exceeds that of 𝜏

𝜏0
(3 − 3𝜎) by (11.16), it suffices to check the

bound at the endpoint, i.e., to show that

8𝜏0/3 − 12(𝜎 − 1/2) ≤ 4 − 4𝜎

or equivalently 𝜏0 ≤ 3(4𝜎−1)
4 , which one can easily check to be the case.

Now we prove (11.17). Set 𝜌 ∶= LV(𝜎, 𝜏). From the 𝑘 = 3 case of Theorem 7.16 we again
have (11.12), which implies the required bound 𝜌 ≤ 𝜏

𝜏0
(3 − 3𝜎) unless one has

𝜏 ≥ − max(10 − 16𝜎
3 , 18 − 24𝜎)/(1 − 3 − 3𝜎

𝜏0
) (11.19)

In this regime, one can also check from (11.12) that

𝜌 ≤ min(1, 4 − 2𝜏)

(with room to spare) so we may apply Corollary 10.30 to obtain

𝜌 ≤ max(𝛼2 + 2 − 2𝜎, 𝛼1 + 𝛼2/2 + 2 − 2𝜎, −𝛼2 + 2𝜏 + 4 − 8𝜎,
− 2𝛼1 + 𝜏 + 12 − 16𝜎, 4𝛼1 + 2 + max(1, 2𝜏 − 2) − 4𝜎) (11.20)

for any 𝛼1, 𝛼2 ≥ 0.
We first consider the case when 38/49 ≤ 𝜎 ≤ 4/5, so that 𝜏0 = 8(2𝜎 − 1)/3. As in the proof
of Theorem 11.21, we set

𝛼2 ∶= max (5𝜏
4 − (1 + 𝜎), 0)

and
𝛼1 ∶= 𝜏

3 − 2
3(7𝜎 − 5) − 𝛼2/6.

With this choice, the expressions 𝛼1 +𝛼2/2+2−2𝜎 and −2𝛼1 +𝜏 +12−16𝜎 are both equal
to 𝜏

3 + 16−20𝜎
3 + 𝛼2

3 , while −𝛼2 + 2𝜏 + 4 − 8𝜎 is equal to

𝜏
3 + 16 − 20𝜎

3 + 𝛼2
3 − 4

3 (𝛼2 − 5𝜏
4 − (1 + 𝜎))

which is less than or equal to the previous expression by definition of 𝛼2. Finally, the
expression 4𝛼1 + 1 + max(2, 2𝜏 − 2) − 4𝜎 is equal to

4𝜏
3 + 46 − 68𝜎

3 + max(1, 2𝜏 − 2) − 2𝛼2
3 .

Thus it remains to show the bounds

𝛼2 + 2 − 2𝜎 ≤ 𝜏
𝜏0

(3 − 3𝜎) (11.21)

𝜏
3 + 16 − 20𝜎

3 + 𝛼2
3 ≤ 𝜏

𝜏0
(3 − 3𝜎) (11.22)
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and 4𝜏
3 + 46 − 68𝜎

3 + max(1, 2𝜏 − 2) − 2𝛼2
3 ≤ 𝜏

𝜏0
(3 − 3𝜎). (11.23)

For (11.21), we trivially have 2 − 2𝜎 ≤ 𝜏
𝜏0

(3 − 3𝜎) since 𝜏 ≥ 2𝜏0/3, and the slope of
5𝜏
4 − (1 + 𝜎) + 2 − 2𝜎 in 𝜏 certainly exceeds 3−3𝜎

𝜏0
by (11.16), so it suffices to check the

endpoint
5𝜏0
4 − (1 + 𝜎) + 2 − 2𝜎 ≤ 3 − 3𝜎

which one can check to be valid for 𝜎 ≤ 4/5. Now we turn to (11.22). From (11.16) it
suffices to show that

𝜏0
3 + 16 − 20𝜎

3 +
5𝜏0
4 − (1 + 𝜎)

3 ≤ 3 − 3𝜎

and 𝜏
3 + 16 − 20𝜎

3 + 0
3 ≤ 2 − 2𝜎.

The former is an identity, and the latter simplifies to 𝜏 ≥ 14𝜎 − 10, which one can check
follows from (11.19) (with some room to spare) in the regime 38/49 ≤ 𝜎 ≤ 4/5, giving the
claim. Finally, for (11.23) it suffices to show that

4𝜏
3 + 46 − 68𝜎

3 + max(1, 2𝜏0 − 2) − 2( 5𝜏
4 − (1 + 𝜎))

3 ≤ 𝜏
𝜏0

(3 − 3𝜎)

which by (11.16) would follow from

4𝜏0
3 + 46 − 68𝜎

3 + max(1, 2𝜏0 − 2) − 2( 5𝜏0
4 − (1 + 𝜎))

3 ≤ 3 − 3𝜎

and one can check that this applies for 𝜎 ≥ 38/49.
Now suppose that we are in the case 17/22 ≤ 𝜎 ≤ 38/49, so that 𝜏0 = 9(3𝜎−2)

2 ≤ 72
49 < 3

2 (so
in particular max(1, 2𝜏 − 2) = 1 for 𝜏 ≤ 𝜏0). We set

𝛼2 ∶= max(11 − 16𝜎 + 𝜏, 0)

and
𝛼1 ∶= 𝜏

3 − 2
3(7𝜎 − 5) − 𝛼2/6.

Note that for 𝜎 ≤ 38/49, one has

(5𝜏/4 − (1 + 𝜎)) − (11 − 16𝜎 + 𝜏) ≤ 15𝜎 − 12 − 𝜏0/4 ≤ 0

and hence
𝛼2 ≥ 5𝜏/4 − (1 + 𝜎).

As before, we conclude that the quantities 𝛼1 + 𝛼2/2 + 2 − 2𝜎 and −2𝛼1 + 𝜏 + 12 − 16𝜎 are
both equal to 𝜏

3 + 16−20𝜎
3 + 𝛼2

3 , while −𝛼2 + 2𝜏 + 4 − 8𝜎 is less than or equal to this quantity.
Thus it suffices to show (11.21), (11.22), (11.23) as before.
For (11.21) we argue as before to reduce to showing that

11 − 16𝜎 + 𝜏0 + 2 − 2𝜎 ≤ 3 − 3𝜎
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which one can check to be true (with room to spare) for 𝜎 ≥ 17/22. For (11.22), we use
(11.16) as before to reduce to showing that

𝜏0
3 + 16 − 20𝜎

3 + 11 − 16𝜎 + 𝜏
3 ≤ 3 − 3𝜎

and 𝜏
3 + 16 − 20𝜎

3 + 0
3 ≤ 2 − 2𝜎.

The first inequality is an identity, and the latter again reduces to 𝜏 ≥ 14𝜎 − 10 which one
can check follows from (11.19). For (11.23) it suffices to show that

4𝜏
3 + 46 − 68𝜎

3 + 1 − 2(11 − 16𝜎 + 𝜏)
3 ≤ 𝜏

𝜏0
(3 − 3𝜎)

which by (11.16) follows from

4𝜏0
3 + 46 − 68𝜎

3 + 1 − 2(11 − 16𝜎 + 𝜏0)
3 ≤ 3 − 3𝜎,

but this is an identity.

Theorem 11.23 (Bourgain zero density theorem). [20, Proposition 3] Let (𝑘, ℓ) be an
exponent pair with 𝑘 < 1/5, ℓ > 3/5, and 15ℓ + 20𝑘 > 13. Then, for any 𝜎 > ℓ+1

2(𝑘+1) , one
has

A(𝜎) ≤ 4𝑘
2(1 + 𝑘)𝜎 − 1 − ℓ

assuming either that 𝑘 < 11
85 , or that 11

85 < 𝑘 < 1
5 and 𝜎 > 144𝑘−11ℓ−11

170𝑘−22 .

Corollary 11.24 (Special case of Bourgain’s zero density theorem). [20, Corollary 4] One
has

A(𝜎) ≤ 4
30𝜎 − 25

for 15
16 ≤ 𝜎 ≤ 1 and

A(𝜎) ≤ 2
7𝜎 − 5

for 17
19 ≤ 𝜎 ≤ 15

16 .

Recorded in literature.py as:
add_zero_density_bourgain_1995()

Proof. Apply Theorem 11.23 with the classical pairs ( 1
14 , 11

14 ) and ( 1
6 , 2

3 ) respectively from
Proposition 5.10.

It was remarked in [20] that further zero density estimates could be obtained by using
additional exponent pairs. This we do here:
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Corollary 11.25 (Optimized Bourgain zero density bound). One has

A(𝜎) ≤

⎧{{{{{{{{{{
⎨{{{{{{{{{{⎩

11
12(4𝜎 − 3)

3
4 < 𝜎 ≤ 14

15 ,
391

2493𝜎 − 2014
14
15 < 𝜎 ≤ 2841

3016 ,
22232

163248𝜎 − 134765
2841
3016 < 𝜎 ≤ 859

908 ,
356

2742𝜎 − 2279
859
908 < 𝜎 ≤ 1625

1692 ,
2609588

20732766𝜎 − 17313767
1625
1692 < 𝜎 ≤ 3334585

3447984 ,
75872

9(81024𝜎 − 69517)
3334585
3447984 < 𝜎 ≤ 974605

1005296 ,
288

3616𝜎 − 3197
974605
1005296 < 𝜎 ≤ 5857

6032 ,
86152

1447460𝜎 − 1311509
5857
6032 < 𝜎 < 1.

Implemented at zero_density_estimate.py as:
bourgain_ep_to_zd()

Proof. Let 𝒮(𝜎) denote the closure of the region

{(𝑘, ℓ) ∶ 0 < 𝑘 < 1
5, 3

5 < ℓ < 1, 15ℓ + 20𝑘 > 13, ℓ + 1
2(𝑘 + 1) < 𝜎,

𝑘 < 11
85 or (𝑘 > 11

85 and 144𝑘 − 11ℓ − 11
170𝑘 − 22 < 𝜎) }

One may verify that 𝒮(𝜎) is a convex polygon for all 3/4 < 𝜎 < 1, and thus so is 𝒮(𝜎) ∩ 𝐻,
where 𝐻 is the convex hull of exponent pairs. Thus

min
(𝑘,ℓ)∈𝒮(𝜎)∩𝐻

4𝑘
2(1 + 𝑘)𝜎 − 1 − ℓ

is a convex optimisation problem for each 3/4 < 𝜎 < 1. We take the following choices of
(𝑘, ℓ) (found with the aid of computer assistance).

(11
85 − 𝜀, 59

85 + 2𝜀) , ( 391
4595 + 𝜀, 3461

4595) , ( 2779
38033 + 𝜀, 58699

76066) , ( 89
1282 + 𝜀, 997

1282) ,

( 652397
9713986 + 𝜀, 7599781

9713986) , ( 2371
43205 + 𝜀, 280013

345640) , ( 9
217 + 𝜀, 1461

1736) , ( 10769
351096 + 𝜀, 609317

702192) .

Of these exponent pairs:

• ( 11
85 , 59

85 ) is the intersection of the lines 𝑘 = 1/5 and 15ℓ + 20𝑘 = 13;

• ( 391
4595 , 3461

4595 ) is an intersection of the line 15ℓ + 20𝑘 = 13 and the boundary of 𝐻;

• all other exponent pairs are vertices of 𝐻.
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The desired result follows from taking a minimum over the implied bounds. Sharper bounds
are possible close to 𝜎 = 1 by choosing other exponent pairs, however it turns out such
results are superseded by other zero density estimates.

Lemma 11.26 (1980 Ivic zero density bound). [141], [144, Theorem 11.2] We have

A(𝜎) ≤ 4
2𝜎 + 1

for 17/18 ≤ 𝜎 ≤ 1, and
A(𝜎) ≤ 24

30𝜎 − 11
for 155/174 ≤ 𝜎 ≤ 17/18.

Recorded in literature.py as:
add_zero_density_ivic_1980()

Proof. From Lemma 8.16 we have

LV(𝜎, 𝜏) ≤ max(2 − 2𝜎, 𝜏 + 9 − 12𝜎, 𝜏 − 84𝜎 − 65
6 )

for all 𝜏 ≥ 0. Meanwhile, applying Lemma 8.11 with the exponent pair (2/7, 4/7) we have

LV𝜁(𝜎, 𝜏) ≤ max(𝜏 + (3 − 6𝜎), 3𝜏 + 19(1/2 − 𝜎)).

We apply Corollary 11.9 with 𝜏0 ∶= max( 30𝜎−11
8 , 6𝜎+3

4 ), and reduce to showing that (11.6)
for 2𝜏0/3 ≤ 𝜏 ≤ 𝜏0 and (11.7) for 2 ≤ 𝜏 < 4𝜏0/3. But this follows from the preceding
estimates after routine calculations.

One can also use bounds on 𝜇 to obtain zero density theorems:

Lemma 11.27 (Zero density from 𝜇 bound). [218, Theorem 12.3] If 1/2 ≤ 𝛼 ≤ 1 and
𝛼+1

2 ≤ 𝜎 ≤ 1, then

A(𝜎) ≤ 𝜇(𝛼) 2(3𝜎 − 1 − 2𝛼)
(2𝜎 − 1 − 𝛼)(𝜎 − 𝛼) .

Corollary 11.28 (1971 Montgomery zero density bound). [218], [144, Theorem 11.3] For
any 9/10 ≤ 𝜎 ≤ 1 and 1/2 ≤ 𝛼 ≤ 1 one has

A(𝜎)(1 − 𝜎) ≤ 7
6𝜇(5𝜎 − 4).

In particular, for 152/155 ≤ 𝜎 ≤ 1, one has

A(𝜎) ≤ min(35/36, 1600(1 − 𝜎)1/2).

Recorded in literature.py as:
add_zero_density_montgomery_1971()

Proof. Apply the previous lemma with 𝛼 = 5𝜎 − 4.
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Lemma 11.29 (Preliminary large values estimate). If 𝑚 ≥ 2 is an integer, 3/4 < 𝜎 ≤ 1,
and (𝑘, ℓ) is an exponent pair, then

LV(𝜎, 𝜏) ≤ max(2 − 2𝜎, 𝑚(2 − 4𝜎) + 𝑚𝜏, min(𝑋, 𝑌 ))

where
𝑋 ∶= 2𝜏/3 + 4𝑚(3 − 4𝜎)/3

and
𝑌 ∶= max(𝜏 + 3𝑚(3 − 4𝜎), (𝑘 + ℓ)𝜏/𝑘 + 𝑘(1 + 2𝑘 + 2ℓ)(3 − 4𝜎)/𝑘).

Proof. See [144, (11.74)].

Lemma 11.30 (General zero density estimate). [144, (11.76), (11.77)] If (𝑘, ℓ) is an expo-
nent pair, and 𝑚 ≥ 2 an integer, then

A(𝜎) ≤ 3𝑚
(3𝑚 − 2)𝜎 + 2 − 𝑚

whenever

𝜎 ≥ min(6𝑚2 − 5𝑚 + 2
8𝑚2 − 7𝑚 + 2,

max ( 9𝑚2 − 4𝑚 + 2
12𝑚2 − 6𝑚 + 2, 3𝑚2(1 + 2𝑘 + 2ℓ) − (4𝑘 + 2ℓ)𝑚 + 2𝑘 + 2ℓ

4𝑚2(1 + 2𝑘 + 2ℓ) − (6𝑘 + 4ℓ)𝑚 + 2𝑘 + 2ℓ)).

Implemented at zero_density_estimate.py as:
ivic_ep_to_zd(exp_pairs, m=2)

Proof. With the hypothesis on 𝜎, one sees from Lemma 11.29 that

LV(𝜎, 𝜏) ≤ max(2 − 2𝜎, 𝜏 − (4𝑚 − 2)𝜎 + 2 − 2𝑚
𝑚 + 2 − 2𝜎)

for 0 ≤ 𝜏 < (4𝑚−2)𝜎+2−2𝑚
𝑚 , and hence for all 𝜏 ≥ 0 by by Lemma 7.4(ii). Meanwhile, from

Theorem 9.7 one has
LV𝜁(𝜎, 𝜏) ≤ 2𝜏 − 12(𝜎 − 1/2)

for all 𝜏 ≥ 2. The claim then follows from Corollary 11.9 with 𝜏0 ∶= (3𝑚−2)𝜎+2−𝑚
𝑚 after a

routine calculation.

Corollary 11.31 (1980-1984 Ivic zero density bound). [141], [144, Theorem 11.4] One can
bound A(𝜎) by

3
2𝜎 for 3831

4791 ≤ 𝜎 ≤ 1;
9

7𝜎 − 1 for 41
53 ≤ 𝜎 ≤ 1;

6
5𝜎 − 1 for 13

17 ≤ 𝜎 ≤ 1;
15

13𝜎 − 3 for 127
167 ≤ 𝜎 ≤ 1;

9
8𝜎 − 2 for 47

62 ≤ 𝜎 ≤ 1;
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Recorded in literature.py as:
add_zero_density_ivic_1980()
add_zero_density_ivic_1984()
Derived in derived.py as:
prove_zero_density_ivic_1984()

Proof. Apply Lemma 11.30 with 𝑚 = 2 and (𝑘, ℓ) = ( 97
251 , 132

251 ) for the first claim; the
remaining claims follow from taking 𝑚 = 3, 4, 5, 6 and the trivial exponent pair (0, 1).
The first bound has been improved:

Theorem 11.32 (2000 Bourgain zero density theorem). [22] One has A(𝜎) ≤ 3/2𝜎 for
3734/4694 ≤ 𝜎 ≤ 1.

Recorded in literature.py as:
add_zero_density_bourgain_2002()

Lemma 11.33 (Preliminary large values theorem). If 1/2 ≤ 𝜎 ≤ 1 and 𝜏 < 8𝜎 − 5, then

LV(𝜎, 𝜏) ≤ max(2 − 2𝜎, 6𝜏/5 + (20 − 32𝜎)/5).

Proof. See [144, (11.95)].

Corollary 11.34 (Zero density estimates for 𝜎 close to 3/4). [144, Theorem 11.5] One has
A(𝜎) ≤ 3

7𝜎−4 for 3/4 ≤ 𝜎 ≤ 10/13, and A(𝜎) ≤ 9
8𝜎−2 for 10/13 ≤ 𝜎 ≤ 1.

Proof. For 3/4 ≤ 𝜎 ≤ 10/13, we see from Lemma 11.33 that the bound

LV(𝜎, 𝜏) ≤ max(2 − 2𝜎, 𝜏 + 7 − 10𝜎)

holds for 0 ≤ 𝜏 < 8𝜎 − 5, and hence for all 𝜏 ≥ 0 by Lemma 7.7. Meanwhile, from Lemma
9.6 we have

LV𝜁(𝜎, 𝜏) ≤ 𝜏 − 4(𝜎 − 1/2)
for all 1/2 ≤ 𝜎 ≤ 1 and 𝜏 ≥ 2. The claim then follows from Corollary 11.9 with 𝜏0 ∶= 7𝜎 − 4
after a routine calculation. Similarly, for 10/13 ≤ 𝜎 ≤ 1, we have

LV(𝜎, 𝜏) ≤ max(2 − 2𝜎, 𝜏 + 11 − 17𝜎
3 )

for 0 ≤ 𝜏 < 11𝜎−5
3 , hence for all 𝜏 ≥ 0 by Lemma 7.4(ii); the claim then follows from

Corollary 11.9 with 𝜏0 ∶= 8𝜎−2
3 after a routine calculation.

Theorem 11.35 (Pintz zero density theorem). [237, Theorem 1] If 𝑘 ≥ 4, ℓ ≥ 3 are integers
and 𝜎 = 1 − 𝜂 is such that

1
𝑘(𝑘 + 1) ≤ 𝜂 < 1

𝑘(𝑘 − 1) (11.24)

and 1
2ℓ(ℓ + 1) ≤ 𝜂 < 1

2ℓ(ℓ − 1) (11.25)

then
A(𝜎) ≤ max ( 3

ℓ(1 − 2(ℓ − 1)𝜂) , 4
𝑘(1 − (𝑘 − 1)𝜂)) .
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Recorded in literature.py as:
add_zero_density_pintz_2023()

As a corollary of these bounds one has A(𝜎) ≤ 3
√

2𝜂1/2+18𝜂 for 𝜂 < 1/18; see [237, Theorem
2’].

Proof. We apply Corollary 11.9 with

𝜏0 ∶= min(ℓ(1 − 2(ℓ − 1)𝜂), 3
4(𝑘(1 − (𝑘 − 1)𝜂))) − 𝜀 (11.26)

for an arbitrarily small 𝜀. It then suffices to show that (11.6) holds for 2𝜏0/3 ≤ 𝜏 ≤ 𝜏0 and
(11.7) holds for 2 ≤ 𝜏 < 4𝜏0/3.
To prove (11.7), it suffices by Lemma 8.5 to show that 𝜎 > 𝜏𝛽(1/𝜏) for all 2 ≤ 𝜏 < 4𝜏0/3.
By (11.26) one has 2 ≤ 𝜏 < 𝑘(1 − (𝑘 − 1)𝜂). Meanwhile, from Lemma 4.23 one has

𝜏𝛽(1/𝜏) ≤ 1 + max ( 𝜏 − 𝑟
𝑟(𝑟 − 1) , − 1

𝑟(𝑟 − 1) , − 2𝜏
𝑟2(𝑟 − 1)) (11.27)

for any 𝑟 ≥ 3. So by (11.24) it suffices to find 3 ≤ 𝑟 ≤ 𝑘 such that

𝑟 − 𝜏
𝑟(𝑟 − 1) , 2𝜏

𝑟2(𝑟 − 1) ≥ 𝜂

or equivalently

𝜏 ∈ [𝑟
2(𝑟 − 1)𝜂

2 , 𝑟(1 − (𝑟 − 1)𝜂)].

But one can check that these intervals for 3 ≤ 𝑟 ≤ 𝑘 cover the entire range 2 ≤ 𝜏 < 4𝜏0/3,
as required.
To prove (11.6), it suffices by Lemma 7.10 and (11.8) to show that

sup
1≤𝜏≤𝜏0

𝛽(1/𝜏)𝜏 < 2𝜎 − 1 = 1 − 2𝜂.

Using (11.27), (11.25) we obtain the claim whenever

𝜏 ∈ [𝑟2(𝑟 − 1)𝜂 + 𝜀, 𝑟(1 − 2(𝑟 − 1)𝜂) − 𝜀]
for some 3 ≤ 𝑟 ≤ ℓ. These cover the range [18𝜂 + 𝜀, 𝜏0]. For the remaining range [1, 18𝜂 + 𝜀]
we use the van der Corput bound

𝜏𝛽(1/𝜏) ≤ 𝜏
2 ≤ 9𝜂

from Corollary 4.8, which suffices since 𝜂 ≤ 1
𝑘(𝑘−1) ≤ 1

12 .

The range of the second bound in Lemma 11.26 was recently extended:

Theorem 11.36 (Chen-Debruyne-Vidas density theorem). [32] For any 279/314 ≤ 𝜎 ≤
17/18, one has A(𝜎) ≤ 24

30𝜎−11 .

Recorded in literature.py as:
add_zero_density_chen_debruyne_vindas_2024()

The following result appears in an unpublished preprint of Kerr, and is based on the large
values theorems in Theorem 10.32:
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Figure 11.1: The bounds in Table 11.1, compared against the existing literature bounds on
A(𝜎).

Proposition 11.37. [165, Theorems 6, 7] One has A(𝜎) ≤ 3
2𝜎 for 𝜎 ≥ 23/29, and

A(𝜎) ≤ max ( 36
138𝜎 − 89, 114𝜎 − 79

(1 − 𝜎)(138𝜎 − 89))

for 127/168 ≤ 𝜎 ≤ 107/138.

The current best known zero density estimates (excepting the unpublished result in Propo-
sition 11.37) are summarized in Table 11.1.
Derived in derived.py as:
compute_best_zero_density()

For completeness, we list in Table 11.2 some historical zero density theorems not already
covered, which have now been superseded by more recent estimates.
TODO: enter this table into literature.py

11.2 Estimates for 𝜎 very close to 1/2 or 1
Some additional estimates were established for 𝜎 sufficiently close to 1/2 or 1.
Turán [280] introduced the power sum method to establish

A(1 − 𝜂) ≤ 2 + 𝜂0.14

for 𝜂 small enough. Halász and Turán [91] combined this method with the large values
approach of Halász [90] to improve the bound to

A(1 − 𝜂) ≤ 𝐶𝜂1/2 (11.28)

with 𝐶 = 12, 000 for sufficiently small 𝜂. See [236] for an alternate proof of these results.
The constant 𝐶 in (11.28) was improved to 1304.37 by Montgomery [218, Theorem 12.3]
(see also the remark after [144, (11.97)] for a correction), to 58.05 by Ford [67], to 5.03
by Heath-Brown [113] (the latter exploiting the resolution of the Vinogradov mean value
conjecture [24]), and to any 𝐶 > 3

√
2 = 4.242 … in [237]. See also an explicit version at

[13].
“Log-free” zero density estimates of the form

𝑁(1 − 𝜂, 𝑇 ) ≪ 𝑇 𝐵𝜂
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for various 𝐵 were established starting with the work of Linnik [190, 191] and developed
further in [280], [66], [17], [159], [79], [85], [112]. An explicit version of such estimates may
be found in [14].
There is some work establishing bounds on 𝑁(𝜎, 𝑇 ) for 𝜎 very close to 1/2 (and not necessar-
ily fixed), although these bounds do not make further improvements on A(𝜎). Specifically,
bounds of the form

𝑁(𝜎, 𝑇 ) ≪ 𝑇 1−𝜃(2𝜎−1) log 𝑇
for 𝑇 ≥ 2 (say) were established for 𝜃 = 1/8 by Selberg [264] (see [267] for an explicit
version), any 0 < 𝜃 < 1/2 by Jutila [161], and any 0 < 𝜃 < 4/7 by Conrey (claimed in [43],
with a full proof given in [9]). Note that the density hypothesis would follow if we could
establish the claim for all 0 < 𝜃 < 1, but an improvement to Ingham’s bound (Theorem
11.14) would only occur once 𝜃 exceeded 2/3.

11.3 A heuristic for zero density estimates
We can now state a rough heuristic as to what zero density estimates to expect from a given
large value theorem:

Heuristic 11.38 (Predicting a zero density estimate from a large value theorem). Suppose
that 1/2 ≤ 𝜎 ≤ 1 and 𝜏0 ≥ 1 are such that one can prove LV(𝜎, 𝜏0) ≤ 3 − 3𝜎 (i.e., the
Montgomery conjecture holds here with a multiplicative loss of 3/2). Then in principle, one
can hope to prove A(𝜎) ≤ 3/𝜏0. Conversely, if one cannot prove LV(𝜎, 𝜏0) ≤ 3 − 3𝜎, then
the bound A(𝜎) ≤ 3/𝜏0 is likely out of reach.

We justify this heuristic as follows, though we stress that the arguments that follow are
not fully rigorous. In the first part, we simply apply Corollary 11.9. In practice, the (11.6)
is often more delicate than (11.7) and ends up being the limiting factor for the bounds;
furthermore, within (11.6), it is the right endpoint 𝜏 = 𝜏0 of the range 2𝜏0/3 ≤ 𝜏 ≤ 𝜏0 that
ends up being the bottleneck; but this is precisely the claimed criterion LV(𝜎, 𝜏0) ≤ 3 − 3𝜎.
We remark that in some cases (particularly for 𝜎 close to one), the estimate (11.7) ends up
being more of the bottleneck than (11.6), and so one should view 3/𝜏0 here as a theoretical
upper limit of methods rather than as a guaranteed bound. (In particular, the need to also
establish the bound LV𝜁(𝜎, 4

3 𝜏0 − 𝜀) < 4 − 4𝜎 for 𝜀 > 0 small can sometimes be a more
limiting factor.)
Conversely, suppose that

LV(𝜎, 𝜏0) > 3 − 3𝜎, (11.29)

but that one still wants to prove the bound A(𝜎) ≤ 3/𝜏0. Heuristically, Theorem 11.6
suggests that in order to do this, it is necessary to establish the bound LV𝜁(𝜎, 𝜏)/𝜏 ≤
3
𝜏0

(1 − 𝜎) for all 𝜏 ≥ 2. In particular, one should show that

LV𝜁(𝜎, 2𝜏0) ≤ 6 − 6𝜎.

Let us consider the various options one has to do this. There are ways to control zeta
large values that do not apply to general large value estimates, such as moment estimates
of the zeta function, exponent pairs, or control of 𝛽 and 𝜇. However, at our current level of
understanding, these techniques only control LV𝜁(𝜎, 𝜏) for relatively small values of 𝜏 , and
in practice 2𝜏0 is too large for these methods to apply; this exponent also tends to be too
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large for direct application of standard large value theorems to be useful. Hence, the most
viable option in practice is raising to a power (Lemma 7.8), using

LV𝜁(𝜎, 2𝜏0) ≤ 𝑘LV𝜁(𝜎, 2𝜏0/𝑘)
for some natural number 𝑘 ≥ 2. However, the most natural choice 𝑘 = 2 is blocked due
to our hypothesis (11.29), while in practice the 𝑘 ≥ 3 choice is blocked because of Lemma
7.5. Hence it appears heuristically quite difficult to establish A(𝜎) ≤ 3/𝜏0 with current
technology, in the event that (11.29) occurs.
In Table 11.3 we list some examples in which the heuristic can actually be attained. Note
that this only covers some, but not all, of the best known zero density estimates in Table
11.1, as there are often other bounds that need to be established that prevent the heuristic
limit of 3/𝜏0 from actually being attained; so one should take the heuristic with a certain
grain of salt.
One consequence of Heuristic 11.38 is that, in the regimes where the heuristic is accurate,
combining multiple large values theorems together are unlikely to achieve new zero density
theorems that could not be accomplished with each large value theorem separately.

11.4 Explicit results
A number of explicit versions of the above zero-density estimates have been established,
which are particularly relevant when 𝜎 is close to 1/2 or 1, where factors of 𝑇 𝑜(1) become
significant.

Theorem 11.39 ([267]). For 𝑇 ≥ 3 and 1/2 ≤ 𝜎 ≤ 0.778, one has

𝑁(𝜎, 2𝑇 ) − 𝑁(𝜎, 𝑇 ) ≤ 5874.051𝑇 1− 1
4 (𝜎− 1

2 ) log 𝑇 + 1.107 log2 𝑇 + 0.345 log 𝑇 log log 𝑇 .
Sharper bounds for 𝑇 large can be found in [267].

Theorem 11.40 ([41]). For every 𝑇 ≥ 3 and 1/2 ≤ 𝜎 ≤ 5/8 one has

𝑁(𝜎, 𝑇 ) ≤ 8.604𝑇 3(1−𝜎)
2−𝜎 log3 𝑇 + 9.461 log2 𝑇 + 167.8 log 𝑇 .

For every 𝑇 ≥ 3 and 5/8 ≤ 𝜎 ≤ 7/8 one has

𝑁(𝜎, 𝑇 ) ≤ 22.44𝑇 3(1−𝜎)
2−𝜎 log3 𝑇 + 8.290 log2 𝑇 + 147.0 log 𝑇 .

Theorem 11.41 ([40]). For every 𝑇 ≥ 3 and 𝜎 ≥ 3/5, one has

𝑁(𝜎, 𝑇 ) ≤ 0.7756𝑇 4𝜎(1−𝜎) log5−2𝜎 𝑇 .
Further bounds for larger values of 𝜎 can be found in [40].

Theorem 11.42 ([243]). For every 𝑇 ≥ 3 and 𝜎 ≥ 0.52 one has

𝑁(𝜎, 𝑇 ) ≤ 965(3𝑇 ) 8(1−𝜎)
3 (log 𝑇 )5−2𝜎 + 51.5(log 𝑇 )2.

The following result is an improvement upon Theorem 11.42.

Theorem 11.43 ([163]). For each tuple (𝜎0, 𝐴, 𝐵) of Table 11.4, one has

𝑁(𝜎, 𝑇 ) ≤ 𝐴𝑇 8
3 (1−𝜎)(log 𝑇 )5−2𝜎 + 𝐵(log 𝑇 )2

for each 𝜎0 ≤ 𝜎 ≤ 1 and 𝑇 ≥ 3.
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See [163] for further estimates.
The following result is an explicit log-free zero density estimate.

Theorem 11.44 ([14]). For every 𝑇 ≥ 3 and 𝜎 ∈ [0.9927, 1], one has

𝑁(𝜎, 𝑇 ) ≤ 4.45 ⋅ 1012 ⋅ 𝑇 8(1−𝜎).

Sharper estimates of the form

𝑁(𝜎, 𝑇 ) ≤ 𝐶𝑇 𝐵(1−𝜎), 𝜎 ∈ [𝜎0, 1], 𝑇 ∈ [𝑇0, 𝑇1]

can be found in [14]. We mention a couple of examples in Table 11.5.

Theorem 11.45 ([13]). For every 𝜎 ∈ [0.98, 1] and 𝑇 ≥ 3, one has:

𝑁(𝜎, 𝑇 ) ≤ 2.15 ⋅ 1023 ⋅ 𝑇 57.8875(1−𝜎)3/2(log 𝑇 )10393/900.

Note that Theorem 11.45 implies the following log-free zero-density bound.

Corollary 11.46 ([14]). For every 𝑇 ≥ exp(6.7 ⋅ 1012) and 𝜎 ∈ [0.98, 1], one has

𝑁(𝜎, 𝑇 ) ≤ 4.45 ⋅ 1012 ⋅ 𝑇 11.3(1−𝜎).
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Table 11.1: Current best upper bound on A(𝜎)

A(𝜎) bound Range Reference
3

2 − 𝜎
1
2 ≤ 𝜎 ≤ 7

10 = 0.7 Theorem 11.14
15

3 + 5𝜎
7
10 ≤ 𝜎 < 19

25 = 0.76 Theorem 11.16

9
8𝜎 − 2

19
25 ≤ 𝜎 < 127

167 = 0.7604 … Corollary 11.31
15

13𝜎 − 3
127
167 ≤ 𝜎 < 13

17 = 0.7647 … Corollary 11.31
6

5𝜎 − 1
13
17 ≤ 𝜎 < 17

22 = 0.7727 … Corollary 11.31
2

9𝜎 − 6
17
22 ≤ 𝜎 < 41

53 = 0.7735 … Theorem 11.22
9

7𝜎 − 1
41
53 ≤ 𝜎 < 7

9 = 0.7777 … Corollary 11.31
9

8(2𝜎 − 1)
7
9 ≤ 𝜎 < 1867

2347 = 0.7954 … Theorem 11.22

3
2𝜎

1867
2347 ≤ 𝜎 < 4

5 = 0.8 Theorem 11.32
3

2𝜎
4
5 ≤ 𝜎 < 7

8 = 0.875 Corollary 11.31
3

10𝜎 − 7
7
8 ≤ 𝜎 < 279

314 = 0.8885 … Theorem 11.18
24

30𝜎 − 11
279
314 ≤ 𝜎 < 155

174 = 0.8908 … Theorem 11.36
24

30𝜎 − 11
155
174 ≤ 𝜎 ≤ 9

10 = 0.9 Theorem 11.26
3

10𝜎 − 7
9
10 < 𝜎 ≤ 31

34 = 0.9117 … Theorem 11.20
11

48𝜎 − 36
31
34 < 𝜎 < 14

15 = 0.9333 … Corollary 11.25
391

2493𝜎 − 2014
14
15 ≤ 𝜎 < 2841

3016 = 0.9419 … Corollary 11.25
22232

163248𝜎 − 134765
2841
3016 ≤ 𝜎 < 859

908 = 0.9460 … Corollary 11.25
356

2742𝜎 − 2279
859
908 ≤ 𝜎 < 23

24 = 0.9583 … Corollary 11.25
3

24𝜎 − 20
23
24 ≤ 𝜎 < 2211487

2274732 = 0.9721 … Theorem 11.35
86152

1447460𝜎 − 1311509
2211487
2274732 ≤ 𝜎 < 39

40 = 0.975 Corollary 11.25
2

15𝜎 − 12
39
40 ≤ 𝜎 < 41

42 = 0.9761 … Theorem 11.35
3

40𝜎 − 35
41
42 ≤ 𝜎 < 59

60 = 0.9833 … Theorem 11.35

3
𝑛(1 − 2(𝑛 − 1)(1 − 𝜎))

1 − 1
2𝑛(𝑛 − 1) ≤ 𝜎 < 1 − 1

2𝑛(𝑛 + 1)
(for integer 𝑛 ≥ 6)

Theorem 11.35
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Table 11.2: Historical upper bounds on A(𝜎)
A(𝜎) bound Range Reference

4𝜎 1
2 ≤ 𝜎 ≤ 1 Carlson (1921) [29]

2 4/5 ≤ 𝜎 ≤ 1 Montgomery (1969) [217]
2 0.8080 ≤ 𝜎 ≤ 1 Forti–Viola (1972) [71]
39

115𝜎−75 55/67 ≤ 𝜎 ≤ 189/230 Huxley (1973) [123]
2 189/230 ≤ 𝜎 ≤ 78/89 Huxley (1973) [123]
48

37(2𝜎−1) 78/89 ≤ 𝜎 ≤ 61/74 Huxley (1973) [123]
3

2𝜎 37/42 ≤ 𝜎 ≤ 1 Huxley (1975) [124]
48

37(2𝜎−1) 61/74 ≤ 𝜎 ≤ 37/42 Huxley (1975) [124]
2 0.80119 ≤ 𝜎 ≤ 1 Huxley (1975) [124]
2 4/5 ≤ 𝜎 ≤ 1 Huxley (1975) [125]
6

5𝜎−1 67/87 ≤ 𝜎 ≤ 1 Ivić (1979) [146]
3

34𝜎−25 28/37 ≤ 𝜎 ≤ 74/95 Ivić (1979) [146]
9

7𝜎−1 74/95 ≤ 𝜎 ≤ 1 Ivić (1979) [146]
3

2𝜎 4/5 ≤ 𝜎 ≤ 1 Ivić (1979) [146]
68

98𝜎−47 115/166 ≤ 𝜎 ≤ 1 Ivić (1979) [146]
3

2𝜎 3831/4791 ≤ 𝜎 ≤ 1 Ivić (1980) [141]
9

7𝜎−1 41/53 ≤ 𝜎 ≤ 1 Ivić (1980) [141]
6

5𝜎−1 13/17 ≤ 𝜎 ≤ 1 Ivić (1980) [141]
4

2𝜎+1 17/18 ≤ 𝜎 ≤ 1 Ivić (1980) [141]
24

30𝜎−11 155/174 ≤ 𝜎 ≤ 17/18 Ivić (1980) [141]
3

7𝜎−4 3/4 ≤ 𝜎 ≤ 10/13 Ivić (1983) [142]
9

8𝜎−2 10/13 ≤ 𝜎 ≤ 1 Ivić (1983) [142]
15

22𝜎−10 10/13 ≤ 𝜎 ≤ 5/6 Ivić (1984) [143]
3𝑘

(3𝑘−2)𝜎+2−𝑘
9𝑘2−3𝑘+2

12𝑘2−5𝑘+2 ≤ 𝜎 ≤ 1; 𝑘 ≥ 2 Ivić (1984) [143]
58.05(1 − 𝜎)1/2 1/2 ≤ 𝜎 ≤ 1 Ford (2002) [67]
6.42(1 − 𝜎)1/2 9/10 ≤ 𝜎 ≤ 1 Heath-Brown (2017) [113]

3
√

2(1 − 𝜎)1/2 + 18(1 − 𝜎) 17/18 ≤ 𝜎 ≤ 1 Pintz (2023) [237]
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Table 11.3: Examples of large value theorems, the values of 𝜏0 and A(𝜎) they suggest, and
rigorous zero density theorems that attain the predicted value for at least some ranges of 𝜎.

Large value theorem Predicted choice of 𝜏0 Predicted bound 3
𝜏0

on A(𝜎) Matching zero density theorem(s)
Theorem 7.9 2 − 𝜎 3

2−𝜎 Theorem 11.14
Theorem 7.12 3𝜎 − 1 3

3𝜎−1 Theorem 11.15
Theorem 7.14 10𝜎 − 7 3

10𝜎−7 Theorems 11.18, 11.20
Theorem 7.16, 𝑘 = 3 7𝜎−1

3
9

7𝜎−1 Theorems 11.18, 11.31
Lemma 11.29, 𝑚 = 2 4𝜎

2
3

2𝜎 Corollary 11.31, Theorem 11.32
Lemma 11.29, 𝑚 = 3 7𝜎−1

3
9

7𝜎−1 Theorems 11.18, Corollary 11.31
Lemma 11.29, 𝑚 = 4 10𝜎−2

4
6

5𝜎−1 Corollary 11.31
Lemma 11.33 7𝜎 − 4 3

7𝜎−4 Corollary 11.34
Lemma 11.33 8𝜎−2

3
9

8𝜎−2 Corollary 11.34
Theorem 10.27 5𝜎−3

3
15

5𝜎−3 Theorem 11.16

𝜎0 𝐴 𝐵
0.75 5.277 4.403
0.80 6.918 3.997
0.85 8.975 3.588
0.90 11.499 3.186
0.95 14.513 2.772
0.98 16.544 2.532

Table 11.4: Some examples of (𝜎0, 𝐴, 𝐵)

Table 11.5: Values of constants 𝐶, 𝐵
𝐵 𝐶 𝜎0 𝑇0 𝑇1

1.551 1.62 ⋅ 1011 0.9927 3 exp(6.7 ⋅ 1012)
1.551 1.62 ⋅ 1011 0.985 exp(80) exp(6.7 ⋅ 1012)
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Chapter 12

Zero density energy theorems

Definition 12.1 (Zero density exponents). For 1/2 ≤ 𝜎 ≤ 1 and 𝑇 > 0, let 𝑁 ∗(𝜎, 𝑇 )
denote the additive energy 𝐸1(Σ) of the imaginary parts of the zeroes 𝜌 of the Riemann zeta
function with Re(𝜌) ≥ 𝜎 and |Im(𝜌)| ≤ 𝑇 . For fixed 1/2 ≤ 𝜎 ≤ 1, the zero density exponent
𝐴∗(𝜎) ∈ [−∞, ∞) is the infimum of all exponents A∗ for which one has

𝑁 ∗(𝜎 − 𝛿, 𝑇 ) ≪ 𝑇 𝐴∗(1−𝜎)+𝑜(1)

for all unbounded 𝑇 and infinitesimal 𝛿 > 0.

The exponent A∗(𝜎) is also essentially referred to as 𝐵(𝜎) in [104] (though without the
technical shift by 𝛿 in that reference).
Implemented at zero_density_energy_estimate.py as:
Zero_Density_Energy_Estimate

Lemma 12.2 (Basic properties of A∗). (i) We have the trivial bounds

2A(𝜎), 4A(𝜎) − 1
1 − 𝜎 ≤ A∗(𝜎) ≤ 3A(𝜎)

for any 1/2 ≤ 𝜎 ≤ 1.

(ii) 𝜎 ↦ (1 − 𝜎)A∗(𝜎) is non-increasing, with A∗(1/2) = 6 and A∗(1) = −∞.

(iii) If the Riemann hypothesis holds, then A∗(𝜎) = −∞ for all 1/2 < 𝜎 ≤ 1.

Implemented at zero_density_energy_estimate.py as:
add_trivial_zero_density_energy_estimates(hypotheses)

Proof. The claim (i) follows from Lemma 10.2(iv), and the remaining claims then follow
from Lemma 11.2.

Upper bounds on A∗(𝜎) can be obtained from large value energy theorems via the following
relation.

Lemma 12.3 (Zero density energy from large values energy). Let 1/2 < 𝜎 < 1. Then

A∗(𝜎)(1 − 𝜎) ≤ max (sup
𝜏≥1

LV∗
𝜁(𝜎, 𝜏)/𝜏, lim sup

𝜏→∞
LV∗(𝜎, 𝜏)/𝜏) .
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Proof. Write the right-hand side as 𝐵, then 𝐵 ≥ 0 (from Lemma 10.11(iii)) and we have

LV∗
𝜁(𝜎, 𝜏) ≤ 𝐵𝜏 (12.1)

for all 𝜏 ≥ 1, and
LV∗(𝜎, 𝜏) ≤ (𝐵 + 𝜀)𝜏 (12.2)

whenever 𝜀 > 0 and 𝜏 is sufficiently large depending on 𝜀 (and 𝜎). It would suffice to show,
for any 𝜀 > 0, that 𝑁 ∗(𝜎, 𝑇 ) ≪ 𝑇 𝐵+𝑂(𝜀)+𝑜(1) for unbounded 𝑇 .
By dyadic decomposition, it suffices to show for unbounded 𝑇 that the additive energy of
imaginary parts of zeroes in [𝑇 , 2𝑇 ] is ≪ 𝑇 𝐵+𝑂(𝜀)+𝑜(1). As in the proof of Lemma 11.5,
we can assume the imaginary parts are 1-separated (here we take advantage of the triangle
inequality in Lemma 10.2(iii)).
Suppose that one has a zero 𝜎′ + 𝑖𝑡 of this form. Then by standard approximations to the
zeta function, one has

∑
𝑛≤𝑇

1
𝑛𝜎′+𝑖𝑡 ≪ 𝑇 −1.

Let 0 < 𝛿1 < 𝜀 be a small quantity (independent of 𝑇 ) to be chosen later, and let 0 < 𝛿2 < 𝛿1
be sufficiently small depending on 𝛿1, 𝛿2. By the triangle inequality, and refining the sequence
𝑡′ by a factor of at most 2, we either have

∣ ∑
𝑇 𝛿1 ≤𝑛≤𝑇

1
𝑛𝜎′+𝑖𝑡 ∣ ≫ 𝑇 −𝛿2

for all zeroes, or (11.3) for all zeroes.
Suppose we are in the former (“Type I”) case, we can dyadically partition and conclude
from the pigeonhole principle that

∣ ∑
𝑛∈𝐼

1
𝑛𝜎′+𝑖𝑡 ∣ ≫ 𝑇 −𝛿2−𝑜(1)

for some interval 𝐼 in some [𝑁, 2𝑁] with 𝑇 𝛿1 ≪ 𝑁 ≪ 𝑇 , with at most 𝑂(log 𝑇 ) different
choices for 𝐼 . Performing a Fourier expansion of 𝑛𝜎′ in log 𝑛 and using the triangle inequality
one can then deduce that

∣ ∑
𝑛∈𝐼

1
𝑛𝑖𝑡′ ∣ ≫ 𝑁𝜎′𝑇 −𝛿2−𝑜(1)

for some 𝑡′ = 𝑡 + 𝑂(𝑇 𝑜(1)); refining the 𝑡 by a factor of 𝑇 𝑜(1) if necessary, we may assume
that the 𝑡′ are 1-separated and that the interval 𝐼 is independent of 𝑡′, and by passing to a
subsequence we may assume that 𝑇 = 𝑁𝜏+𝑜(1) for some 1 ≤ 𝜏 ≤ 1/𝛿1, then

∣ ∑
𝑛∈𝐼

1
𝑛𝑖𝑡′ ∣ ≫ 𝑁𝜎−𝛿2/𝛿1+𝑜(1)

for all 𝑡′. If we let Σ′ denote the set of such 𝑡′, then by Definition 10.9 we then have (for 𝛿2
small enough) we have

𝐸1(Σ′) ≪ 𝑁LV∗
𝜁(𝜎,𝜏)+𝜀+𝑜(1) ≪ 𝑇 LV∗

𝜁(𝜎,𝜏)/𝜏+𝜀+𝑜(1).
By Lemma 10.2(i) this implies that the set Σ of imaginary parts of zeroes under consideration
also obeys the bound

𝐸1(Σ) ≪ 𝑇 LV∗
𝜁(𝜎,𝜏)/𝜏+𝜀+𝑜(1).
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and the claim follows in this case from (12.1).
The Type II case similarly follows from (12.2) exactly as in the proof of Lemma 11.5.

Corollary 12.4. Let 1/2 < 𝜎 < 1 and 𝜏0 > 0 be fixed. Then

A∗(𝜎)(1 − 𝜎) ≤ max ( sup
2≤𝜏<𝜏0

LV∗
𝜁(𝜎, 𝜏)/𝜏, sup

𝜏0≤𝜏≤2𝜏0
LV∗(𝜎, 𝜏)/𝜏)

Implemented at zero_density_energy_estimate.py as:
lver_to_energy_bound(LVER, LVER_zeta, sigma_interval)

Proof. Repeat the proof of Corollary 11.7.

12.1 Known additive energy bounds
Proposition 12.5 (Additive energy under the Lindelof hypothesis). Let 1/2 ≤ 𝜎 ≤ 1 be
fixed. Then one has

A∗(𝜎) ≤ 8 − 4𝜎
and A∗(𝜎) ≤ 0 if 𝜎 > 3/4.

Proof. See [104, Lemma 4].

Theorem 12.6 (Heath-Brown’s additive energy bound). [107, Theorem 2] Let 1/2 ≤ 𝜎 ≤ 1
be fixed. Then one can bound 𝐴∗(𝜎) by

10 − 11𝜎
(2 − 𝜎)(1 − 𝜎) for 1/2 ≤ 𝜎 ≤ 2/3;

18 − 19𝜎
(4 − 2𝜎)(1 − 𝜎) for 2/3 ≤ 𝜎 ≤ 3/4;

12
4𝜎 − 1 for 3/4 ≤ 𝜎 ≤ 1.

Recorded in literature.py as:
add_zero_density_energy_heath_brown_1979()
Derived in derived.py as:
prove_heath_brown_energy_estimate()

Proof. We first suppose that 𝜎 ≤ 3/4. Here we apply Corollary 12.4 with 𝜏0 = 2. The LV∗
𝜁

supremum is now trivial, so it suffices to show that

𝜌∗ ≤ max (10 − 11𝜎
2 − 𝜎 , 18 − 19𝜎

4 − 2𝜎 ) 𝜏 (12.3)

whenever (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ with 2 ≤ 𝜏 ≤ 3. Let 𝑘 be the first integer for which 1 ≤ 𝜏/𝑘 ≤
3/2, thus 𝑘 = 2, 3 and also 𝜏/(𝑘 + 1) ≤ 1. By Lemma 10.12, there exist tuples

(𝜎, 𝜏
𝑘 , 𝜌′, 𝜌∗

𝑘 , 𝑠′) , (𝜎, 𝜏
𝑘 + 1, 𝜌″, 𝜌∗

𝑘 + 1, 𝑠″) ∈ ℰ. (12.4)
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for some 𝜌′, 𝑠′, 𝜌″ and 𝑠″ satisfying

𝜌′ ≤ 𝜌
𝑘 , 𝑠′ ≤ 𝑠

𝑘 , 𝜌″ ≤ 𝜌
𝑘 + 1, 𝑠″ ≤ 𝑠

𝑘 + 1.

Applying Corollary 10.21 to the former tuple of (12.4) and using 𝜌′ ≤ 𝜌/𝑘, we have

𝜌∗

𝑘 ≤ max (3𝜌
𝑘 + 1 − 2𝜎, 𝜌

𝑘 + 4 − 4𝜎, 5𝜌
2𝑘 + 3 − 4𝜎

2 ) .

Write 𝜏 ′ ∶= 𝜏/𝑘. Applying Lemma 7.9 to the first tuple of (12.4) one has

𝜌/𝑘 ≤ 𝜏 ′ + 1 − 2𝜎

while applying Lemma 7.9 to the second tuple of (12.4) (recalling that 𝜏/(𝑘 + 1) ≤ 1) gives

𝜌/𝑘 = 𝑘 + 1
𝑘

𝜌
𝑘 + 1 ≤ 𝑘 + 1

𝑘 (2 − 2𝜎) ≤ 3 − 3𝜎

and thus
𝜌/𝑘 ≤ min(𝜏 ′ + 1 − 2𝜎, 3 − 3𝜎) (12.5)

and

𝜌∗/𝑘 ≤ max(3 min(𝜏 ′ + 1 − 2𝜎, 3 − 3𝜎) + 1 − 2𝜎,
min(𝜏 ′ + 1 − 2𝜎, 3 − 3𝜎) + 4 − 4𝜎,
5 min(𝜏 ′ + 1 − 2𝜎, 3 − 3𝜎)/2 + (3 − 4𝜎)/2).

A tedious calculation shows that for 1 ≤ 𝜏 ′ ≤ 3/2, we have

3 min(𝜏 ′ + 1 − 2𝜎, 3 − 3𝜎) + 1 − 2𝜎 ≤ 10 − 11𝜎
2 − 𝜎 𝜏 ′,

min(𝜏 ′ + 1 − 2𝜎, 3 − 3𝜎) + 4 − 4𝜎 ≤ max (7 − 7𝜎
2 − 𝜎 , 6 − 6𝜎) 𝜏 ′

and
5 min(𝜏 ′ + 1 − 2𝜎, 3 − 3𝜎)/2 + (3 − 4𝜎)/2 ≤ 18 − 19𝜎

4 − 2𝜎 𝜏 ′.

Since
max (7 − 7𝜎

2 − 𝜎 , 6 − 6𝜎) ≤ max (10 − 11𝜎
2 − 𝜎 , 18 − 19𝜎

4 − 2𝜎 )

we obtain the claim.
Now suppose that 𝜎 > 3/4. From Theorem 11.18 and Lemma 12.2(i) we are already done
when 𝜎 ≥ 25/28, so we may assume 𝜎 < 25/28.
Here we apply Corollary 12.4 with 𝜏0 = 4𝜎−1. To control the LV∗

𝜁 term, we need to establish

𝜌∗ ≤ 12(1 − 𝜎)
4𝜎 − 1 𝜏 (12.6)

whenever (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ𝜁 and 2 ≤ 𝜏 < 4𝜎 − 1. We use Lemma 8.3(ii) followed by Lemma
9.7 to give

𝜌∗ ≤ 3𝜌 ≤ 3(2𝜏 − 12(𝜎 − 1/2))
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so the claim reduces to verifying

3(2𝜏 − 12(𝜎 − 1/2)) ≤ 12(1 − 𝜎)
4𝜎 − 1 𝜏.

This holds with equality when 𝜏 = 4𝜎 − 1, and the slope in 𝜏 is higher on the left-hand side
for 𝜎 > 1/2, so the claim (12.6) follows.
It remains to establish

𝜌∗ ≤ 12(1 − 𝜎)
4𝜎 − 1 𝜏 (12.7)

whenever (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ and 4𝜎 − 1 ≤ 𝜏 ≤ 2(4𝜎 − 1). Let 𝑘 be the first integer for which
(4𝜎 − 1)/2 ≤ 𝜏/𝑘 ≤ 3(4𝜎 − 1)/4, thus 𝑘 = 2, 3 and also 𝜏/(𝑘 + 1) ≤ 4𝜎 − 1. By Lemma
10.12, we have (12.4). From Theorem 7.12 we have

𝜌/𝑘 ≤ max(2 − 2𝜎, 𝜏 ′ + 4 − 6𝜎)

and also
𝜌/𝑘 = 𝑘 + 1

𝑘
𝜌

𝑘 + 1 ≤ 𝑘 + 1
𝑘 (2 − 2𝜎) ≤ 3 − 3𝜎

and hence
𝜌/𝑘 ≤ min(max(2 − 2𝜎, 𝜏 ′ + 4 − 6𝜎), 𝜏 ′ + 4 − 6𝜎, 3 − 3𝜎). (12.8)

Among other things, this implies that 𝜌/𝑘 ≤ 1.
From Theorem 10.20 and 𝜌′ ≤ 𝜌/𝑘, we have

𝜌∗/𝑘 ≤ 1 − 2𝜎 + 1
2 max (𝜌

𝑘 + 1, 2𝜌
𝑘 , 5𝜌

4𝑘 + 𝜏 ′

2 )

+ 1
2 max (𝜌∗

𝑘 + 1, 4𝜌
𝑘 , 3𝜌∗

4𝑘 + 𝜌
𝑘 + 𝜏 ′

2 )
(12.9)

where 𝜏 ′ ∶= 𝜏/𝑘. This expression is complicated, so we divide into cases. First suppose that
𝜌/𝑘 + 1 ≥ 5𝜌/4𝑘 + 𝜏 ′/2. In this case the first maximum in the above expression is 𝜌/𝑘 + 1,
and we simplify to

𝜌∗/𝑘 ≤ 3/2 − 2𝜎 + 𝜌/2𝑘 + max(𝜌∗/𝑘 + 1, 4𝜌/𝑘, 3𝜌∗/4𝑘 + 𝜌/𝑘 + 𝜏 ′/2)/2,

which after solving for 𝜌∗/𝑘 gives

𝜌∗/𝑘 ≤ max(𝜌/2𝑘 + 4 − 4𝜎, 5𝜌/2𝑘 + (3 − 4𝜎)/2, 8𝜌/5𝑘 + 2𝜏 ′/5 + (12 − 16𝜎)/5).

Inserting (12.8), one can verify after a tedious analysis (using the hypothesis 3/4 ≤ 𝜎 <
25/28) that

𝜌∗/𝑘 ≤ 12(1 − 𝜎)
4𝜎 − 1 𝜏 ′ (12.10)

as required.
It remains to treat the case where 𝜌/𝑘 + 1 > 5𝜌/4𝑘 + 𝜏 ′/2. Using (12.8) one can check that
this forces

4𝜎 − 2 ≤ 𝜏 ′ ≤ 3
4(4𝜎 − 1), (12.11)

so that (12.8) now becomes
𝜌/𝑘 ≤ 3 − 3𝜎. (12.12)
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The bound (12.9) becomes

𝜌∗/𝑘 ≤ 1 − 2𝜎 + (5𝜌/4𝑘 + 𝜏 ′/2)/2 + max(𝜌∗/𝑘 + 1, 4𝜌/𝑘, 3𝜌∗/4𝑘 + 𝜌/𝑘 + 𝜏 ′/2)/2

which simplifies to

𝜌∗/𝑘 ≤ max(5𝜌/4𝑘 + 𝜏 ′/2 + 3 − 4𝜎, 21𝜌/8𝑘 + 𝜏 ′/4 + 1 − 2𝜎, 9𝜌/5𝑘 + 4𝜏 ′/5 + (8 − 16𝜎)/5).

Inserting (12.12) and (12.11), one can eventually show (again using the hypothesis 3/4 ≤
𝜎 < 25/28) that (12.10) holds as required.

We found the following estimates with the use of computer-aided proof discovery, which
improve on Theorem 12.6 in various ranges of 𝜎. First, by using Theorem 10.20 in place of
Corollary 10.21 in the proof of the previous theorem, it is possible to obtain an improved
additive energy estimate for 𝜎 ≥ 3/4. A human-readable proof is contained in the following
theorem.

Theorem 12.7. For 3/4 ≤ 𝜎 ≤ 5/6 one has

A∗(𝜎) ≤ max ( 18 − 19𝜎
2(3𝜎 − 1)(1 − 𝜎) , 4(10 − 9𝜎)

5(4𝜎 − 1)(1 − 𝜎)) .

Derived in derived.py as:
prove_improved_heath_brown_energy_estimate()

Proof. Throughout assume that 3/4 ≤ 𝜎 ≤ 5/6. Choose

𝜏0 = 8𝜎 − 4.

We will show that

𝜌∗/𝜏 ≤
⎧{
⎨{⎩

18 − 19𝜎
2(3𝜎 − 1) , 3/4 ≤ 𝜎 < 4/5,
7(1 − 𝜎)
3𝜎 − 1 , 4/5 ≤ 𝜎 ≤ 5/6,

(12.13)

for all (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ for which 𝜏0 ≤ 𝜏 ≤ 2𝜏0, and that

𝜌∗/𝜏 ≤ max ( 45 − 46𝜎
4(4𝜎 − 1) , 4(10 − 9𝜎)

5(4𝜎 − 1) ) , (12.14)

for all (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ𝜁 such that 2 ≤ 𝜏 ≤ 𝜏0. The desired result (i) then follows from
Corollary 12.4 and computing the piecewise maximum of (12.13) and (12.14).
First, consider (12.14). Suppose that (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ𝜁 with 3/4 ≤ 𝜎 ≤ 5/6 and 2 ≤ 𝜏 ≤ 𝜏0.
Then, from Theorem 9.7 we have

𝜌 ≤ 2𝜏 − 12(𝜎 − 1/2). (12.15)

Furthermore, by Theorem 7.12 and Lemma 7.8 with 𝑘 = 2, one has 𝜌 ≤ 2 max(2 − 2𝜎, 4 −
6𝜎 + 𝜏/2). However since 𝜏 ≤ 𝜏0 = 8𝜎 − 4, this simplifies to

𝜌 ≤ 4 − 4𝜎. (12.16)
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Since 𝜎 ≥ 3/4, this also implies that 𝜌 ≤ 1. For future reference we also note that

4
5 < max ( 45 − 46𝜎

4(4𝜎 − 1) , 4(10 − 9𝜎)
5(4𝜎 − 1) ) < 2, (3/4 ≤ 𝜎 ≤ 5/6). (12.17)

By Theorem 10.20, one has

𝜌∗ ≤ 1 − 2𝜎 + 1
2 max (𝜌 + 1, 2𝜌, 5

4𝜌 + 𝜏
2) + 1

2 max (𝜌∗ + 1, 4𝜌, 3
4𝜌∗ + 𝜌 + 𝜏

2) .

Since 𝜌 ≤ 1, one has 𝜌 + 1 ≥ 2𝜌. Thus the middle term in the first maximum may be
omitted, and we are left with two cases to consider.
Case 1: If 𝜌 + 1 ≥ 5𝜌/4 + 𝜏/2 then

𝜌∗ ≤ 1 − 2𝜎 + 𝜌 + 1
2 + 1

2 max (𝜌∗ + 1, 4𝜌, 3
4𝜌∗ + 𝜌 + 𝜏

2) .

Solving for 𝜌∗ gives

𝜌∗ ≤ max (4 − 4𝜎 + 𝜌, 3
2 − 2𝜎 + 5

2𝜌, 2
5(6 − 8𝜎 + 𝜏 + 4𝜌)) .

Applying (12.16) to each term,

𝜌∗ ≤ max (8 − 8𝜎, 23
2 − 12𝜎, 2

5(22 − 24𝜎 + 𝜏))

≤ max ( 45 − 46𝜎
4(4𝜎 − 1)𝜏, 4(10 − 9𝜎)

5(4𝜎 − 1) 𝜏) ,

i.e. (12.14) holds. The last inequality may be verified by inspecting the growth rates with
respect to 𝜏 of each term (using (12.17)), and checking that the desired inequality holds at
𝜏 = 2.
Case 2: If 𝜌 + 1 < 5𝜌/4 + 𝜏/2, then

𝜌∗ ≤ 1 − 2𝜎 + 5
8𝜌 + 𝜏

4 + 1
2 max (𝜌∗ + 1, 4𝜌, 3

4𝜌∗ + 𝜌 + 𝜏
2) .

Solving for 𝜌 gives

𝜌∗ ≤ max (3 − 4𝜎 + 𝜏
2 + 5

4𝜌, 1 − 2𝜎 + 𝜏
4 + 21

8 𝜌, 8 − 16𝜎 + 4𝜏 + 9𝜌
5 ) .

If 𝜏 ≥ 4𝜎 − 1, then apply (12.16) termwise to get

𝜌∗ ≤ max (8 − 9𝜎 + 𝜏
2 , 23

2 − 25
2 + 𝜏

4 , 4
5(11 − 13𝜎 + 𝜏))

≤ max ( 45 − 46𝜎
4(4𝜎 − 1)𝜏, 4(10 − 9𝜎)

5(4𝜎 − 1) 𝜏) ,

since the RHS is increasing faster in 𝜏 and at 𝜏 = 4𝜎 − 1 we have equality.
On the other hand if 𝜏 < 4𝜎 − 1 then we apply (12.15) termwise to get

𝜌∗ ≤ max (21
2 − 19𝜎 + 3𝜏, 67 − 134𝜎 + 22𝜏

4 , 2
5(31 − 62𝜎 + 11𝜏))

≤ max ( 45 − 46𝜎
4(4𝜎 − 1)𝜏, 4(10 − 9𝜎)

5(4𝜎 − 1) 𝜏) ,
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by inspecting growth rates in 𝜏 and noting that at 𝜏 = 4𝜎 − 1 one has equality.
Thus we have shown that if (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ𝜁 with 3/4 ≤ 𝜎 ≤ 5/6 and 2 ≤ 𝜏 ≤ 8𝜎 − 4,
then

𝜌∗/𝜏 ≤ min ( 45 − 46𝜎
4(4𝜎 − 1) , 4(10 − 9𝜎)

5(4𝜎 − 1) ) ,

which is (12.14).
Now consider (12.13). Suppose that 𝜏0 ≤ 𝜏 ≤ 2𝜏0 and (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ. Note that the
interval [𝜏0, 2𝜏0] is covered by intervals 𝐼𝑘 ∶= [(4𝜎 − 2)𝑘, (4𝜎 − 2)(𝑘 + 1)] with 𝑘 = 2, 3.
Suppose that 𝜏 ∈ 𝐼𝑘, and write

𝜏 ′ ∶= 𝜏/𝑘.
Then, by Theorem 7.12 and 𝜏 ′ ≥ 4𝜎 − 2 one has

𝜌/𝑘 ≤ max(2 − 2𝜎, 4 − 6𝜎 + 𝜏 ′) = 4 − 6𝜎 + 𝜏 ′.

Also, from Theorem 7.12 and 𝜏 ≤ (4𝜎 − 2)(𝑘 + 1) one has

𝜌/(𝑘 + 1) ≤ max(2 − 2𝜎, 4 − 6𝜎 + 𝜏/(𝑘 + 1)) ≤ 2 − 2𝜎

so that for 𝑘 = 2, 3 one has 𝜌/𝑘 ≤ (2 − 2𝜎)(𝑘 + 1)/𝑘 ≤ 3 − 3𝜎. In summary,

𝜌/𝑘 ≤ min(3 − 3𝜎, 4 − 6𝜎 + 𝜏 ′). (12.18)

Next, by Lemma 10.12,
(𝜎, 𝜏 ′, 𝜌′, 𝜌∗/𝑘, 𝑠′) ∈ ℰ

for 𝜏 ′ ∶= 𝜏/𝑘 and some 𝜌′ ≤ 𝜌/𝑘 and 𝑠′ ≤ 𝑠/𝑘.
Applying Theorem 10.20 to this tuple, then applying 𝜌′ ≤ 𝜌/𝑘, one has

𝜌∗

𝑘 ≤ 1 − 2𝜎 + 1
2 max (𝜌

𝑘 + 1, 2𝜌
𝑘 , 5𝜌

4𝑘 + 𝜏 ′

2 )

+ 1
2 max (𝜌∗

𝑘 + 1, 4𝜌
𝑘 , 3

4
𝜌∗

𝑘 + 𝜌
𝑘 + 𝜏 ′

2 ) .

By (12.18) one has 𝜌/𝑘 ≤ 1 (since 𝜎 ≥ 3/4) so there are only two cases to consider:
Case 1: 𝜌/𝑘 + 1 ≥ 5𝜌/(4𝑘) + 𝜏 ′/2 then

𝜌∗

𝑘 ≤ 3
2 − 2𝜎 + 𝜌

2𝑘 + 1
2 max (𝜌∗

𝑘 + 1, 4𝜌
𝑘 , 3

4
𝜌∗

𝑘 + 𝜌
𝑘 + 𝜏 ′

2 ) .

Solving for 𝜌∗/𝑘, we get

𝜌∗

𝑘 ≤ max (4(1 − 𝜎) + 𝜌
𝑘 , (3 − 4𝜎) + 5𝜌/𝑘

2 , 2
5((6 − 8𝜎) + 𝜏 ′ + 4𝜌

𝑘 )) .

If 𝜏 ′ ≥ 3𝜎 − 1 then (12.18) reduces to 𝜌/𝑘 ≤ 3 − 3𝜎. Substituting this bound gives

𝜌∗/𝑘 ≤ max(7 − 7𝜎, 9 − 19𝜎/2, 32(1 − 𝜎)/5).

However the RHS is bounded by
18 − 19𝜎
6𝜎 − 2 𝜏 ′ (12.19)

for all 𝜏 ′ ≥ 3𝜎 − 1 since the desired bound holds at 𝜏 ′ = 3𝜎 − 1 (where one has equality).
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On the other hand, if 4𝜎 − 2 ≤ 𝜏 ′ ≤ 3𝜎 − 1 then (12.18) reduces to 𝜌/𝑘 ≤ 4 − 6𝜎 + 𝜏 ′.
Substituting this bound gives

𝜌∗/𝑘 ≤ max (8 − 10𝜎 + 𝜏 ′, 23 − 34𝜎 + 5𝜏 ′

2 , 2
5(22 − 32𝜎 + 5𝜏 ′))

≤ 18 − 19𝜎
6𝜎 − 2 𝜏 ′

(12.20)

where the last inequality may be established by checking that it holds at both 𝜏 ′ = 4𝜎 − 2
and 𝜏 ′ = 3𝜎 − 1 (where one has equality). To summarise, by taking 𝑘 = 2, 3 in the (12.19)
and (12.20), one has

𝜌∗ ≤ 18 − 19𝜎
6𝜎 − 2 𝜏, (𝜏0 ≤ 𝜏 ≤ 2𝜏0)

in this case.
Case 2: 𝜌/𝑘 + 1 < 5𝜌/(4𝑘) + 𝜏 ′/2 then

𝜌∗/𝑘 ≤ 1 − 2𝜎 + 5𝜌
8𝑘 + 𝜏 ′

4 + 1
2 max (𝜌∗

𝑘 + 1, 4𝜌
𝑘 , 3

4
𝜌∗

𝑘 + 𝜌
𝑘 + 𝜏 ′

2 ) .

Solving for 𝜌∗/𝑘 gives

𝜌∗/𝑘 ≤ max (3 − 4𝜎 + 𝜏 ′

2 + 5
4

𝜌
𝑘 , 1 − 2𝜎 + 𝜏 ′

4 + 21
8

𝜌
𝑘 , 1

5(8 − 16𝜎 + 4𝜏 ′ + 9𝜌
𝑘)) .

Proceeding as before, if 𝜏 ′ ≥ 3𝜎 − 1 then (12.18) becomes 𝜌/𝑘 ≤ 3 − 3𝜎, and substituting
gives

𝜌∗/𝑘 ≤ max (27 − 31𝜎
4 + 𝜏 ′

2 , 71 − 79𝜎
8 + 𝜏 ′

4 , 7 − 43
5 𝜎 + 4

5𝜏 ′) .

One may verify that the RHS is bounded by

18 − 19𝜎
6𝜎 − 2 𝜏 ′

(with some room to spare) by checking at the endpoint 𝜏 ′ = 3𝜎 − 1.
Similarly, if 4𝜎 − 2 ≤ 𝜏 ′ ≤ 3𝜎 − 1 then using 𝜌/𝑘 ≤ 4 − 6𝜎 + 𝜏 ′ from (12.18) one has

𝜌∗/𝑘 ≤ max (8 − 23𝜎
2 + 7𝜏 ′

4 , 23
2 − 71𝜎

4 + 23𝜏 ′

8 , 44 − 70𝜎 + 13𝜏 ′

5 ) .

One can check that the RHS is bounded by

18 − 19𝜎
6𝜎 − 2 𝜏 ′

by checking the required inequalities hold at 𝜏 ′ = 4𝜎 − 2 and 𝜏 ′ = 3𝜎 − 1 (in each case, with
some room to spare).
Combining all the cases, by taking 𝑘 = 2, 3 we have shown that for 3/4 ≤ 𝜎 ≤ 4/5 and
𝜏0 ≤ 𝜏 ≤ 2𝜏0 one has

𝜌∗ ≤ 18 − 19𝜎
6𝜎 − 2 𝜏

which is the first part of (12.13).
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The case for 4/5 ≤ 𝜎 ≤ 5/6 may be treated similarly. Here one needs to verify that

max(7 − 7𝜎, 9 − 19𝜎/2, 32(1 − 𝜎)/5) ≤ 7(1 − 𝜎)
3𝜎 − 1 𝜏 ′,

max (27 − 31𝜎
4 + 𝜏 ′

2 , 71 − 79𝜎
8 + 𝜏 ′

4 , 7 − 43
5 𝜎 + 4

5𝜏 ′) ≤ 7(1 − 𝜎)
3𝜎 − 1 𝜏 ′

for 𝜏 ′ ≥ 3𝜎 − 1, and that

max (8 − 10𝜎 + 𝜏 ′, 23 − 34𝜎 + 5𝜏 ′

2 , 2
5(22 − 32𝜎 + 5𝜏 ′)) ≤ 7(1 − 𝜎)

3𝜎 − 1 𝜏 ′,

max (8 − 23𝜎
2 + 7𝜏 ′

4 , 23
2 − 71𝜎

4 + 23𝜏 ′

8 , 44 − 70𝜎 + 13𝜏 ′

5 ) ≤ 7(1 − 𝜎)
3𝜎 − 1 𝜏 ′

for 4𝜎 − 2 ≤ 𝜏 ′ ≤ 3𝜎 − 1. The treatment is analogous to before, so we omit the proof.

Using Theorem 10.27, it is possible to obtain improved energy estimates near 𝜎 = 3/4, which
are given by the next two theorems.

Theorem 12.8. For 7/10 ≤ 𝜎 ≤ 3/4, one has

A∗(𝜎) ≤ max ( 5(18 − 19𝜎)
2(5𝜎 + 3)(1 − 𝜎) , 2(45 − 44𝜎)

(2𝜎 + 15)(1 − 𝜎)) .

Derived in derived.py as:
prove_zero_density_energy_2()

Proof. Throughout assume 7/10 ≤ 𝜎 ≤ 3/4 and take 𝜏0 = 2 in Corollary 12.4. It suffices to
show that if (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ with 2 ≤ 𝜏 ≤ 4, then either

𝜌∗ ≤ 5(18 − 19𝜎)
2(5𝜎 + 3) 𝜏 (12.21)

or
𝜌∗ ≤ 2(45 − 44𝜎)

2𝜎 + 15 𝜏. (12.22)

Note for future reference the crude bounds

1 < 5(18 − 19𝜎)
2(5𝜎 + 3) < 2, 1 < 2(45 − 44𝜎)

2𝜎 + 15 < 7
4 . (12.23)

Let

𝑘 ∶= {2, 2 ≤ 𝜏 < 3,
3, 3 ≤ 𝜏 ≤ 4, , 𝜏 ′ ∶= 𝜏/𝑘.

Via Theorem 7.9 and Lemma 7.8, one has

𝜌/𝑘 ≤ max(2 − 2𝜎, 1 − 2𝜎 + 𝜏 ′) (12.24)

and via Theorem 10.27 and Lemma 7.8, one has

𝜌/𝑘 ≤ max(2 − 2𝜎, 18/5 − 4𝜎, 12/5 − 4𝜎 + 𝜏 ′).
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Since 𝜎 ≤ 4/5, we may drop the first term, i.e.

𝜌/𝑘 ≤ max(18/5 − 4𝜎, 12/5 − 4𝜎 + 𝜏 ′). (12.25)

Combining (12.24) and (12.25),

𝜌/𝑘 ≤

⎧{{
⎨{{⎩

1 − 2𝜎 + 𝜏 ′, 1 ≤ 𝜏 ′ ≤ 13/5 − 2𝜎,
18/5 − 4𝜎, 13/5 − 2𝜎 ≤ 𝜏 ′ ≤ 6/5,
12/5 − 4𝜎 + 𝜏 ′, 6/5 ≤ 𝜏 ′ ≤ 2(𝜎 − 1/5) + 2(1 − 𝜎)/𝑘,
(2 − 2𝜎)(𝑘 + 1)/𝑘, 2(𝜎 − 1/5) + 2(1 − 𝜎)/𝑘 ≤ 𝜏 ′ ≤ 1 + 1/𝑘.

(12.26)

One can verify that all intervals are proper for 7/10 ≤ 𝜎 ≤ 3/4 and 𝑘 = 2, 3.
Since (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ, by Lemma 10.12 one has (𝜎, 𝜏 ′, 𝜌′, 𝜌∗/𝑘, 𝑠′) ∈ ℰ for some 𝜌′ ≤ 𝜌/𝑘
and 𝑠′ ≤ 𝑠/𝑘. Applying Theorem (10.20)to the first tuple followed by 𝜌′ ≤ 𝜌/𝑘, and noting
that 𝜌/𝑘 + 1 ≥ 2𝜌/𝑘 since 𝜌/𝑘 ≤ 1 by (12.26), one obtains

𝜌∗

𝑘 ≤ 1 − 2𝜎 + 1
2 max (𝜌

𝑘 + 1, 5𝜌
4𝑘 + 𝜏 ′

2 ) + 1
2 max (𝜌∗

𝑘 + 1, 4𝜌
𝑘 , 3𝜌∗

4𝑘 + 𝜌
𝑘 + 𝜏 ′

2 ) . (12.27)

First, suppose that 𝜌/𝑘 + 1 < 5𝜌/(4𝑘) + 𝜏 ′/2 so that

𝜌∗

𝑘 ≤ 1 − 2𝜎 + 5𝜌
8𝑘 + 𝜏 ′

4 + 1
2 max (𝜌∗

𝑘 + 1, 4𝜌
𝑘 , 3

4
𝜌∗

𝑘 + 𝜌
𝑘 + 𝜏 ′

2 ) .

Solving for 𝜌∗/𝑘 gives

𝜌∗

𝑘 ≤ max (3 − 4𝜎 + 𝜏 ′

2 + 5
4

𝜌
𝑘 , 1 − 2𝜎 + 𝜏 ′

4 + 21
8

𝜌
𝑘 , 1

5(8 − 16𝜎 + 4𝜏 ′ + 9𝜌
𝑘)) .

One may verify that the RHS is bounded by

5(18 − 19𝜎)
2(5𝜎 + 3) 𝜏 ′

by substituting each case of (12.26). This involves the tedious verification of the following
four inequalities:

max (17
4 − 13

2 𝜎 + 7
4𝜏 ′, 29

8 − 29
4 𝜎 + 23

8 𝜏 ′, 17
5 − 34

5 𝜎 + 13
5 𝜏 ′) ≤ 5(18 − 19𝜎)

2(5𝜎 + 3) 𝜏 ′ (12.28)

for 1 ≤ 𝜏 ′ ≤ 13/5 − 2𝜎;

max (15
2 − 9𝜎 + 𝜏 ′

2 , 209
20 − 25

2 𝜎 + 𝜏 ′

4 , 202
25 − 52

5 𝜎 + 4
5𝜏 ′) ≤ 5(18 − 19𝜎)

2(5𝜎 + 3) 𝜏 ′

for 13/5 − 2𝜎 ≤ 𝜏 ′ ≤ 6/5;

max (6 − 9𝜎 + 7
4𝜏 ′, 73

10 − 25
2 𝜎 + 23

8 𝜏 ′, 148
25 − 52

5 𝜎 + 13
5 𝜏 ′) ≤ 5(18 − 19𝜎)

2(5𝜎 + 3) 𝜏 ′

for 𝑘 = 2, 3 and 6/5 ≤ 𝜏 ′ ≤ 2(𝜎 − 1/5) + 2(1 − 𝜎)/𝑘;

max(3 − 4𝜎 + 𝜏 ′

2 + 5(2 − 2𝜎)
4

𝑘 + 1
𝑘 , 1 − 2𝜎 + 𝜏 ′

4 + 21(2 − 2𝜎)
8

𝑘 + 1
𝑘 ,

1
5(8 − 16𝜎 + 4𝜏 ′ + 9(2 − 2𝜎)𝑘 + 1

𝑘 )) ≤ 5(18 − 19𝜎)
2(5𝜎 + 3) 𝜏 ′
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for 𝑘 = 2, 3 and 2(𝜎 − 1/5) + 2(1 − 𝜎)/𝑘 ≤ 𝜏 ′ ≤ 1 + 1/𝑘. For instance, in the case of (12.28),
the LHS is increasing faster with respect to 𝜏 ′ than the RHS in view of (12.23), and the
inequality holds at the upper limit 𝜏 ′ = 13/5 − 2𝜎 (with some room to spare). The other
inequalities may be verified similarly, with the exception of

6 − 9𝜎 + 7
4𝜏 ′ ≤ 5(18 − 19𝜎)

2(5𝜎 + 3) 𝜏 ′

which is equivalent to 6−9𝜎 ≤ 3(53−75𝜎)/(4(5𝜎+3))𝜏 ′. For 𝜎 < 53/75 the LHS is negative
while the RHS is positive so the inequality holds. For 𝜎 ≥ 53/75 one may verify that the
inequality holds at the lower limit 𝜏 ′ = 6/5.
In the remainder of the proof we assume 𝜌/𝑘 + 1 ≥ 5𝜌/(4𝑘) + 𝜏 ′/2 so that (12.27) becomes

𝜌∗

𝑘 ≤ 3
2 − 2𝜎 + 𝜌

2𝑘 + 1
2 max (𝜌∗

𝑘 + 1, 4𝜌
𝑘 , 3

4
𝜌∗

𝑘 + 𝜌
𝑘 + 𝜏 ′

2 ) .

Solving for 𝜌∗/𝑘 gives

𝜌∗

𝑘 ≤ max (4 − 4𝜎 + 𝜌
𝑘 , 3 − 4𝜎 + 5𝜌/𝑘

2 , 2
5(6 − 8𝜎 + 𝜏 ′ + 4𝜌

𝑘 )) . (12.29)

The case where 𝜏 ′ ≥ 6/5 is simpler so we handle it first. Applying the last two cases of
(12.26) it suffices to verify that

max (32
5 − 8𝜎 + 𝜏 ′, 15

2 − 12𝜎 + 5
2𝜏 ′, 156

25 − 48
5 𝜎 + 2𝜏 ′) ≤ 5(18 − 19𝜎)

2(5𝜎 + 3) 𝜏 ′

for 𝑘 = 2, 3 and 6/5 ≤ 𝜏 ′ ≤ 2(𝜎 − 1/5) + 2(1 − 𝜎)/𝑘;

max(4 − 4𝜎 + (2 − 2𝜎)𝑘 + 1
𝑘 , 3 − 4𝜎

2 + (5 − 5𝜎)𝑘 + 1
𝑘 ,

2
5(6 − 8𝜎 + 𝜏 ′ + (8 − 8𝜎)𝑘 + 1

𝑘 )) ≤ 5(18 − 19𝜎)
2(5𝜎 + 3) 𝜏 ′

for 𝑘 = 2, 3 and 2(𝜎 − 1/5) + 2(1 − 𝜎)/𝑘 ≤ 𝜏 ′ ≤ 1 + 1/𝑘. Note also that one has equality
when 𝜏 ′ = 2(𝜎 − 1/5) + 2(1 − 𝜎)/𝑘 and 𝑘 = 2.
Lastly, consider the case where 1 ≤ 𝜏 ′ ≤ 6/5. Applying 𝜌/𝑘 ≤ min(1 − 2𝜎 + 𝜏 ′, 18/5 − 4𝜎)
from the first two cases of (12.26), one obtains

3 − 4𝜎 + 5𝜌/𝑘
2 ≤ min (4 − 7𝜎 + 5

2𝜏 ′, 21
2 − 12𝜎) ,

2
5(6 − 8𝜎 + 𝜏 ′ + 4𝜌

𝑘 ) ≤ min (4 − 32
5 𝜎 + 2𝜏 ′, 204

25 − 48
5 𝜎 + 2

5𝜏 ′) .

However one may verify that the RHS of both of the above inequalities are bounded by
5(18 − 19𝜎)/(2(5𝜎 + 3))𝜏 ′ for 1 ≤ 𝜏 ′ ≤ 6/5 by checking at 𝜏 ′ = 13/5 − 2𝜎. Thus

𝜌∗

𝑘 ≤ max (5(18 − 19𝜎)
2(5𝜎 + 3) 𝜏 ′, 4 − 4𝜎 + 𝜌

𝑘) . (12.30)

Meanwhile, by Lemma 10.12,

(𝜎, 𝜏/(𝑘 − 1), 𝜌″, 𝜌∗/(𝑘 − 1), 𝑠″) ∈ ℰ
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for some 𝜌″ ≤ 𝜌/(𝑘 − 1) and 𝑠″ ≤ 𝑠/(𝑘 − 1). Applying Theorem 10.20 to this tuple (and
applying 𝜌″ ≤ 𝜌/(𝑘 − 1)) gives

𝜌∗

𝑘 − 1 ≤ 1 − 2𝜎 + 1
2 max( 𝜌

𝑘 − 1 + 1, 2𝜌
𝑘 − 1, 5𝜌

4(𝑘 − 1) + 𝜏
2(𝑘 − 1))

+ 1
2 max( 𝜌∗

𝑘 − 1 + 1, 4𝜌
𝑘 − 1, 3𝜌∗

4(𝑘 − 1) + 𝜌
𝑘 − 1 + 𝜏

2(𝑘 − 1)).
(12.31)

By expanding the first maximum and simplifying, one of the following inequalities must
hold:

𝜌∗ ≤ (3
2 − 2𝜎)(𝑘 − 1) + 𝜌

2 + 1
2 max(𝜌∗ + 𝑘 − 1, 4𝜌, 3𝜌∗

4 + 𝜌 + 𝜏
2 ), (12.32)

𝜌∗ ≤ (1 − 2𝜎)(𝑘 − 1) + 𝜌 + 1
2 max(𝜌∗ + 𝑘 − 1, 4𝜌, 3𝜌∗

4 + 𝜌 + 𝜏
2 ), (12.33)

𝜌∗ ≤ (1 − 2𝜎)(𝑘 − 1) + 5
8𝜌 + 𝜏

4 + 1
2 max(𝜌∗ + 𝑘 − 1, 4𝜌, 3𝜌∗

4 + 𝜌 + 𝜏
2 ). (12.34)

If (12.32) holds, then solving for 𝜌∗/𝑘 gives

𝜌∗/𝑘 ≤ max((4 − 4𝜎)𝑘 − 1
𝑘 + 𝜌

𝑘 , (3 − 4𝜎)(𝑘 − 1)/𝑘 + 5𝜌/𝑘
2 , 2

5((6 − 8𝜎)𝑘 − 1
𝑘 + 𝜏 ′ + 4𝜌

𝑘 )).

For 𝜏 ′ ≤ 13/5 − 2𝜎, we apply 𝜌/𝑘 ≤ 1 − 2𝜎 + 𝜏 ′ from (12.26) (along with the inequalities
4 − 4𝜎 ≥ 0, 3 − 4𝜎 ≥ 0, 6 − 8𝜎 ≥ 0 and (𝑘 − 1)/𝑘 ≤ 2/3),

𝜌∗

𝑘 ≤ max (11
3 − 14

3 𝜎 + 𝜏 ′, 7
2 − 19

3 𝜎 + 5
2𝜏 ′, 16

5 − 16
3 𝜎 + 2𝜏 ′) < 5(18 − 19𝜎)

2(5𝜎 + 3) 𝜏 ′

for all 1 ≤ 𝜏 ′ ≤ 13/5 − 2𝜎. The last inequality is verified using (12.23) and checking at both
𝜏 ′ = 1 and 𝜏 ′ = 13/5 − 2𝜎. Similarly, for 13/5 − 2𝜎 ≤ 𝜏 ′ ≤ 6/5 we use 𝜌/𝑘 ≤ 18/5 − 4𝜎 and
verify that

𝜌∗

𝑘 ≤ max (94
15 − 20

3 𝜎, 10 − 34
3 𝜎, 184

25 − 128
15 𝜎 + 2

5𝜏 ′) < 5(18 − 19𝜎)
2(5𝜎 + 3) 𝜏 ′

where the last inequality is verified using (12.23) and checking at the lower limit 𝜏 ′ =
13/5 − 2𝜎.
Suppose now that (12.33) holds. Solving for 𝜌∗/𝑘 gives

𝜌∗

𝑘 ≤ max ((3 − 4𝜎)𝑘 − 1
𝑘 + 2𝜌

𝑘 , (1 − 2𝜎)𝑘 − 1
𝑘 + 3𝜌

𝑘 , 2
5((4 − 8𝜎)𝑘 − 1

𝑘 + 𝜏 ′ + 6𝜌
𝑘))

Similarly to before, applying the first two cases of (12.26) allows one to verify that for
1 ≤ 𝜏 ′ ≤ 6/5,

(3 − 4𝜎)𝑘 − 1
𝑘 + 2𝜌

𝑘 ≤ 2
3(3 − 4𝜎) + 2 min(1 − 2𝜎 + 𝜏 ′, 18/5 − 4𝜎) ≤ 5(18 − 19𝜎)

2(5𝜎 + 3) 𝜏 ′

and

2
5((4−8𝜎)𝑘 − 1

𝑘 +𝜏 ′+6𝜌
𝑘) ≤ 2

5(1
2(4−8𝜎)+𝜏 ′+6 min(1−2𝜎+𝜏 ′, 18/5−4𝜎)) ≤ 5(18 − 19𝜎)

2(5𝜎 + 3) 𝜏 ′,
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each with room to spare. Therefore, for 1 ≤ 𝜏 ′ ≤ 6/5, one has

𝜌∗

𝑘 ≤ max (5(18 − 19𝜎)
2(5𝜎 + 3) 𝜏 ′, (1 − 2𝜎)𝑘 − 1

𝑘 + 3𝜌
𝑘 ) (12.35)

However, if 𝜏 ′ ≤ 𝜎 + 1/2 − (2𝜎 − 1)/(2𝑘) we may apply 𝜌/𝑘 ≤ 1 − 2𝜎 + 𝜏 ′ to get

(1 − 2𝜎)𝑘 − 1
𝑘 + 3𝜌

𝑘 ≤ (1 − 2𝜎)𝑘 − 1
𝑘 + 3(1 − 2𝜎 + 𝜏 ′) ≤ max (5(18 − 19𝜎)

2(5𝜎 + 3) , 2(45 − 44𝜎)
2𝜎 + 15 ) 𝜏 ′,

where by (12.23), the last inequality is verified by checking that it holds at the upper limit
𝜏 ′ = 𝜎 + 1/2 − (2𝜎 − 1)/(2𝑘) for 𝑘 = 2, 3. For 𝜏 ′ > 𝜎 + 1/2 − (2𝜎 − 1)/(2𝑘), we once again
apply 𝜌/𝑘 ≤ 1 − 2𝜎 + 𝜏 ′ to get

4 − 4𝜎 + 𝜌
𝑘 ≤ 5 − 6𝜎 + 𝜏 ′ ≤ max (5(18 − 19𝜎)

2(5𝜎 + 3) , 2(45 − 44𝜎)
2𝜎 + 15 ) 𝜏 ′,

where now the last inequality is verified at the lower limit 𝜏 ′ = 𝜎 + 1/2 − (2𝜎 − 1)/(2𝑘).
Therefore, in view of (12.30) and (12.35), one has

𝜌∗

𝑘 ≤ max (5(18 − 19𝜎)
2(5𝜎 + 3) , 2(45 − 44𝜎)

2𝜎 + 15 ) 𝜏 ′

in this case, as required.
Lastly, suppose that (12.34) holds. Then solving for 𝜌∗/𝑘 gives

𝜌∗

𝑘 ≤ max((3−4𝜎)𝑘 − 1
𝑘 +𝜏 ′

2 +5
4

𝜌
𝑘 , (1−2𝜎)𝑘 − 1

𝑘 +𝜏 ′

4 +21
8

𝜌
𝑘 , (8 − 16𝜎)(𝑘 − 1)/𝑘 + 4𝜏 ′ + 9𝜌/𝑘

5 ).

Proceeding as before, we use 𝜌/𝑘 ≤ 1 − 2𝜎 + 𝜏 ′ from (12.26) together with (𝑘 − 1)/𝑘 ≤ 2/3
to get

(3 − 4𝜎)𝑘 − 1
𝑘 + 𝜏 ′

2 + 5
4

𝜌
𝑘 ≤ 13

4 − 31
6 𝜎 + 7

4𝜏 ′ ≤ 2(45 − 44𝜎)
2𝜎 + 15 𝜏 ′,

where the last inequality is verified at 𝜏 ′ = 6/5. Furthermore, using 𝜌/𝑘 ≤ min(1 − 2𝜎 +
𝜏 ′, 18/5 − 4𝜎) and (𝑘 − 1)/𝑘 ≥ 1/2 one has

(8 − 16𝜎)(𝑘 − 1)/𝑘 + 4𝜏 ′ + 9𝜌/𝑘
5 ≤ min (13

5 − 26
5 𝜎 + 13

5 𝜏 ′, 182
25 − 44

5 𝜎 + 4
5𝜏 ′)

≤ max (5(18 − 19𝜎)
2(5𝜎 + 3) , 2(45 − 44𝜎)

2𝜎 + 15 ) 𝜏 ′

for 1 ≤ 𝜏 ′ ≤ 6/5. Therefore,

𝜌∗

𝑘 ≤ max (5(18 − 19𝜎)
2(5𝜎 + 3) 𝜏 ′, 2(45 − 44𝜎)

2𝜎 + 15 𝜏 ′, (1 − 2𝜎)𝑘 − 1
𝑘 + 𝜏 ′

4 + 21
8

𝜌
𝑘) .

If 1 ≤ 𝜏 ′ ≤ 1 + 2𝜎/15, we use the bound 𝜌/𝑘 ≤ 1 − 2𝜎 + 𝜏 ′ to get

(1 − 2𝜎)𝑘 − 1
𝑘 + 𝜏 ′

4 + 21
8

𝜌
𝑘 ≤ (1 − 2𝜎)𝑘 − 1

𝑘 + 𝜏 ′

4 + 21
8 (1 − 2𝜎 + 𝜏 ′) ≤ 2(45 − 44𝜎)

2𝜎 + 15 𝜏 ′

where by (12.23) it suffices to check the inequality at the upper limit 𝜏 ′ = 1+2𝜎/15 (where we
have equality if 𝑘 = 2). On the other hand if 1+2𝜎/15 ≤ 𝜏 ′ ≤ 6/5, we use 𝜌/𝑘 ≤ 1−2𝜎 +𝜏 ′

to get
4 − 4𝜎 + 𝜌

𝑘 ≤ 5 − 6𝜎 + 𝜏 ′ ≤ 2(45 − 44𝜎)
2𝜎 + 15 𝜏 ′
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where by (12.23) it suffices to check the last inequality at 𝜏 ′ = 1 + 2𝜎/15 (where we have
equality). Therefore, one has

𝜌∗

𝑘 ≤ max (5(18 − 19𝜎)
2(5𝜎 + 3) , 2(45 − 44𝜎)

2𝜎 + 15 ) 𝜏 ′

in this case too.

Theorem 12.9. For 3/4 ≤ 𝜎 ≤ 4/5, one has

A∗(𝜎) ≤ max ( 197 − 220𝜎
8(5𝜎 − 1)(1 − 𝜎) , 3(29 − 30𝜎)

5(5𝜎 − 1)(1 − 𝜎) , 4(10 − 9𝜎)
5(4𝜎 − 1)(1 − 𝜎))

Derived in derived.py as:
prove_zero_density_energy_3()

Proof. Throughout assume that 3/4 ≤ 𝜎 ≤ 4/5 and take 𝜏0 ∶= 8𝜎 − 4 in Corollary 12.4. It
suffices to show that

𝜌∗ ≤ max (197 − 220𝜎
8(5𝜎 − 1) , 3(29 − 30𝜎)

5(5𝜎 − 1) ) 𝜏 (12.36)

for all (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ satisfying 𝜏0 ≤ 𝜏 ≤ 2𝜏0, and

𝜌∗ ≤ 4(10 − 9𝜎)
5(4𝜎 − 1) 𝜏 (12.37)

for all (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ𝜁 such that 2 ≤ 𝜏 ≤ 𝜏0. In the proof of Theorem 12.7 we have
already shown that (12.37) holds in the large range 65/86 ≤ 𝜎 ≤ 5/6, so it remains to prove
(12.36). Given 𝜎, 𝜏 , let 𝑘 ≥ 2 be the integer for which

𝑘 ≤ 𝜏
4𝜎 − 2 < 𝑘 + 1 (12.38)

so that 𝑘 = 2, 3 for 𝜏0 ≤ 𝜏 < 2𝜏0, and as before write 𝜏 ′ ∶= 𝜏/𝑘.
By Theorem 10.27 and Lemma 7.8 one has

𝜌/𝑘 ≤ max(18/5 − 4𝜎, 12/5 − 4𝜎 + 𝜏 ′) = {18/5 − 4𝜎, 𝜏 ′ ≤ 6/5
12/5 − 4𝜎 + 𝜏 ′, 𝜏 ′ > 6/5

and from Theorem 7.12 and Lemma 7.8, for any integer ℓ,

𝜌/ℓ ≤ max(2 − 2𝜎, 4 − 6𝜎 + 𝜏/ℓ) = {2 − 2𝜎, 𝜏/ℓ ≤ 4𝜎 − 2,
4 − 6𝜎 + 𝜏/ℓ, 𝜏/ℓ > 4𝜎 − 2.

so that in particular, taking ℓ = 𝑘 + 1 and noting that 𝜏/(𝑘 + 1) ≤ 4𝜎 − 2 by (12.38),

𝜌/𝑘 = 𝑘 + 1
𝑘

𝜌
𝑘 + 1 ≤ 𝑘 + 1

𝑘 max(2 − 2𝜎, 4 − 6𝜎 + 𝜏
𝑘 + 1) = (2 − 2𝜎)𝑘 + 1

𝑘 ≤ 3 − 3𝜎.

Combining everything, one obtains (for 𝑘 ≥ 2)

𝜌/𝑘 ≤

⎧{{
⎨{{⎩

4 − 6𝜎 + 𝜏 ′, 4𝜎 − 2 ≤ 𝜏 ′ ≤ 2𝜎 − 2/5,
18/5 − 4𝜎, 2𝜎 − 2/5 ≤ 𝜏 ′ ≤ 6/5,
12/5 − 4𝜎 + 𝜏 ′, 6/5 ≤ 𝜏 ′ ≤ 𝜎 + 3/5,
3 − 3𝜎, 𝜎 + 3/5 ≤ 𝜏 ′ ≤ (4𝜎 − 2)(𝑘 + 1)/𝑘.

(12.39)
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First, suppose that 6/5 ≤ 𝜏 ′ ≤ (4𝜎 − 2)(𝑘 + 1)/𝑘. By Lemma 10.12, (𝜎, 𝜏 ′, 𝜌′, 𝜌∗/𝑘, 𝑠′) ∈ ℰ
for some 𝜌′ ≤ 𝜌/𝑘 and 𝑠′ ≤ 𝑠/𝑘. Applying Theorem 10.20, and noting that 𝜌/𝑘 + 1 ≥ 2𝜌/𝑘
since 𝜌/𝑘 ≤ 1 by (12.39),

𝜌∗

𝑘 ≤ 1 − 2𝜎 + 1
2 max (𝜌

𝑘 + 1, 5𝜌
4𝑘 + 𝜏 ′

2 ) + 1
2 max (𝜌∗

𝑘 + 1, 4𝜌
𝑘 , 3𝜌∗

4𝑘 + 𝜌
𝑘 + 𝜏 ′

2 ) .

If 𝜌/𝑘 + 1 ≥ 5𝜌/(4𝑘) + 𝜏 ′/2, then

𝜌∗

𝑘 ≤ 3
2 − 2𝜎 + 𝜌

2𝑘 + 1
2 max (𝜌∗

𝑘 + 1, 4𝜌
𝑘 , 3𝜌∗

4𝑘 + 𝜌
𝑘 + 𝜏 ′

2 ) .

Solving for 𝜌∗/𝑘 gives

𝜌∗

𝑘 ≤ max (4 − 4𝜎 + 𝜌
𝑘 , 3 − 4𝜎 + 5𝜌/𝑘

2 , 2
5(6 − 8𝜎 + 𝜏 ′ + 4𝜌

𝑘 )) .

Applying 𝜌/𝑘 ≤ min(12/5 − 4𝜎 + 𝜏 ′, 3 − 3𝜎) to the RHS, one may ultimately verify that

𝜌∗

𝑘 ≤ max (197 − 220𝜎
8(5𝜎 − 1) , 3(29 − 30𝜎)

5(5𝜎 − 1) ) 𝜏 ′.

If 𝜌/𝑘 + 1 ≤ 5𝜌/(4𝑘) + 𝜏 ′/2 one has

𝜌∗/𝑘 ≤ 1 − 2𝜎 + 5𝜌
8𝑘 + 𝜏 ′

4 + 1
2 max(𝜌∗

𝑘 + 1, 4𝜌
𝑘 , 3

4
𝜌∗

𝑘 + 𝜌
𝑘 + 𝜏 ′

2 )

and solving for 𝜌∗/𝑘 gives

𝜌∗/𝑘 ≤ max(3 − 4𝜎 + 𝜏 ′

2 + 5
4

𝜌
𝑘 , 1 − 2𝜎 + 𝜏 ′

4 + 21
8

𝜌
𝑘 , 1

5(8 − 16𝜎 + 4𝜏 ′ + 9𝜌
𝑘)).

Once again applying 𝜌/𝑘 ≤ min(12/5 − 4𝜎 + 𝜏 ′, 3 − 3𝜎), one again ultimately obtains

𝜌∗/𝑘 ≤ 197 − 220𝜎
8(5𝜎 − 1) 𝜏 ′.

Now suppose that 4𝜎 − 2 ≤ 𝜏 ′ ≤ 6/5. By Lemma 10.12, for any integer 𝑘 ≥ 2 one has
(𝜎, 𝜏/(𝑘 − 1), 𝜌′, 𝜌∗/(𝑘 − 1), 𝑠′) ∈ ℰ for some 𝜌′ ≤ 𝜌/(𝑘 − 1) and 𝑠′ ≤ 𝑠/(𝑘 − 1). Applying
Theorem 10.20 to this tuple, followed by 𝜌′ ≤ 𝜌/(𝑘 − 1) and rearranging, one obtains

𝜌∗ ≤ (1 − 2𝜎)(𝑘 − 1) + 1
2 max(𝜌 + 𝑘 − 1, 2𝜌, 5𝜌

4 + 𝜏
2 )

+ 1
2 max(𝜌∗ + 𝑘 − 1, 4𝜌, 3𝜌∗

4 + 𝜌 + 𝜏
2 ).

(12.40)

Consider the first maximum of (12.40). If 𝜌 + 𝑘 − 1 is maximal, then

𝜌∗ ≤ (3
2 − 2𝜎)(𝑘 − 1) + 𝜌

2 + 1
2 max(𝜌∗ + 𝑘 − 1, 4𝜌, 3𝜌∗

4 + 𝜌 + 𝜏
2 ).

Solving for 𝜌∗ and dividing by 𝑘 gives

𝜌∗

𝑘 ≤ max((4 − 4𝜎)𝑘 − 1
𝑘 + 𝜌

𝑘 , (3 − 4𝜎)(𝑘 − 1)/𝑘 + 5𝜌/𝑘
2 , 2

5((6 − 8𝜎)(𝑘 − 1)/𝑘 + 𝜏 ′ + 4𝜌
𝑘 )).
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Since 3/4 ≤ 𝜎 ≤ 1 and 1/2 ≤ (𝑘 − 1)/𝑘 ≤ 2/3, we have

𝜌∗

𝑘 ≤ max (8
3(1 − 𝜎) + 𝜌

𝑘 , 3
4 − 𝜎 + 5

2
𝜌
𝑘 , 2

5(3 − 4𝜎 + 𝜏 ′ + 4𝜌
𝑘 )) .

Bounding the RHS with 𝜌/𝑘 ≤ min(4 − 6𝜎 + 𝜏 ′, 18/5 − 4𝜎), one ultimately obtains

𝜌∗/𝑘 ≤ max (197 − 220𝜎
8(5𝜎 − 1) , 3(29 − 30𝜎)

5(5𝜎 − 1) ) 𝜏 ′.

Now suppose 5𝜌/4 + 𝜏 ′/2 is maximal in (12.40). Then

𝜌∗ ≤ (1 − 2𝜎)(𝑘 − 1) + 5
8𝜌 + 𝜏

4 + 1
2 max(𝜌∗ + 𝑘 − 1, 4𝜌, 3𝜌∗

4 + 𝜌 + 𝜏
2 ).

Solving for 𝜌∗ and dividing by 𝑘 gives

𝜌∗

𝑘 ≤ max((3−4𝜎)𝑘 − 1
𝑘 + 𝜏 ′

2 + 5
4

𝜌
𝑘 , (1−2𝜎)𝑘 − 1

𝑘 + 𝜏 ′

4 + 21
8

𝜌
𝑘 , 8

5((1−2𝜎)𝑘 − 1
𝑘 + 𝜏 ′

2 + 9
8

𝜌
𝑘)).

As before, since 3/4 ≤ 𝜎 ≤ 1 and 1/2 ≤ (𝑘 − 1)/𝑘 ≤ 2/3, one has

𝜌∗

𝑘 ≤ max(3 − 4𝜎
2 + 𝜏 ′

2 + 5
4

𝜌
𝑘 , 1

2 − 𝜎 + 𝜏 ′

4 + 21
8

𝜌
𝑘 , 8

5(1
2 − 𝜎 + 𝜏 ′

2 + 9
8

𝜌
𝑘)).

Once again we apply 𝜌/𝑘 ≤ min(4 − 6𝜎 + 𝜏 ′, 18/5 − 4𝜎) to ultimately obtain

𝜌∗/𝑘 ≤ max (197 − 220𝜎
8(5𝜎 − 1) , 3(29 − 30𝜎)

5(5𝜎 − 1) ) 𝜏 ′.

Lastly, if 2𝜌 is maximal in (12.40), then

𝜌∗ ≤ (1 − 2𝜎)(𝑘 − 1) + 𝜌 + 1
2 max(𝜌∗ + 𝑘 − 1, 4𝜌, 3𝜌∗

4 + 𝜌 + 𝜏
2 ).

Solving for 𝜌∗ and dividing by 𝑘 gives

𝜌∗/𝑘 ≤ max((3 − 4𝜎)𝑘 − 1
𝑘 + 2𝜌

𝑘 , (1 − 2𝜎)𝑘 − 1
𝑘 + 3𝜌

𝑘 , 8
5((1 − 2𝜎)𝑘 − 1

𝑘 + 𝜏 ′

4 + 3
2

𝜌
𝑘)).

Once again we apply 𝜌/𝑘 ≤ min(4 − 6𝜎 + 𝜏 ′, 18/5 − 4𝜎) to ultimately obtain

𝜌∗/𝑘 ≤ max (197 − 220𝜎
8(5𝜎 − 1) , 3(29 − 30𝜎)

5(5𝜎 − 1) ) 𝜏 ′

in this case too.

Modest improvements are possible by incorporating more large value estimates; these are
recorded in the next few theorems.

Theorem 12.10. For 664/877 ≤ 𝜎 ≤ 31/40, one has

A∗(𝜎) ≤ max ( 72 − 91𝜎
7(11𝜎 − 8)(1 − 𝜎) , 5(18 − 19𝜎)

2(5𝜎 + 3)(1 − 𝜎)) .
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Derived in derived.py as:
prove_zero_density_energy_4()

Proof. Fix 664/877 ≤ 𝜎 ≤ 31/40 and take 𝜏0 = 2. It suffices to show that

𝜌∗ ≤ max ( 72 − 91𝜎
7(11𝜎 − 8) , 5(18 − 19𝜎)

2(5𝜎 + 3) ) 𝜏

for all (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ satisfying 2 ≤ 𝜏 ≤ 4.
Let 𝑘 = 2 if 2 ≤ 𝜏 < 3 and 𝑘 = 3 otherwise, and as usual let 𝜏 ′ = 𝜏/𝑘. By Lemma 10.12,
(𝜎, 𝜏 ′, 𝜌′, 𝜌∗/𝑘, 𝑠′) ∈ ℰ for some 𝜌′ ≤ 𝜌/𝑘 and 𝑠′ ≤ 𝑠/𝑘. Applying Theorem 10.20, and noting
that 𝜌/𝑘 + 1 ≥ 2𝜌/𝑘 since 𝜌/𝑘 ≤ 1 by (12.39),

𝜌∗

𝑘 ≤ 1 − 2𝜎 + 1
2 max(𝜌

𝑘 + 1, 5𝜌
4𝑘 + 𝜏 ′

2 ) + 1
2 max(𝜌∗

𝑘 + 1, 4𝜌
𝑘 , 3𝜌∗

4𝑘 + 𝜌
𝑘 + 𝜏 ′

2 ).

Rearranging the inequality and solving for 𝜌∗/𝑘, one must either have

𝜌∗

𝑘 ≤ max(4 − 4𝜎 + 𝜌
𝑘 , 3 − 4𝜎 + 5𝜌/𝑘

2 , 2
5(6 − 8𝜎 + 𝜏 ′ + 4𝜌

𝑘 )). (12.41)

or
𝜌∗

𝑘 ≤ max(3 − 4𝜎 + 𝜏 ′

2 + 5
4

𝜌
𝑘 , 1 − 2𝜎 + 𝜏 ′

4 + 21
8

𝜌
𝑘 , 1

5(8 − 16𝜎 + 4𝜏 ′ + 9𝜌
𝑘)). (12.42)

Here we will divide our argument into several cases. Suppose first that

𝜏 ′ ≥ 9𝜎 − 1
5 .

By Theorem 10.27, one has

𝜌/𝑘 ≤ max(18/5 − 4𝜎, 12/5 − 4𝜎 + 𝜏 ′)

and by Theorem 7.9, one has

𝜌/(𝑘 + 1) ≤ max(2 − 2𝜎, 1 − 2𝜎 + 𝜏/(𝑘 + 1)).

Combining the two inequalities, we have

𝜌/𝑘 ≤
⎧{
⎨{⎩

18/5 − 4𝜎, (9𝜎 − 1)/5 ≤ 𝜏 ′ < 6/5,
12/5 − 4𝜎 + 𝜏 ′, 6/5 ≤ 𝜏 ′ < 2𝜎 − 2/5 + 2(1 − 𝜎)/𝑘,
(2 − 2𝜎)(𝑘 + 1)/𝑘, 2𝜎 − 2/5 + 2(1 − 𝜎)/𝑘 ≤ 𝜏 ′ ≤ (𝑘 + 1)/𝑘.

(12.43)

Substituting (12.43) into (12.41) and (12.42), one may verify that

𝜌∗

𝑘 ≤ 5(18 − 19𝜎)
2(5𝜎 + 3) 𝜏 ′

for all (9𝜎 − 1)/5 ≤ 𝜏 ′ ≤ 1 + 1/𝑘 (with equality occurring at 𝜏 ′ = 2𝜎 − 2/5 + 2(1 − 𝜎)/𝑘 and
𝑘 = 2).
Now consider the case where

1 ≤ 𝜏 ′ ≤ 9𝜎 − 1
5 .
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Taking 𝑘 = 10 in Theorem 7.16, one has

𝜌/𝑘 ≤ max(2 − 2𝜎, 19/5 − 29𝜎/5 + 𝜏 ′, 60 − 80𝜎 + 𝜏 ′). (12.44)

Suppose first that 𝜎 ≥ 281/371. Then, this reduces to

𝜌/𝑘 ≤ max(2 − 2𝜎, 19/5 − 29𝜎/5 + 𝜏 ′). (12.45)

By Lemma 10.12, for any integer 𝑘 ≥ 2 one has (𝜎, 𝜏/(𝑘 − 1), 𝜌′, 𝜌∗/(𝑘 − 1), 𝑠′) ∈ ℰ for
some 𝜌′ ≤ 𝜌/(𝑘 − 1) and 𝑠′ ≤ 𝑠/(𝑘 − 1). Applying Theorem 10.20 to this tuple, followed by
𝜌′ ≤ 𝜌/(𝑘 − 1) and rearranging, one obtains

𝜌∗ ≤ (1 − 2𝜎)(𝑘 − 1) + 1
2 max(𝜌 + 𝑘 − 1, 2𝜌, 5𝜌

4 + 𝜏
2 )

+ 1
2 max(𝜌∗ + 𝑘 − 1, 4𝜌, 3𝜌∗

4 + 𝜌 + 𝜏
2 ).

(12.46)

By considering each case of the two maximums individually, and solving for 𝜌∗/𝑘, one obtains

𝜌∗

𝑘 ≤ max ((4 − 4𝜎)𝑘 − 1
𝑘 + 𝜌

𝑘 , (3 − 4𝜎)(𝑘 − 1)/𝑘 + 5𝜌/𝑘
2 ,

2
5((6 − 8𝜎)𝑘 − 1

𝑘 + 𝜏 ′ + 4𝜌
𝑘 ), (3 − 4𝜎)𝑘 − 1

𝑘 + 2𝜌
𝑘 ,

(1 − 2𝜎)𝑘 − 1
𝑘 + 3𝜌

𝑘 , 2
5((4 − 8𝜎)𝑘 − 1

𝑘 + 𝜏 ′ + 6𝜌
𝑘),

(3 − 4𝜎)𝑘 − 1
𝑘 + 𝜏 ′

2 + 5
4

𝜌
𝑘 , (1 − 2𝜎)𝑘 − 1

𝑘 + 𝜏 ′

4 + 21
8

𝜌
𝑘 ,

(8 − 16𝜎)(𝑘 − 1)/𝑘 + 4𝜏 ′ + 9𝜌/𝑘
5 ).

(12.47)

Bounding each term on the RHS using (12.45), one may verify that in each case

𝜌∗

𝑘 < 5(18 − 19𝜎)
2(5𝜎 + 3) 𝜏 ′

for 1 ≤ 𝜏 ′ ≤ (9𝜎 − 1)/5 and 𝑘 = 2, 3.
Suppose now that 𝜎 < 281/371 so that (12.44) reduces to

𝜌
𝑘 ≤ max(2 − 2𝜎, 60 − 80𝜎 + 𝜏 ′). (12.48)

If 1 ≤ 𝜏 ′ < 77𝜎/2 − 28 then substituting 𝜌/𝑘 ≤ max(2 − 2𝜎, 60 − 80𝜎 + 𝜏 ′) into (12.47), one
may ultimately verify in each case that

𝜌∗

𝑘 ≤ max ( 72 − 91𝜎
7(11𝜎 − 8) , 5(18 − 19𝜎)

2(5𝜎 + 3) ) 𝜏 ′

for 𝑘 = 2, 3, with equality when 𝜏 ′ = 77𝜎/2 − 28 and 𝑘 = 2 (here we make use of the
assumption 𝜎 ≥ 664/877 = 0.7571 …).
Lastly, if 77𝜎/2 − 28 ≤ 𝜏 ′ ≤ (9𝜎 − 1)/5 then (12.48) simplifies to 𝜌/𝑘 ≤ 60 − 80𝜎 + 𝜏 ′.
Substituting this into (12.41) and (12.42), one obtains in either case that

𝜌∗

𝑘 ≤ max ( 72 − 91𝜎
7(11𝜎 − 8) , 5(18 − 19𝜎)

2(5𝜎 + 3) ) 𝜏 ′

with equality when 𝜏 ′ = 77𝜎/2 − 28 and 𝑘 = 2.
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Theorem 12.11. For 42/55 ≤ 𝜎 ≤ 79/103, one has

A∗(𝜎) ≤ max ( 18 − 19𝜎
6(15𝜎 − 11)(1 − 𝜎) , 3(18 − 19𝜎)

4(4𝜎 − 1)(1 − 𝜎)) .

Derived in derived.py as:
prove_zero_density_energy_5()

Proof. Fix 42/55 ≤ 𝜎 ≤ 79/103 and take 𝜏0 = 2. It suffices to show that

𝜌∗ ≤ max ( 18 − 19𝜎
6(15𝜎 − 11) , 3(18 − 19𝜎)

4(4𝜎 − 1) ) 𝜏

for all (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ for which 2 ≤ 𝜏 ≤ 4. As before let

𝑘 ∶= {2, 2 ≤ 𝜏 < 3,
3, 3 ≤ 𝜏 ≤ 4, 𝜏 ′ ∶= 𝜏/𝑘,

so that in particular 1 ≤ 𝜏 ′ ≤ (𝑘 + 1)/𝑘.
By Lemma 10.12, for 𝑘 = 2, 3,

(𝜎, 𝜏 ′, 𝜌′, 𝜌∗/𝑘, 𝑠′), (𝜎, 𝜏/(𝑘 + 1), 𝜌″, 𝜌∗/(𝑘 + 1), 𝑠″) ∈ ℰ (12.49)

for some 𝜌′ ≤ 𝜌/𝑘, 𝑠′ ≤ 𝑠/𝑘, 𝜌″ ≤ 𝜌/(𝑘 + 1) and 𝑠″ ≤ 𝑠/(𝑘 + 1). Applying Theorem 7.16
with 𝑘 = 6 to each tuple, one has

𝜌/𝑘 ≤ max(2 − 2𝜎, 11/3 − 17𝜎/3 + 𝜏 ′, 36 − 48𝜎 + 𝜏 ′),
𝜌/(𝑘 + 1) ≤ max(2 − 2𝜎, 11/3 − 17𝜎/3 + 𝜏/(𝑘 + 1), 36 − 48𝜎 + 𝜏/(𝑘 + 1)). (12.50)

First suppose 𝜎 ≥ 97/127, in which case the above simplifies to

𝜌/𝑘 ≤ max(2 − 2𝜎, 11/3 − 17𝜎/3 + 𝜏 ′),
𝜌/(𝑘 + 1) ≤ max(2 − 2𝜎, 11/3 − 17𝜎/3 + 𝜏/(𝑘 + 1)).

This combines to give

𝜌/𝑘 ≤
⎧{
⎨{⎩

2 − 2𝜎, 1 ≤ 𝜏 ′ < (11𝜎 − 5)/3,
11/3 − 17𝜎/3 + 𝜏 ′, (11𝜎 − 5)/3 ≤ 𝜏 ′ < (11𝜎 − 5)/3 + 2(1 − 𝜎)/𝑘,
(2 − 2𝜎)(𝑘 + 1)/𝑘, (11𝜎 − 5)/3 + 2(1 − 𝜎)/𝑘 ≤ 𝜏 ′ ≤ 1 + 1/𝑘.

(12.51)

First suppose that 𝜏 ′ ≥ (11𝜎 − 5)/3. Applying Theorem 10.20 to the first tuple of (12.49),
and noting that 𝜌/𝑘 + 1 ≥ 2𝜌/𝑘 since 𝜌/𝑘 ≤ 1,

𝜌∗

𝑘 ≤ 1 − 2𝜎 + 1
2 max(𝜌

𝑘 + 1, 5𝜌
4𝑘 + 𝜏 ′

2 ) + 1
2 max(𝜌∗

𝑘 + 1, 4𝜌
𝑘 , 3𝜌∗

4𝑘 + 𝜌
𝑘 + 𝜏 ′

2 ).

Rearranging the inequality and solving for 𝜌∗/𝑘, one must either have

𝜌∗

𝑘 ≤ max(4 − 4𝜎 + 𝜌
𝑘 , 3 − 4𝜎 + 5𝜌/𝑘

2 , 2
5(6 − 8𝜎 + 𝜏 ′ + 4𝜌

𝑘 )) (12.52)
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or
𝜌∗

𝑘 ≤ max(3 − 4𝜎 + 𝜏 ′

2 + 5
4

𝜌
𝑘 , 1 − 2𝜎 + 𝜏 ′

4 + 21
8

𝜌
𝑘 , 1

5(8 − 16𝜎 + 4𝜏 ′ + 9𝜌
𝑘)). (12.53)

In either case, upon substituting the last two cases of (12.51) one obtains

𝜌∗/𝑘 ≤ 3(18 − 19𝜎)
4(4𝜎 − 1) 𝜏 ′, (11𝜎 − 5

3 ≤ 𝜏 ′ ≤ 1 + 1
𝑘). (12.54)

Now suppose that 𝜏 ′ < (11𝜎 − 5)/3. Then, note that for 𝑘 = 2, 3 one has

(𝜎, 𝜏/(𝑘 − 1), 𝜌‴, 𝜌∗/(𝑘 − 1), 𝑠‴) ∈ ℰ
for some 𝜌‴ ≤ 𝜌/(𝑘−1) and 𝑠‴ ≤ 𝑠/(𝑘−1). Applying Theorem 10.20 to this tuple, followed
by 𝜌‴ ≤ 𝜌/(𝑘 − 1) and rearranging, one obtains

𝜌∗ ≤ (1 − 2𝜎)(𝑘 − 1) + 1
2 max(𝜌 + 𝑘 − 1, 2𝜌, 5𝜌

4 + 𝜏
2 )

+ 1
2 max(𝜌∗ + 𝑘 − 1, 4𝜌, 3𝜌∗

4 + 𝜌 + 𝜏
2 ).

(12.55)

By considering each case of the two maximums individually, and solving for 𝜌∗/𝑘, one obtains

𝜌∗

𝑘 ≤ max ((4 − 4𝜎)𝑘 − 1
𝑘 + 𝜌

𝑘 , (3 − 4𝜎)(𝑘 − 1)/𝑘 + 5𝜌/𝑘
2 ,

2
5((6 − 8𝜎)𝑘 − 1

𝑘 + 𝜏 ′ + 4𝜌
𝑘 ), (3 − 4𝜎)𝑘 − 1

𝑘 + 2𝜌
𝑘 ,

(1 − 2𝜎)𝑘 − 1
𝑘 + 3𝜌

𝑘 , 2
5((4 − 8𝜎)𝑘 − 1

𝑘 + 𝜏 ′ + 6𝜌
𝑘),

(3 − 4𝜎)𝑘 − 1
𝑘 + 𝜏 ′

2 + 5
4

𝜌
𝑘 , (1 − 2𝜎)𝑘 − 1

𝑘 + 𝜏 ′

4 + 21
8

𝜌
𝑘 ,

(8 − 16𝜎)(𝑘 − 1)/𝑘 + 4𝜏 ′ + 9𝜌/𝑘
5 ).

(12.56)

Note that for all 1 ≤ 𝜏 ′ < (11𝜎 − 5)/3, one has by (12.51) that 𝜌/𝑘 ≤ 2 − 2𝜎. Substituting
this into (12.56), one obtains

𝜌∗/𝑘 ≤ 3(18 − 19𝜎)
4(4𝜎 − 1) 𝜏 ′

in this case too. Combined with (12.54), we have shown that

𝜌∗ ≤ 3(18 − 19𝜎)
4(4𝜎 − 1) 𝜏

for all (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ for 97/127 ≤ 𝜎 ≤ 79/103 and 2 ≤ 𝜏 ≤ 4, as required.
The proof in the range 42/55 ≤ 𝜎 ≤ 97/127 is similar. Here (12.50) reduces to

𝜌/𝑘 ≤ max(2 − 2𝜎, 36 − 48𝜎 + 𝜏 ′),
𝜌/(𝑘 + 1) ≤ max(2 − 2𝜎, 36 − 48𝜎 + 𝜏/(𝑘 + 1))

so that

𝜌/𝑘 ≤
⎧{
⎨{⎩

2 − 2𝜎, 1 ≤ 𝜏 ′ < 46𝜎 − 34,
36 − 48𝜎 + 𝜏 ′, 46𝜎 − 34 ≤ 𝜏 ′ < 46𝜎 − 34 + 2(1 − 𝜎)/𝑘,
(2 − 2𝜎)(𝑘 + 1)/𝑘, 46𝜎 − 34 + 2(1 − 𝜎)/𝑘 ≤ 𝜏 ′ ≤ 1 + 1/𝑘.

(12.57)
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If 𝜏 ′ ≥ 46𝜎 − 34, we substitute the last two cases of this bound into (12.52) and (12.53), one
may verify that

𝜌∗

𝑘 ≤ 18 − 19𝜎
6(15𝜎 − 11)𝜏 ′ (12.58)

with equality when 𝜏 ′ = 46𝜎 − 34 + 2(1 − 𝜎)/𝑘 and 𝑘 = 2.
On the other hand if 1 ≤ 𝜏 ′ < 46𝜎 − 34 then substituting 𝜌/𝑘 ≤ 2 − 2𝜎 into (12.56) gives

𝜌∗

𝑘 ≤ 18 − 19𝜎
6(15𝜎 − 11)𝜏 ′, (1 ≤ 𝜏 ′ ≤ 46𝜎 − 34)

in each case. Combined with (12.58), the desired result follows for 42/55 ≤ 𝜎 ≤ 97/127.

Theorem 12.12. For 79/103 ≤ 𝜎 ≤ 84/109, one has

A∗(𝜎) ≤ max ( 18 − 19𝜎
2(37𝜎 − 27)(1 − 𝜎) , 5(18 − 19𝜎)

2(13𝜎 − 3)(1 − 𝜎)) .

Derived in derived.py as:
prove_zero_density_energy_6()

Proof. Fix 79/103 ≤ 𝜎 ≤ 84/109 and take

𝜏0 = {(36𝜎 − 16)/5, 79/103 ≤ 𝜎 < 33/43,
38𝜎 − 28, 33/43 ≤ 𝜎 ≤ 84/109.

Let

𝑘 ∶= {2, 𝜏0 ≤ 𝜏 < 3𝜏0/2
3, 3𝜏0/2 ≤ 𝜏 ≤ 2𝜏0

, 𝜏 ′ ∶= 𝜏/𝑘.

Suppose that (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ. We will first show

𝜌∗ ≤ max ( 18 − 19𝜎
2(37𝜎 − 27) , 5(18 − 19𝜎)

2(13𝜎 − 3) ) 𝜏, (𝜏0 ≤ 𝜏 ≤ 2𝜏0). (12.59)

By Lemma 10.12, one has that

(𝜎, 𝜏 ′, 𝜌′, 𝜌∗/𝑘, 𝑠′), (𝜎, 𝜏/(𝑘 + 1), 𝜌″, 𝜌∗/(𝑘 + 1), 𝑠″) ∈ ℰ (12.60)

for some 𝜌′ ≤ 𝜌/𝑘, 𝑠′ ≤ 𝑠/𝑘, 𝜌″ ≤ 𝜌/(𝑘 + 1) and 𝑠″ ≤ 𝑠/(𝑘 + 1). First suppose that
𝜎 ≥ 33/43. In this range, Theorem 7.16 with 𝑘 = 5 gives

𝜌/𝑘 ≤ max(2 − 2𝜎, 18/5 − 28𝜎/5 + 𝜏 ′),

𝜌/(𝑘 + 1) ≤ max(2 − 2𝜎, 18/5 − 28𝜎/5 + 𝜏/(𝑘 + 1)).
For 𝜏 ≥ 𝜏0, the first inequality reduces to 𝜌/𝑘 ≤ 18/5 − 28𝜎/5 + 𝜏 ′, while for 𝜏 ≤ 2𝜏0 the
second inequality reduces to

𝜌/𝑘 = 𝑘 + 1
𝑘

𝜌
𝑘 + 1 ≤ 𝑘 + 1

𝑘 (2 − 2𝜎) ≤ 3 − 3𝜎.

Combining these two inequalities gives

𝜌/𝑘 ≤ min (18/5 − 28𝜎/5 + 𝜏 ′, 3 − 3𝜎) , (𝜏0 ≤ 𝜏 ≤ 2𝜏0).
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In particular this implies 𝜌/𝑘 ≤ 1. Applying Theorem 10.20 to the first tuple of (12.60),

𝜌∗

𝑘 ≤ 1 − 2𝜎 + 1
2 max(𝜌

𝑘 + 1, 5𝜌
4𝑘 + 𝜏 ′

2 ) + 1
2 max(𝜌∗

𝑘 + 1, 4𝜌
𝑘 , 3𝜌∗

4𝑘 + 𝜌
𝑘 + 𝜏 ′

2 ).

By considering each case of the first maximum and solving for 𝜌∗/𝑘, one must either have

𝜌∗

𝑘 ≤ max(4 − 4𝜎 + 𝜌
𝑘 , 3 − 4𝜎 + 5𝜌/𝑘

2 , 2
5(6 − 8𝜎 + 𝜏 ′ + 4𝜌

𝑘 )) (12.61)

or
𝜌∗

𝑘 ≤ max(3 − 4𝜎 + 𝜏 ′

2 + 5
4

𝜌
𝑘 , 1 − 2𝜎 + 𝜏 ′

4 + 21
8

𝜌
𝑘 , 1

5(8 − 16𝜎 + 4𝜏 ′ + 9𝜌
𝑘)). (12.62)

However one may verify in both cases that

𝜌∗

𝑘 ≤ 5(18 − 19𝜎)
2(13𝜎 − 3) 𝜏 ′ (12.63)

for 33/43 ≤ 𝜎 ≤ 84/109 and 𝜏0 ≤ 𝜏 ≤ 2𝜏0 (with equality at 𝜏 = 2(13𝜎 − 3)/5).
Now consider 𝜎 ≤ 33/43. In this range of 𝜎, Theorem 7.16 with 𝑘 = 5 gives

𝜌/𝑘 ≤ max(2 − 2𝜎, 30 − 40𝜎 + 𝜏 ′),

𝜌/(𝑘 + 1) ≤ max(2 − 2𝜎, 30 − 40𝜎 + 𝜏/(𝑘 + 1))
which gives

𝜌/𝑘 ≤ min(30 − 40𝜎 + 𝜏 ′, 3 − 3𝜎), (𝜏0 ≤ 𝜏 ≤ 2𝜏0).
Substituting this bound into (12.61) and (12.62), one obtains

𝜌∗

𝑘 ≤ 18 − 19𝜎
2(37𝜎 − 27)𝜏 ′

for 79/103 ≤ 𝜎 ≤ 33/43 and 𝜏0 ≤ 𝜏 ≤ 2𝜏0 (with equality at 𝜏 = 74𝜎 − 54). Combined with
(12.63), one obtains (12.59).
It remains to show that

𝜌∗ ≤ max ( 18 − 19𝜎
2(37𝜎 − 27) , 5(18 − 19𝜎)

2(13𝜎 − 3) ) 𝜏 (12.64)

for all (𝜎, 𝜏, 𝜌, 𝜌∗, 𝑠) ∈ ℰ𝜁 for which 79/103 ≤ 𝜎 ≤ 84/109 and 2 ≤ 𝜏 ≤ 𝜏0. This follows from
substituting 𝜌/𝑘 ≤ 6 − 12𝜎 + 2𝜏 ′ (Theorem 9.7) into (12.61) and (12.62).

Theorem 12.13. For 84/109 ≤ 𝜎 ≤ 5/6, one has

A∗(𝜎) ≤ max ( 18 − 19𝜎
9(3𝜎 − 2)(1 − 𝜎) , 4(10 − 9𝜎)

5(4𝜎 − 1)(1 − 𝜎)) .

Derived in derived.py as:
prove_zero_density_energy_7()

Theorem 12.14. For 165/226 ≤ 𝜎 ≤ 42/55 one has

A∗(𝜎) ≤ max ( 457 − 546𝜎
2(61 − 58𝜎)(1 − 𝜎) , 5(18 − 19𝜎)

2(5𝜎 + 3)(1 − 𝜎)) .
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Derived in derived.py as:
prove_zero_density_energy_12()

Table 12.1 records the sharpest known unconditional upper bounds on A∗(𝜎) for 1/2 ≤ 𝜎 ≤ 1
(except when close to 𝜎 = 1, when sharper estimates are available by applying Lemma 12.2
with known zero-density bounds).

Table 12.1: Current best upper bound on A∗(𝜎)

A∗(𝜎) bound Range Reference
10 − 11𝜎

(2 − 𝜎)(1 − 𝜎)
1
2 ≤ 𝜎 ≤ 2

3 = 0.6666 … Theorem 12.6

18 − 19𝜎
(4 − 2𝜎)(1 − 𝜎)

2
3 ≤ 𝜎 ≤ 7

10 = 0.7 Theorem 12.6

5(18 − 19𝜎)
2(5𝜎 + 3)(1 − 𝜎)

7
10 ≤ 𝜎 ≤ 539 −

√
42121

460 = 0.7255 … Theorem 12.8

2(45 − 44𝜎)
(2𝜎 + 15)(1 − 𝜎)

539 −
√

42121
460 ≤ 𝜎 ≤ 165

226 = 0.7300 … Theorem 12.8

457 − 546𝜎
2(61 − 58𝜎)(1 − 𝜎)

165
226 ≤ 𝜎 ≤ 5831 +

√
60001

8240 = 0.7373 … Theorem 12.14

5(18 − 19𝜎)
2(5𝜎 + 3)(1 − 𝜎)

5831 +
√

60001
8240 ≤ 𝜎 ≤ 42

55 = 0.7636 … Theorem 12.14, 12.10

18 − 19𝜎
6(15𝜎 − 11)(1 − 𝜎)

42
55 ≤ 𝜎 ≤ 97

127 = 0.7637 … Theorem 12.11

3(18 − 19𝜎)
4(4𝜎 − 1)(1 − 𝜎)

97
127 ≤ 𝜎 ≤ 79

103 = 0.7669 … Theorem 12.11

18 − 19𝜎
2(37𝜎 − 27)(1 − 𝜎)

79
103 ≤ 𝜎 ≤ 33

43 = 0.7674 … Theorem 12.12

5(18 − 19𝜎)
2(13𝜎 − 3)(1 − 𝜎)

33
43 ≤ 𝜎 ≤ 84

109 = 0.7706 … Theorem 12.12

18 − 19𝜎
9(3𝜎 − 2)(1 − 𝜎)

84
109 ≤ 𝜎 ≤ 1273 −

√
128689

1184 = 0.7721 … Theorem 12.13

4(10 − 9𝜎)
5(4𝜎 − 1)(1 − 𝜎)

1273 −
√

128689
1184 ≤ 𝜎 ≤ 5

6 = 0.8333 … Theorem 12.7, 12.9, 12.13

12
4𝜎 − 1

5
6 ≤ 𝜎 ≤ 1 Theorem 12.6
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Figure 12.1: Comparison of bounds on A∗(𝜎) under various assumptions.
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Chapter 13

Zero free regions

A zero of the Riemann zeta function is a complex number 𝜌 = 𝛽 + 𝑖𝛾 for which 𝜁(𝜌) = 0.

• There are infinitely many “trivial” zeros of the form 𝜌 = −2𝑛 for integer 𝑛 ≥ 1; these
zeros are well understood.

• There are a countably infinite number of “non-trivial zeros lying inside the critical
strip 0 < ℜ𝑧 < 1.

Definition 13.1 (Zero free region of 𝜁(𝑠)). A zero-free region of the Riemann zeta function
is a set 𝐷 ⊂ ℂ for which 𝜁(𝑠) ≠ 0 for all 𝑠 ∈ 𝐷.

Lemma 13.2 (Basic properties of zero free regions). The following properties hold:

(i) (Symmetry about the real axis) If 𝜁(𝜎 + 𝑖𝑡) ≠ 0 then 𝜁(𝜎 − 𝑖𝑡) ≠ 0.

(ii) (Symmetry about the critical line ℜ𝑠 = 1/2) For 0 ≤ 𝜎 ≤ 1, if 𝜁(𝜎 + 𝑖𝑡) ≠ 0 then
𝜁(1 − 𝜎 + 𝑖𝑡) ≠ 0.

(iii) (Non vanishing for ℜ𝑠 > 1) If ℜ𝑠 > 1 then 𝜁(𝑠) ≠ 0.

Proof. Claim (i) follows directly from the property 𝜁(𝑠) = 𝜁(𝑠). Claim (ii) follows from the
functional equation

𝜁(𝑠) = 2𝑠𝜋𝑠−1 sin(𝜋𝑠/2)Γ(1 − 𝑠)𝜁(1 − 𝑠)
and claim (iii) follows from the Euler product formula

𝜁(𝑠) = ∏
𝑝

(1 − 𝑝−𝑠)−1, (ℜ𝑠 > 1).

A well-known conjecture regarding the non-trivial zeroes of 𝜁(𝑠) is the Riemann hypothesis.

Conjecture 13.3 (Riemann hypothesis). If 𝜌 is a non-trivial zero of the Riemann zeta
function, then ℜ𝜌 = 1/2.

In light of Lemma 13.2, for the rest of the chapter we will focus on the quadrant

𝐷 ⊆ {𝑧 ∈ ℂ ∶ ℜ𝑧 > 1/2, ℑ𝑧 > 0}.
The first non-trivial zero-free region was due to de la Vallée Poussin [56] and Hadamard
[89], who showed independently that:
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Theorem 13.4 (Non-vanishing on the 1-line). One has 𝜁(1 + 𝑖𝑡) ≠ 0 for any real 𝑡.
Proof. For ℜ𝑠 > 1, one has

ℜ log 𝜁(𝑠) = ∑
𝑝

∞
∑
𝑚=1

cos(𝑡 log 𝑝𝑚)
𝑚𝑝𝑚𝜎

where the outer sum runs through all primes. Applying this formula at 𝑠 = 𝜎, 𝜎 + 𝑖𝑡 and
𝜎 + 2𝑖𝑡 (𝑡 ≠ 0), and since 3 + 4 cos 𝜃 + cos 2𝜃 = 2(1 + cos 𝜃)2 ≥ 0, one has

3ℜ log 𝜁(𝜎)+4ℜ log 𝜁(𝜎+𝑖𝑡)+ℜ log 𝜁(𝜎+2𝑖𝑡) = ∑
𝑝

∞
∑
𝑚=1

3 + cos(𝑡 log 𝑝𝑚) + cos(2𝑡 log 𝑝𝑚)
𝑚𝑝𝑚𝜎 ≥ 0.

It follows that |𝜁(𝜎)3𝜁(𝜎 + 𝑖𝑡)4𝜁(𝜎 + 2𝑖𝑡)| ≥ 1. Now as 𝜎 → 1 from above (and 𝑡 remains
fixed), one has

𝜁(𝜎) ≪ 1
𝜎 − 1, 𝜁(𝜎 + 2𝑖𝑡) ≪ 1,

since 𝜁 has a simple pole at 𝑠 = 1 and no pole at 𝜎+2𝑖𝑡. If 𝜁(1+𝑖𝑡) = 0, then 𝜁(𝜎+𝑖𝑡) ≪ 𝜎−1
so that |𝜁(𝜎)3𝜁(𝜎 + 𝑖𝑡)4𝜁(𝜎 + 2𝑖𝑡)| ≪ 𝜎 − 1, a contradiction.

This was used to prove the prime number theorem 𝜋(𝑥) ∼ 𝑥/ log 𝑥 as 𝑥 → ∞ (in fact the
two statements are equivalent).

13.1 Relation to growth rates of zeta
Using estimates of 𝜁(𝜎 + 𝑖𝑡) close to the line 𝜎 = 1, one can extend the zero free region
slightly inside the critical strip.

Lemma 13.5 (Relation to growth exponents of zeta). Suppose and 0 < 𝑔(𝑡) ≤ 1 < 𝑓(𝑡) are
real-valued functions for 𝑡 ≥ 0, with 𝑓(𝑡) non-decreasing and tending to infinity with 𝑡, and
𝑔(𝑡) non-increasing. Suppose further that 𝑒𝑓(𝑡)/𝑔(𝑡) = 𝑜(𝑓(𝑡)). If

𝜁(𝜎 + 𝑖𝑡) ≪ 𝑓(𝑡) (1 − 𝑔(𝑡) ≤ 𝜎 ≤ 2, 𝑡 ≥ 0)

then 𝜁(𝜎 + 𝑖𝑡) ≠ 0 for

𝜎 ≥ 1 − 𝐴 𝑔(2𝑡 + 1)
log 𝑓(2𝑡 + 1)

where 𝐴 > 0 is an absolute constant.

Proof. See [277, Theorem 3.10].

Theorem 13.6 (Classical zero free region). One has 𝜁(𝜎 + 𝑖𝑡) ≠ 0 if

𝜎 ≥ 1 − 𝐴
log 𝑡 .

for an absolute constant 𝐴 > 0 and 𝑡 sufficiently large.

Proof. Thanks to the convexity bound 𝜇(𝜎) ≤ (1 − 𝜎)/2, one may take 𝑔(𝑡) = 1/2, 𝑓(𝑡) =
𝑡1/4+𝑜(1) in Lemma 13.5. The result follows.
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This classical result has been improved in a number of works, most of which make crucial
use of non-trivial estimates of certain types of exponential sums.
Theorem 13.7 (Littlewood zero free region). One has 𝜁(𝜎 + 𝑖𝑡) ≠ 0 if

𝜎 ≥ 1 − 𝐴 log log 𝑡
log 𝑡

for an absolute constant 𝐴 > 0 and 𝑡 sufficiently large.
Proof. Follows from the zeta bound corresponding to

𝜇 (1 − 𝑘
2𝑘 − 2) ≤ 1

2𝑘 − 2
for integer 𝑘 ≥ 3, which is generated by the van der Corput exponent pair 𝐴𝑘−2𝐵(0, 1) =
( 1

2𝑘−2 , 1− 𝑘−1
2𝑘−2 ). However, one needs to make explicit the 𝑜(1) term in the bound 𝜁(𝜎+𝑖𝑡) ≪

𝑡𝜇(𝜎)+𝑜(1). In particular, by [277, Theorem 5.14], one has

𝜁(1 − 𝑘
2𝑘 − 2 + 𝑖𝑡) ≪ 𝑡1/(2𝑘−2) log 𝑡.

Taking
𝑘 = ⌊ 1

log 2 log ( log 𝑡
log log 𝑡)⌋

and using the Phragmén Lindelöf principle, one has

𝜁(𝜎 + 𝑖𝑡) ≪ (log 𝑡)5, (𝜎 ≥ 1 − (log log 𝑡)2

log 𝑡 ),

so we may take 𝑓(𝑡) = (log 𝑡)5 and 𝑔(𝑡) = (log log 𝑡)2/ log 𝑡 in Lemma 13.5.

Theorem 13.8 (Chudakov zero free region). One has 𝜁(𝜎 + 𝑖𝑡) ≠ 0 if

𝜎 ≥ 1 − 1
(log 𝑡)3/4+𝑜(1)

for 𝑡 sufficiently large.
Theorem 13.9 (Korobov-Vinogradov zero free region). One has 𝜁(𝜎 + 𝑖𝑡) ≠ 0 if

𝜎 ≥ 1 − 𝐴
(log 𝑡)2/3(log log 𝑡)1/3

for an absolute constant 𝐴 > 0 and 𝑡 sufficiently large.
Proof. Via estimates of Vinogradov’s integral, one may obtain an estimate of the form (see
e.g. Richert [248])

𝜁(𝜎 + 𝑖𝑡) ≪ 𝑡𝐵(1−𝜎)3/2(log 𝑡)𝑂(1) (1/2 ≤ 𝜎 ≤ 1)
where 𝐵 > 0 is a constant and 𝑡 sufficiently large. Take

𝑔(𝑡) = ( log log 𝑡
log 𝑡 )

2/3

so that
𝜁(𝜎 + 𝑖𝑡) ≪ 𝑓(𝑡) = (log 𝑡)𝑂(1) (𝜎 ≥ 1 − 𝑔(𝑡)).

The result follows from applying Lemma 13.5.
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Chapter 14

Distribution of primes: long
ranges

Let Λ(𝑛) denote the von Mangoldt function, i.e. Λ(𝑛) = log 𝑝 if 𝑛 = 𝑝𝑚 where p is prime
and 𝑚 is a positive integer, and Λ(𝑛) = 0 otherwise.
Definition 14.1. For all 𝑥 ≥ 1 define the Chebyshev prime counting functions 𝜓(𝑥), 𝜃(𝑥)
and 𝜋(𝑥) as

𝜓(𝑥) ∶= ∑
𝑛≤𝑥

Λ(𝑛), 𝜃(𝑥) ∶= ∑
𝑝≤𝑥

log 𝑝, 𝜋(𝑥) ∶= ∑
𝑝≤𝑥

1

where the first sum is over positive integers 𝑛 and the last two sums are over primes 𝑝.
These functions, particularly 𝜋(𝑥), are central to number theory because they measure the
distribution of prime numbers among the integers. A well-known result is the prime number
theorem.
Theorem 14.2 (Prime number theorem). As 𝑥 → ∞,

𝜋(𝑥) ∼ 𝑥
log 𝑥 ∼ li(𝑥) ∶= ∫

∞

2

𝑑𝑡
log 𝑡 .

The following are equivalent formulations of the prime number theorem.
Theorem 14.3 (Prime number theorem, alternative formulations). As 𝑥 → ∞, one has
𝜓(𝑥) ∼ 𝑥 and 𝜃(𝑥) ∼ 𝑥.

14.1 Error bounds for prime counting functions
In addition to their asymptotic behaviour, various bounds on the deviation from their re-
spective asymptotics are known. The current best-known error bounds are derived from
zero-free regions of the Riemann zeta function 𝜁(𝑠). The relation between zeroes of 𝜁(𝑠) and
error bounds for prime counting functions are illustrated through von Mangoldt’s explicit
formula: for all non-integer 𝑥 > 0, one has

𝜓(𝑥) = 𝑥 − ∑
𝜌

𝑥𝜌

𝜌 − log 2𝜋 − 1
2 log(1 − 𝑥−2),

where 𝜌 runs through all non-trivial zeroes of 𝜁(𝑠).
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Theorem 14.4 (Korobov–Vinogradov estimate). There exists a positive constant 𝐴, such
that

𝜓(𝑥) − 𝑥, 𝜃(𝑥) − 𝑥, 𝜋(𝑥) − li(𝑥) ≪ 𝑥 exp (−𝐴 (log 𝑥)3/5

(log log 𝑥)1/5 ) .

Table 14.1 lists the historical progression on estimates of 𝜋(𝑥).

Table 14.1: Historical estimates of 𝜋(𝑥), for 𝑥 sufficiently large.

Reference Estimate of 𝜋(𝑥)

Chebyshev 𝑐1
𝑥

log 𝑥 ≤ 𝜋(𝑥) ≤ 𝑐2
𝑥

log 𝑥 for some constants 0 < 𝑐1 < 1 < 𝑐2, i.e. 𝜋(𝑥) ≍ 𝑥
log 𝑥

de la Vallée Poussin [56], Hadamard [89] 𝜋(𝑥) = 𝑥
log 𝑥(1 + 𝑜(1)) i.e. 𝜋(𝑥) ∼ 𝑥

log 𝑥

de la Vallée Poussin [57] 𝜋(𝑥) = li(𝑥) + 𝑂(𝑥 exp(−𝐴√
log 𝑥)) for some 𝐴 > 0

Littlewood [193] 𝜋(𝑥) = li(𝑥) + 𝑂(𝑥 exp(−𝐴√
log 𝑥 log log 𝑥)) for some 𝐴 > 0

Korobov, Vinogradov [285] 𝜋(𝑥) = li(𝑥) + 𝑂 (𝑥 exp (− 𝐴(log 𝑥)3/5

(log log 𝑥)1/5 )) for some 𝐴 > 0

Under the Riemann hypothesis, stronger error bounds are known.

Theorem 14.5 ([168]). If the Riemann hypothesis is true, then

𝜓(𝑥) − 𝑥, 𝜃(𝑥) − 𝑥 ≪ 𝑥1/2(log 𝑥)2, 𝜋(𝑥) − li(𝑥) ≪ 𝑥1/2 log 𝑥.

Slightly sharper estimates are possible if one assumes even stronger hypotheses.

Theorem 14.6 (Heath-Brown [109]). Assume that the Riemann hypothesis is true. Fur-
thermore, assume that

𝐹𝑇 (𝑋) ∶= ∑
0<𝛾1,𝛾2≤𝑇

𝑒((𝛾1 − 𝛾2)𝑋)
1 + (𝛾1 − 𝛾2)2/4 = 𝑜(𝑇 2(log 𝑇 )2)

where the sum is over the imaginary parts of all pairs of non-trivial zeroes of 𝜁(𝑠). Then

𝜓(𝑥) = 𝑥 + 𝑜(𝑥1/2(log 𝑥)2).

The same result was previously proved (assuming stronger hypotheses) by Gallagher–Mueller
[80] and later by Mueller.

14.2 Relation to zero free region of zeta
Lemma 14.7 (Relation to zero free regions). [139] Suppose 𝜁(𝜎 + 𝑖𝑡) ≠ 0 for 𝜎 ≥ 1 − 𝜂(𝑡)
where 𝜂(𝑡) is a positive and decreasing function. Then

𝜓(𝑥) − 𝑥 ≪ 𝑥 exp (−𝐴𝜔(𝑥)) (𝑥 → ∞)
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for an absolute constant 𝐴 > 0, where

𝜔(𝑥) ∶= inf
𝑡≥1

(𝜂(𝑡) log 𝑥 + log 𝑡).

Applying Lemma 14.7, one obtains the error term estimates in the prime number theorem
given in Table 14.2.

Table 14.2: Zero free regions for 𝜁(𝑠), along with the bound on 𝜓(𝑥) − 𝑥 that they imply.
Here 𝐴 represents an absolute, positive constant, which may be different at each occurrence.

Reference Zero free region Bound on (𝜓(𝑥) − 𝑥)/𝑥

Theorem 13.6 𝜎 ≥ 1 − 𝐴
log 𝑡 exp(−𝐴(log 𝑥)1/2)

Theorem 13.7 𝜎 ≥ 1 − 𝐴 log log 𝑡
log 𝑡 exp(−𝐴(log 𝑥 log log 𝑥)1/2)

Theorem 13.8 𝜎 ≥ 1 − 𝐴
(log 𝑡)3/4+𝑜(1) exp(−𝐴(log 𝑥)4/7+𝑜(1))

Theorem 13.9 𝜎 ≥ 1 − 𝐴
(log 𝑡)2/3(log log 𝑡)1/3 exp (−𝐴 (log 𝑥)3/5

(log log 𝑥)1/5 )

The following type of converse statement is also known.

Theorem 14.8 ([281] Theorem 40.1). If for some 0 < 𝛼 ≤ 1 one has

𝜓(𝑥) − 𝑥 ≪ 𝑥 exp(−𝐴(log 𝑥)1/(1+𝛼)) (𝑥 → ∞)

then 𝜁(𝜎 + 𝑖𝑡) ≠ 0 for 𝑡 sufficiently large and

𝜎 > 1 − 𝐴
(log 𝑡)𝛼 .

Here 𝐴 denotes an absolute positive constant, not necessarily the same at each occurrence.

14.3 Omega results
In the opposite direction, it is known that

Theorem 14.9 (Schmidt [260]). As 𝑥 → ∞,

𝜓(𝑥) = 𝑥 + Ω(𝑥1/2).

This can be improved slightly conditioned on the Riemann hypothesis.

Theorem 14.10 (Littlewood [192]). If the Riemann hypothesis is true, then as 𝑥 → ∞,

|𝜋(𝑥) − li(𝑥)| = Ω (𝑥1/2 log log log 𝑥
log 𝑥 ) .

Furthermore it is also known that

136



Theorem 14.11 (Grosswald [87]). If

𝜃 = sup
𝜌∶𝜁(𝜌)=0

ℜ𝜌 > 1/2

then as 𝑥 → ∞,
𝜓(𝑥) = 𝑥 + Ω(𝑥𝜃).
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Chapter 15

Distribution of primes: short
ranges

Recall that Λ is the von Mangoldt function, and that the prime number theorem asserts
that

∑
𝑛≤𝑥

Λ(𝑛) = 𝑥 + 𝑜(𝑥)

for unbounded 𝑥. If 𝑝𝑛 denotes the 𝑛th prime, the prime number theorem is also equivalent
to

𝑝𝑛 = (1 + 𝑜(1))𝑛 log 𝑛
for unbounded 𝑛.
We now consider local versions of the prime number theorem.

Definition 15.1 (Prime number theorem in short interval exponents). (i) We let 𝜃PNT
denote the least exponent with the following property: if 𝜀 > 0 is fixed, and 𝑥 is
unbounded, then

∑
𝑥≤𝑛<𝑥+𝑦

Λ(𝑛) = 𝑦 + 𝑜(𝑦)

whenever 𝑥𝜃PNT+𝜀 ≤ 𝑦 ≤ 𝑥1−𝜀.

(ii) We let 𝜃PNT−AA denote the least exponent with the following property: if 𝜀 > 0 is fixed,
and 𝑋 is unbounded, then we have

∫
2𝑋

𝑋
| ∑

𝑥≤𝑛<𝑥+𝑦
Λ(𝑛) − 𝑦| 𝑑𝑥 = 𝑜(𝑋𝑦)

whenever 𝑋𝜃PNT−AA+𝜀 ≤ 𝑦 ≤ 𝑋1−𝜀.

(iii) We let 𝜃gap denote the least exponent such that, if 𝑝𝑛 denotes the 𝑛th prime, that

𝑝𝑛+1 − 𝑝𝑛 ≪ 𝑛𝜃gap+𝑜(1) = 𝑝𝜃gap+𝑜(1)
𝑛

as 𝑛 → ∞.
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(iv) We let 𝜃gap,2 denote the least exponent such that

∑
𝑝𝑛≤𝑥

(𝑝𝑛+1 − 𝑝𝑛)2 ≪ 𝑥𝜃gap,2+𝑜(1)

as 𝑥 → ∞.

(v) We let 𝜃gap−AA denote the least exponent such that for every 𝜀 > 0, the intervals
[𝑛, 𝑛𝜃gap−AA+𝜀] contain a prime for a density 1 set of natural numbers 𝑛.

Lemma 15.2 (Trivial bounds). We have

0 ≤ 𝜃gap−AA ≤ 𝜃PNT−AA, 𝜃gap ≤ 𝜃PNT ≤ 1

and 1 ≤ 𝜃gap,2 ≤ 1 + 𝜃gap.

Proof. These are all immediate, after noting from the prime number theorem that ∑𝑝𝑛≤𝑥 𝑝𝑛+1−
𝑝𝑛 = 𝑥1+𝑜(1).

The Cramér random model [48] predicts

Conjecture 15.3 (Prime gap conjecture). 𝜃PNT = 0, and hence (by Lemma 15.2) 𝜃gap−AA =
𝜃PNT−AA = 𝜃gap = 0 and 𝜃gap,2 = 1.

We note that the results of Maier [203] show that there is some deviation from the prime
number theorem at very small scales (of order log𝑂(1) 𝑥), but this does not directly affect
the exponents discussed here due to the epsilons in our definitions.
A basic connection with zero density exponents is

Proposition 15.4 (Zero density theorems and prime gaps). Let

‖A‖∞ ∶= sup
1/2≤𝜎≤1

𝐴(𝜎). (15.1)

Then
𝜃PNT ≤ 1 − 1

‖A‖∞
and

𝜃PNT−AA ≤ 1 − 2
‖A‖∞

.

Proof. See for instance [88, §13.2].

Corollary 15.5 (Ingham-Huxley bound). We have 𝜃PNT ≤ 7
12 and 𝜃PNT−AA ≤ 1

6 .

Proof. From Theorem 11.14 and Theorem 11.15 one as ‖A‖∞ ≤ 12/5, and the claim now
follows from Proposition 15.4.

Corollary 15.6 (Ingham-Guth-Maynard bound). [88] We have 𝜃PNT ≤ 17
30 and 𝜃PNT−AA ≤

2
15 .

These are currently the best known upper bounds on 𝜃PNT and 𝜃PNT−AA.

Proof. From Theorem 11.14 and Theorem 11.16 one as ‖A‖∞ ≤ 30/13, and the claim now
follows from Proposition 15.4.
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Table 15.1: Historical upper bounds on 𝜃gap.
Reference Upper bound

Hoheisel (1930) [118] 1 − 1
33000 = 0.999 …

Heilbronn (1933) [116] 1 − 1
250 = 0.996

Ingham (1937) [137] 5
8 = 0.625

Montgomery (1969) [217] 3
5 = 0.6

Huxley (1972) [122] 7
12 = 0.5833 …

Iwaniec–Jutila (1979)[148] 13
23 = 0.5652 …

Heath-Brown–Iwaniec (1979) [115], Lou–Yao (1993) [201] 11
20 = 0.55

Pintz (1981) [233] 17
31 = 0.5483 …

Iwaniec–Pintz (1984) [151] 23
42 = 0.5476 …

Mozzochi (1986) [222] 1051
1920 = 0.5473 …

Lou–Yao (1984) [196] 35
64 = 0.5469 …

Lou–Yao (1992) [200] 6
11 = 0.5454 …

Baker-Harman (1996) [5] 107
200 = 0.535

Baker–Harman–Pintz (2001) [8] 21
40 = 0.525

R. Li (2025) [183] 13
25 = 0.52

Corollary 15.7. The density hypothesis implies that 𝜃PNT ≤ 1/2 and 𝜃PNT−AA = 0.

The current unconditional best bound on 𝜃gap is

Theorem 15.8. [183] We have 𝜃gap ≤ 13/25 = 0.52.

Historical bounds on 𝜃gap are summarized in the following table:
Bounds on 𝜃gap−AA are recorded in Table 15.
Historical bounds on 𝜃gap,2 are recorded in Table 15.
The following general bound on 𝜃gap,2 is known:

Proposition 15.9. We have

𝜃gap,2 ≤ max (2 − 2
‖A‖∞

, sup
1/2≤𝜎≤1

max(𝛼(𝜎), 𝛽(𝜎)))

where
𝛼(𝜎) ∶= 4𝜎 − 2 + 2𝐵(𝜎)(1 − 𝜎) − 1

𝐵(𝜎) − 𝐴(𝜎)
and

𝛽(𝜎) ∶= 4𝜎 − 2 + 𝐵(𝜎)(1 − 𝜎) − 1
𝐴(𝜎)

where 𝐴(𝜎), 𝐵(𝜎) are any upper bounds for A(𝜎), A∗(𝜎) respectively.

Proof. See [104, Lemma 2]. We remark that this lemma allows 𝜎 to range over 0 ≤ 𝜎 ≤ 1
rather than 1/2 ≤ 𝜎 ≤ 1, but it is easy to see that the contributions of the 0 ≤ 𝜎 < 1/2
cases are dominated by the 𝜎 = 1/2 case.
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Table 15.2: Historical upper bounds on 𝜃gap−AA.
Reference Upper bound

Selberg (1943) [263] 19
77 = 0.2467 …

Montgomery (1971) [218] 1
5 = 0.2

Huxley (1972) [122] 1
6 = 0.1666 …

Harman (1982) [99] 1
10 = 0.1

Harman (1983) [100], Heath-Brown (1983) [110] 1
12 = 0.0833 …

Jia (1995) [154] 1
13 = 0.0769 …

Lou–Yao (1985) [197] 17
227 = 0.0748 …

H. Li (1995) [178] 2
27 = 0.0740 …

Jia (1995) [153], Watt (1995) [294] 1
14 = 0.0714 …

H. Li (1997) [179] 1
15 = 0.0666 …

Baker–Harman–Pintz (1997) [7] 1
16 = 0.625

Wong (1996) [298], Jia (1996) [156], Harman (2007) [101] 1
18 = 0.0555 …

Jia (1996) [155] 1
20 = 0.05

R. Li (2024) [181] 2
43 = 0.0465 …

R. Li (2025) [185] 1
22 = 0.0455 …

compute_gap2()

This proposition can be used to recover the following bounds on 𝜃gap,2:

Corollary 15.10.

(i) Assuming the Riemann hypothesis, 𝜃gap,2 = 1. (Selberg, 1943 [263])

(ii) Assuming the Lindelof hypothesis, 𝜃gap,2 ≤ 7/6. (Heath-Brown, 1979 [104])

(iii) Unconditionally, 𝜃gap,2 ≤ 23/18. (Heath-Brown, 1979 [105]).

Proof. For (i), we observe that ‖𝐴‖∞ = 2 and that one can take 𝐴(𝜎) = 𝐵(𝜎) = 𝜀 for any
𝜎 > 1/2 and 𝜀 > 0, and 𝐴(𝜎) = 2, 𝐵(𝜎) = 6 for 𝜎 = 1/2, and then the claim follows from
Proposition 15.9.
For (ii), from Theorem 11.12 we may take 𝐴(𝜎) = 2 for 𝜎 ≤ 3/4 and 𝐴(𝜎) = 𝜀 for 3/4 < 𝜎 ≤ 1
and any 𝜀 > 0, while from Theorem 12.5 one can take 𝐵(𝜎) = 8−4𝜎 for 𝜎 ≤ 3/4 and 𝐵(𝜎) = 𝜀
for 3/4 < 𝜎 ≤ 1. The claim now follows from Proposition 15.9 and a routine calculation.
Part (iii) follows from applying Proposition 15.9 using the bounds from Theorem 12.6,
together and various bounds on A(𝜎); see [144, Theorem 12.14] for details.

Two variants of 𝜃gap,2 are 𝜃gap,> and 𝜃gap,≥, defined respectively as the least exponent for
which

∑
𝑝𝑛≤𝑥∶𝑝𝑛+1−𝑝𝑛≥𝑥1/2+𝜀

(𝑝𝑛+1 − 𝑝𝑛) ≪ 𝑥𝜃gap,>+𝑜(1)

(for any fixed 𝜀 > 0 for unbounded 𝑥 ≥ 1) and

∑
𝑝𝑛≤𝑥∶𝑝𝑛+1−𝑝𝑛≥𝑥1/2

(𝑝𝑛+1 − 𝑝𝑛) ≪ 𝑥𝜃gap,≥+𝑜(1)
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Table 15.3: Historical upper bounds on 𝜃gap,2.
Reference Upper bound

Selberg (1943) [263] 1 (on RH)
Heath-Brown (1978) [102] 4

3 = 1.3333 …
Heath-Brown (1979) [104] 7

6 = 1.1666 … (on LH)
Heath-Brown (1979) [104] 1413

1067 = 1.3242 …
Heath-Brown (1979) [105] 23

18 = 1.2777 …
Yu (1996) [312] 1 (on LH)

Peck (1996) [230], Maynard (2012) [207] 5
4 = 1.25

Stadlmann (2022) [268] 123
100 = 1.23

(for unbounded 𝑥 ≥ 1). The trivial bounds are
Proposition 15.11 (Trivial bounds on large gaps). One has 𝜃gap,> ≤ 𝜃gap,≥. If 𝜃gap < 1/2,
then 𝜃gap,> = −∞. In general, we have

max(1/2, 𝜃gap) ≤ max(1/2, 𝜃gap,>)
and 𝜃gap,> ≤ 1. Also 𝜃gap,> ≤ 𝜃gap,2 − 1/2.
The proofs are routine and are omitted. Historical bounds on 𝜃gap,> are recorded in Table
15.

Table 15.4: Historical upper bounds on 𝜃gap,> and 𝜃gap,≥.
Reference Upper bound on 𝜃gap,> Upper bound on 𝜃gap,≥

Selberg (1943) [263] 1
2 = 0.5 (on RH)

Wolke (1975) [297] 29
30 = 0.966 …

Cook (1979) [44] 85
98 = 0.8673 …

Huxley (1980) [126] 1759
2134 = 0.8242 …

Huxley (1980) [126] 3
4 = 0.75 (on LH)

Ivíc (1979) [140] 215
266 = 0.8082 …

Heath-Brown (1979) [105] 3
4 = 0.75

Heath-Brown (1979) [104] 5
8 = 0.625

Peck (1998) [231] 25
36 = 0.6944 …

Matomäki (2007) [205] 2
3 = 0.6666 …

Heath-Brown (2020) [114] 3
5 = 0.6

Järviniemi (2022) [152] 57
100 = 0.57

For any 0 < 𝜃 < 1, let 𝜇PNT(𝜃) denote the least exponent 𝜇 such that for all unbounded
𝑋, one has ∑𝑥≤𝑛<𝑥+𝑥𝜃 Λ(𝑛) = (1 + 𝑜(1))𝑥𝜃 for all 𝑥 ∈ [𝑋, 2𝑋] outside of an exceptional set
of measure 𝑂(𝑋𝜇+𝑜(1)). Thus for instance 𝜇PNT(𝜃) = −∞ for 𝜃 > 𝜃PNT (and 𝜇PNT(𝜃) ≥ 0
for 𝜃 < 𝜃PNT), and 𝜇PNT(𝜃) < 1 implies 𝜃 ≥ 𝜃PNT−AA. The quantity 𝜇PNT(𝜃) is clearly
non-decreasing in 𝜃.
The following bounds are known:
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Lemma 15.12 (Bounds on 𝜇).

(i) [12, Theorem 2(i)] For sufficiently small Δ > 0, we have 𝜇PNT(1/6 + Δ) ≤ 1 − 𝑐Δ
and 𝜇PNT(7/12 − Δ) ≤ 5

8 + 7
4 Δ + 𝑂(Δ2).

(ii) [12, Theorem 2(ii)] Assuming RH, we have 𝜇PNT(𝜃) ≤ 1 − 𝜃 for 0 < 𝜃 ≤ 1/2.

(iii) [11, Lemma 1] We have

𝜇PNT(𝜃) ≤
⎧{
⎨{⎩

3(1−𝜃)
2

1
2 < 𝜃 ≤ 11

21
47−42𝜃

35
11
21 < 𝜃 ≤ 23

42
36𝜃2−96𝜃+55

39−36𝜃
23
42 < 𝜃 ≤ 7

12

Some further bounds were claimed in the region 1/6 < 𝜃 ≤ 1/2, but unfortunately the
arguments provided are incomplete (the claim (13) of that paper is not justified for
𝜃 ≤ 1/2).

(iv) [78] For any 0 < 𝜃 < 1, one has

𝜇PNT(𝜃) ≤ inf
𝜀>0

sup
0≤𝜎<1

A(𝜎)≥ 1
1−𝜃 −𝜀

min(𝜇2,𝜎(𝜃), 𝜇4,𝜎(𝜃))

where
𝜇2,𝜎(𝜃) ∶= (1 − 𝜃)(1 − 𝜎)A(𝜎) + 2𝜎 − 1

and
𝜇4,𝜎(𝜃) ∶= (1 − 𝜃)(1 − 𝜎)A∗(𝜎) + 4𝜎 − 3.

(v) [114, Theorem 2] 𝜇PNT(1/2) ≤ 3/5.

prime_excep()

In 2004, under the assumption of the existence of exceptional Dirichlet characters, Friedlan-
der and Iwaniec [77] proved the following result:

Theorem 15.13. [77] Let 𝜒 = 𝜒𝐷 denotes the real primitive character of conductor D,
𝑥 ⩾ 𝐷𝑟 with 𝑟 = 18290. Then we have

𝜋(𝑥) − 𝜋 (𝑥 − 𝑥 39
79 ) = 𝑥 39

79

log 𝑥 (1 + 𝑂 (𝐿(1, 𝜒)(log 𝑥)𝑟𝑟)) .

Moreover, if we have
𝐿(1, 𝜒) ≪ (log 𝑥)−𝑟𝑟−1,

then there is always a prime number in the interval [𝑥 − 𝑥 39
79 , 𝑥] for any 𝐷𝑟 ⩽ 𝑥 ⩽

exp (𝐿(1, 𝜒)− 1
𝑟𝑟+1 ).

Note that 39
79 = 0.4936 … . In 2024, Li [180] improved the exponent 39

79 to 0.4923 with
𝑟 = 433433.
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15.1 Extremal values of prime gaps
Consider now the problem of determining upper bounds on

𝐻1 ∶= lim inf
𝑛→∞

(𝑝𝑛+1 − 𝑝𝑛) (15.2)

as well as lower bounds on
𝐺(𝑋) ∶= max

𝑝𝑛+1≤𝑋
(𝑝𝑛+1 − 𝑝𝑛). (15.3)

From the prime number theorem one expects 𝑝𝑛+1 − 𝑝𝑛 to be of size log 𝑝𝑛 on average, so
that
Theorem 15.14 (Consequences of the prime number theorem). One has

lim inf
𝑛→∞

𝑝𝑛+1 − 𝑝𝑛
log 𝑝𝑛

≤ 1, 𝐺(𝑋) ≥ (1 + 𝑜(1)) log 𝑋 (𝑋 → ∞).

However, 𝑝𝑛+1 − 𝑝𝑛 can be sometimes be much smaller or much larger than its average size.
The following is a classical conjecture regarding small prime gaps.
Conjecture 15.15 (Twin prime conjecture). One has

lim inf
𝑛→∞

(𝑝𝑛+1 − 𝑝𝑛) = 2.

Since all sufficiently large primes are odd, the twin prime conjecture states that prime gaps
achieve the smallest possible size, infinitely often. In the other direction, it is conjectured
that
Conjecture 15.16 (Cramér [48]). One has

lim sup
𝑋→∞

𝐺(𝑋)
(log 𝑋)2 = 1.

Note that by Theorem 15.8 it is known that 𝐺(𝑋) ≪ 𝑋0.52.
The current best known result concerning (15.2) is
Theorem 15.17 (Polymath 8b [240]). One has

lim inf
𝑛→∞

(𝑝𝑛+1 − 𝑝𝑛) ≤ 246.

Sharper conditional bounds are also known.
Theorem 15.18 (Maynard [209]). Assuming the Elliott-Halberstam conjecture (EH), one
has

lim inf
𝑛→∞

(𝑝𝑛+1 − 𝑝𝑛) ≤ 12.

Theorem 15.19 (Polymath 8b [240]). Assuming the Generalized Elliott-Halberstam con-
jecture (GEH), one has

lim inf
𝑛→∞

(𝑝𝑛+1 − 𝑝𝑛) ≤ 6.

Historical progress towards this problem is recorded in Section 15.1.
The current best known lower bound on 𝐺(𝑋) is
Theorem 15.20 (Ford–Green–Konyagin–Maynard–Tao (2017) [68]). For unbounded 𝑋, one
has

𝐺(𝑋) ≫ log 𝑋 log log 𝑋 log log log log 𝑋
log log log 𝑋
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Table 15.5: Historical progression of bounds related to (15.2).

Reference Unconditional result Assuming EH

Goldston–Pintz–Yıldırım (2009) [82] lim inf
𝑛→∞

𝑝𝑛+1 − 𝑝𝑛
log 𝑝𝑛

= 0 𝐻1 ≤ 16

Goldston–Pintz–Yıldırım (2010) [83] lim inf
𝑛→∞

𝑝𝑛+1 − 𝑝𝑛
(log 𝑝𝑛)1/2(log log 𝑝𝑛)2 < ∞

Pintz (2013) [235] lim inf
𝑛→∞

𝑝𝑛+1 − 𝑝𝑛
(log 𝑝𝑛)3/7(log log 𝑝𝑛)4/7 < ∞

Zhang (2014) [315] 𝐻1 < 7 ⋅ 107

Polymath 8a (2014) [30] 𝐻1 ≤ 4680

Maynard (2015) [209] 𝐻1 ≤ 600 𝐻1 ≤ 12

Polymath 8b (2015) [240] 𝐻1 ≤ 246

Table 15.6: Historical progression of bounds related to (15.3).

Reference Lower bound on 𝐺(𝑋) (for 𝑋 sufficiently large)

Westzynthius (1931) [295] 𝐺(𝑋) ≫ log 𝑋 log log log 𝑋
log log log log 𝑋

Erdős (1935) [65] 𝐺(𝑋) ≫ log 𝑋 log log 𝑋
(log log log 𝑋)2

Rankin (1938) [244] 𝐺(𝑋) > (𝑐0 + 𝑜(1)) log 𝑋 log log 𝑋 log log log log 𝑋
(log log log 𝑋)2 with 𝑐0 = 1/3

Schönhage (1963) [262] 𝑐0 = 1
2𝑒𝛾

Rankin (1963) [246] 𝑐0 = 𝑒𝛾

Maier–Pomerance (1990) [204] 𝑐0 = 1.31256𝑒𝛾

Pintz (1997) [234] 𝑐0 = 2𝑒𝛾

Ford–Green–Konyagin–Tao (2016) [69], Maynard (2016) [210] 𝐺(𝑋) ≫ 𝑓(𝑋) log 𝑋 log log 𝑋 log log log log 𝑋
(log log log 𝑋)2 for some 𝑓(𝑋) → ∞

Ford–Green–Konyagin–Maynard–Tao (2017) [68] 𝐺(𝑋) ≫ log 𝑋 log log 𝑋 log log log log 𝑋
log log log 𝑋
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Chapter 16

The generalized Dirichlet
divisor problem

For any fixed integer 𝑘 ≥ 1, let
𝑑𝑘(𝑛) ∶= ∑

𝑛1⋯𝑛𝑘=𝑛
1

denote the number of ways a positive integer 𝑛 may be written as a product of exactly 𝑘
positive integers. The divisor sum

𝐷𝑘(𝑥) ∶= ∑
𝑛≤𝑥

𝑑𝑘(𝑛)

is known to satisfy the asymptotic formula

𝐷𝑘(𝑥) = 𝑥𝑃𝑘−1(log 𝑥) + Δ𝑘(𝑥)
where 𝑃𝑘−1 is an explicit polynomial of degree 𝑘 − 1 and Δ𝑘(𝑥) = 𝑜(𝑥) is an error term.
The (generalized) Dirichlet divisor problem concerns bounding the growth rate of Δ𝑘(𝑥) as
𝑥 → ∞.
Definition 16.1 (Divisor sum exponents). Let 𝑘 ≥ 1 be a fixed integer. Then, 𝛼𝑘 is the
least (fixed) exponent for which

Δ𝑘(𝑥) ≪ 𝑥𝛼𝑘+𝑜(1)

for unbounded 𝑥 > 0. Furthermore, 𝛽𝑘 is the least (fixed) exponent for which

( 1
𝑥 ∫

𝑥

1
(Δ𝑘(𝑡))2d𝑡)

1/2
≪ 𝑥𝛽𝑘+𝑜(1)

for unbounded 𝑥 > 0 (in both definitions, the implied constant may depend on 𝑘).
One can also give a non-asymptotic definition: 𝛼𝑘, 𝛽𝑘 are respectively the least exponent
such that for all 𝜀 > 0, there exists 𝐶 = 𝐶(𝜀, 𝑘) > 0 for which

|Δ𝑘(𝑥)| ≤ 𝐶𝑥𝛼𝑘+𝜀, (𝑥 ≥ 𝐶)
and

∣ 1
𝑥 ∫

𝑥

1
(Δ𝑘(𝑡))2d𝑡∣

1/2
≤ 𝐶𝑥𝛽𝑘+𝜀, (𝑥 ≥ 𝐶).

In the case 𝑘 = 1, the problem is trivial. In particular:
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Lemma 16.2 (𝑑1 exponent). One has 𝛼1 = 𝛽1 = 0.

Proof. Follows from ∑𝑛≤𝑥 1 = 𝑥 + 𝑂(1).
However, the value of 𝛼𝑘 is not known for 𝑘 ≥ 2. On the other hand, the values of 𝛽2 and
𝛽3 are known.

Theorem 16.3 (Hardy [94]). One has 𝛽2 = 1/4.

Theorem 16.4 (Cramér [47]). One has 𝛽3 = 1/3.

Nevertheless, the value of 𝛽𝑘 is not known for 𝑘 ≥ 4. Unconditionally, the following lower-
bounds are known to hold.

Lemma 16.5 (Lower bound on 𝛼𝑘 and 𝛽𝑘). For all 𝑘 ≥ 1, one has

𝛼𝑘 ≥ 𝛽𝑘 ≥ 1
2 − 1

2𝑘 .

Proof. The first inequality follows from inserting the bound Δ𝑘(𝑥) ≪ 𝑥𝛼𝑘+𝑜(1) into the
definition of 𝛽𝑘. The second inequality is due to Titchmarsh [275]. Note also that the
weaker inequality 𝛼𝑘 ≥ 1/2 − 1/(2𝑘) was first proved by Hardy [93].

It is conjectured that this lower bound on 𝛼𝑘 and 𝛽𝑘 is in fact an equality [277, p. 320].
Amongst other consequences, this conjecture implies the Lindelöf hypothesis [277, Chapter
XII].

Conjecture 16.6 (Generalised Dirichlet divisor problem conjecture). For all 𝑘 ≥ 1, one
has

𝛼𝑘 = 𝛽𝑘 = 1
2 − 1

2𝑘 .

The remainder of this chapter focuses on upper bounds on 𝛼𝑘 and 𝛽𝑘.

16.1 Known pointwise bounds on divisor sum exponents
Currently the sharpest known upper bound on 𝛼2 is:

Theorem 16.7. [186, Theorem 1.2] One has 𝛼2 ≤ 𝛼∗ = 0.314483 …, where 𝛼∗ is the solution
to the equation

8
25𝛼 − (√2(1 + 14𝛼) − 5√−1 + 8𝛼)2

200 + 51
200 = 𝛼

on the interval 𝛼 ∈ [0.3, 0.35].
Table 16.1 records the historical progression of upper bounds on 𝛼2.
Currently, the sharpest known bound on 𝛼3 is:

Theorem 16.8. [171] One has 𝛼3 ≤ 43/96.

Table 16.2 records the historical progression of upper bounds on 𝛼3.
For larger 𝑘, estimates typically make use of the following relationship with zeta-moments.

Lemma 16.9. Let 𝑘 ≥ 2 be an integer. If 𝑀(𝜎, 𝑘) = 1 then 𝛼𝑘 ≤ 𝜎.

Proof. See [144, §13.3].
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Table 16.1: Historical bounds on 𝛼2
Reference Upper bound on 𝛼2

Dirichlet (1849) [?], Piltz [?] 1/2 = 0.5
Voronoi (1903) [286] 1/3 = 0.3333 …

van der Corput (1922) [45] 33/100 = 0.33
van der Corput (1928) [46] 27/82 = 0.3292 …

Chih (1950) [39], Richert (1953) [247] 15/46 = 0.3260 …
Kolesnik (1969) [169] 12/37 = 0.3243 …
Kolesnik (1973) [170] 346/1067 = 0.3242 …
Kolesnik (1982) [172] 35/108 = 0.3240 …

Kolesnik (1985) [173, p. 118] 139/429 = 0.3240 …
Iwaniec–Mozzochi (1988) [150] 7/22 = 0.3181 …

Huxley (1993) [128] 23/73 = 0.3150 …
Huxley (2003) [130] 131/416 = 0.3149 …
Li–Yang (2023) [186] 0.314483 …

For completeness we record the historical progression in bounds for 𝛼𝑘.

Lemma 16.10 (Piltz bound). For 𝑘 ≥ 2, one has

𝛼𝑘 ≤ 1 − 1
𝑘 .

Lemma 16.11 (Voronoi, Landau bound). For 𝑘 ≥ 2, one has

𝛼𝑘 ≤ 1 − 2
𝑘 + 1.

Proof. See Voronoi [286] for 𝑘 = 2 and Landau [176] for 𝑘 ≥ 3.

Lemma 16.12 (Hardy–Littlewood bound for 𝑘 ≥ 4). For 𝑘 ≥ 4, one has

𝛼𝑘 ≤ 1 − 3
𝑘 + 2.

Proof. See [96]. The original proof relied on the assumption that 𝜇(1/2) ≤ 1/6 which was
published later.

Lemma 16.13 (Tong bound for 4 ≤ 𝑘 ≤ 11). One has

𝛼4 ≤ 1/2, 𝛼5 ≤ 4/7, 𝛼6 ≤ 5/8, 𝛼7 ≤ 71/107
𝛼8 ≤ 41/59, 𝛼9 ≤ 31/43, 𝛼10 ≤ 26/35, 𝛼11 ≤ 19/25

Proof. See Tong [278].

Theorem 16.14. [108] For 4 ≤ 𝑘 ≤ 8, one has

𝛼𝑘 ≤ 3𝑘 − 4
4𝑘 .
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Table 16.2: Historical bounds on 𝛼3
Reference Upper bound on 𝛼3

Walfisz (1926) [288] 43/87 = 0.4942 …
Atkinson (1941) [1] 37/75 = 0.4933 …
Rankin (1955) [245] 0.4931466 …

Yue (1958) [313] 14/29 = 0.4827 …
Yin (1959) [308] 25/52 = 0.4807 …
Yin (1959) [309] 10/21 = 0.4761 …

Yue–Wu (1962) [314] 8/17 = 0.4705 …
Chen (1965) [33] 5/11 = 0.4545 …
Yin (1964) [310] 34/75 = 0.4533 …

Yin–Li (1981) [311], Zheng (1988) [317] 127/282 = 0.4503 …
Kolesnik (1981) [171] 43/96 = 0.4479 …

Theorem 16.15 (Ivić–Ouellet bound for large 𝑘). [145] One has

𝛼10 ≤ 27/40, 𝛼11 ≤ 0.6957, 𝛼12 ≤ 0.7130, 𝛼13 ≤ 0.7306,
𝛼14 ≤ 0.7461, 𝛼15 ≤ 0.75851, 𝛼16 ≤ 0.7691, 𝛼17 ≤ 0.7785,
𝛼18 ≤ 0.7868, 𝛼19 ≤ 0.7942, 𝛼20 ≤ 0.8009.

Theorem 16.16. [144, Theorem 13.12] One can bound 𝛼𝑘 by

(3𝑘 − 4)/4𝑘 for 4 ≤ 𝑘 ≤ 8
35/54 for 𝑘 = 9
41/60 for 𝑘 = 10
7/10 for 𝑘 = 11

(𝑘 − 2)/(𝑘 + 2) for 12 ≤ 𝑘 ≤ 25
(𝑘 − 1)/(𝑘 + 4) for 26 ≤ 𝑘 ≤ 50
(31𝑘 − 98)/32𝑘 for 51 ≤ 𝑘 ≤ 57

(7𝑘 − 34)/7𝑘 for 𝑘 ≥ 58.

Lemma 16.17 (Heath-Brown bound for large 𝑘). For any 𝑘 ≥ 2, one has

𝛼𝑘 ≤ 1 − 0.849𝑘−2/3.

Proof. See Heath-Brown [113].

Theorem 16.18 ([15]). For integer 𝑘 ≥ 30, one has

𝛼𝑘 ≤ 1 − 1.421(𝑘 − 1.18)−2/3.

Moreover, 𝛼𝑘 ≤ 1 − 1.889𝑘−2/3 for sufficiently large 𝑘.
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Theorem 16.19 (Trudgian–Yang bound for large 𝑘). [[279], Theorem 2.9]One has

𝛼9 ≤ 0.64720, 𝛼10 ≤ 0.67173, 𝛼11 ≤ 0.69156, 𝛼12 ≤ 0.70818,
𝛼13 ≤ 0.72350, 𝛼14 ≤ 0.73696, 𝛼15 ≤ 0.74886, 𝛼16 ≤ 0.75952,
𝛼17 ≤ 0.76920, 𝛼18 ≤ 0.77792, 𝛼19 ≤ 0.78581, 𝛼20 ≤ 0.79297,

𝛼21 ≤ 0.79951.

Theorem 16.20 (Li bound for large 𝑘). [[184], Theorem 2]One has

𝛼9 ≤ 0.638889, 𝛼10 ≤ 0.663329, 𝛼11 ≤ 0.684349, 𝛼12 ≤ 0.701768,
𝛼13 ≤ 0.717523, 𝛼14 ≤ 0.731898, 𝛼15 ≤ 0.744898, 𝛼16 ≤ 0.75638,
𝛼17 ≤ 0.766588, 𝛼18 ≤ 0.775721, 𝛼19 ≤ 0.783939, 𝛼20 ≤ 0.791374.
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Chapter 17

The number of Pythagorean
triples

Definition 17.1 (Pythagorean triple exponent). Let 𝜃Pythag be the least exponent for which
one has

𝑃(𝑁) = 𝑐𝑁1/2 − 𝑐′𝑁1/3 + 𝑁𝜃Pythag+𝑜(1)

for unbounded 𝑁 and some fixed 𝑐, 𝑐′, where 𝑃(𝑁) is the number of primitive Pythagorean
triples of area no greater than 𝑁 .

Lemma 17.2. One has 𝜃Pythag ≤ 1/4.

Proof. See [296, 62]. The previous bound 𝜃Pythag ≤ 1/3 was obtained in [175].

Lemma 17.3. If (𝑘, ℓ) is an exponent pair, and RH holds, then

𝜃Pythag ≤ max(1
3 − 5

6
𝑘 + ℓ − 3/2
4(𝑘 + ℓ) − 7 , 1

2 − 3
2

𝑘 + ℓ − 3/2
4(𝑘 + ℓ) − 7)

Proof. See [214] and and [279, Section 5.10].

Lemma 17.4. Assuming RH, one has 𝜃Pythag ≤ 71/316.

Proof. See [279, Section 5.10].
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Chapter 18

The de Bruijn–Newman
constant

A survey on this topic may be found at [224].
Let 𝐻0 ∶ C → C denote the function

𝐻0(𝑧) ∶= 1
8𝜉 (1

2 + 𝑖𝑧
2 ) , (18.1)

where 𝜉 denotes the Riemann xi function

𝜉(𝑠) ∶= 𝑠(𝑠 − 1)
2 𝜋−𝑠/2Γ (𝑠

2) 𝜁(𝑠) (18.2)

and 𝜁 is the Riemann zeta function. Then 𝐻0 is an entire even function with functional
equation 𝐻0(𝑧) = 𝐻0(𝑧), and the Riemann hypothesis is equivalent to the assertion that all
the zeroes of 𝐻0 are real.
It is a classical fact (see [277, p. 255]) that 𝐻0 has the Fourier representation

𝐻0(𝑧) = ∫
∞

0
Φ(𝑢) cos(𝑧𝑢) 𝑑𝑢

where Φ is the super-exponentially decaying function

Φ(𝑢) ∶=
∞

∑
𝑛=1

(2𝜋2𝑛4𝑒9𝑢 − 3𝜋𝑛2𝑒5𝑢) exp(−𝜋𝑛2𝑒4𝑢). (18.3)

The sum defining Φ(𝑢) converges absolutely for negative 𝑢 also. From Poisson summation
one can verify that Φ satisfies the functional equation Φ(𝑢) = Φ(−𝑢) (i.e., Φ is even).
De Bruijn [55] introduced the more general family of functions 𝐻𝑡 ∶ C → C for 𝑡 ∈ R by the
formula

𝐻𝑡(𝑧) ∶= ∫
∞

0
𝑒𝑡𝑢2Φ(𝑢) cos(𝑧𝑢) 𝑑𝑢. (18.4)

As noted in [52, p.114], one can view 𝐻𝑡 as the evolution of 𝐻0 under the backwards heat
equation 𝜕𝑡𝐻𝑡(𝑧) = −𝜕𝑧𝑧𝐻𝑡(𝑧). As with 𝐻0, each of the 𝐻𝑡 are entire even functions with
functional equation 𝐻𝑡(𝑧) = 𝐻𝑡(𝑧). From results of Pólya [239] it is known that if 𝐻𝑡 has
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purely real zeroes for some 𝑡 then 𝐻𝑡′ has purely real zeroes for all 𝑡′ > 𝑡. De Bruijn showed
that the zeroes of 𝐻𝑡 are purely real for 𝑡 ≥ 1/2. Strengthening these results, Newman [223]
showed that there is an absolute constant −∞ < Λ ≤ 1/2, now known as the De Bruijn-
Newman constant, with the property that 𝐻𝑡 has purely real zeroes if and only if 𝑡 ≥ Λ.
The Riemann hypothesis is then clearly equivalent to the upper bound Λ ≤ 0. Newman
conjectured the complementary lower bound Λ ≥ 0, and noted that this conjecture asserts
that if the Riemann hypothesis is true, it is only “barely so”.
Known lower bounds on Λ are listed in the tables below.

Table 18.1: Lower bounds on Λ.
Lower bound on Λ Reference
> −∞ Newman 1976 [223]
> −50 Csordas–Norfolk–Varga 1988 [49]
> −5 te Riele 1991 [271]
> −0.385 Norfolk–Ruttan–Varga 1992 [226]
> −0.0991 Csordas–Ruttan–Varga 1991 [51]
> −4.379 × 10−6 Csordas–Smith–Varga 1994 [52]
> −5.895 × 10−9 Csordas–Odlyzko–Smith–Varga 1993 [50]
> −2.63 × 10−9 Odlyzko 2000 [227]
> −1.15 × 10−11 Saouter–Gourdon–Demichel 2011 [257]
≥ 0 Rodgers–Tao 2020 [255]
≥ 0 Dobner 2021 [60]

The argument of Dobner applies more generally to the Selberg class.
For upper bounds, we have

Table 18.2: Upper bounds on Λ.
Upper bound on Λ Reference
≤ 1/2 Newman 1976 [223]
< 1/2 Ki–Kim–Lee 2009 [166]
≤ 0.22 Polymath 2019 [241]
≤ 0.2 Platt–Trudgian 2021 [238]
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Chapter 19

Brun-Titchmarsh type theorems

Definition 19.1 (Prime counting function on arithmetic progressions). Suppose 𝑎, 𝑞 ∈ ℤ
with gcd(𝑎, 𝑞) = 1. For each 𝑥 ≥ 0, define

𝜋(𝑥; 𝑞, 𝑎) = ∑
𝑝≤𝑥

𝑝 prime
𝑞∣(𝑝−𝑎)

1.

The ordinary prime counting function can be recovered by 𝜋(𝑥) = 𝜋(𝑥; 1, 1).
The Prime Number Theorem (PNT) shows that 𝜋(𝑥) ∼ 𝑥

log 𝑥 as 𝑥 → ∞. On the other hand,
known results on the asymptotic behavior of 𝜋(𝑥; 𝑞, 𝑎) depend greatly on how 𝑞 and 𝑥 are
sent to ∞. Heuristically, it is expected that for “most” sequences 𝑞𝑛, 𝑥𝑛 → ∞ with 𝑞𝑛 < 𝑥𝑛,
𝜋(𝑥𝑛; 𝑞𝑛, 𝑎) ∼ 𝑥𝑛

𝜑(𝑞𝑛) log(𝑥𝑛) as 𝑛 → ∞. Brun-Titchmarsh type theorems make this precise
by provide asymptotic upper or lower bounds on 𝜋(𝑥; 𝑞, 𝑎) in terms of 𝑥

𝜑(𝑞) log 𝑥 or related
quantities, presupposing constraints between 𝑞 and 𝑥.

Definition 19.2 (Logarithmic integral function). Define the offset logarithmic integral func-
tion for 𝑥 ≥ 2 by Li(𝑥) = ∫𝑥

2
d𝑢

log 𝑢 . Note that Li(𝑥) ∼ 𝑥
log 𝑥 .

We first record two early results which recover the correct asymptotic under stringent as-
sumptions.

Theorem 19.3 (Brun-Titchmarsh theorem under GRH (1929) [272]). Under the General-
ized Riemann Hypothesis (GRH), if 𝑞 < 𝑥, then

𝜋(𝑥; 𝑞, 𝑎) = Li(𝑥)
𝜑(𝑞) + 𝑂(𝑥1/2 log 𝑥).

Theorem 19.4 (Walfisz (1936) [290]). Fix 𝐵 ≥ 0 and suppose 𝑞 ≤ (log 𝑥)𝐵. Then there
exists 𝐴 = 𝐴(𝐵) > 0 such that

𝜋(𝑥; 𝑞, 𝑎) = Li(𝑥)
𝜑(𝑞) + 𝑂(𝑥 exp(−𝐴√log 𝑥)).

19.1 Upper bounds
Titchmarsh’s original theorem establishes a coarse asymptotic upper bound.

154



Theorem 19.5 (Brun-Titchmarsh theorem (1929) [272]). If 0 < 𝜃 < 1 and 𝑞 ≤ 𝑥𝜃, then

𝜋(𝑥; 𝑞, 𝑎) = 𝑂 ( 𝑥
𝜑(𝑞) log 𝑥) + 𝑂(𝑥6(1−𝜃)/7).

Later bounds more generally bound the number of prime numbers equivalent to 𝑎 (mod 𝑞)
in the interval [𝑥, 𝑥 + 𝑦]. Observe that setting 𝑥 = 0 indeed yields an improvement on
previous results.

Theorem 19.6 (Lint, Richert (1965) [283]). If 𝑦 > 𝑞, then

𝜋(𝑥 + 𝑦; 𝑞, 𝑎) − 𝜋(𝑥; 𝑞, 𝑎) < 2𝑦
𝜑(𝑞) log(𝑦/𝑞) min (3

2, 1 + 6
log(𝑦/𝑞)) .

Theorem 19.7 (Montgomery, Vaughan (1973) [219]). If 𝑦 > 𝑞, then

𝜋(𝑥 + 𝑦; 𝑞, 𝑎) − 𝜋(𝑥; 𝑞, 𝑎) < 2𝑦
𝜑(𝑞) log(𝑦/𝑞) .

On the other hand, various bounds improve on this result under polynomial relationships of
the form 𝑞 ≤ 𝑥𝜃. To state these, we need the following definition.

Definition 19.8 (𝜃 and 𝐶𝜃). Suppose 𝑥 > 0 and 𝑞 ∈ ℤ. Define 𝜃 ∶= log 𝑞
log 𝑥 , and let 𝐶𝜃 > 0

be the smallest constant such that

max
𝑎∶gcd(𝑎,𝑞)=1

𝜋(𝑥; 𝑞, 𝑎) ≤ (𝐶𝜃 + 𝑜(1))𝑥
𝜑(𝑞) log(𝑥)

as 𝑥 → ∞.

Here is the historical progression of bounds on 𝐶𝜃, where

𝐶1(𝜃) = − 66
33 − 16𝜃 ∫

4

2

log(𝑡 − 1)
𝑡 𝑑𝑡

+ 8
4 − (3 + 7

64 ) 𝜃 ∫
165(4−(3+ 7

64 )𝜃)
4(33−16𝜃) − 1

4

8−(7+ 7
32 )𝜃

4𝜃

log(𝑡 − 1)
𝑡 𝑑𝑡

+ 8
4 − (1 + 7

64 ) 𝜃 ∫
8−(7+ 7

32 )𝜃
4𝜃

max( 4−(1+ 7
64 )𝜃

2(2−3𝜃) − 5
4 ,2)

log(𝑡 − 1)
𝑡 𝑑𝑡

and

𝐶2(𝜃) = − 66
33 − 16𝜃 ∫

4

2

log(𝑡 − 1)
𝑡 𝑑𝑡

+ 16
8 − 7𝜃 ∫

165(8−7𝜃)
8(33−16𝜃)

8−7𝜃
4𝜃

log(𝑡 − 1)
𝑡 𝑑𝑡

+ 16
8 − 3𝜃 ∫

8−7𝜃
4𝜃

max( 9𝜃
4(2−3𝜃) ,2)

log(𝑡 − 1)
𝑡 𝑑𝑡.
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Let 𝜃char be the least constant such that for every 𝜀 > 0 there exists 𝛿 > 0 such that one
has a character sum bound of the form

∑
𝑙≤𝐿

𝜒(𝑙) ≪ 𝐿𝑞−𝛿

whenever 𝜒 is a non-principal character mod 𝑞 and 𝐿 ≥ 𝑞𝜃char + 𝜀. The Burgess bound
[27, 28] shows that 𝜃char ≤ 3/8, which can be improved to 𝜃char ≤ 1/4 for cube-free 𝑞. The
extended Lindelöf hypothesis implies that 𝜃char = 0.
In [147, Theorem 3] it was shown that

𝐶𝜃 ≤ max( 2
1 − 𝜃𝜃char

, 2
2 − 12𝜃/5).

This was improved in [198] to

𝐶𝜃 ≤ max( 2
1 − 𝜃𝜃char

, 2
8/7 − 24𝜃/35).

A further (complicated) bound on 𝐶𝜃 in the range 3/7 ≤ 𝜃 < 9/20 may be found in [3,
Theorem 2].
In [301], the bound 𝐶𝜃 ≤ 16/(8 − (3 + 2𝜃RP)𝜃) for 9/20 < 𝜃 < 1/2 was established, where
𝜃RP is the exponent for the Ramanujan–Petersson conjecture for 𝐺𝐿2(Q). By the work of
Kim and Sarnak [167] one has 𝜃RP ≤ 7/64. One can also convert exponent pairs to bounds
on 𝐶𝜃:

Theorem 19.9 (From exponent pairs to Brun–Titchmarsh). [301, Theorem 1.4] If (𝑘, ℓ) is
an exponent pair, then

𝐶𝜃 ≤ 4
(3 + 𝑘 − ℓ) − (3 + 3𝑘 − ℓ)𝜃

whenever
1 + 𝑘 − ℓ

2 + 2𝑘 − 2ℓ ≤ 𝜃 ≤ 1 + 𝑘 − ℓ
1 + 2𝑘 − ℓ .

Averaged versions of the Brun–Titchmarsh inequality were proven in [119], [120], [147], [59],
[72], [73] [215], [4], [6], [74] and [182].
For any 𝜃, let 𝐶′

𝜃 denote the best constant for which one has an upper bound

𝜋(𝑥 + 𝑥𝜃) − 𝜋(𝑥) ≤ (𝐶′
𝜃 + 𝑜(1)) 𝑥𝜃

log 𝑥
for unbounded 𝑥. The following bounds on 𝐶′

𝜃 are known:

19.2 Lower bounds
The most basic lower bound is Dirichlet’s theorem, stating that lim𝑥→∞ 𝜋(𝑥; 𝑞, 𝑎) = ∞; we
shall not record it here. Until relatively recently, good lower bounds were not known on
𝜋(𝑥; 𝑞, 𝑎) other than Theorem 19.4 for small 𝑞, but there are many known estimates for the
smallest value of 𝑥 for which 𝜋(𝑥; 𝑞, 𝑎) > 0.

Definition 19.10 (Linnik’s constant 𝐿). Define 𝐿 to be the infimum over all 𝐿′ > 0 where
there exists 𝑞0(𝐿′) > 0 such that for all 𝑞 ≥ 𝑞0(𝐿′) and 𝑥 > 𝑞𝐿′ , mingcd(𝑎,𝑞)=1 𝜋(𝑥; 𝑞, 𝑎) > 0.
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Here is the historical progression of 𝐿.
Recent work by Maynard [208] establishes asymptotic lower bounds for 𝜋(𝑥; 𝑞, 𝑎).
Theorem 19.11 (Maynard (2013) [208]). For sufficiently large 𝑞 and 𝑥 > 𝑞8, we have

log 𝑞
𝑞1/2 ( 𝑥

𝜑(𝑞) log 𝑥) ≪ 𝜋(𝑥; 𝑞, 𝑎).

Theorem 19.12 (Maynard (2013) [208]). Let 𝜖 > 0. There exists 𝑞0(𝜖) > 0 such that for
all 𝑞 ≥ 𝑞0(𝜖),

𝑞−𝜖𝑥
𝜑(𝑞) log 𝑥 ≪ 𝜋(𝑥; 𝑞, 𝑎).
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Table 19.1: Historical bounds on 𝐶𝜃
Reference Range of 𝜃 Upper bound on 𝐶𝜃

Titchmarsh (1930) (0, 1) Finite
van Lint & Richert (1965) [283]

Montgomery & Vaughan (1973) [219]
Selberg (1991) [265]

(0, 1) 2/(1 − 𝜃)

Motohashi (1973) [220] (0, 1/3) 16/(8 − 3𝜃)
Motohashi (1974) [221] (0, 1/3] 2 (on LH)
Motohashi (1973) [220] (2/5, 1/2] 2/(2 − 3𝜃)
Motohashi (1974) [221] [1/3, 2/5] 4/(2 − 𝜃)
Motohashi (1974) [221] [1/3, 2/5] 2/(2 − 3𝜃) (on LH)

Goldfeld (1975) [81] (0, 24/71) 16/(8 − 3𝜃)
Iwaniec (1982) [147] (0, 9/20) 16/(8 − 3𝜃)
Iwaniec (1982) [147] (0, 9/20) 8/(4 − 2𝜃) (if 𝑞 cube-free)
Iwaniec (1982) [147] [9/20, 2/3] 8/(6 − 7𝜃)

Baker (1996) [3] (9/20, 1/2) 4/(2 − 𝜃)
Friedlander & Iwaniec (1997) [75] [6/11, 1) (2 − ((1 − 𝜃)/4)6)/(1 − 𝜃)

Maynard (2013) [208] (0, 1/8] 2
Bourgain & Garaev (2014) [25] [1 − 𝛿, 1) (2 − 𝑐0(1 − 𝜃)2)/(1 − 𝜃)

Xi & Zheng (2024) [301] (9/20, 1/2) 16/(8 − (3 + 7/32)𝜃)
Xi & Zheng (2024) [301] (9/20, 1/2) 16/(8 − 3𝜃) (if 𝑞 prime)
Xi & Zheng (2024) [301] [1/2, 12/23) 8/(5 − 5𝜃) (if 𝑞 prime)
Xi & Zheng (2024) [301] [12/23, 32/61) 32/(32 − 43𝜃) (if 𝑞 prime)
Xi & Zheng (2024) [301] [32/61, 8/15) 24/(16 − 17𝜃) (if 𝑞 prime)
Xi & Zheng (2024) [301] [8/15, 7/13) 48/(40 − 49𝜃) (if 𝑞 prime)
Xi & Zheng (2024) [301] [7/13, 6/11) 16/(11 − 12𝜃) (if 𝑞 prime)
Xi & Zheng (2024) [301] [6/11, 4/7) 32/(28 − 35𝜃) (if 𝑞 prime)
Xi & Zheng (2024) [301] [9/51, 9/11] 160/(89 − 91𝜃) (if 𝑞 smooth square-free)
Xi & Zheng (2024) [301] [1/8, 5/12) 2 (if 𝑞 smooth square-free)
Xi & Zheng (2024) [301] [5/12, 9/20) 5/(5 − 6𝜃) (if 𝑞 smooth square-free)
Xi & Zheng (2025) [302] [9/20, 1/2) 66/(33 − 16𝜃) − 𝐶1(𝜃)
Xi & Zheng (2025) [302] [9/20, 1/2) 66/(33 − 16𝜃) − 𝐶2(𝜃) (if 𝑞 prime)
Xi & Zheng (2025) [302] [3/10, 3/4] 24/(15 − 16𝜃) (if 𝑞 smooth square-free)
Xi & Zheng (2025) [303] [1/2, 34/67] 240/(184 − 217𝜃) (if 𝑞 prime)
Xi & Zheng (2025) [303] [1/2, (𝜈(2𝜈 + 1))/(4𝜈2 + 𝜈 + 4)] 8

6−7𝜃+ 2𝜈−(3𝜈+4)𝜃
𝜈(2𝜈−1)

for every integer 𝜈 ≥ 5 (if 𝑞 prime)
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Table 19.2: Historical bounds on 𝐶′
𝜃

Reference Range of 𝜃 Upper bound on 𝐶′
𝜃

Montgomery & Vaughan (1973) [219] (0, 1) 2/𝜃
Iwaniec (1982) [147] (1/3, 1) 18/(15𝜃 − 2)
Iwaniec (1982) [147] (1/2, 1) 4/(1 + 𝜃)

Lou & Yao (1989) [199] (6/11, 11/20] 22/(100𝜃 − 45)
Lou & Yao (1992) [200] (6/11, 1] 1.031

Baker, Harman, & Pintz (1997) [7] (0.55, 1) 1.0001

R. Li (2025) [183]

(0.52, 0.521]
(0.521, 0.522]
(0.522, 0.523]
(0.523, 0.524]
(0.524, 0.525]
(0.525, 0.535]

2.874
2.700
2.583
2.536
2.437
2.347
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Table 19.3: Historical bounds on 𝐿
Reference Upper bound on 𝐿

Linnik (1994) [190] < ∞
Pan (1957) [228] 10000
Pan (1958) [229] 5448
Chen (1965) [34] 777

Jutila (1970) [158] 630
Jutila (1970) [157] 550
Chen (1977) [35] 168

Jutila (1977) [159] 80
Graham (1977) [84] 36
Graham (1981) [86] 20
Chen (1979) [36] 17

Wang (1986) [291] 16
Chen & Liu (1989) [37] 13.5
Chen & Liu (1990) [38] 11.5

Wang (1991) [292] 8
Heath-Brown (1992) [112] 5.5

Meng (2000) [211] 4.5 (if 𝑞 prime)
Meng (2001, 2010) [212] [213] 4.5 (if 𝑞 has bounded cubic part)

Xylouris (2009) [304] 5.2
Xylouris (2011) [305] 5.18

Xylouris (2011, 2018) [306] [307] 5
Montgomery (1971) [218] 5

2 = 2.5 (if 𝑞 is a power of a fixed prime)
Forti & Viola (1973) [70] 45

20−
√

3 = 2.4633 … (if 𝑞 is a power of a fixed prime)
Jutila (1972) [162] 3(9+

√
17)

16 = 2.4606 … (if 𝑞 is a power of a fixed prime)
Huxley (1975) [125] 12

5 = 2.4 (if 𝑞 is a power of a fixed prime)
B. Chen (2025) [31] 7

3 = 2.3333 … (if 𝑞 is a power of a fixed prime)
Banks & Shparlinski (2019) [10] 1

0.4736 = 2.1115 … (if 𝑞 is a power of a fixed prime)
R. Li (2025) [183] 1

0.4752 = 2.1044 … (if 𝑞 is a power of a fixed prime)

Heath-Brown (1990) [111] 3 + 𝜀 (under the existence and some conditions of the exceptional character, effective)
2 + 𝜀 (under the existence and some conditions of the exceptional character, ineffective)

Friedlander & Iwaniec (2003) [76] 117
59 = 1.983 … (under the existence and some conditions of the exceptional character)
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Chapter 20

Waring and Goldbach type
problems, and Schnirelman’s
constant

20.1 Waring Problem
Definition 20.1. Let 𝐴 ⊂ N be such that there exists 𝑘 for which

𝐴 + 𝐴 + ⋯ + 𝐴⏟⏟⏟⏟⏟⏟⏟
𝑘 times

= N (20.1)

Then 𝐴 is called an additive basis of N. The minimum 𝑘 for which (20.1) holds is the order
of 𝐴.

Definition 20.2. For any 𝑘 ≥ 1 let 𝐴𝑘 = {𝑛𝑘 ∶ 𝑛 ∈ N ∪ {0}}. Let 𝑔(𝑘) be the order of
𝐴𝑘 when it exists. That is, 𝑔(𝑘) is the minimum number of 𝑘 powers needed to write any
natural number as the sum of (not necessarily unique) 𝑔(𝑘) many 𝑘 powers including 0.

Definition 20.3. For any 𝑘 ≥ 1, let 𝐺(𝑘) be the minimum 𝑚 such that there exists 𝑁 ≥ 1
for which

𝐴𝑘 + ⋯ + 𝐴𝑘⏟⏟⏟⏟⏟
𝑚 times

= N ∖ 𝐽𝑁 .

where 𝐽𝑁 = {1, … , 𝑁}. That is, 𝐺(𝑘) is the minimum number of 𝑘 powers such that every
sufficiently large integer may be written as the sum of (not necessarily unique) 𝐺(𝑘) many
𝑘 powers including 0.

20.1.1 Known values of g(k)
Theorem 20.4 (Lagrange’s Four Square Theorem). We have 𝑔(2) = 4; that is every natural
number may be written as the sum of 4 perfect squares.

Theorem 20.5 (Linnik [188]). 𝑔(𝑘) exists for all 𝑘 ≥ 1.

Linnik’s proof relied on the notion of Schnirelmann density, which will be discussed later.
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In fact, the exact value of 𝑔(𝑘) is known for almost all 𝑘 ≥ 1. We have

𝑔(𝑘) = 2𝑘 + [3
2]

𝑘
− 2 if 2𝑘 {3

2}
𝑘

+ [3
2]

𝑘
≤ 2𝑘

and, otherwise,

𝑔(𝑘) = 2𝑘 + [3
2]

𝑘
+ [4

3]
𝑘

− 𝜉

where 𝜉 = 2 if

[3
2]

𝑘
+ [4

3]
𝑘

+ [3
2]

𝑘
[4

3]
𝑘

≥ 2𝑘

and 3 otherwise. Note that [𝑥] is the greatest integer less than 𝑥 and {𝑥} = 𝑥 − [𝑥]. It has
been shown that there at at most finitely many exceptions [202]. To complete the proof, it
suffices to show

{(3
2)

𝑘
} ≤ 1 − (3

4)
𝑘−1

It has been shown for all 𝑘 > 5000, {(3/2)𝑘} ≤ 1 − 𝑎𝑘 where 𝑎 = 2−0.9 ≈ 0.53, and for
sufficiently large 𝑘, {(3/2)𝑘} ≤ 1 − (0.5769 … )−𝑘 [61] [16].

20.1.2 Known values of 𝐺(𝑘)
Only 2 values of 𝐺(𝑘) are known definitively: 𝐺(2) = 4 as shown by Lagrange and 𝐺(4) = 16
as shown by Davenport [53].

Definition 20.6. Let 𝐺1(𝑘) be the smallest number 𝑚 such that

𝑑(𝐴𝑘 + ⋯ + 𝐴𝑘⏟⏟⏟⏟⏟
𝑚 times

) = 1

where 𝑑(𝐴) represents the natural density of 𝐴:

𝑑(𝐴) = lim
𝑁→∞

#(𝐴 ∩ 𝐽𝑁)
𝑁

𝐺1(𝑘) has been determined for 5 values:

Davenport [54] 𝐺1(3) = 4
Hardy and Littlewood [98] 𝐺1(4) = 15

Vaughan [284] 𝐺1(8) = 32
Wooley [299] 𝐺1(16) = 64
Wooley [299] 𝐺1(32) = 128

Table 20.1: Known values of 𝐺1(𝑘)
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7 8 9 10 11 12 13 14 15 16 17 18 19 20
Best Bound 31 39 47 55 63 72 81 89 97 105 113 121 129 137
Conjectured 8 32 13 12 12 16 14 15 16 64 18 27 20 25

Table 20.2: Conjectured and best upper bounds for 𝐺(𝑘) for 7 ≤ 𝑘 ≤ 20

20.1.3 General bounds for 𝐺(𝑘)
Theorem 20.7 (Brudern and Wooley 2022 [26]). For all 𝑘 ≥ 1,

𝐺(𝑘) < 𝑘(log 𝑘 + 𝐶1) + 𝐶2

Furthermore,
𝐺(𝑘) ≤ ⌈𝑘(log 𝑘 + 4.20032)⌉

This bound is the sharpest to date and was a significant improvement over the previous
bound by Wooley [299]: for sufficiently large 𝑘,

𝐺(𝑘) ≤ 𝑘(log 𝑘 + log log 𝑘 + 2 + 𝑂(log log 𝑘/ log 𝑘))

20.1.4 Bounds for special cases for 𝐺(𝑘)
𝑘 = 3
Lemma 20.8. 𝐺(3) ≥ 4
Proof. Note cubes are congruent 1, −1, 0 modulo 9. Thus, numbers congruent 4, 5 modulo
9 may not be expressed as the sum of 3 cubes.

Theorem 20.9 (Linnik [189]). 𝐺(3) ≤ 7
The exact value of 𝐺(3) is conjectured to be 4, but has not been proven.

Conjectured 𝐺(𝑘) for small 𝑘
Table 20.2 summarizes the best upper bounds for 𝐺(𝑘) and the conjectured values of 𝐺(𝑘)
for 7 ≤ 𝑘 ≤ 20.
The upper bounds for 𝑘 ≤ 13 were deduced from Wooley [300] and the bounds for 14 ≤ 𝑘 ≤
20 are from Theorem 20.7.

20.1.5 Generalized Waring problem and connections to the Gener-
alized Riemann Hypothesis

Waring’s Problem concerns the solvability of equations of the form

𝑥𝑘
1 + 𝑥𝑘

2 + ⋯ + 𝑥𝑘
𝑛 = 𝑚 (20.2)

for 𝑚, 𝑛, 𝑘 ∈ N, and Theorem 20.5 states that for any fixed 𝑘 ≥ 1, there exists 𝑛 ∈ N such
that (20.2) is solvable for all 𝑚 ∈ N. A more generalized problem arises when 𝑘 is not fixed.
Given any k = (𝑘1, … , 𝑘𝑛) ∈ N𝑛, the generalized Waring problem concerns the solvability
of the equations of the form

𝑥𝑘1
1 + 𝑥𝑘2

2 + ⋯ + 𝑥𝑘𝑛𝑛 = 𝑚 (20.3)
The following theorem due to Erich Kamke provides a partial result.
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Theorem 20.10 (Kamke). Let 𝑓(𝑥) be an integer valued polynomial such that there does
not exist 𝑑 ∈ N such that 𝑑|𝑓(𝑛) for all 𝑛 ∈ N. Then for sufficiently large 𝑘,

𝑓(𝑥1) + 𝑓(𝑥2) + ⋯ + 𝑓(𝑥𝑘) = 𝑚

is solvable for all large enough 𝑚.

Assuming the Generalized Riemann Hypothesis (GRH), The solvability of (20.3) can be
guaranteed for specific k. For example:

Theorem 20.11 (Wooley). Assuming GRH, then

𝑥2
1 + 𝑥2

2 + 𝑥3
3 + 𝑥3

4 + 𝑥6
5 + 𝑥6

6 = 𝑛 (20.4)

is solvable for sufficiently high 𝑛. Furthermore, (20.4) is not solvable for at most 𝑂((log 𝑁)3+𝜖)
integers between 1 and 𝑁 .

20.2 Goldbach-Style Problems
Goldbach’s original conjecture stated that every positive integer could be written as the sum
of 3 primes. In light of Waring’s problem, a natural extension of Goldbach’s problem asks
when

𝑝𝑘
1 + 𝑝𝑘

2 + ⋯ + 𝑝𝑘
𝑚 = 𝑛 (20.5)

is solvable for all 𝑛 ∈ N for 𝑝1, … 𝑝𝑘 prime and 𝑘 ∈ N. It is conjectured when 𝑚 ≥ 𝑘 + 1
and for sufficiently large 𝑛 satisfying local conditions, which will be made more explicit for
specific values of 𝑘, (20.5) is solvable.

20.2.1 When 𝑘 = 2
It is conjectured that

𝑛 = 𝑝2
1 + 𝑝2

2 + 𝑝2
3 + 𝑝2

4 (20.6)
is solvable whenever 𝑛 ≡ 4 (mod 24). The following theorem gives the closest solution.

Theorem 20.12 (Liu, Wooley, Yu [195]). Let 𝐸(𝑁) be the number of integers 𝑛 ≡
4 (mod 24) for which (20.6) is not solvable. For any 𝜖 > 0,

𝐸(𝑁) ≪ 𝑂(𝑁 3
8 +𝜖)

20.2.2 When 𝑘 = 4, 5
Following Kawada and Wooley, we define the following quantities to give the relevant local
conditions for the cases 𝑘 = 4 and 𝑘 = 5. Let 𝜃 = 𝜃(𝑝, 𝑘) be the greatest power of 𝑝 dividing
𝑘; that is 𝑝𝜃|𝑘 but 𝑝𝜃+1 ∤ 𝑘. Then, let

𝛾(𝑘, 𝑝) = {𝜃 + 2 when 𝑝 = 2, 𝜃 > 0
𝜃 + 1 otherwise }

and
𝐾(𝑘) = ∏

(𝑝−1)|𝑘
𝑝𝛾(𝑘,𝑝)

In particular, 𝐾(4) = 240 and 𝐾(5) = 2.
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Definition 20.13. For 𝑘 ∈ N, let 𝐻(𝑘) be the minimum integer 𝑠 such that

𝑝𝑘
1 + 𝑝𝑘

2 + ⋯ + 𝑝𝑘
𝑠 = 𝑛

is solvable for sufficiently large 𝑛 whenever 𝑛 ≡ 𝑠 (mod 𝐾(𝑘)).
Finding the value of 𝐻(𝑘) is the main focus of the modern Waring-Goldbach problem.

Theorem 20.14 (Wooley, Kawada 2001 [164]). We have

• 𝐻(4) ≤ 14
• For any positive 𝐴,

𝑝4
1 + 𝑝4

2 + ⋯ + 𝑝4
7 = 𝑛

has at most 𝑂(𝑁(log 𝑁)−𝐴) exceptions for 𝑛 ≡ 7 (mod 240) and 1 ≤ 𝑛 ≤ 𝑁 .

• 𝐻(5) ≤ 21
• For any positive 𝐴,

𝑝5
1 + 𝑝5

2 + ⋯ + 𝑝5
11 = 𝑛

has at most 𝑂(𝑁(log 𝑁)−𝐴) exceptions for 𝑛 odd and 1 ≤ 𝑛 ≤ 𝑁 .

In 2014, Zhao improved the bound for 𝑘 = 4 and showed 𝐻(4) ≤ 13 [316]. He also showed
𝐻(6) ≤ 32 in the same paper.

20.2.3 When 𝑘 ≥ 7
Theorem 20.15 (Kumchev, Wooley 2016 [174]). For large values of 𝑘,

𝐻(𝑘) ≤ (4𝑘 − 2) log 𝑘 − (2 log 2 − 1)𝑘 − 3 (20.7)

Table 20.3 summarizes the best bounds on 𝐻(𝑘) for 7 ≤ 𝑘 ≤ 20.

7 8 9 10 11 12 13 14 15 16 17 18 19 20
45 57 69 81 93 107 121 134 149 163 177 193 207 223

Table 20.3: Upper bounds for 𝐻(𝑘)

20.3 Schnirelmann Density
20.3.1 Existence of Additive Basis
Definition 20.16. Define the Schnirelmann density of 𝐴 ⊂ N as

𝜎𝐴 = inf
𝑛≥1

#(𝐴 ∩ 𝐽𝑛)
𝑛

Definition 20.17. Define the lower asymptotic density of 𝐴 ⊂ N as

𝛿𝐴 = lim inf
𝑛→∞

#(𝐴 ∩ 𝐽𝑛)
𝑛
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Theorem 20.18 (Schnirelmann [261]). Suppose 𝜎𝐴 > 0. Then 𝐴 is an additive basis for
N.

With Theorem 20.18, it is possible to prove many sets form additive bases. For example:

Theorem 20.19 (Schnirelmann [261]). Let ℙ denote the set of primes. Then, 𝛿(ℙ + ℙ) >
0. Therefore, ℙ is an additive basis for N. The order of ℙ is denoted 𝐶 and called
Schnirelmann’s constant.

Schnirelmann originally bounded 𝐶 < 80000 and Helfgott showed in 2013 that 𝐶 ≤ 4 [117].
Goldbach’s conjecture claims that 𝐶 = 3.

Theorem 20.20 (Romanoff [242]). Let 𝔖𝑎 = {𝑝 + 𝑎𝑘 ∶ 𝑝 ∈ ℙ, 𝑘 ∈ N}. Then, 𝜎𝔖𝑎 > 0 for
all 𝑎 ∈ N. Thus, each integer 𝑛 may be written as the sum of at most 𝐶𝑎 primes and 𝐶𝑎
powers of 𝑎, where 𝐶𝑎 is a constant depending only on 𝑎.

20.3.2 Essential Components
Definition 20.21. 𝐵 ⊂ N is called an essential component if 𝜎(𝐴 + 𝐵) > 𝜎(𝐴) for any
𝐴 ⊂ N with 0 < 𝜎𝐴 < 1.

Linnik showed in 1933 gave the first example of an essential component that is not a basis
[187]. Erdos showed in 1936 that every basis is also an essential component [64]. The
minimum possible size of an essential component remained an open problem until Ruzsa
showed in 1984[256] that for any 𝜖 > 0, there exists an essential component 𝐻 such that

#(𝐻 ∩ 𝐽𝑛) ≪ (log 𝑛)1+𝜖

but there does not exist an essential component such that

#(𝐻 ∩ 𝐽𝑛) ≪ (log 𝑛)1+𝑜(1)
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Chapter 21

The Gauss circle problem and
its generalizations

This chapter is not yet integrated into the main blueprint.
For any fixed integer 𝑘 ≥ 2 and unbounded 𝑅, consider the problem of estimating the
number of integer lattice points contained in 𝐵𝑘(𝑅), a 𝑘-dimensional ball of radius 𝑅:

𝑆𝑘(𝑅) ∶= #ℤ𝑘 ∩ 𝐵𝑘(𝑅) = #{𝑥 ∈ ℤ𝑘 ∶ |𝑥| ≤ 𝑅}.

Equivalently, 𝑆𝑘(𝑅) may be written as the partial sum

𝑆𝑘(𝑅) = ∑
𝑛≤𝑅2

𝑟𝑘(𝑛)

where 𝑟𝑘(𝑛) counts the number of integer solutions to the equation 𝑥2
1 + ⋯ + 𝑥2

𝑘 = 𝑛.
By considering the volume of a 𝑘-dimensional ball of radius 𝑅, one has the asymptotic

𝑆𝑘(𝑅) ∼ Vol(𝐵𝑘(𝑅)) = 𝜋𝑘/2

Γ(𝑘/2 + 1)𝑅𝑘.

The generalized Gauss circle problem concerns estimating the error term in this approxima-
tion.

Definition 21.1. For fixed integer 𝑘 ≥ 2, define 𝜃Gauss
𝑘 as the least (fixed) exponent for

which
𝑆𝑘(𝑅) − Vol(𝐵𝑘(𝑅)) ≪ 𝑅𝜃Gauss

𝑘 +𝑜(1).
Figure 21.1 and Figure 21.2 plots the magnitude of this error term for 𝑘 = 2 and 𝑘 = 3
respectively (for 0 < 𝑅 ≤ 1000).
It is conjectured that

Conjecture 21.2. One has

𝜃Gauss
𝑘 = {1/2, 𝑘 = 2,

𝑘 − 2, 𝑘 ≥ 3.
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Figure 21.1: |𝑆𝑘(𝑅) − Vol(𝐵𝑘(𝑅))| for 𝑘 = 2 and 0 < 𝑅 ≤ 1000

Figure 21.2: |𝑆𝑘(𝑅) − Vol(𝐵𝑘(𝑅))| for 𝑘 = 3 and 0 < 𝑅 ≤ 1000
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21.1 Known upper and lower bounds
?? 21.2 is known to hold for 𝑘 ≥ 4, i.e.

Theorem 21.3. For integer 𝑘 ≥ 4, one has 𝜃Gauss
𝑘 = 𝑘 − 2.

The remaining open cases are 𝑘 = 2, 3. For such cases the following lower-bounds on 𝜃Gauss
𝑘

are known:

Theorem 21.4. One has 𝜃Gauss
2 ≥ 1/2 and 𝜃Gauss

3 ≥ 1.

In light of ?? 21.2 and Theorem 21.4, in the rest of this section we shall focus on upper
bounds on 𝜃Gauss

𝑘 for 𝑘 = 2, 3.
The case 𝑘 = 2 is known classically as Gauss’s circle problem. The current sharpest known
bound on 𝜃Gauss

2 is

Theorem 21.5 (Li–Yang (2023) [186]). One has 𝜃Gauss
2 ≤ 2𝛼, where 𝛼 = 0.31448 … is the

solution to the equation

8
25𝛼 − (√2(1 + 14𝛼) − 5√−1 + 8𝛼)2

200 + 51
200 = 𝛼

on the interval [0.3, 0.35].
Remark 21.6. The value of 𝛼 is the same as that appearing in Theorem 16.7. Historically,
methods used to make progress in the 𝛼2 exponent in the Dirichlet divisor problem have led to
corresponding improvements in 𝜃Gauss

2 (and vice versa). This may be unsurprising given that
both problems reduce to counting the number of lattice points contained in a curved region
with a smooth boundary (with the region being the hyperbola {(𝑚, 𝑛) ∈ [0, ∞)2 ∶ 𝑚𝑛 ≤ 𝑥} in
the case of the Dirichlet divisor problem).

The historical progression of upper bounds on 𝜃Gauss
2 is recorded in Table 21.1 and Fig-

ure 21.3.

Table 21.1: Historical upper bounds on 𝜃Gauss
2

Reference Bound on 𝜃Gauss
2

Gauss (1834) 1
Sierpiński (1906) [266] 2/3 = 0.6666 …

van der Corput (1923) [282] 2/3 − 𝛿 for some 𝛿 > 0
Littlewood–Walfisz (1924) [194] 37/56 = 0.6607 …

Walfisz (1927) [289] 163/247 = 0.6599 …
Nieland (1928) [225] 27/41 = 0.6585 …

Titchmarsh (1935) [274] 15/23 = 0.6521 …
Hua (1942) [121] 13/20 = 0.65

Iwaniec–Mozzochi (1988) [150] 7/11 = 0.6363 …
Huxley (1993) [127] 46/73 = 0.6301 …
Huxley (2003) [130] 131/208 = 0.6298 …
Li–Yang (2023) [186] 2𝛼∗ = 0.6289 …
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Figure 21.3: Historical upper bounds on 𝜃Gauss
2
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