Database of known results on analytic number theory
exponents

Terence Tao, Timothy Trudgian, Andrew Yang

January 1, 2026



Chapter 1

Introduction

This is the LaTeX “Blueprint” form of the analytic number theory exponent database (AN-
TEDB), which is an ongoing project to record (both in a human-readable and computer-
executable formats) the latest known bounds, conjectures, and other relationships concerning
several exponents of interest in analytic number theory. It can be viewed as an expansion of
the paper [279]. Currently, the database is recording information on the following exponents:

Exponent pairs (k, £).
The exponential sum function S(«) dual to exponent pairs.
The growth exponent p(o) of the zeta function (o + it).

The moment exponents M (o, A) of the zeta function.

Large value exponents LV (o, 7) for Dirichlet polynomials ) €[N 2N a,n"t.

—it

Large value exponents LV (c, 7) of the zeta polynomials }° _ n

Large value additive energy exponents LV (o, 7), LVZ(O’, 7) for Dirichlet and zeta
polynomials.

Zero density exponents A(o) for the zeta function.
Zero density additive energy exponents A*(c) for the zeta function.

The regions &, £, of exponent tuples (o,7,p,p*,s) recording possible large values,
large value additive energy, and double zeta sums for Dirichlet and zeta polynomials.

Exponents «,, for the Dirichlet divisor problem.
The primitive Pythagorean triple exponent Op. -

Exponents Opnr, 0pnyr_aa for the prime number theorem in all or almost all short
intervals.

Exponents related to prime gaps, such as the maximal prime gap exponent 0,,, the
prime gap second moment exponent 6,, , as well as extremal results on small and
large prime gaps (including narrow prime k-tuples).



e Results on the de Bruijn-Newman constant A.

e Error terms in the prime number theorem, and in the prime number theorem in arith-
metic progressions.

o Zero-free regions for the Riemann zeta function and L-functions.
e Brun-Titchmarsh type theorems and Linnik’s constant.
¢ Goldbach and Waring type problems.

o The Gauss circle problem and its generalizations.

By an exponent, we mean one or more real numbers, possibly depending on other exponent
parameters, that occur as an exponent in an analytic number theory estimate, for instance
as the exponent in some scale parameter 7' that bounds some other quantity of interest.
(See also [63] for a recent discussion of a similar class of exponents.)

Possible future directions for expansion include

o Exponents for L-functions (in both ¢ and T aspects).

e Zero density exponents for L-functions (this topic is currently claimed).

¢ More exponents relating to prime gaps.

o Exponents relating to sieve theory.

¢ Integration with the TME-EMT project.

o Log-free estimates, or estimates with explicit constants (this topic is currently claimed).
e Lean certification of some of the calculations in the database.

o Upper and lower bounds on gaps between zeroes of zeta or L-functions (assuming RH
if necessary), for instance incorporating results obtained via the Montgomery-Odlyzko
method.

o Character sum bounds (such as the Polya-Vinogradov and Burgess bounds) and the
least quadratic residue problem.

o Level of distribution of the primes and other multiplicative functions, possibly with
restrictions on the moduli.

e Error terms in the Titchmarsh divisor problem.

e The proportion of zeroes on the critical line, and estimates on mollifiers for the zeta
function.

¢ Vinogradov mean value type theorems.

The database aims to enumerate, as comprehensively as possible, all the various known or
conjectured facts about these exponents, including “trivial” or “obsolete” such facts. Of
particular interest are implications that allow new bounds on exponents to be established
from existing bounds on other exponents.

Each of the facts in the database can be supported with a reference, or one or more proofs,
or with executable code in Python; ideally one should have all three (and with a preference


https://tmeemt.github.io/Chest/

for proofs that rely as much as possible on other facts in the database). In the future we
could also expand this database to support as many of these facts as possible with formal
derivations in proof assistant languages such as Lean.

In order to facilitate the dependency tree of the python code, as well as to assist readers
who wish to derive the facts in this database from first principles, the blueprint is arranged
in linear order. Thus, the statement and proof of a proposition in the blueprint is only per-
mitted to use propositions and definitions that are located earlier in the blueprint, although
we do allow forward-referencing references in the remarks. As a consequence, the material
relating to a single topic will not necessarily be located in a single chapter, but could be
spread out over multiple chapters, depending on how much advanced material is needed to
state or prove the required results. Additionally, a single proposition may occur multiple
times in the blueprint, if it has multiple proofs with varying prerequisites. In the future, one
could hope to implement a search feature that will allow the reader to locate all propositions
of relevance to a given topic (e.g., all propositions whose statement involves the concept of
an exponent pair).

This is intended to be a living database, and we hope to gain community support for updating
it. As such, corrections, suggestions, and new contributions are very welcome, either via
email to one of us (Terence Tao, Timothy Trudgian, or Andrew Yang), or by a direct pull
request to the Github repository. Instructions for contributing can be found here.

A paper describing the ANTEDB, and the new bounds that were already obtained as a
result of compiling the database, can be found at [270].


mailto:tao@math.ucla.edu
mailto:timothy.trudgian@unsw.edu.au
mailto:andrew.yang1@unsw.edu.au
https://github.com/teorth/expdb
https://github.com/teorth/expdb/blob/main/CONTRIBUTING.md

Chapter 2

Basic notation

We freely assume the axiom of choice in this blueprint.
Throughout this blueprint we adopt following notation. If 6 is a real number, then we write

6(0) — eZ‘n’i@

where i is the imaginary unit. The indicator function 1;(n) of a set I is defined to equal 1
when n € I, and 0 otherwise.

We adopt the convention that an empty supremum is —oo, and an empty infimum is +oo.
Thus, for instance, SUD, e, f(o) would equal —c0 if 0; < 0. Related to this, we also
adopt the convention that N™*° =0 when N > 1.

The cardinality of a finite set W will be denoted |W].

A sequence a,,,n € I of real or complex numbers indexed by some index set is said to be 1-
bounded if |a, | <1 for all n € I. Similarly, a set W of real numbers is said to be 1-separated
if |t —t’| > 1 for all distinct ¢,¢" € W. One can define more general notions of A\-bounded or
A-separated for other A > 0 in the obvious fashion.

2.1 Asymptotic (or “cheap nonstandard”) notation

It is convenient to use a “cheap nonstandard analysis” framework for asymptotic notation,
in the spirit of [269], as this will reduce the amount of “epsilon management” one has to do
in the arguments. This framework is inspired by nonstandard analysis, but we will avoid
explicitly using such nonstandard constructions as ultraproducts in the discussion below,
relying instead on the more familiar notion of sequential limits.

In this framework, we assume there is some ambient index parameter i, which ranges over
some ambient sequence of natural numbers going to infinity. All mathematical objects X
(numbers, sequences, sets, functions, etc.), will either be fized - i.e., independent of i - or
variable - i.e., dependent on i. (These correspond to the notions of standard and non-
standard objects in nonstandard analysis.) Of course, fixed objects can be considered as
special cases of variable objects, in which the dependency is constant. By default, objects
should be understood to be variable if not explicitly declared to be fixed. For emphasis, we
shall sometimes write X = X; to explicitly indicate that an object X is variable; however,
to reduce clutter, we shall generally omit explicit mention of the parameter i in most of our
arguments. We will often reserve the right to refine the ambient sequence to a subsequence
as needed, usually in order to apply a compactness theorem such as the Bolzano—Weierstrass



theorem; we refer to this process as “passing to a subsequence if necessary”. When we say
that a statement involving variable objects is true, we mean that it is true for all i in the
ambient sequence. For instance, a variable set E of real numbers is a set £ = F; indexed by
the ambient parameter i, and by an element of such a set, we mean a variable real number
x = z; such that z; € E, for all i in the ambient sequence.

We isolate some special types of variable numerical quantities X = X; (which could be a
natural number, real number, or complex number):

o X is bounded if there exists a fixed C' such that |X| < C. In this case we also write
X =0().

o X is unbounded if | X;| — oo as i — oo; equivalently, for every fixed C, one has | X| > C
for i sufficiently large.

o X is infinitesimal if |X;| — 0 as i — oo; equivalently, for every fixed £ > 0, one has
| X| < e for i sufficiently large. In this case we also write X = o(1).

Note that any quantity X will be either bounded or unbounded, after passing to a subse-
quence if necessary; similarly, by the Bolzano—Weierstrass theorem, any bounded (variable)
quantity X will be of the form X+ o(1) for some fixed X, after passing to a subsequence if
necessary. Thus, for instance, if T, N > 1 are (variable) quantities with N = T°) (or equiv-
alently, T-¢ < N < T¢ for some fixed C), then, after passing to a subsequence if necessary,
we may write N = T"°(1) for some fixed real number a. Note that any further passage
to subsequences do not alter these concepts; quantities that are bounded, unbounded, or
infinitesimal remain so under any additional restriction to subsequences.

We observe the underspill principle: if X,Y are (variable) real numbers, then the relation

X <Y +o(1)

is equivalent to the relation
X<Y+e+o(1)

holding for all fixed € > 0.

We can develop other standard asymptotic notation in the natural fashion: given two (vari-

able) quantities X,Y, we write X = O(Y), X « Y,or Y >» X if | X| < CY for some fixed C,

and X = o(Y) if | X| < ¢Y for some infinitesimal ¢. We also write X <Y for X « ¥V « X.

A convenient property of this asymptotic formalism, analogous to the property of w-saturation
in nonstandard analysis, is that certain asymptotic bounds are automatically uniform in
variable parameters.

Proposition 2.1 (Automatic uniformity). Let E = E; be a non-empty variable set, and let
f=/fi+ E— C be a variable function.

(i) Suppose that f(z) = O(1) for all (variable) x € E. Then after passing to a subsequence
if mecessary, the bound is uniform, that is to say, there exists a fixed C such that
|f(z)| < C forallx € E.

(ii) Suppose that f(x) = o(1) for all (variable) x € E. Then after passing to a subsequence
if necessary, the bound is uniform, that is to say, there exists an infinitesimal ¢ such
that |f(x)| < c for allxz € E.

Proof. We begin with (i). Suppose that there is no uniform bound. Then for any fixed
natural number n, one can find arbitrarily large i, in the sequence and z; € E; such that



| fi, (scin)| > n. Clearly one can arrange matters so that the sequence i,, is increasing. If one
then restricts to this sequence and sets = to be the variable element z; of E, then f(z) is
unbounded, a contradiction.

Now we prove (ii). We can assume for each fixed n that there exists i, in the ambient
sequence such that |f,(z;)] < 1/n for all i > i, and x; € E;, since if this were not the case
one can construct an = x; € E such that | f;(z;)| > 1/n for i sufficiently large, contradicting
the hypothesis. Again, we may take the i, to be increasing. Restricting to this sequence,
and writing ¢; :=1/n, we see that ¢ = o(1) and [f(z)| < c for all z € E, as required. [

Remark 2.2. [t is important in Proposition @ that the hypotheses in (i), (ii) are assumed
for all variable x € E, rather than merely all fixed x € E. For instance, let E = R and
consider the variable function f;(x) := x/i. Then f(x) = o(1) for any fized x € E, but the
decay rate is not uniform, and we do not have f(x) = o(1) for all variable x € E (e.g.,

x; :=1 is a counterezample).

Remark 2.3. There are two caveats to keep in mind when using this asymptotic formalism.
Firstly, the law of the excluded middle is only valid after passing to subsequences. For
instance, it is possible for a nonstandard natural number to neither be even or odd, since
it could be even for some i and odd for others. However, one can pass to a subsequence in
which it becomes either even or odd. Secondly, one cannot combine the “external” concepts
of asymptotic notation with the “internal” framework of (variable) set theory. For instance,
one cannot view the collection of all bounded (variable) real numbers as a variable set, since
the notion of boundedness is not “pointwise” to each index i, but instead describes the “global”
behavior of this index set. Thus, for instance, set builder notation such as {z : x = O(1)}

should be avoided.



Chapter 3

Basic Fourier estimates

Lemma 3.1 (L? integral estimate). Let &, ...,&g be real numbers that are 1/N -separated.
Then for any interval I of length T', and any sequence ay,...,ar of complex numbers one
has

R R
/I > a0 dt = (T +O(N) S Ja, 2
r=1

r=1

Proof. We adapt the proof of [149, Theorem 9.1]. Without loss of generality we may nor-
malize Zil la,|?> = 1. From the Plancherel identity we have

R
/R 1S a,e(6, ORIt — to)/N)[? di = N (3.1)

whenever t, € R and % is a smooth function supported on [—1/4,1/4] of L? norm 1. By
suitable choice of 1), this implies that

R
/ 1> a,e(&t)? dt < N (3.2)
J r=1

whenever J is an interval of length N. If one integrates (@) for all t, € I, we see that
R R -
J13oactsnr ar=1— [ 13 actenr ([16—t/mF it - 1,0) d.
I r=1 R r=1 I

Since 1/; is rapidly decreasing and has L? norm 1, one can compute
/h/?((t —to)/N)|? dty —1;(t) < (1 +dist(¢,0I)/N)~1°
1

and hence by (@) and the triangle inequality

R

/R S ael6n)? ( / 1((t — to)/N)[2 dto — 11<t>) it < N

r=1

giving the claim. O



Chapter 4

Exponential sum growth
exponents

4.1 Phase functions

Definition 4.1 (Phase function). A phase function is a (variable) smooth function F': [1,2] —
R. A phase function F will be called a model phase function if there exists a fized exponent
o > 0 with the property that
(p+1) dr -
F (u) — = o(1) (4.1)
for all (variable) v € [1,2] and all fived p > 0, where FP*Y) denotes the (p + 1)%* derivative
of F.

For instance, u + logu is a model phase function (with ¢ = 1), and for any fixed o # 1,
u > u'=7/(1 — o) is also a model phase function. Informally, a model phase function is a
function which asymptotically behaves like u + logu (for ¢ = 1) or u = u!=?/(1 — o) (for
o # 1), up to constants. This turns out to be a good class for exponential sum estimates,
as it is stable under Weyl differencing and Legendre transforms, which show up in the van
der Corput A-process and B-process respectively.

Note from Proposition that the o(1) decay rate in (@) can be made uniform, after
passing to a subsequence if necessary.

4.2 Exponential sum exponent

The main purpose of this chapter is to introduce and establish the basic properties of the
following exponent function.

Definition 4.2 (Exponent sum growth exponent). For any fized a > 0, let f(a) € R denote
the least possible (fized) exponent for which the following claim holds: whenever N, T > 1
are (variable) quantities with T unbounded and N = Toto) F s a model phase function,
and I C [N,2N] is an interval, then

> e(TF(n/N)) < TP+,

nel



Implemented at bound_beta.py as:
Bound_beta

It is easy to see that the set of possible candidates for f(a) is closed (thanks to under-
spill), non-empty, and bounded from below, so § is well-defined as a (fixed) function from
[0,+00) to R. Specializing to the logarithmic phase F(u) = logu, and performing a complex
conjugation, we see in particular that

Z niT & TBl)to(1) (4.2)

nel

whenever T is unbounded, N = T°*°(1) and I is an interval in [N,2N]. Thus it is clear
that knowledge of 3 is of relevance to understanding the Riemann zeta function.

The quantity S(«) can also be formulated without asymptotic notation, but at the cost of
introducing some “epsilon and delta” parameters:

Lemma 4.3 (Non-asymptotic definition of 3). Let o > 0 and f € R be fizred. Then the
following are equivalent:

(i) Bla) < B.

(ii) For every (fited) e > 0 and o > 0 there exists (fited) § > 0, P > 1, C > 1 with the
following property: if T > C, T % < N < T°*° are (fized) real numbers, I C [N,2N]
is a (fized) interval, and F is a (fized) phase function such that

dP

‘le)(u) — | < (4.3)
u

for all (fired) 0 < p < P and u € [1,2], then

1> e(TF(n/N))| < CTP*.

nel

Proof. Tt is easy to see that (ii) implies (i) by expanding out all the definitions (and using
Proposition to resolve any uniformity issues). Conversely, suppose that (ii) fails. Care-
fully negating all the quantifiers, we conclude that there exists a fixed €, > 0 such that for
any (fixed) natural number i, one can find real numbers T = T} > i, T® /1 < N = N, <
To+Yi an interval I = I, C [N;,2N;], and a phase function F = F; such that

(p+1) _ ﬁ —0 :
FI ) — o < 1/
for all (fixed) 0 < p <1iand u € [1,2], but that

1> e(TF(n/N))| > TP,
nel

But then F' = F} is a model phase function which gives a counterexample to the claim

Bla) < B. O

We will however work with the asymptotic formulation of 8 throughout this database, as it
makes the proofs somewhat cleaner.
We record the trivial bounds on 3:


https://github.com/teorth/expdb/blob/main/blueprint/src/python/bound_beta.py

Lemma 4.4 (Trivial bounds on ). For any fivzed a > 1, we have

Bla) =a—1.
For firted 0 < a < 1, we have
@
bY < B(a) <«
In particular
B(0) = 0. (4.4)

Implemented at bound_beta.py as:
trivial_beta_bound_1
trivial _beta_bound_2

Proof. Let T > 1 be unbounded, N = 7@+ T C [N,2N] an interval, and F a model
phase function.
For a > 1, the Euler-Maclaurin formula (see e.g. [277, (2.1.2)]) gives

21+iT _ N

I

nzT

N<n<2N

which gives the lower bound S(«) > o — 1; applying the Euler-Maclaurin formula for model
phase functions F' then gives the matching upper bound.
The triangle inequality bound

> e(TF(n/N)) < N

nel

gives the upper bound f(a) < a. Next, if 0 < a < 1, then from Lemma @ (and the
> 1/N-separated nature of the F(n/N) for model phase functions F', after passing to a
subsequence if necessary) that

2

/ > e(tF(n/N))| dt<TN
72T \ne[N,2N]

for N = ¢T® for ¢ a fixed small enough constant, which by the pigeonhole principle implies

that
2

D> e(tF(n/N))| dt> NY2=T?
n€e[N,2N]

for at least one t < T, giving the claim. O

As we shall see, the exponent pair conjecture is equivalent to the lower bound here being
sharp, thus it is conjectured that

ﬁ(a){a/Q, 0<a<l

a—1, a>1

Note the discontinuity at 1. Despite this, we have:

10
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Lemma 4.5 (Upper semicontinuity). S is an upper semicontinuous function.
Proof. Routine from the definition. O
We record the classical bounds on :

Lemma 4.6 (Van der Corput A process for ). If 0 < a <2/3 and h > 0 then

26(a) < max <2a—h,2h,a—h+ sup ((h’+1—a),@ (h’—if;l—o) +h’>> )

200—1<h’<h

Implemented at bound_beta.py as:
apply_van_der_corput_process_for_beta(bounds)

Proof. By definition, there exists an unbounded 7', N = T*t°(1) F' a model phase function,
and I C [N,2N] such that

> e(TF(n/N)) = TH+o),

nel

Applying [144, (2.54)] with H := T", as well as the ensuing computations to dispose of the
j < T/N? terms, one then has

7o) « N2H+ H2+ NH™Y Y | > e(T(F((n+j)/N)— F(n/N)))|

T/N2<j<H nelnl—j
and hence by the pigeonhole principle

T2(ol) « N2 H' + H2 4+ T°ONH- Y | > e(T(F((n+4)/N)— F(n/N)))]

j:Th’+o(1) nelnl—h

for some 2a — 1 < b’ < h (one can delete this term if h < 2o — 1). One_can verify that
_%g(F(u + j/N)— F(u)) is a model phase function. Thus, by Definition @, one has
e(T(F((n+ j)/N) — F(n/N))) < (T**h+o) /N)le/ (R +1=a)+o(l),
nelnl—h

and the claim follows after evaluating all terms as powers of T'. O

Proposition 4.7 (Van der Corput inequality). For any natural number k > 2 and any

a > 0, one has
1—k
5(0{) S max (a =+ T_;V’

1—a
2—k
(1—2 )a—zk_2>.

Thus for instance when k = 2 we have
1 2a—1
< - -
B(a)_max(2, 5 ),

so in particular

B =3,

11
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by Lemma , when k = 3 one has

14+ 3a 6a——1>

ﬁ(a)gmax( 53

and when k = 4 one has

10 +1 2904—2)

la) < max (29, 20

This form of upper bound of S(a) - as the maximum of a finite number of linear functions
of a - is extremely common in the literature.

Proof. Follows from [[149, Theorem 8.20]. It is also possible to prove this by induction on &
using Lemma {.6. O

Corollary 4.8 (Optimizing the van der Corput inequality). For any o > 0 one has

1— ko
< i _
Bla) < kell\?lEyaJr 2k —2

Thus for instance

1 14+3a 10a+1
sy 23 152 0221)
Proof. Let B,(a) = a+ (1 —ka)/(2¥ — 2) and
ok
U

Via a routine computation, S, (a) < B («) for @ > ), and any k& > 2. Thus, to verify
that B(a) < B(«) for 0 < a < 1/2, it suffices to just show that the same result holds for
0 < o < ;. However, for 0 < o < oy, and k > 2, we have

2k+1

0<a< <——
B [ YTy

which rearranges to give
l—a

1—k
R P e 0<a<agk>2)

ST ok 9’

which completes the proof in view of Proposition @ See Figure @ O
We can remove the role of I in the definition of 3:
Lemma 4.9. In Definition @, one can take the interval I to be [N,2N].

Proof. Suppose that o, are fixed quantities such that the bounds in Definition @ hold
just for I = [N,2N], thus whenever 7' > 1 is unbounded, N = T°+°() and F is a model

phase function one has _
e(TF(n/N)) < T/, (4.7)

N<n<2N

Our task is then to show that

Z e(TfF(n/N)) < TPt

nel

12



Classical bounds on beta(alpha)

beta(alpha)

Figure 4.1: The bounds in Proposition @ for k = 2,3,4,5, compared against the optimized
bound in Corollary §.§.

under the same hypotheses. Similarly with & = 1 we can use the proof of Lemma @ to
obtain B > 1/2, and we are again done. Thus we may assume that o < 1.

For n € [N,2N], the constraint n € I is equivalent to restricting F'(n/N) to an interval J of
length O(1), which we can also smooth out by O(1/N) without affecting the sum. Applying
a Fourier expansion and the triangle inequality, we can thus bound the left-hand side by

N1+o(1)

< Tol) 4 / " e(TF(n/N)—tF(n/N))
_N1+o(1) ne[N,2N]

dt
1+t

Since & > 1, we have [t —T| < T/2 for all ¢ in the integral if T is large enough. From
hypothesis (@) (with T replaced by T — t)we have

> e(TF(n/N)—tF(n/N))| < T7W
ne[N,2N]

for all such ¢, and the claim follows. See also Sargos [258, p 310]. O

Lemma 4.10 (Reflection). For any 0 < o < 1, we have B(a) — ¢ = B(1 —a) — 152, or
equivalently B(1 — o) = 2 —a + B(a).

TODO: implement this in python
Proof. This is the van der Corput B-process. See e.g., [129, p 370]. O

4.3 Known bounds on f

We remark that this corollary also follows from Proposition .
Theorem 4.11 (1989 Watt bound). For any 3/7 < a < 1/2, one has

89 1
<— +-a
Bla) < 555 3

Recorded in literature.py as:
add_beta_bound_watt_1989()

13
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Classical bounds on beta(alpha)

beta(alpha)

0.00 025 050 075 100 125 150 175 200
alpha

Figure 4.2: The bound in Corollary @, compared against the trivial upper and lower bounds
in Lemma .

Proof. See [293, Theorem 5]. O
Theorem 4.12 (1991 Huxley—Kolesnik bound). For any 2/5 < o < 1/2 one has

1+8x 11+ 1120 1+ 17a
< .
B<a)*max( 22 ' 18 ' 22 )

Recorded in literature.py as:
add_beta_bound_huxley_kolesnik_1991()

Proof. See [132, Theorem 3]. Note that the paper contains an error, however this result was
reinstated with the corrections given in [133]. O

Theorem 4.13 (1993 Huxley bound). For any 0 < « < 49/114, one has

Bla) < (E+l £+Ea>
W= G T20% 120 T 20

Furthermore, for any 49/114 < o < 1/2, one has

89 1
< — —Q.
fla) < 575+ 3

Recorded in literature.py as:
add_beta_bound_huxley_1993()

Proof. See [12§, Theorem 1]. O

14
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Theorem 4.14 (Second 1993 Huxley bound). If 0 < a < 1, then B(«) is bounded by

1 87
- < —
146(13+ ) for a < 7

1 87 423
— (11 + 191 —<a< —
opq 11+ 191a) for oo < @ < oo
1 423 227
Togz (59 9080) for f5o0 S @ < G5y
1 227 12
—(29 + 173 —<a< —
350 20 173a) for Gy S < o
1 12
— 1 — < a<l.
128( +103«) for T a<
Recorded in literature.py as:
add_beta_bound_huxley_1993_3()
Proof. See [128, Theorem 3]. O

Theorem 4.15 (1995 Sargos bound). /258, Théoréme 2.4, Lemme 2.6] For any 0 < a < 1,
one has

31-4a) 7 1 1-4a
< _ -, -0 —
B(a) < max (onr 0 3v3® 5 ,O)
and

1—-4 1 1—-4
B(a) < max <a+ @5 — a,()).

Tt e
14 6 73 6

Recorded in literature.py as:

add_beta_bound_sargos_1995()

Theorem 4.16 (1996 Huxley table). One can bound B(a) by By(c) for X < a <Y for
By, X, Y given by Tables B, E

Recorded in literature.py as:
add_beta_bound_huxley_1996 ()

add_beta_bound_huxley_1996_2()

Proof. See [129, Table 17.1, Table 19.2] (and also [279, §3.0.2, 3.0.3] for some verification of
the technical conditions on the phase). O

Theorem 4.17 (2001 Huxley—Kolesnik bound). For any 2/5 < o < 1/2 one has

ﬂ(a)<max(l+ﬁa iJr@a nggoz)
- 80 120 ' 32 160 740 40 '

Recorded in literature.py as:

add_beta_bound_huxley_kolesnik_2001()

Proof. See [134, Theorem 1]. O
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Table 4.1: Huxley table 17.1.

Bo(a) X Y
4+39a 7 517 _

60 12 e73 = 0.5922 ...
294+42c 65 7

120 114 75 = 0.5833 ...
894285« 49 65 _

570 114 114 = 0.5701 ...
11478 5 49 _

120 12 112 = 0.4298 ...
13421 356 5 _

60 873 15 = 0.4166 ...
L1030 2 e —

128 31 73 — 0.4546 ...
29+173cx 227 12 _

TR0 go1 12 =0.3870...
89+908« 423 227 _

1282 1295 601 0.3777...
11+191a 87 o

244 275 1505 — 0.3266 ...
13+94a 1424 87 _

146 4747 275 0.3163 ...
44+235c 120 1424 _

264 119 T = 0.2999...
49+1351c 967 120 _

1614 3428 oo = 0.2863 ...
29+464 199 967 __

600 716 105 = 0.2820...
89+2243« 19 199 _
S0 5 199 — 2779 ...
114428« 161 19 _

492 646 77 = 0.2567 ...
134253 2848 __ 161 _

S | Torrg = 0-2339... | ggp = 0.2492..

Theorem 4.18 (2002 Robert—Sargos bound). For any o > 0 one has

1—da  7(1—4a)
13 7 13 '

B(a) < max (a +

Recorded in literature.py as:
add_beta_bound_robert_sargos_2002()

Proof. See [254, Theorem 1].
Theorem 4.19 (Sargos 2003 bound). For any « > 0 one has

1—-8a  95(1—8a)
204 204

B(a) < max (a +

and

B(a) < max (a + 7(1—9¢a) _1001(1 . 9@))

2640 2640

Recorded in literature.py as:
add_beta_bound_sargos_2003()

Proof. See [259, Theorems 3, 4].

Theorem 4.20 (Huxley bound). For any 1/3 < a < 1/2, one has

37459« 63 + 449(1)
170 7 690 '

e s
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Table 4.2: Huxley table 19.2.

By () X Y
5042860 106522 T = 0.5668....
FECAS VTP S5 190822 — 0.4331 ...
1919177 166949;’973 L % =0.4288....
118974884420 158507 B993TL = 0.4243 ...
% % ;ggggz =0.4222 ...
491436240 143 208 —0.4122...
569410530 g7 5 =0.4097 ...
1273124840 £8082. 30T = 0.4034 ...
L1030 12 08082 — 0.4013....
2041730 227 —0.3777 ... 2 =10.3870...

Recorded in literature.py as:
add_beta_bound_huxley_2005()

Proof. See [131, Proposition 1, Theorem 1]. O
Theorem 4.21 (2016 Robert bound). For any 0 < a < 3/7 one has

Bla) < ( n 1—4a 11 )
! nax (o + ———, —a.
= e 12 12
Recorded in literature.py as:
add_beta_bound_robert_2016()
Proof. See [251], Theorem 1]. O

Theorem 4.22 (Second 2016 Robert bound). If k>4 and o > —(1 — ka)fk;_lg then

1—ka 1
2(k — 1)(1@*2)’_2(%1)(%2))‘

Bla) < o + max(

Recorded in literature.py as:
add_beta_bound_robert_2016_2(Constants.BETA_TRUNCATION)

Proof. See [252, Theorem 10]. O

Theorem 4.23 (2017 Heath-Brown bound). For any a > 0 and any natural number k > 3
one has

B(a)<a+max( 1—ka a 2 2(1—ka)>

k(k—1)" k(k—1) k(k—1) k2(k—1)

Recorded in literature.py as:
add_beta_bound_heath_brown_2017 (Constants.BETA_TRUNCATION)
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Best bounds on betalalpha)

—— Computed best upper bound on beta
wan der Corput bound on beta

beta(alpha)

alpha

Figure 4.3: The bounds in Proposition @, compared against the best-known bound on
Bla).

Proof. See [113, Theorem 1]. O

Theorem 4.24 (2017 Bourgain bound). One has

2 n 1 1 ca< 5
9 3% 312
1 2 5 3
<{ =442, 2 <=
flaysyrze peesy
13 n 1 3 ca< 1
g4 2% 7S%=q
Recorded in literature.py as:
add_beta_bound_bourgain_2017()
Proof. See [23, Equation (3.18)]. O

Theorem 4.25 (2020 Heath-Brown bound). [58, Theorem 11.2] If « is fized with 1 <
da—1<2 (ie,1/2<a<3/4), then

=]

TODO: implement this in python

Theorem 4.26 (Combined bound). For X < a <Y, one has f(a) < By(«), where By, X, Y
are given by Table @

Proof. See [279, Table 3]. O

Recorded in literature.py as:
add_beta_bound_trudgian_yang_2024()
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Table 4.3: Bounds on f(«) of the form (o) < fy(a), (X <a<Y)

ﬁo () X Y Reference

24+ 38, 0 298 =0.2339... | Exponent pair A%($3,2%)
% o | BB | $Bl=02492.. Theorem 116

492 + }gg % Q = 0.2567 ... Theorem {
2706 + 3332 5 % =0.2779 ... Theorem {

600 —|— % % =0.2820... Theorem {
1614 + }gﬁ % % = 0.2863 ... Theorem

66 + géi % % =0.2986 ... Theorem .16

194 + }gz % égg =0.3032... Exponent pair A(é—‘?’7 %)
11736 fa | 18 o= = 0.3163 ... Theorem {

st iaa | L | 222 =0.32066... Theorem
%32 e T | 21 =0.3777... Theorem {

280 + é;g % Q =0.3870... Theorem

3% Tos = % = 0.3942.. Theorem {1.16
1o+ 32la | 2508 | 283U —(0.4049... | Exponent pair D(§, 2%)
5500 T 3800® | Tesiss | 349 = 0-4097 .. Theorem
e+ 32820 | 1B 203 —0.4122... Theorem
113130 + 183942 % % =0.4143 ... Theorem

3430 o2 | 55 =0.4166 ... Theorem

% + %oz 1—52 % =0.4285 ... Theorem

1—2 + %a % % Theorem
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Chapter 5

Exponent pairs

Definition 5.1 (Exponent pair). An exponent pair is a (fized) element (k,¢) of the triangle
{(k,f) eR?*:0<k<1/2<l<1,k+£<1} (5.1)

with the following property: for all model phase functions F, allT > N > 1, and all intervals
I C [N,2N], one has
> e(TF(n/N)) < (T/N)k+ot) Nt+ol) (5.2)

nel

whenever T > N > 1, I is an interval in [N,2N], and F € U.

Implemented at exponent_pair.py as:
Exp_pair

One can formulate the notion of an exponent pair without recourse to asymptotic notation:

Lemma 5.2 (Non-asymptotic definition of exponent pair). Let (k,£) be a fized element of
(b.1). Then the following are equivalent:

(i) (k,0) is an exponent pair.

(ii) For every (fized) € > 0 there exist (fized) C, P > Q_such that, whenever T > N > 1,
I C [N,2N], and F is a phase function obeying (@) for all (fired) 0 < p < P and
€ [1,2], then
1> e(TF(n/N))| < C(T/N)k+e Nt

nel

The proof of this lemma is similar to that of Lemma @ and is omitted.
Exponent pairs are closely related to the function 8 from the previous chapter:

Lemma 5.3 (Duality between exponent pairs and ). Let (k,£) be in the triangle (EI)
Then the following are equivalent:

(i) (k,0) is an exponent pair.

(ii) Bla) <k+ ({l—k)a forall0 < a < 1.
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Implemented at exponent_pair.py as:
exponent_pairs_to_beta_bounds ()
beta_bounds_to_exponent_pairs()

Thus exponent pairs are dual to the convex hull of the graph of 5. But § is not known to be
convex, so one could have bounds on 8 that do not directly correspond to exponent pairs.
We remark that in the case £ — k > 1/2, one only needs to check the case 0 < o < 1/2 in
(ii) above, since the remaining regime 1/2 < o < 1 then follows from Lemma M and some
algebra. Conversely, if £ — k < 1/2, one only needs to check the region 1/2 < o < 1.

Proof. 1f (i) holds, then for any 0 < o < 1, any unbounded 7' > 1, any N = T**+°(1) "interval
I C [N,2N], and model phase function F', we have from (i) that

Z e(TF(n/N)) < (T/N)k+o(1)Né+o(1) — Tk+{—k)ato(1)

nel

From Deﬁnitiong we conclude that f(a) < k+ (¢ — k)a. Also since (k, ¢) lies in (@), we
see from (@), (1.6) that we also have (o) < k+ (£ — k)a for o =0, 1.
Now suppose that (ii) holds. Let F,T, N, I be as in Definition p.1. By underspill it suffices
to show that

Z B(TF(’I’L/N)) < (T/N>k+€+o(1)N€+s+o(1)

nel
for any fixed e > 0. We may assume that T < N'/¢*1 since the claim follows from the trivial
bound - . e(T'F(n/N)) < N otherwise. We may also assume that N is unbounded, since
the claim is clear for N bounded; this forces T' to be unbounded as well.
By passing to a subsequence we may assume that N = 7% for some fixed 0 < o < 1.
By Definition we then have

Z e(TF(n/N)) <« THe)+ol)

nel

and hence by (ii)
> e(TF(n/N)) < (T/N)ktot) Nt

nel

giving the claim. O

Corollary 5.4 (Exponent pairs closed and convex). The set of exponent pairs is closed and
convexr.

Proof. Immediate from Lemma @ O
Proposition 5.5 (Trivial exponent pairs). (0,1) and (1/2,1/2) are exponent pairs.

Implemented at exponent_pair.py as:
trivial_exp_pair

Proof. Immediate from Lemma @ and Lemma Q O

Conjecture 5.6 (Exponent pairs conjecture). (0,1/2) is an exponent pair. (Equivalently,
by Corollary and Proposition , every point in the triangle (b.1)) is an exponent pair.)
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Implemented at exponent_pair.py as:
exponent_pair_conjecture

Lemma 5.7. The exponent pair conjecture is equivalent to 8(a) = /2 holding true for all
0<a<l.
Proof. Clear from Lemma @ and Lemma @ O

Proposition 5.8 (Van der Corput A-process). If (k,£) is an exponent pair, then so is

k / 1
A . ———
(k 6) <2k+2’2k+2+2>

Recorded in literature.py as:
A_transform_hypothesis

Proof. See [144, Lemma 2.8]. It can also be deduced from Lemma @ and Lemma @ O

Proposition 5.9 (Van der Corput B-process). If (k,{) is an exponent pair, then so is

Bk, ) == (6—%,k+%>.

Recorded in literature.py as:
B_transform_hypothesis

Proof. See [144, Lemma 2.9]. Alternatively, this can be derived from Lemma m and
Lemma p.3. O
5.1 Known exponent pairs

Proposition 5.10 (Classical van der Corput exponent pairs). For any natural number
k>2,

1 E—1
AF2B(0,1) = <2k_2,1—2k_2)

is an exponent pair. In particular,
<1 1) (1 2) ( 1 11)
2°2)°\6°3/)\14" 14

Proof. Follows by induction from Proposition @ and Proposition @; alternatively, follows
from (and is equivalent to) Corollary and Lemma p.3. O

are exponent pairs.

Derived in derived.py as:
van_der_corput_pair()
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Corollary 5.11 (Additional exponent pairs). The pairs

)8 G2 (b
31731/ 7\11711)°\7°7/)7\24724) "\ 18718
are all exponent pairs.

Derived in derived.py as:
best_proof_of_exponent_pair(frac(13, 31), frac(16, 31))
best_proof_of_exponent_pair(frac(4, 11), frac(6, 11))
best_proof_of_exponent_pair(frac(2, 7), frac(4, 7))
best_proof_of_exponent_pair(frac(5, 24), frac(15, 24))
best_proof_of_exponent_pair(frac(4, 18), frac(11l, 18))

Proof. We have (2/7,4/7) = BA(1/6,2/3), (4/18,11/18) = BABA(1/6,2/3), and (13/31, 16/31) =
BAB?A%(1/6,2/3), so these cases follow from Propositions .10, @ Finally, (4/11,6/11)
is a convex combination of (1/2,1/2) and (2/7,4/7), and (5/24,15/24) is a_convex combi-
nation of (1/6,2/3) and (4/18,11/18), so these cases follow from Corollary @ O

Theorem 5.12 (Exponent pairs on the line of symmetry). (k,k+1/2) is an exponent pair
for

(i) k=9/56 134, Theorem 1];
(i) k =89/560 /293, Theorem 6];
(iii) k= 17/108 [132, p. 467];
(iv) k = 89/570 [128, p. 40];

(v) k=32/205 [131, Theorem 1];
(vi) k =13/84 [23, p. 206].

Recorded in literature.py as:
add_literature_exponent_pairs()

Theorem 5.13 (Exponent pairs from the Bombieri-Iwaniec method). The following pairs
are exponent pairs:

(i) (&.33) 1134];

(i) (D239, 29307 [129, Table 17.5];

(

(iti) (&2, 499 [258, p. 285];
(
(31656

(iv)
(v)

(vi) (SiS2ar. B089955) [134], |129, Table 19.2], [254)].

81
25, 522 [258, p. 286];
1959

21656 31658) 1258, p. 286];

Recorded in literature.py as:
add_literature_exponent_pairs()
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Theorem 5.14 (Exponent pairs from derivative tests). (k,1—mk) is an ezponent pair when
(i) k=1 and m =3 [254, Theorem 1];
(ii) k= 557 and m =7 [259, p. 231];
(iii) k= 1i5 and m =8 [249, (1.1)];
(iv) k= 5t and m = 8 [259, p. 231];
(v) k=== and m =9 [259, p. 251];
(vi) k= g5 and m =9 [253];
(vii) k= 545 and m =9 (249, (1.2)];
(viii) k= 55z and m =9 [249, (1.1)];
(ir) k= 5= and m =10 /250, Théoréme 2].

Recorded in literature.py as:
add_literature_exponent_pairs()

Theorem 5.15 (Huxley sequence). [129, Table 17.3] For any integer m > 1, the pair

( 169 1— 169 712m + 1577)
1424 x 2m — 338’ 1424 x 2™ — 338 712

is an exponent pair.

Recorded in literature.py as:
add_huxley_exponent_pairs(Constants.EXP_PAIR_TRUNCATION)

Theorem 5.16 (1996 Heath-Brown sequence). [277, (6.17.4)] For any integer m > 3, the
pair

1 1
1—
(25m2(m —2)logm’ " 25m? logm>
18 an erponent pasir.

(Currently not implemented in python due to the irrational exponents.)

Theorem 5.17 (2017 Heath-Brown sequence). [113, Theorem 2] For any integer m > 3,
the pair

(P Gm) += <(

is an exponent pair.

2 3m —2
m_1)2(m+2>’1_m<m_1)(m+2)>

Recorded in literature.py as:
add_heath_brown_exponent_pairs(Constants.EXP_PAIR_TRUNCATION)

Proof. This follows from Theorem and Lemma @, after some computation. O

24


https://github.com/teorth/expdb/blob/main/blueprint/src/python/literature.py
https://github.com/teorth/expdb/blob/main/blueprint/src/python/literature.py
https://github.com/teorth/expdb/blob/main/blueprint/src/python/literature.py

Theorem 5.18 (Sargos C-process). [259, Theorem 5] If (k,£) is an exponent pair, then so

s
k 11(1+4k) + ¢
12(1 + 4k)™  12(1 + 4k)

Recorded in literature.py as:
C_transform_hypothesis

The following process is not quite a process to automatically transform one exponent pair
to another, but it often achieves this in practice:

Theorem 5.19 (Sargos D-process). [25§, Theorem 7.1] If (k,£) is an exponent pair, then
one has

1 2
B(a) < max (kl + aly — ky), 5 + §a>

for all 0 < a <1, where (ky,¢,) = D(k,£) is the pair

Dk ) = Sk+6+4+2 29k 4214+ 10
T\ 8(5k+30+2) 8(5k + 3¢+ 2)

Recorded in literature.py as:
D_transform_hypothesis

Theorem 5.20. /279, Lemma 1.1] The following are exponent pairs:

(i )__(4%Q 35m1)
DR\ 384637 51284

18 593
(ky, C,)
2:2) (199 796)
k ( 2779 58699)
5t 8033 76066
5 7955
(kg 0y) : ( ).

Recorded in literature.py as:
add_literature_exponent_pairs()

Proof. For the pair (18/199,593/796), apply Theorem .19 with the pair (13/84,55/84) from
Theorem p.179 to conclude that

Bla) < 18/199 + 5210,/796

for all 0 < @ < 1/2, from which the claim follows from Lemma @ (and Lemma M . The
remaining pairs come from Lemma and the remaining components of Theorem { O

Corollary 5.21 (Set of exponent pairs). [279, Theorem 1.3] Let H be the convex hull (0,1),
(1/2,1/2), and of (k, E ) for n € Z, where (ko,fo) = 13/84, (k,,,¢,,) forn =1,2,3,4 is
defined by Theorem 5.20, (k,,0,,) = Ak, 4,%,_4) for 5 <n <8, (kn,Kn) = (P, 4qy,) for
n>9 (with (p,,q,) deﬁned by Theorem ) and (k_,,0_,) = B(k,,t,) forn > 0. Then
all elements of H are exponent pairs.
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Indeed, as of [279] the set H represented all known exponent pairs, until Theorem
below.

Proof. Clear from Corollary @, Proposition @, , and Theorem . O
The following new exponent pairs were derived using this database:

Theorem 5.22 (New exponent pairs). The following are exponent pairs:

( 89 997) (652397 7599781) (10769 609317) ( 89 15327)
128271282/ 9713986 9713986 ) 351096 702192 )’ 3478717390 )

Derived in derived.py as:

prove_exponent_pair(frac(89,1282), frac(997,1282))
prove_exponent_pair(frac(652397,9713986), frac(7599781,9713986))
prove_exponent_pair(frac(10769,351096), frac(609317,702192))
prove_exponent_pair(frac(89,3478), frac(15327,17390))

Proof. Using the bounds on §(«) collected in Table EI, one may verify (after a tedious
calculation) that for each of the claimed exponent pairs (k, ¢) in the lemma statement, one
has B(a) < k+ ({ — k)a for 0 < a < 1/2. The result then follows from Lemma m and
Lemma E

O

Furthermore, more exponent pairs can be derived upon incorporating [Lemma 4.4.

Theorem 5.23 (Cushing (2025) exponent pairs). The following are exponent pairs:

(311 3799) ( 80219 515638)
482274822 )’ 12988787 649439 )

Implemented at lexzamples.py as:
beta_bound_examples2()

In summary, the current set of known exponent pairs is the convex hull with vertices (0, 1),
(1/2,1/2) and the points (k,,, ¢,,) for n € Z that are recorded in Table EI

n’ n
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Convex hull of known exponent pairs (k, £)

Figure 5.1: The convex hull of known exponent pairs, whose vertices (k,,,¥,,) are given in
Table f.1|.
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Table 5.1: Bounds on f(«)

B(«) bound o range Reference
1 1
%—FZCM O<o¢<1 Theoremwithk:S
1 1
2—304 . 1 <a % Theorem with k=5
89 2243 390 199
i Ruiss i Tabl
e
Bl = o2 T
66 264" 419 =™ 9579 able 1]
1389 B BB [ i (L, 6L 1355
217 " 1736 2579 = ¢ = 841245 P PO 17 1736” — 7 \R4" 84
Exponent pair (72371 7280013)
2371 52200 | 251324 _ 861006 5742 3;31 13905 345640
13205 69128 | 841245 = ¢ 2811205
= A(=22 d Th d
13 47 861996 87 SR
= 42 201990 o0 Tabl
T N
[ B = < 0
YV 24440‘ 975 = “ < 1295 Table 1]
89 45 423 297
Rt 7 < -
1282 641" 1295 =% < 6ol Table .3
Exponent pair ( 715 7955)
. 715 7955
715 | 3620 27 2 P P {10238 10233
10238 © 5119 601 601 C heorem
29 173 297 12
L Ll = Tabl
20 +120830a — - <153018 el
e L 28 Tabl
32 193° 31 =" 3395 able [13
18 51 1508 _ 62831 Exponent pair (L5, 2%3) _ (13 5,
18 521 1508 . 18 593, 13 55
199 " 796 3825 = ¢~ 155153 P Pl {799 706 Y
569 1053 62831 _ 143 Toble [i]
2500~ 2800 155158 — " 349
— 4= Z<a<s 24
%g + i;)a 132 <a< Z Theorem
1
— —Q — < < — Th 1.24
84+2a 7_04_2 eorem
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Table 5.2: Vertices of the convex hull of known exponent pairs.

n (k,, 0,) Reference
13 55
el 23, p.
0 (84,84) bd, p. 307
1 (ﬁ, @> heorem 5.20
38463’ 51284
18 593
2 —, =
(1997796> eorem H
3 (w, @> heorem 5.20
38033’ 76066
89 997
4 —
(1282’1282) corem 9
Sl 5T
) (M, @) heorem 5.2
80219 515638
h 23
6 (1298878’649439) corem 9
9 1461
7 - Alky, l
(217’1736) (k2. &)
3 (351005 702133
351096’ 702192
89 15327
9 —
(3478 17390) ——
(pn74? qn74)? Where
>
n > 10 ( - 9 ) 3 — 2 heorem 5.1
P @) =\ " 12(m 1 2)" ~ m(m — D)(m + 2)
n<0 B(k_,,(_,) Proposition @
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Chapter 6

Growth exponents for the
Riemann zeta function

Definition 6.1 (Growth rate of zeta). For any fired o € R, let u(o) denote the least possible
(fized) exponent for which one has the bound

|¢(o +it)| < [t|H(@)+o)
for all unbounded t.

One can check that for each o, the set of possible candidates for p(o) is closed (by underspill),
non-empty, and bounded from below, so that u(co) is well-defined as a real number. An
equivalent definition without asymptotic notation, is that u(o) is the least real number such
that for every € > 0 there exists C' > 0 such that

[C(o +at)] < Cle|rto+e
for all ¢ with |t| > C; equivalently, one has

I it
(o) = limsup oglslo Tl o +it)]
Jt|—o00 log ||

Implemented at bound_mu.py as:
Bound_mu

Lemma 6.2 (Trivial bound). One has p(c) =0 for all o > 1.

Implemented at pound_mu.py as:
apply_trivial_mu_bound()

Proof. Immediate from the absolute convergence of the Dirichlet series for both ((s) and
1/¢(s); see e.g., [144, Theorem 1.9]. O

Lemma 6.3 (Convexity). p is convez.

Implemented at pound_mu.py as:
bound_mu_convexity()
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Proof. Immediate from the Phragmén—Lindelof principle; see e.g., [144, §A.8]. O
Lemma 6.4 (Functional equation). One has u(1—o0) = p(o)+o0—1/2 for all0 < o < 1/2.

Implemented at pound_mu.py as:
apply_functional_equation()

Proof. Immediate from the functional equation for ¢ and asymptotics of the Gamma func-
tion; see e.g., [144, (1.23), (1.25)]. O

Lemma 6.5 (Left of critical strip). One has u(o) =1/2 — o for o <0.

Implemented at bound_mu.py as:

apply_trivial_mu_bound()

Proof. Immediate from Lemmas @, @ O
Lemma 6.6 (Convexity bounds). One has max(0,1/2—c) < u(o) < (1—0)/2 for0 < o < 1.
Implemented at pound_mu.py as:

apply_trivial_mu_bound()

Proof. Immediate from Lemma @, Lemma @, and Lemma @ O

6.1 Connection with exponent pairs and dual exponent
pairs

Lemma 6.7 (Connection with dual exponent pairs). For any 1/2 < o <1, one has

o)< sup Bla) - ao.
0<a<1/2

Proof. Let t be unbounded. From the Riemann—Siegel formula (see [144, Theorem 4.1]) one
has

. 1 Y 1
Clotiy<| Y —|+I27 ) Y =+ 0.

n<y\/t/2m n<y\/t/2m

From dyadic decomposition and Definition @ (and Lemma @) one has for any fixed £ > 0
that

Z L <« |t|suPsga31/2 Bla)—aoc+o(1)
notit ?

te<n<\/t/2m

while from the triangle inequality one has the crude bound

1
> o <M

n<te
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Combining the bounds and using underspill, we conclude that

Z L &K [t Posasi/2 B(a)—ao+o(1)
n0'+it .

n<\/t/2m
A similar argument gives

Z 1 < |t|suP0gag1/2 Bla)—a(l—o)+o(1)

nl—o—it
n<y/t/2mw
Since 0 > 1/2 and a < 1/2, one has (1/2 —0) —a(1 — o) < —ao, and hence
C(U + Zt) <« |t|suPogag1/2 Bla)—ao+o(1)

giving the claim. O

We remark that this inequality is morally an equality (indeed, it would be if one would
restrict the model phases in Definition to purely the logarithmic phase u + logu).
The following form of Lemma is convenient for applications:

Corollary 6.8 (Exponent pairs and u). If (k,£) is an exponent pair, then
pl—k) < k.
Implemented at pound_mu.py as:
exponent_pair_to_mu_bound(exp_pair)
Proof. Immediate from Lemma @ and Lemma @ See also [144, (7.57)]. O
Conjecture 6.9 (Lindelof hypothesis). One has pu(1/2) = 0.

Implemented at pound_mu.py as:
bound_mu_Lindelof ()

Lemma 6.10. The exponent pair conjecture implies the Lindelof hypothesis.
Proof. Immediate from Corollary @ O

Proposition 6.11 (Conjectured value of ). We have the lower bound

(o) > max (O, % — 0) (6.1)

for all o € R, and equality holds everywhere in (@) if and only if the Lindelof hypothesis
holds.

We remark that this proposition explains why there are no further lower bounds on y in the
literature beyond (ﬂ), all the remaining known results revolve around upper bounds.
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Proof. Clearly equality in (EI) implies the Lindelof hypothesis, while from the trivial bounds
in Propositions @, @ and convexity (Lemma [.6) one we see that the Lindeldf hypothesis
implies the upper bound

(o) < max (O, % — o*)

for all . So it suffices to establish the lower bound unconditionally. By the functional
equation (Proposition @) it suffices to do this for o > 1/2; in fact by convexity it suffices
to establish the claim when 1/2 < ¢ < 1. In this regime, the L? mean value theorem (see
(144, Theorem 1.11]) gives

T
/ Clo+ )2 dt =T

0
for large T', giving the claim. O

6.2 Known bounds on p

Theorem 6.12 (Historical bounds). The upper bounds on (o) given by Table are
known.

TODO: supplement as many of these citations as possible with derivations from
other exponents and relations in the database

Recorded in literature.py as:

add_literature_bounds_mu()

Some additional bounds are recorded in [279] by combining various exponential sum esti-
mates.

Theorem 6.13. [279, Theorems 2.4-2.6] We have

(31— 360)/84, 3 <0< {5 =05734...,
(220633 — 2513240) /620612, s <0 < 23 =0.6545 ...,
(1333 — 15080) /3825, Bl <o < 33 =0.6986...,
(405 — 4540) /1202, Pt <o < 32 =0.7071...,

o) < (49318855 — 529382160) /170145110, 2620 < o < 22209 — 0.7552 ...,
(471957 — 5026480 /1682490, 22209 <o < 1283 =0.8001 ...,
(2841 — 30160) /10316, 1389 <o < 123185 = 0.8255 ...,
(859 — 9080) /3214, [Ty <0 < 53558 = 0.8305...,
5(8707 — 90670) /180277, 31508 < 0 < 355 = 0.8892...,
(29 — 300) /130, W<o<

Furthermore, for 1/2 < o < 1, we have

2
(o) < 173\50(1 —0)3? =0.4865 ... (1 — 0)?/2,

and

117955
<o<l1.
118272
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Table 6.1: Historical bounds on u(c) for 1/2 < ¢ < 1, and the exponent pair generating

them (if applicable).

Reference

Results

Exponent pair

Hardy-Littlewood (1923) [97]

u(1/2) < 1/6

(1/6,2/3)

Walfisz (1924) [287]

1(1/2) < 193/988

Titchmarsh (1932) [273]

1(1/2) < 27/164

Phillips (1933) [232]

1(1/2) < 229/1392

Titchmarsh (1942) [276]

1(1/2) < 19/116

Min (1949) [216]

1(1/2) < 15/92

Haneke (1962) [92]

u(1/2) < 6/37

Kolesnik (1973) [L70

1(1/2) < 173/1067

1(1/2) < 35/216

[170]
Kolesnik (1982) [172]
Kolesnik (1985) [173]

1(1/2) < 139/858

Bombieri-Iwaniec (1985) [1L§]

p(1/2) <9/56

(9/56,1/2 + 9/56)

Watt (1989) [293]

11(1/2) < 89/560

(89/560,1/2 + 89/560)

Huxley—Kolesnik (1991) [132]

u(1/2) < 17/108

(17/108,1/2 + 17/108)

1(1/2) < 89/570

(89/570,1/2 + 89/570)

Huxley (1993) [12§]
Huxley (1996) [I129]

11(1934/3655) < 6299,/43860

Sargos (2003) [259]

[1(49/51) < 1/204, 11(361/370) < 1/370

Huxley (2005) [131]

1(1/2) < 32/205

(32/205,1/2 + 32/205)

Lelechenko (2014) [177]

(1(3/5) < 1409/12170, u(4/5) < 3/71

Bourgain (2017) [23]

1(1/2) < 13/84

(13/84,1/2 + 13/84)

Heath-Brown (2017) [113]

plo) <

BV15(1—0)32 for1/2< 0 <1

Heath-Brown (2020) [5§]

63
1(11/15) < 1/15

Recorded in literature.py as:
add_literature_bounds_mu()

Additionally, the series of exponent pairs in imply the following bounds on

u(o) close to o = 1.

Theorem 6.14 (Heath-Brown [113] p bounds). For any integer k > 3, one has

Bk
H k(k—1

3k+2 2
)2(k+2)> S UESUET,

Proof. Follows from substituting into (@)
The new exponent pairs in may be used to obtain shar

per bounds on p(o) in
certain ranges. The current sharpest bounds on (o) are recorded in and graphed

in Eiéure 6.1.

Derived in derived.py as:
compute_best_mu_bound()
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Table 6.2: Current sharpest known bound on p(o) for 1/2 <o <1

Upper bound on p(o) Range of o Reference
(o) < 2711 - %0 % <o< 18583282552 = 0.5734...
plo) < 2382?3 ~ 165258135130 18583282552 =o= % = 06545 ..
M(J)S%—%a %gag%zo.w%m
M(U)Sé%—%o %SUS%ZO.?OS?...
u(o) < % — %U é% <o< % =0.7234... Ifheorem 5.21 k]orollary 6.d
ulo) < % — %a % <o< % =0.7322... h“heorem 5.23|, borollary 6.§
(o) < ;2;:;3 — ;i;iga % <o< %22 = 0.8001 ... ITheorem 5.2ﬂ7 borollary 6.d
(o) < % - %a % <o< ‘:i;gg = 0.8370...
(o) < % — %0 % <o< %;lé = 0.8557 ... Ifheorem 5.21 k]orollary G.Q
w(o) < % - %a % <o< % =0.9233... Theorem 5.22, [Theorem 6.14

(o) < Mty 4 (1= A gy g

= =12+ 2)

A= (UnJrl - 0)/(Un+1 - On)

n

Un S g S 0n+1

3n? —3n+2
n(n—1)2(n+2)’

=1— (n

> 7)

heorem 6.14

6.3 Connection to the Riemann hypothesis

It is well known that the Riemann hypothesis implies the Lindeldf hypothesis. Here is a
sharper version, essentially due to Backlund [2]:

Lemma 6.15 (Growth exponent and zeroes). Let 1/2 < o, < 1 be fized. Then the assertion
w(oy) = 0 is equivalent to the assertion that for any fized € > 0 and unbounded T > 0, the
number of zeroes o + it of the zeta function with o > oq+¢€ and T <t <T +1 is o(logT).

Proof. This is a routine adaptation of Theorem 2 of https://terrytao.wordpress.com/

2015/03/01.
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Figure 6.1: Current sharpest known bound on p(o) for 1/2 <o < 1.
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Chapter 7

Large value estimates

The theory of zero density estimates for the Riemann zeta function (and other L-functions)
rests on the study of what will be called large value patterns in this blueprint.

Definition 7.1 (Large value pattern). A large value pattern is a tuple (N, T, V', (a,,) ey 2n: /s W),
where N > 1 and T,V > 0 are real numbers, a,, is a 1-bounded sequence on [N,2N|, J is
an interval of length T', and W is a 1-separated subset of J such that

Z a,n >V (7.1)

ne[N,2N]

forallt e W.
A Zeta large value pattern is a large value pattern in which J = [T,2T] and a,, = 1;(n) for
some interval I C [N,2N].

The choice of interval J is not too important for a large value pattern, since one can translate
J and W by any shift ¢, if we also modulate the coefficients a, by n'f to compensate.
However, this modulation freedom is not available for zeta large value patterns, as it destroys
the form a,, = 1;(n) of the coefficients. The cardinality |W| of W is traditionally called R
in the literature.

It is common in the literature to relax the 1-boundedness hypothesis on a,, slightly, for in-
stance to a,, < T°Y), but this does not significantly affect the analysis here. Similarly, the
1-separation hypothesis is sometimes strengthened slightly to a A-separation hypothesis for
some A = T°1) but again this does not make much difference. For some estimates, the uni-
form bound on a,, can be relaxed to an > hypothesis Y €[N 2N] la,,|> < N (and this second
moment is traditionally called G in the literature), but we will not study such relaxations
systematically here, as they are less relevant for the theory of zero density estimates.

Definition 7.2 (Large value exponent). Let 1/2 < o0 < 1 and 7 > 0 be fized. We define
LV(o,7) to be the least fized quantity for which the following claim is true: whenever
(N, T,V (ap)nein anys I W) ds a large value pattern with N > 1 unbounded, T' = N7He),
and V = Nt then,

|W| & NLV(G’,T)‘FO(I)‘

Implemented at large_values.py as:
Large_Value_Estimate
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One can check that the set of possible candidates for LV (o, 7) is closed (by underspill),
non-empty, and bounded from below, so LV (a, 7) is well-defined as a real number. As usual,
we have an equivalent non-asymptotic definition:

Lemma 7.3 (Asymptotic form of large value exponent). Let 1/2 <o <1,7>0, and p >0
be fired. Then the following are equivalent:

(i) LV(o,7) < p.

(ii) For every (fized) € > 0 there exists C,6 > 0 such that if (N, T,V (a,)nein 2ny: I W)

is a large value pattern with N > C and N™°9 < T < N™H N0 <V < N7t then
one has
|W| < CNPte,

The proof of Lemma @ is similar to that of Lemma @, and is left to the reader.

Lemma 7.4 (Basic properties). (i) (Monotonicity in o) For any T >0, o — LV(o,7) is
upper semicontinuous and monotone non-increasing.

(ii) (Huxley subdivision) For any 1/2 < o <1 and 7" > 7 one has
LV(e,7) < LV(o,7") <LV(o,7)+ 7 — 7.

In particular, T+ LV (0, 7) is Lipschitz continuous.

(ii) (T = 0 endpoint) One has LV(0,0) = 0 for all 1/2 < o < 1, and hence by (i)
0<LV(o,7) <7 foralll/2<oc<1andT>0.

TODO: implement Huxley subdivision as a way to transform a large values
estimate into a better estimate

Proof. All claims are clear except perhaps for the upper bound
LV(e,7") <LV(o,7)+ 7" —,

but this follows because any interval of length NV ' +o(1) may be subdivided into IV T/ =T+o(1)
intervals of length N7°(1) so on applying Definition to each subinterval and summing
(using Lemma b to ensure uniformity), one obtains the claim. O

Lemma 7.5 (Lower bound). For any 1/2 < ¢ < 1 and 7 > 0, one has LV(o,7) >
min(2 — 20, 7), while for o =1/2 one has LV(o,7) = 7.

Proof. In view of Lemma @(ii), it suffices to show that LV (o, 2—20) > 2—20. By definition,
it suffices to find a large value pattern (N, T,V (a,,)nein,2ns J, W) is a large value pattern
with N unbounded, V = No+te() T = N2-20+0(1) and |W| > N2-20-01),

In the endpoint case o = 1 one can achieve this by setting a,, = 1 for all n and taking
W = {0}, so now we assume that 1/2 < o < 1.

We use the probabilistic method. We divide [V, 2N] into < N2727 intervals I of length <
N?29~1 On each interval I, we choose a,, to equal some randomly chosen sign ¢; € {—1, +1},
with the €; chosen independently in I. If t = o(N>727), then )7 _ a,n " is equal to €
times a deterministic quantity ¢, ; of magnitude < N2~ (the point being that the phase
tlogn is close to constant in this range). By the Chernoff bound, we thus see that for any

such t, ZHE[N 2N a,n' will have size > NRo-1+(2-20)/2 — N7 with probability > 1. By
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linearity of expectation, we thus see that with positive probability, a >> 1 fraction of integers
t with ¢t = o(N?729) will have this property, giving the claim.

Finally, let 0 = 1/2. In this case we just take each a, to be a random sign, then by the
Chernoff bound one has for each ¢ that |35\ ,y a,n’| =< N2 with positive probability,
which by linearity of expectation as_before gives the lower bound LV(o,7) > 7, while the
upper bound is trivial from Lemma [7.4(iii). O

We conjecturally have a complete description of the function LV:
Conjecture 7.6 (Montgomery conjecture). One has

LV(o,7) <2—20 (7.2)
for all fized 1/2 < 0 <1 and 7 > 0. Equivalently (by Lemma (zz), (iti) and Lemma ,
one has LV(o,7) = min(2 — 20, 7) for all1/2 <o <1 and 7 > 0.

Implemented at large_values.py as:
montgomery_conjecture

We refer to [[19] for further discussion of this conjecture, including some counterexamples to
strong versions of the conjecture in which certain epsilon losses are omitted. In view of this
conjecture, we do not expect any further lower bounds on LV (o, 7) to be proven, and the
literature is instead focused on upper bounds.

The following application of subdivision is useful:

Lemma 7.7 (Subdivision and the Montgomery conjecture). If o is fized, and the Mont-
gomery conjecture holds for all fixred T < 1, then

LV(o,7) <max(2 — 20,7 — 7y + 2 — 20) (7.3)
for all fixred T > 0.
Proof. Clear from Lemma @(11) O

The following basic property of LV (o, 7) is extremely useful in applications:

Lemma 7.8 (Raising to a power). For any 1/2 <o <1, 7 > 0, and natural number k, one
has

LV(o,kr) < ELV(0o,T).

Implemented at large_values.py as:
raise_to_power_hypothesis()

Proof. Let (N,T,V,(a,)en2n), /W) be a large value pattern with 7' = NFEr+o(l) and
V = No+°) Raising ([.1)) the k" power, we conclude that

b nfit 2 Vk

n
ne[N* 2k N¥|
for all t € W, where b,, is the Dirichlet convolution of k copies of a,,, and thus is bounded
by N°Y) thanks to divisor bounds. Subdividing [N*,2¥N*] into k intervals of the form
[N’,2N’] for N’ < N* and applying Definition @ (with N, T,V replaced by N, T, V*) we
conclude that
|W| < NkLV(U,T)+o(1)

and the claim then follows. O
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7.1 Known upper bounds on LV(o,7)

Similarly to upper bounds on f(«), upper bounds on LV (o, 7) in the literature (also known
as large value theorems) tend to be piecewise linear functions of ¢ and 7. Such bounds
often tend to be convex initially (i.e., the maximum of several linear functions), but when
one combines multiple large value theorems together, the bound is usually neither convex
nor concave, though it often remains piecewise linear, and continuous in 7 (though jump
discontinuities in o are possible).

Listed below are some examples of such bounds.

Theorem 7.9 (L2 mean value theorem). For any fized 1/2 < o <1 and 7 > 0 one has
LV(o,7) < max(2 — 20,1+ 7 — 20).
In particular, the Montgomery conjecture (@) holds for T < 1.

Implemented at large_values.py as:
large_value_estimate_L2

Proof. Let (N,T,V,(a,)nen 2on)s W) be a large value pattern with 7' = N7y =
Ne+o) - Applying [149, Theorem 9.4] (with N, T replaced with 2N, 2T respectively and
taking a,, = 0 for n < N) one has
2

< N (T 4+ N)

—it
E a,n

N<n<2N

wivz<y®

tew
from which the result follows. O

Theorem 7.10 (Montgomery large values theorem). If1/2 < o <1 and 7 > 0 is such that

sup B(1/7) 1 <20 —1 (7.4)

1<r’'<r

(this condition is vacuous for T < 1) then the Montgomery conjecture (@) holds for this
choice of parameters.

For a stronger version of this inequality, see Lemma .

Proof. Set p := LV(0,7); we may assume without loss of generality that p > 0. Then by
Definition [.2, we can find a large value pattern (N, T,V (a,),en.2n)s > W) with N > 1

unbounded, T = N7+ v = No+ol) "and |W| = N*T°), From (EI) we have

Z Z a,n| > |W|V

teW [ne[N,2N]

hence for some 1-bounded coefficients c,

th Z a,n| > WV

teW  neg[N,2N]
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We apply the Haldsz argument. Interchanging the summations and applying Cauchy—
Schwarz, we conclude that

1/2

|W|V < N1/2 Z ctch’ Z ni(t—t/)
t,t’eW ne[N,2N]

hence on squaring and using the triangle inequality

N2 & N1-20+0(1) Z Z ni(t—t’) )
t,t’eW |n€[N,2N]

In the case [t —t'| < N'7¢ for any fixed € > 0, one can use Lemma @ to obtain the bound

N

i(t—t) Neo) )
ms T+ [t—t]

ne[N,2N]

The total contribution of this case can then be bounded by N'teWR = N1+rt+e(D) thanks
to the 1-separation. In the remaining cases [t —t'| > N'7°() we use Definition @ to see

that
ni(tft’) < NSuplST/STB(l/T/)T/-‘rO(l)

ne[N,2N]

and thus
N2p <« N2720+p+o(1) +N2p+1720+sup157/37ﬁ(l/'r’)‘r/wLo(l).

By hypothesis, the second term on the right-hand side is asymptotically smaller than the
left-hand side, and so we obtain p < 2 — 20 as required. O

Corollary 7.11 (Converting an exponent pair to a large values theorem). If (k,£) is an
exponent pair, and 1/2 < o <1, and 7 > 0 are fized, then

2 k—0—1
LV(U,T)Smax(2—20,2—20+7'—0+—).

k
In particular, the Montgomery conjecture holds for T < %.
One can also obtain a similar implication starting from a bound on u: see Lemma .

Proof. By Lemma E it suffices to prove the latter claim. From Lemma @ one has
B(1/r")7" < kr’ + (£ — k) and so the condition (@) holds whenever

< 20+ k—0—1
—

The claim follows. O

Theorem 7.12 (Huxley large values theorem). [122, Equation (2.9)] Let 1/2 < o <1 and
T > 0 be fized. Then one has

LV(o,7) < max(2 — 20,44+ 7 — 60).

In particular, one has the Montgomery conjecture for T < 4o — 2.
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Recorded in literature.py as:
add_huxley_large_values_estimate()

Proof. Apply Corollary with the pair (k,¢) = (1/2,1/2) from Lemma . O

Theorem 7.13 (Heath-Brown large values theorem, preliminary form). Let 1/2 < o <1
and T > 0 be fized. If LV(o,7) < p then

11 3 T
< — — — — —
LV(o,7) < max (2 20, Tl + 5 + 5 20)
Proof. Follows from [107, Lemma 1]. O

Theorem 7.14 (Heath-Brown large values theorem, optimized). Let1/2 <o <1 andt >0
be fized. One has
LV(c,7) < max(2 — 20,10 + 7 — 130).

In particular, the Montgomery conjecture holds for 7 < 110 — 8.

Recorded in literature.py as:
add_heath_brown_large_values_estimate ()

Proof. By Lemma E it suffices to show that LV(o,7) < 2 — 20 for 7 < 110 — 8. From the
previous theorem, and setting p = LV(o, 7), we have either

LV(o,7) <2—20
o 11 3
-
<= S 4 2.
LV(o,7) < 12LV(U,T) + 5 + 5 20
The latter bound can be rearranged as

LV(o,7) <27+ 18 — 240

and thus
LV(o,7) < min(2 — 20,27 + 18 — 240),

and the claim follows. (See also the arguments in the first paragraph of [107, p. 226].) O

Lemma 7.15 (Second Heath-Brown large values theorem). If3/4 < o <1 and 7 > 0 are
fized, then

LV(o,7) < max(2 — 20, k7 + k(2 — 40),27/3 + k(12 — 160)/3)
for any positive integer k.

Proof. Let (N, T,V (a,,)nein,2ns /5 W) be a large value pattern with N > 1 be unbounded,
T = N7V = Note) “and |W| = N#+°(). By [106, Lemma 6] we have

(|W‘V)2 <« To(l)(|w|N 4 |W|2N1/2 + ‘W|271/2kT1/2 + ‘W|273/8kN1/2T1/4k>N
and thus

2p+0) <max(p+1,2p+1/2,(2—1/2k)p +7/2, (2 — 3/8k)p + 1/2 + 7/4k).

42


https://github.com/teorth/expdb/blob/main/blueprint/src/python/literature.py
https://github.com/teorth/expdb/blob/main/blueprint/src/python/literature.py

Since o > 3/4, we can delete the second term 2p + 1/2 on the right-hand side. Solving for
p, we conclude that

p < max(2 — 20, kT + k(2 — 40),27/3 + k(12 — 160)/3),
and taking suprema in p, we obtain the claim. O
Theorem 7.16 (Jutila large values theorem). For any integer k > 1, one has
LV(o,7) <max(2 — 20,7+ (4 —2/k) — (6 — 2/k)o, 7 + (6 — 80)k).
Thus for instance with k = 2 we have
LV(o,7) < max(2 — 20,7+ 3 — 50,7 + 12 — 160)

and with k = 3 we have

10 —16
LV(o,7) < max(2 — 20,7 + Tgﬂ' + 18 — 240).

In particular, the Montgomery conjecture holds for
7 <min((4 —2/k)o — (2 —2/k), (8k — 2)o — 6k + 2).
Recorded in literature.py as:

add_jutila_large_values_estimate(Constants.LARGE_VALUES_TRUNCATION)

Proof. See [160, (1.4)] (setting V' = Net°) T = N7t and G < N). We remark that
this form is an optimized form of the inequality after (3.2) in Jutila’s paper, which in our
notation would read that

1 1
2LV(J,T)+20§maX(2+p,g+(2—E>p+p+ﬂmax<k(7—l),¥),2p+1>

whenever LV (o, 7) < p. The optimization follows from Lemma @ and routine calculations.
O

Some additional large values theorems are established in Chapter @
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Chapter 8

Large value theorems for zeta
partial sums

Now we study a variant of the exponent LV (o, 7), specialized to the Riemann zeta function.

Definition 8.1 (Large value zeta exponent). Let 1/2 < o < 1 and 7 > 0 be fized. We
define LV (0, 7) € [—00,+00) to be the least (fived) exponent for which the following claim
is true: if (N, T,V (ay,)nein 2ny /s W) is a zeta large value pattern with N is unbounded,

T =N and V=N then W < Nptod)

Implemented at large_values.py as:
Large_Value_Estimate

We will primarily be interested in the regime 7 > 2 (as this is the region connected to the
Riemann-Siegel formula for ((o + it)), but for sake of completeness we develop the theory
for the entire range 7 > 0. (The range 0 < 7 < 1 can be worked out exactly by existing
tools, while the region 1 < 7 < 2 can be reflected to the region 2 < 7 < oo by Poisson
summation.)

As usual, we have a non-asymptotic formulation of LVC(O', T):

Lemma 8.2 (Asymptotic form of large value exponent at zeta). Let 1/2 < o <1, 7 > 0,
and p > 0 be fixred. Then the following are equivalent:

(i) LV¢(o,7) < p.

(ii) For every e > 0 there exists C,d > 0 such that if (N, T,V (a,),en2n s W) is a
zeta large value pattern with N > C, N™ 0 <T < N™0 and N0 <V < N°*9 then
one has

W] < CNPte.
The proof of Lemma @ proceeds as in previous sections and is omitted.

Lemma 8.3 (Basic properties). (i) (Monotonicity in o) For any 7 > 0, 0 + LV (0, 7)
is upper semicontinuous and monotone non-iNcreasing.

(i) (Trivial bound) For any 1/2 <o <1 and 7 > 0, we have LV (o, 7) < 7.
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(%) (Doz@ination by large values) We have LV (o, 7) < LV(o,7) for all 1/2 <o <1 and
T2>0.

(iv) (Reflection) For 1/2 <o <1 and 7 > 1, one has

o'—o) =
T—l( ) T_laga/gl

1 1 1
sup LVC<§+ (0" —2) i )+

o<o’<1 7-—1 2,7'—1

Implemented at zeta_large_values.py as:
get_trivial_zlv()

We note that in practice, bounds for LV (o', 7) + o’ are monotone decreasingE in ¢’, so the
reflection property in Lemma @(iv) morally simplifies® to

Ly 1 L, _T ): L 1v (0.7, (8.1)

LV, (5 + (c—2)

T—1 27 r—1 T—1

TODO: implement a python method for reflection

Proof. The claims (i), (ii) are obvious. The claim (iii) is clear by setting a,, = 1; in Definition

Now we turn to (iv). By symmetry it suffices to prove the upper bound. Actually it suffices
to just show

sup (LV¢(o’,7)+0" —0)

T—1 o<o’<1

11 1 7
LV, (= <
V<<2+T—1U 2’7—1>—

as this easily implies the general upper bound.
Let (N,T,V,(a,)nein2ony - W) be a zeta large value pattern with N unbounded, T =

N=i+o) and V = N2+=1(e-2)+o(1) By definition, it suffices to show the bound

|W| <« Nﬁ(LVC(U',T)JrJ/fa')JrO(l). (82)

for some o < ¢’ < 1. By definition, a,, = 1;(n). By a Fourier expansion of (n/N)Y? in

logn, we can bound

|13 it < Nl/Q/ S V(1 =t ) A de
R

nel nel

and hence by the pigeonhole principle, we can find t' = t + O(N°()) for each t € W such
that

‘Zn71/27it/| > N-1/2-o)y,

nel
for t € W. By refining W by N°W) if necessary, we may assume that the ¢’ are 1-separated.

Now we use the approximate functional equation

C/2+it') =Y n V27 L x(1/24it)) Y m U L O(NTY2) + O(T/N)~V?)

n<x m<t’'[2nx

IThis reflects the fact that large value theorems usually relate to p*® moment bounds for p > 1 (e.g.,
p=2,4,6,12) rather than for 0 < p < 1.

2 Alternatively, one can redefine LV, to use smooth cutoffs in the n variable rather than rough cutoffs
1;(n), in which case one can obtain the analogue of (B.1]) rigorously, but we will not do so here.
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for  ~ N; see [144, Theorem 4.1]. Applying this to the two endpoints of I and subtracting,
we conclude that

D onTVR =y (1/24it7) Y mT VA L O(NTY?) 4+ O((T/N)7V?)

nel med,,
where J,, := {m :t'/2mm € I}. Since x(1/2 + it") has magnitude one, we conclude that

| Z m Y2 | s N2y

meJ,.
Writing M := T/N = N+#1+°0) we see that J, C [M/10,10M] and

| Y (M/m) P > MURN Y2y = ppete),

medJ,.

Performing a Fourier expansion of (M /m)'/?1; (m) (smoothed out at scale O(1)) in logm,
we can bound

10T
| > (M/m)Yem | < / YT m A [ty — ) dty + T
med,. T/10  me[M/10,10M]

and hence

10T
/ LS (L[ — ) dey > Mo,
T/10  me[M/10,10M]

If we let E denote the set of t; € [T'/10,107] for which | >
for a suitably chosen o(1) error, then we have

—it —o(1)
meln/10,100m] =M

/ Y mT (A — )T dt > Mo,
E me[M/10,10M)]

Summing in ¢/, we obtain

/ Y mTtldt, > MR
E

me[M/10,10M]

and so by dyadic pigeonholing we can find M7 °1) « V” « M and a l-separated subset
W” of E such that
Y wde= v
me[M/10,10M]
for all " € W”  and
V//|W//| > MU+O<1)|W|.

By passing to a subsequence we may assume that V” = M o) for some 0 < ¢’ < 1.
Partitioning [M /10, 10M] into a bounded number of intervals each of which lies in a dyadic
range [M’,2M’] for some M’ = M, and using Definition @, we have

|W// | < MEVe (o’ ,7)+0(1)

and (@) follows. O
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Note in comparison with LV(a, 7), that LV (o, 7) can be —oo, and is indeed conjectured to
do so whenever 0 > 1/2 and 7 > 1. Indeed:

Lemma 8.4 (Characterization of negative infinite value). Let 1/2 < o <1 and 7 > 0 be
fizxed. Then the following are equivalent:

(i) LV (o,7) = —o0.
(i) LV:(o,7) <O0.

(iii) There exists a fixred € > 0 such that if N is unbounded and I is a subinterval of [N, 2N],
then one has

anit « No—e+o(l)

nel

whenever |t| = N7,

Proof. Clearly (i) implies (ii). If (iii) holds, then in any zeta large value pattern (N, T,V (a,,)
with N unbounded and V = N?+°(M)_ TV is necessarily empty, giving (i). Conversely, if (i)
fails, then there must be (N, T,V (a,),en 2n): /s W) with N unbounded and V' = No+ol)
with W non-empty, contradicting (ii). O

ne[N,2N]» J, W)

Corollary 8.5. If 7> 0 is fized then LV (0, 7) = —oco whenever o > 73(1/7) is fived. For
instance, by (4.6), one has LV (0,1) = —oo whenever o > 1/2 is fived.

Proof. Suppose one has data N, I obeying the hypotheses of Lemma @(iii), then by (@)
(with @« = 1/7) one has

Znﬂ‘t < [t[BA/T+o(1) = NTBA/T)+o(1)

nel
and the claim follows from Lemma @ O

Corollary 8.6. If 7 > 0 and 1/2 < o, < 1 are fived, then LV (0,7) = —oc whenever
o> oy + Tu(og).

Proof. From Definition EI one has
C(og +it) < [t|H(ea)teld)
for unbounded ¢. By standard arguments (see [[144, (8.13)]), this implies that
1
Z -« |t‘M(Uo)+0(1)
nootit
nel

for unbounded N, if I C [N,2N] and || = N7"°(1). By partial summation this gives

anit <« Nao‘t|u(ao)+o(1) — NootTulog)to(l)
nel

The claim now follows from Lemma @ O

Corollary 8.7. If (k,{) is an exponent pair, then LV (0, 7) = —oo whenever 1/2 <o <1,
7 > 0 are fived quantities with o > kT 4+ — k.
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Proof. Immediate from Corollary @ and Lemma @; alternatively, one can use Corollary
and Corollary @ O

Corollary 8.8. Assuming the Lindelof hypothesis, one has LVC(0'7T> = —oo whenever
oc>1/2 and T > 1.

Proof. Apply Corollary @ with oy = 1/2, so that (o) vanishes from the Lindelof hypoth-
esis. O

For completeness, we now work out the values of LVg(a, 7) in the remaining cases not covered
by the above corollary.

Lemma 8.9 (Value at 0 = 1/2). One has LV:(1/2,7) =7 for all 7 > 1.

Proof. The upper bound LV(1/2,7) < 7 follows from Lemma @(ii), so it suffices to prove
the lower bound. Accordingly, let N be unbounded, let T'= C'N for a large fixed constant
C, and set I := [N,2N]. In the case 0 = 1, we see from the L? mean value theorem
(Lemma EI) that the expression > _ n™* has an L? mean of = N2 for t € [T,2T];
on other hand, from (@) we also have an L™ norm of O(N/2+°(1)) We conclude that
| e > NY2+e) for t in a subset of [T,2T] of measure T*~°) and hence on a

I-separated subset of cardinality > 7', This gives the claim LV(1/2,1) > 1.

Next, we establish the 7 > 2 case. Let N be unbounded, set T':= N7, and set I := [N, 2N].
From Lemma we see that the L? mean of an n~" is < NY/2. Also, by squaring this
Dirichlet series and applying Lemma @ again we see that the L* mean is O(N'/2+°(1)) We
may now argue as before to give the desired claim LV(1/2.7) > 7.
Finally we need to handle the case 1 < 7 < 2. By Lemma g(iv) with 0 = 1/2 we have

1 T 1
L - — | = L ! T —1/2).
VC(?’T—I) T—11/25§u<5§1( Velo', 1) +o /2)

By the 7 > 2 case, the left-hand side is at least 7/(7 — 1), thus

sup (LV (o',7)+0" —1/2) > 7.
1/2<0'<1

On the other hand, from Theorem @ and Lemma @(iii) we have
LV (o/,7)+0' —1/2<7+1/2—-0".

We conclude that the supremum is in fact attained asymptotically at ¢’ = 1/2, in the sense
that
limsup LV (o/,7) + 0" —1/2 > 7.

o/ —1/2+
By the monotonicity of LV, in o, this implies that LV(1/2,7) > 7, as required. O

Lemma 8.10 (Value at 7 < 1). If0 <7 <1, then LV (0,7) is equal to —oo foro >1—71
and equal to T foro <1—r.

Proof. The first claim follows from Corollary @ and Lemma @ For the second claim, it
suffices by Lemma @(ii) to establish the lower bound LV (o, 7) > 7. But this is clear from

(1.9). O

One can use exponent pairs to control LVC(O’, T):
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Lemma 8.11 (From exponent pairs to zeta large values estimate). [144, Theorem 8.2] If
(k,0) is an exponent pair with k > 0, then for any 1/2 <o <1 and 7 > 0 one has

k40 2(1+2k+20)

LVC(U,T)gmaX(TG(Ul/Q), T 3 (Ul/?)).

By applying this lemma to the exponent pairs in Corollary , one recovers the bounds in
[144, Corollary 8.1, 8.2] (up to epsilon losses in the exponents).

A useful connection between large values estimates and large values estimates for the zeta
function is the following strengthening of Theorem .

Lemma 8.12 (Haldsz—Montgomery inequality). For any 1/2 <o <1 and 7 > 0, we have

LV(o,7) <max | 2—20,1 — 20+ sup o' +LV.(o’,7")
1</ <7

max(1/2,20—-1)<0’<1

Note from Lemma @ one could also impose the restriction o’ < 7/5(1/7’) in the supremum
if desired, at which point one recovers Theorem . Similarly, from Corollary @ one could
also impose the restriction o’ < o, + 7’u(0,) for any fixed 1/2 < oy < 1.

Proof. 1t suffices to show that

LV(o,7) <max | 2—20,1—-20+ sup o +min(LV.(o’,7"),LV(o,7))

1/2<0’<1

since the terms with ¢/ < 20—1 are less than the left-hand side and can thus be dropped. We
repeat the proof of Lemma . We can find a large value pattern (N, T, V, (a,,) nein 2n)s > W)

with N unbounded, V = N+ T = N7+o(1) and |W| = NFV(@m+o) and we have

1/2
|W|V§N1/2 Z xom Z ni(tft’)

t,t’eWw ne[N,2N]

for some 1-bounded c¢,, and hence by the triangle inequality
1/2
WV < Nl/Q‘W|1/2 sup Z‘ Z ni(t_t/)|
t/

teW ne[N,2N|

which we rearrange as

W < N1-20+0(1) sup Z | Z ni(tft’)|'

t" teW ne|N,2N|

As in the proof of Lemma , the contribution of the case |t —t'| < N17¢ to the right-hand
side is N2727°(1) 50 we can restrict attention to the case |t —t'| > N'°(). By a dyadic
decomposition and the pigeonhole principle, we may then assume that

|W| < N1-20+o(1) Z | Z ni(tr*tw)‘
teWt—t/|=T" ne[N,2N]
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for some N'7°1) « T” « T and some r’; by passing to a subsequence we may assume

that 77 = N7 o) for some 1 < 7/ < 7. By further dyadic decomposition, we may also
assume that |35\, =) = No'+o(l) for some ¢’ < 1; the cardinality of the sum is

then bounded both by |[W| and by NV 7)+o() hence

|W‘ < N172U+0/+min(LV<U,T),LVC(0'/,T/))Jro(l).

The case ¢’ < 1/2 is dominated by that of ¢’ = 1/2. The claim now follows. O

Corollary 8.13 (Converting a bound on u to a large values theorem). If 1/2 < o < 1,
o’ <1, and 7 > 0 are fized, then

20—1—0'
LV(o,7) < max (220,220+70/0>.
plo’)

20—1—0’

In particular, the Montgomery conjecture holds for 7 < (o)

20—1—0’

Proof. By Lemma @ it suffices to verify the claim for 7 < MCARE The claim now follows
from Lemma and Corollary @ O

Theorem 8.14 (Haldsz-Turdn large values theorem). [91, Theorem 1] On the Lindeldf
hypothesis, one has the Montgomery conjecture whenever o > 3/4.

Proof. Immediate from Corollary , since (1/2) = 0 in this case. O

Theorem 8.15 (First Ivic large values theorem). (144, Lemma 8.2] If 7 > 0 and 1/2 <
o <o’ <1 are fized, then

LV(e',7) <max(2 —20",7— f(o)(c’ — o))

where f(o) is equal to

P
1/2 < o < 2/3:
3740]”07“ /2 <0 <2/3;
A0 e <o <1114
7_8s 1TSS :
1 e 1114 < 0 < 13/15:
15— 160 *°" == ’
98
31 — 320

Lfo7"57/62§0< 1.
l1—0c

for 13/15 < o < 57/62;

In particular, the Montgomery conjecture holds for this choice of o’ if

7< sup f(o)(o'—0o)+2—20".
1/2<o<0o’

Proof. We set 6 to equal
(30 —2)/(20 —1) for 1/2 < 0 < 2/3;

(90 —6)/(40 — 1) for 2/3 < o < 11/14;
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(250 — 16)/(80 + 1) for 11/14 < o < 13/15;
(650 — 40) /(160 +9) for 13/15 < o < 57/62;
(120 —7)/(20 + 3) for 57/62 < o < 1,

and then from the bounds u(1/2) < 1/6, u(5/7) < 1/14, u(5/6) < 1/30 one can bound w(6)
by the quantity c¢(6), defined to equal

1/2—6 for 6 <0
(3—40)/6for 0 <6 <1/2
(7—860)/18 for 1/2 < 0 < 57
(15 —160)/50 for 5/7 <0 <5/6

(1—6)/5for5/6 <6 <1.
By Corollary , we have LV(o’,7) < 2 — 20’ for
< 20" —1—16
- (0
The right-hand side can be computed to equal f(c)(0’ — o)+ 2 — 20”, giving the claim. O
Another typical application of the Haldsz-Montgomery inequality is

Lemma 8.16 (Second Ivic large values theorem). 144, (11.40)] For any 1/2 <o <1 and
T >0, one has

LV(o,7) < max(2 — 20,7 +9 — 120,37 + 19(3 — 40)/2).
In particular, optimizing using subdivision (Lemma ) we have

840 — 65)

LV(c,7) < max (2—20,74—9—120,7’— 5

This implies the Montgomery conjecture for

7 < min (100—7,120— %)

Proof. Write p := LV(o,7), and let € > 0 be arbitrary. By Lemma , we may assume
without loss of generality that

p <max(2—20,1—20+ 0" +min(p,LV.(¢',7"))) + ¢

for some 1/2 < ¢’ <1and 1 <7’ < 7. On the other hand, from Lemma applied to the
exponent pair (2/7,4/7) from Lemma , and bounding 7" by 7, one has

LV (o’,7") < max(r —6(0c" — 1/2),37 — 19(c” —1/2))
and thus on taking convex combinations

) 1 18 3
min(p, LV:(0’,7")) < max(gp + i (o/ —1/2), 1o” + o7~ (c/ —1/2)),

hence p is bounded by either 2 — 20, 1 — 20 + %p+ %7’ + %, orl—20+ %p + 13—97' + % The
claim then follows after solving for p. O
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Chapter 9

Moment growth for the zeta
function

Definition 9.1 (Zeta moment exponents). For fized 0 € R and A > 0, we define M (o, A)
to be the least (fixed) exponent for which the bound

2T
/ |C(o +it) |4 dt < TM(oA)+e)
T

holds for all unbounded T > 1.

Such moments may be interpreted as the “average” order of the Riemann zeta function. It
is not difficult to show that M (o, A) is a well-defined (fixed) real number. A non-asymptotic
definition is that it is the least constant such that for every ¢ > 0 there exists C' > 0 such
that

/ N |C(o +it)|A dt < OTM(7A)+e
T
holds for all T" > C.
Lemma 9.2 (Basic properties of M (o, A)).
(i) M(o,A) is convez in o.
(i) For any o, a(M(o,1/a) — 1) is convex non-increasing in a.
(iii) M(o,A) =1 for all A>0 and o > 1.
(iv) M(c,A) > 1 forall A>0and 1/2 <o < 1.
(v) M(c,0) =1 forallo.
(vi) M(1—0,A) =M1 —0,A)+ (1/2—0)A forallc € R and A > 0.

(vii) For any o, a(M(o,1/a) — 1) converges to u(o) as a — 0. In particular (by previous
properties), M(o,A) < Au(c) +1 for all 0 > 0 and A > 0, and also M(c,A) <
M(o,Ay) + p(o)(A— Ay) foro >0 and A > Ay > 0.
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Proof. The claim (i) follows from the Phragmen-Lindel6f principle. The claim (ii) follows
from Holder. The claim (iii) follows from standard upper and lower bounds on ((o + it) for
o > 1. The claim (iv) follows from (i)-(iii), and (v) is trivial. The claim (vi) follows easily
from the functional equation.

For (vii), the bound M (o, A) < Au(o) + 1 is trivial, which implies that

(lliir(l) a(M(o,1/a) —1) < p(o).

Suppose for contradiction that

lim a(M(o,1/a) —1) < p(o),

a—0
thus there is § > 0 such that
M(o,A) < A(p(o)—9d)+1
for all A > 0. By convexity, this gives
M(o+¢e,A) < A(u(o) —6/2) +1

for all sufficiently small €, and then by the Cauchy integral formula and Hélder’s inequality
we can conclude that

|<(U_|_ 6/2 —|—it)\ & ‘t|u(0)75/2+0(1/A)+0(1)
for unbounded |t|, leading to
ulo+¢/2) < p(o)—06/24 O(1/A).
Sending A to infinity and ¢ to zero, we obtain a contradiction. O

Corollary 9.3 (Relationship with Lindelof hypothesis). If the Lindeldf hypothesis holds,
then M (o, A) = 1+max(1/2—0,0)A foralloc € R and A > 0. Conversely, if M(1/2,A) =1
for arbitrarily large A > 0, then the Lindelof hypothesis is true.

Note from Lemma @ that we always have the lower bound M (o, A) > 1+max(1/2—0,0)A.
Thus there are not expected to be any further lower bound results for M (o, A), and we focus
now on upper bounds. Compared to the pointwise estimates u(o) of {(o + it), which are
currently open for all 0 < o < 1, more are known about moment estimates M (o, A). In
particular,

Lemma 9.4. One has M(1/2,A) =1 for all0 < A < 4.

Proof. Follows from Hoélder’s inequality and the standard estimates

2T
/ |C(1/2 +it)|? dt = T+l
T

and
2T

| 1caz i ar =g
T

for any unbounded T' > 1, due to [95] and [96] respectively. O

From lLemma Qd and ILemma 9.4] we may restrict attention to the region 1/2 < ¢ < 1 and
A>4.
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9.1 Relationship to zeta large value estimates

We can relate M (o, A) to LV (o, 7):

Lemma 9.5. If1/2<o0,<1 and A > 1, then

Moy, A) = sup (A(o—o0y) +LV,(o,7))/T. (9.1)

T>2;02>1/2

In particular, one has
LV (o,7) < TM(0y, A) — A(o — 0y)

whenever o > 1/2 and T > 2.

Proof. We first show the lower bound, or equivalently that
Ao —0y) +LV(0,7) < TM(0g, A) — A0 — 0¢)

whenever 7 > 2 and o > 1/2. Accordingly, let N be unbounded, T'= N7t T C [N,2N],
and W be a 1-separated subset of [T, 2T such that

| anit| > Noto(l)

nel

for t € W. By standard Fourier analysis (or by Perron’s formula and contour shifting), this
gives

3T dt
(o + it")| ————— > No7otoll)
/T/2 ’ L+ [t/ —t

and hence by Holder
3T dt/
I¢(og + )| ——— > NAl—o0)toll)
/T/2 14|t/ —¢
SO on summing in r
3T
/ C(ag +it")|* dt’ > |[W|NA—o0)tell),
T/2
By Definition @, the left-hand side is « TM(@0-A)+o(1) - Since T = N>t we obtain
|W| <« NTJ\/I(G’O,A)fA(Ufo'O)’
giving the claim.
For the converse bound, let M be the right-hand side of (@) From Lemma @ we have
M > 1. By [144, §8.1] it will suffice to show that for any V > 0 and any l-separated

W C [T, 2T with
(o +it)| =V

for all £ € W, one has
|W| < TMHe)y =4,
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The claim is clear if V > T¢ or V < T for some sufficiently large C, so we may assume
that V = T91. We also clearly can assume |[W| > 1. Using the Riemann-Siegel formula
[144, Theorem 4.1] and dyadic decomposition, we have either

1
1> s > TV
nelno

or
1
1/2—0 —o(1)
Ty e > TV

nel

for some I C [N,2N] and 1 < N <« T2, and all t € W. In either case, we can perform
summation by parts and conclude that

1Y 7 > TV N

nel’

or
| Z n—it| s 7oy N1-ooT0o0—1/2

nel’

for some I’ in [N,2N] and all t € W. As o, > 1/2, the letter hypothesis is stronger than the
former, so we may assume the former. If N = 7°1) then this would imply that V <« T°W),
and we would be done from the trivial bound R « T since M > 1. Hence, after passing to
a subsequence, we can assume that N = T/7+°(1) for some 2 < 7 < co. We can also assume
that V = N°=90+°() for some 0 € R. If 0 < 0, then V <« T°(Y) and we are done as before,
SO we may assume o > 0,; in particular, o > 1/2. From Lemma we have

‘W| <« NLVC<O',T)+O(1>
and hence by definition of M

|W| < NMr—A(o—0p)+o(1) — TMJFO(DV*A

as required. O

Corollary 9.6 (Fourth moment bound). One has LV (o,7) < 7 — 4(0 — 1/2) for all
1/2<o<1andT>2.

Proof. Apply Lemma @ with oy = 1/2 and A = 4, using Lemma @(iv). O
We have an important twelfth moment estimate of Heath-Brown:

Theorem 9.7 (Heath-Brown twelfth moment estimate). [103] M (1/2,12) < 2. Equivalently
(by Lemma @), one has LV (0,7) <27 —12(0 — 1/2) forall7>2 and 1/2 <o < 1.

Proof. From Lemma with the exponent pair (1/2,1/2) from Lemma we have
LV (o,7) <min(r — 6(c — 1/2),27 — 12(0 — 1/2)).

If 271 —12(0 —1/2) > 0, the claim is immediate; if instead 27 —12(c — 1/2) < 0, use Lemma
O

We also have a variant bound, which is slightly better when 7 is close to 6(c — 1/2):
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Theorem 9.8 (Auxiliary Heath-Brown estimate). For 7 > 2 and 1/2 <o <1, one has
LV (o,7) <min(r — 6(c — 1/2),57 — 32(c — 1/2)).

Proof. Let (N, T,V,(a,),ein,2n), J» W) be a zeta large value pattern with NV, V = Notol),
T = N7+ and W = N¥Vel@m)+e(D)  Our task is to show that

(W] < o0 (T(N-12V) 5 4 T5(N-1/2V)~52),
Write a(n) = 1;(n). By a Fourier analytic expansion we can bound

74_]\[—5
1+ [t; — ¢

3T
N e [ 2 i)
T/4

nel

for some fixed € > 0 and all t € W, hence

3T dt
IC(1/2 +it))|———— >» T W N2V,
/m T — 1]

In particular, we can truncate to large values of ((1/2 + it ), in the sense that
3T &t
/ IC(1/2 4 it1)[1ic(1 /210t )|2T*0(1)N*1/2V71 > TeWN-12Y,
T/4 ! 14 |t — ¢

Summing in ¢ and using the 1-separation to bound the sum of 1/(1 + |t; — t|) by T°!) we
conclude that

3T
/ 1C(1/2 + it))[1¢(1 ot oo N-1/2y Aty > T WRN-V2V,
T/

Hence by dyadic pigeonholing we have
3T
V’/ IC(1/2 + it)) |1 ¢(1 jayit, v dE > T W RN2Y
T/4

for some V’ > T—°W N2V and thus
IC(1/24it")| =<V’
for all ¢’ in some 1-separated subset W’ of [T'/4,3T] with
W’| > T-°D|W|N-Y2V V.

Applying [103, Theorem 2] (treating different cases using the bounds [[103, (7), (8), (9)]), we
have the bound
|W’| < To(l)(T<V/)76 +T5(V/)732>

and thus
(W] < TOW(T(N2V) (V)2 + TH N2V~ (V7))

and the claim now follows from the lower bound on V. O
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9.2 Known moment growth bounds

Lemma 9.9 (Ivic’s table of moment bounds). [144, Theorem 8.4] We have M(c,A) = 1
when A is equal to

1/2 < ;
ry— for1/2 <o <5/8;

< .
e Jor5/8 <o < 35/54;

19
6 — 60
2112

859 — 9480
12408

4537 — 48900
4324

1031 — 10440

98
_— <o<L0.
31 329 for7/8 <o <0.91591...;

240 — 9
(40 —1)(1 —0)

for 35/54 < o < 41/60;
for 41/60 < o < 3/4;
for3/4 <o <5/6;

for5/6 <o <7/8;

for 0.91591 - < o < 1.
Additionally, for o = 2/3 one can take A = 9.6187 ..., for o0 = 7/10 one can take A = 11,
and for 0 =5/7 one can take A = 12.

Proof. This is a computation using Lemma , Theorem , and Lemma @; see [[144]
for details. O

Theorem 9.10 (Moment bounds for o = 1/2). [279, Theorems 2.1, 2.2] We have

(16A + 35)/114, 806 < A< 14,
(176677 A + 358428) /1246476, 14 <A< 20 =1537...,
(TT9A 4 1398) /5422, L2304 < A< 320 = 15.50...,
4

3(1661A + 2856) /34532, Tabm <A< EE=16.19...,
(405277 A + 677194) /2800950, Ty <A< P =17.60...,
(40726597 A + 64268678) /280113282, G008 < A < 13180 — 19.44 ...

M(1/2,A) < { 3(46A + 49)/926, 139139 <A< 2%4353830 =19.79....,

204580 252 __
(3475 A + 3236) /23168, ey <A < 2 =21.80...,
7(39945A + 33704) /1857036, ﬁf A< B8 9683,
440
(3TA + 24)/244, v <A <= 33.84...,
(314 —24)/196, L0 <A< 2808 — 4282,
7(31519A — 33704) /1385180, ?2?237 <A< B — 5349 .,
1+ 13(A—6)/84, B < A
and also
§ 3510 86
M(1/2,1246) <2+ §3/2 §< —.
W2 12H0) <24 gt g0 00
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In particular, we have

M(1/2,13) < 2.1340, M(1/2,14) < 2.2720, M(1/2,15) < 2.4137,
M(1/2,16) < 2.5570, M(1/2,17) < 2.7016, M(1/2,18) < 2.8466.

9.3 Large values of ( moments

It is also of interest to control large values of the moments.

Definition 9.11 (Mixed moments). For fized 1/2 < 0 < 1, A > 0, and h > 0, let

M(o, A, > h) be the least (fixred) exponent for which the bound
/ (C(o +it)|A di < TMAR o)
0<t<T:|¢(o+it)|>T"

holds for unbounded T. Similarly, let M (o, A, < h) be the least exponent for which
/ C(o + i) dt < TMEAR w0
0<t<T:|((o+it)|<Th

holds for unbounded T .

Lemma 9.12 (Mixed moments and large values of zeta). If 1/2 < 0, < 1, A > 1, and
h >0 are fized, then

M(oy, A, > h) < sup  (A(o —o0g) +LV(0,7))/T. (9.2)

T7>2;0>1/2,h7
and

M(oy, A, < h) < sup  (A(o —o0y) + LV, (o, T))/T. (9.3)

7>2;0<1/2,h7
That is to say, any bound of the form
LVi(o,7) < M1 — A0 — 0y)
whenever T > 2 and o > 1/2, ht, gives rise to a bound
Moy, A, > h) < M.
Similarly for M(oy, A,> h), in which we replace the condition o > ht by o < hr.
Proof. This is a routine modification of the proof of Lemma @ O

Corollary 9.13 (Mixed moments and exponent pairs). If (k,¢) is an exponent pair with
k>0, then
M(1/2,6,> h) <1

and
2(1 4 2k 4+ 2¢) k+ /¢

M(1/2, —— = <h| < ——
(172 2220 <) < 22

¢
b= 24+ 41— 2k

where
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Proof. From Lemma with the exponent pair (k, ¢) we have
k+¢ 2(1 4 2k + 2¢)

LV (o, 7) < min(r —6(c — 1/2), T . (o —1/2)).
In particular, for 0 — 1/2 < h7 one has
LV (o,7) <7—6(0c—1/2)
and for o — 1/2 > hr one has
k+¢ 2(1 4 2k + 20)
— —1/2).
The claim then follows from Lemma . O

Corollary 9.14 (Specific mixed moments). [144, (8.56)] M(1/2,6,> 11/72) < 1 and
M(1/2,24,< 11/72) < 15/4.

Proof. Apply Corollary with the exponent pair (4/18,11/18) = BABA(1/6,2/3) from
Corollary . O

Lemma 9.15 (Large value theorems from mixed moment bounds). /20, Proposition 2]
Suppose that M(1/2, A, > h) <1 for some A >4 and h > 0. Then one has

LV(o,7) <max(a+2—20,—a+ 17+ A/2—2A(c — 1/2))
whenever 1/2 <0 <1,7>0, and 0 < a <1— 0 is such that

1>7'h+1
9Ty 7y Ty

Lemma 9.16 (Zero density theorems from mixed moment bounds). /24, Proposition 5]
Suppose that M(1/2,6,> h) <1 for some h > 0. Then for any 1/2 < a < o < 1, one has

dp(e) 3 6h >

c—a’ 8 —540—3

A(o) < max (
It is remarked in [20] that this proposition could lead to some improvements in current zero
density estimate bounds.

Lemma 9.17 (Chen-Debruyne-Vidas large values theorem). /34, Lemma A.1] Let 1/2 <
c<landt> % be fized. Let qq, Ay, q1, Ay, h be fized quantities such that M(1/2, qq, >
h) < Ay and M(1/2,q5, < h) < A,. Suppose that p < LV(o,7) is such that

24(1 —
NUl=0) .
300 — 11

Then for any ay > 0 and 0 < ay < 7, one has
p < max(2—20+ay, —20; —(Ag—1)as+Ay7+(3—40)qy /2, 201 +(A; —1) g+ A 7+ (3—40) ¢, /2, 8y [ T+4ay /T+16(]

In [B2] this lemma is applied with (qy, Ay) = (6,1) and (¢;,4;) = (19,3) with h = 2/13,
which follows from Corollary .13 applied to the exponent pair (2/7,4/7) = BA(1/6,2/3)
from Corollary .
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Chapter 10

Large value additive energy

10.1 Additive energy

Definition 10.1 (Additive energy). Let W be a finite set of real numbers. The additive
energy E, (W) of such a set is defined to be the number of quadruples (t1,1tq,t5,t,) € W such
that

|ty +1y —t3 —ty[ < 1.
We remark that in additive combinatorics, the variant E,(W) of the additive energy is often
studied, in which t; +t, —t5 —t, is not merely required to be 1-bounded, but in fact vanishes

exactly. However, this version of additive energy is less relevant for analytic number theory
applications.

Lemma 10.2 (Basic properties of additive energy). (i) If W is a finite set of reals, then
W)= [ H{(tists) €Wty 8 — | < 1) da,
R
More generally, for any r > 0 we have

E,(W) = rom/ (b ts) €W s [ty + 1 — 2] < r}]? da
R

(ii) If W is a finite set of reals, then

1
El(W)x/ 1) elt)]* db.

-1 tew
(ii) If W, ..., Wy, are finite sets of reals, then

E\(Wy U UW )Y < By (W)Y 4+ B (W) V2,

(iv) If W is 1-separated and contained in an interval of length T > 1, then

(H#W)?, (#W)HT < B (W) < (#W)°.
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(v) If W is contained in an interval I, which is in turn split into K equally sized subintervals
Jis s Jie, then

K
E,(W)'V3 <> B, (W N Jy)Y3,
k=1

Note that the lower bound of (#W)*/T would be expected to be attained if the set W is
distributed “randomly” and is reasonably large (of size > v/T'). So getting upper bounds of
the additive energy of similar strength to this lower bound can be viewed as a statement of
“pseudorandomness” (or “Gowers uniformity”) of this set.

Proof. For (i), we just prove the first estimate, as the second follows from the first by several
applications of the triangle inequality. The right-hand side can be expanded as

Z {a: [ty + by — ], [ts +t, — x| <1}
t1,to,ts,t €W

Every quadruple contributing to E; (W) then contributes > 1 to the right-hand side, giving
the upper bound. To get the matching lower bound, note that

Z o [ty + by — ], [ts + £, — 2] < 1/2} < EY(W)

tysto,ta,ty €W

and hence
W) > [ [#{(t1,t) € W st 8, —a] < 1/2) da,
R
The upper bound then follows from the triangle inequality.
For (ii), we can upper bound the indicator function of [—1, 1] by the Fourier transform of a
non-negative bump function ¢, so that the right-hand side is bounded by

oty +ty —t3 —1y)
by ta e rta€W

which is then bounded by O(E;(W)) by choosing the support of ¢ appropriately. The lower
bound is established similarly (using the arguments in (i) to adjust the error tolerance 1 in
the constraint [t; + ¢, — 2| < 1 as necessary.)

For (iii), first observe we may remove duplicates and assume that the W, are disjoint, then
we can use (ii) and the triangle inequality.

For (iv), the first lower bound comes from considering the diagonal case t; = t3,t, = t,
and the upper bound comes from observing that once t;,t,, t5 are fixed, there are only O(1)
choices for t, thanks to the 1-separated hypothesis. Finally, observe that

[ et €Wy 4+, — 0l < 1)) do = (202
R
hence by Cauchy—Schwarz
[ Lt €W sl -, = al < 12 da > W/
R

and the claim follows from (i).
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For (v), write a, := E,(W N J,)Y/%. Each tuple (¢,,t,,%s,t,) that contributes to E, (W)
is associated to a tuple Ji ,Jy ,J . J; of intervals with ky + ky — k3 — k4 = O(1). By
modifying the proof of (ii), the total contribution of such a tuple of intervals is

4
<</H| e(t0)| do

R j=1 tewn Ik
which by Cauchy-Schwarz is bounded by
L ay, Ay, Oy Ay, -

Thus we see that
E,(W)< > axaxaxi(m)
m=0(1)

where @, := a_;, and * denotes convolution on the integers. By Young’s inequality we then
have
By(W) < lalljs

and the claim follows.
We remark that (v) can also be proven using [12, Lemma 4.8, (4.2)]. O

We will also study the following related quantity. Given a set W and a scale N > 1, let
S(N,W) denote the double zeta sum

S(NW):= > | Y o7t (10.1)

t,t' €W |ne[N,2N]

We caution that this normalization differs from the one in [144], where n~1/2-~) is used
in place of n~ =) This sum may also be rearranged as
SINW) = > |By(n/m)? (10.2)

n,me[N,2N]|

where Ry, is the exponential sum

= g x'.

tew

From the first formula it is clear that S(N, W) is monotone non-decreasing in W, and from
the second formula one has the triangle inequality

k vz
S <N7 UWZ) <> SN, W)? (10.3)
=1 =1

when the W, are disjoint, and hence also when they are not assumed to be disjoint, thanks
to the monotonicity.
The following Cauchy—Schwarz inequality is also useful:
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Lemma 10.3 (Cauchy—Schwarz and double (-sums). [22, Lemma 3.4] If W, W' are finite
sets of reals, N > 1, and a,, is a 1-bounded sequence for n € [N,2N], then

2

a,n” | < S(N,W)Y2S(N,W’)1/2, (10.4)

n
teW,t’eW’ |ne[N,2N]

In particular
2

Z Z a,n "t < S(N,W).

teW |n€[N,2N]

Proof. The left-hand side of () can be rewritten as

Y a,@, Ry (n/m) Ry (n/m).

n,me[N,2N]
The claim is now immediate from () and the Cauchy—Schwarz inequality. O

To relate S(N,W) to E, (W), we first observe the following lemma, implicit in [104] and
made more explicit in [88, Lemma 11.4].

Lemma 10.4 (Energy controlled by third moment). Suppose that (N, T,V (a,),en 28 s W)
is a large value pattern with T > 1 and 1 < N < T, Then

VZE, (W) < T°D 3" |Ry(n/m)> + T~
n,me[N,2N]
Proof. By hypothesis, we have

2

V2E, (W) < > > a,nits

byt b ta €Wt +ta—ts—t,|<1 [n€[N,2N)]

By standard Fourier arguments (see [88, Lemma 11.3]), we can bound

n

a,n M| < T"(1>/ Z a, n"| dt + 7100,
tift—t4|<T°W [ne[N,2N]

ne[N,2N]

Since each t,,t,,t; generates at most O(1) choices for t,, we conclude that
2

VQEl(W) <« To(1) n*i(t1+t27t3+s) ds + T75O7

a n

ty,ty,t3€W ZS<TD(1) n€[N,2N]
The right-hand side can be rewritten as

T Y7 a, @y (n/m) " Ry (n/m)* Ry (nfm) + T,
n,me[N,2N]|

and the claim then follows from the triangle inequality. O
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Thus, S(N, W) involves a second moment of Ry, while the energy E; (W) is related to the
third moment. Using the trivial bound | Ry, (z)| < |W| we can then obtain the trivial bound

VZE,(W) < T°D|W|S(N, W) + T~ (10.5)
It is then natural to introduce the fourth moment

Sy(N, W) := Z | Ry (n/m)[*

n,me[N,2N]|
since from Holder’s inequality one now has
V2E, (W) <« T°VS(N,W)Y28,(N,W)'/2 4 750 (10.6)

(cf. [104, Lemma 3]). The quantity S,(N,W) can also be expressed as
2

SN, W) = Z Z it —t3—ty)
ty,ty,t3,t4€W [n€[N,2N]

One can bound this quantity by an S(N, W) type expression:
Lemma 10.5. If W C [T, T) is 1-separated and 1 < N <« T9WY) | then one has
S, (N, W) « T°My2S(N,U) + T-100
for some 1 < u < |W| and 1-separated subset U of [—2T, 2T with
ulU| < [W? (10.7)

and
u?|U| < E{(W). (10.8)

This result appears implicitly in [[104, p. 229], and is made more explicit in the proof of 8,
Lemma 11.6].

Proof. One can bound

S,(N, W) « T°W) n~% dt +T-109,

t1ta,ts,ta€W Zt1+t2t3t4+O(T<’(1)) n€[N,2N]
and hence
Sy(N, W) < T°M) > Flt) f(ty) / > o dt+ 110
ty,to€[—2N,2N|NZ t=t,—t,+O0(T°M) |ne[N,2N]
where f is the counting function

@) = [{{t;,ty) € Wi [t —t; —t,] <1}
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Note that f is integer valued and bounded above by |W|. By dyadic decomposition, one can
then find 1 < u <« |W] and a subset U of [-2N,2N] N Z such that f(t) < u for t € U, and

2

Sy (N, W) < 7o 3 2 n~| dt + 717100

by, ta€U /t—t1t2+O(T°<1>) ne[N,2N)]

which we can rearrange as
Sy (N, W) < Toy? / S (n/m) Ry (n/m)P ds +T-1%
s=0(T°W) p me[N,2M]
and hence by the triangle inequality
S,(N,W) « T°My2S(N, V) + T,

Also, by double counting one easily verifies the claims (), () The claim follows. O

10.2 Large value additive energy region

Because the cardinality |W| and additive energy F; (W) of a set W are correlated with each
other, as well as with the double zeta sum S(N, W), we will not be able to consider them
separately, and instead we will need to consider the possible joint exponents for these two
quantities. We formalize this via the following set:

Definition 10.6 (Large value energy region). The large value energy region & C RS is
defined to be the set of all fixed tuples (o,7,p,p*,s) with 1/2 < o <1, 7,p,p" > 0, such
that there exists a large value pattern (N, T,V (an)ne[N’QN], J, W) with N > 1 unbounded,

V= NU+O<1), T = NTJrO(l)’ V= NU+O(1), |W| — Nero(l)’ El(W> — NP +o() gnd S(N, W) _
NS+O(1).

We define the zeta large value energy region &, C R?® similarly, but where now (N,T,V, (ap)nein2nys > W)
1s required to be a zeta large value pattern.

Clearly we have
Lemma 10.7 (Trivial containment). We have & C €.
These regions are related to LV(o,7) and LV (0, 7) as follows:

Lemma 10.8. For any fired 1/2 <o < 1,7 >0, we have
LV(0,7) = sup{p : (0,7, p, ", 5) € &}

and

LVC(Uv T) = Sup{p : (Ua TaP7P*>5) € g{}
In particular, we have p < LV(o,7) for all (o,7,p,p",s) € &, and p < LV (0,7) for all
(o,7,p,p%8) €&

Proof. Clear from definition. O

Inspired by this, we can define
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Definition 10.9. For any fized 1/2 < o < 1,7 > 0, we define
LV*(o,7) :=sup{p* : (o,7,p,p",s) € &}

and
LVZ(O.7 T) = Sup{p* : (0.7 T? p7 p*75) e ((:C}'

Thus these exponents are upper bounds for the additive energy of large values of Dirichlet
polynomials which may or may not be of zeta function type.
As usual, we have an equivalent non-asymptotic definition of the large value energy region:

Lemma 10.10 (Non-asymptotic form of large value energy region). Let1/2 <o < 1,7 >0,
p,p" >0, and s € R be fizred. Then the following are equivalent:

(i) (o,7,p,p" 5) €E.

(i) For every € > 0 there exists C,0 > 0 such that there is a large value pattern
(N, T,V (ap)nern 2nys I W) with N > C, N0 <T <N, N9 <V < NoHo,
NP < |[W| < Nete, NP'—¢ < B (W) < NP and N*=¢ < S(N, W) < N*t<,

Similarly with & replaced by E¢, and with (N, T,V (a,)nein 2n)s I, W) required to be a zeta
large value pattern.

This lemma is proven by a routine expansion of the definitions, and is omitted.
Lemma 10.11 (Basic properties).

(i) (Monotonicity in o) If (o,7,p, p*,s) € &, then (', 7, p,p*,s) € & forall1/2 <o’ <o
and 7’ > T.

(i) (Subdivision) If (o, T, p, p*,s) € & and0 < 7" < 7, then amongst all tuples (o, 7", p", (p')*,s") €
E with p" < p, (p')* < p*, and 8" < s, there exists a tuple with

p<p 11
there exists a tuple with
p*<p +3min(p—p',7—1');
and there exists a tuple with
s<s +2min(p—p',7—7).
(But it may not be the same tuple that satisfies all three properties.)
(#ii) (Trivial bounds) If (o, 7, p, p*,s) € &€, one has

2p,4p — 7 < p* < 3p.

Proof. The claim (i) is trivial, so we turn to (ii). By definition, there exists a large value
pattern (N, T,V (a,)pein on), J» W) with N > 1 unbounded, T = N7, v = Notol),
|W| = Nete B, (W) = NPt and S(N,W) = N°*+°(). We now partition J into
NT"+o(1) subintervals I of length V T/”(l), and subdivide W into W; accordingly. By dyad-
ically pigeonholing, we can then subdivide this collection I of intervals into N°!) subcollec-
tions, where on each subcollection there exists fixed p’, (p’)*,s” such that |W;| = N#'*+o1),
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E,(W;) = N@)+e) and S(N,W;) = N¥+°1_ Since W, C W, this forces p’ < p,
(p))* < p*, and s’ < s. From Definition we see that (o,7,p", (p')*,s") € €.

By the pigeonhole principle, one of these subcollections must contribute at least N—°(1) of
the cardinality of W. Since there are at most N 7='+o(1) intervals in this collection, we must
have p < p’ + 7 — 7’ in this case.

By Lemma (iii), we also know that a (possibly different subcollection) must contribute
at least N~°) of the additive energy of W. The number of intervals in this subcollection
is at most min(N7-7'*+o(1), Ne=¢'+o(1)) " Applying Lemma [10.2(iii) again, we conclude p* <

(p*) +3min(p—p’,7— 7).

Finally, from (, we know that a (possibly yet another subcollection) must contribute at
least N~°V) of the double zeta sum S(N,W). The number of intervals in this subcollection
is at most min(N7~"" o), Ne=¢+e(1)) - Applying Lemma [10.(iii) again, we conclude s <
s +2min(p—p',7— 7). O

Lemma 10.12 (Raising to a power). If (o,7,p,p*, s) € &, and k > 1, then amongst all
tuples (o,7/k,p’,(p")*,s") € & with p" < p/k, (p')* < p*/k, and s’ < s/k, there exists a
tuple with p’ = p/k, there exists a tuple with (p')* = p*/k, and there exists a tuple with
s" = s/k. (These may be three different tuples.)

Proof. By definition, there exists a large value pattern (N,T,V, (a,),ein 2n):J, W) with
N > 1 unbounded, T' = N7V = Notol) || = Netoll) B (W) = NP o) and
S(N,W) = N*t°(1), Observe that

k
( Z ann_it> = Z b,n%
ne ]

[N,2N ne[Nk,2k N¥|

for some coefficients b, = O(n°Y)). In particular, partitioning [N*, 2¥ N*] into O(1) sub-
intervals [N’,2N’] with N’ = N**°(1) we can partition W into O(1) subcollections Wy,
such that

b,n~ > Vk = (N’)otel)
ne[N’,2N’]
for all t € Wy,. Again by the pigeonhole principle, one of the Wy, must have cardinality
Ne+e(D) one must have energy N* *°() and one must have double zeta sum N*+°(1) (but
these may be different Wy, ). Each of these Wy, then give the different conclusions to the
lemma. O

Morally speaking, one should be able to obtain equality in all three conclusions of Lemma
simultaneously, i.e. that (o, T, p, p*, s) € € essentially implies (o, 7/k, p/k, p*/k, s/k) €
£. This is because in practice one frequently controls £ by computing a containment region
&, that possesses precisely the required monotonicity property. Specifically, we have

Lemma 10.13 (Monotonicity criterion). Let &; be the intersection of sets E;, each of the
form

{(UvTapap*a‘g) € R5 P S fl(p*as)ap* S f2<p?8)75 S f3(pap*)}

for some monotonically increasing functions fy, fy, f3 (that possibly also depend on o and
7).

Suppose amongst all tuples (o,7,p’,(p*),s") € & with p” < p, (p*) < p* and s’ < s, there
exists a tuple with p’ = p, a tuple with (p*) = p* and a tuple with s’ = s (not necessarily
the same tuple each time). Then, (o,7,p,p*,s) € &;.
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Proof. Suppose that (o,7,p, (p*)',s") € &; for some (p*)" < p* and s < s’ so that also
(o,7,p,(p*)',s") € E,. Then by definition p < f,((p*)’,s"). Since f; is monotonically
increasing (with respect to both p* and s), one has p < f;(p*, s). Similarly, (o, 7,0, p*,s") €
&y implies p* < fy(p,s) and (o,7,p’, (p*),s) € &£, implies s < f3(p, p*), which together
imply (0,7, p, p*,s) € E, by definition. Hence (o, 7, p, p*, s) € £; since &; is the intersection
of sets L. O

Lemma 10.14 (Raising to a power, alternative formulation). Let k be a positive integer,
&, C R? be a set satisfying the monotonicity criterion of Lemma and

é’k = {<J7T7p’p*73) (= R5 H (O’,T/k7p/]€,p*/]€,8/k) S 51}
If £ C &, then £ C Ey.

Proof. Suppose that (0,7, p, p*,s) € £ C ;. By Lemma and Lemma , (o,7/k,p/k,p*/k,s/k) €
&4, hence by definition (o, T, p, p*, s) € &} O

10.3 Known relations for the large value energy region

Theorem 10.15 (Reflection principle). (144, §11.5] If (0,7, p,p*,s) € & with o > 3/4 and
T > 1, then for any integer k > 1, either p < 2 — 20, or there exists 0 < a < k(7 — 1) and
(o,7/a,pla, p*/a, s’ Ja) € E such that

p <min(2 —20,k(3 —40)/2+ s —1).

Proof. By definition, there exists a large value pattern (N,T,V, (a,),cin 2n):J, W) with
N > 1 unbounded, T' = N7V || = Ne+to) B (W) = N°"*°) and S(N, W) = Nstol),
By [144, (11.58)], one has

|W|2 <« ToM) |W‘N272U+N172U‘W|2+N(3740)/2/ Z Z n71/2+it7it/+iv dv | .
v=0(T°W) t t’ eW |n<aT/N

Since o > 1/2, the N2 |2 term can be dropped. Applying Holder’s inequality and
dyadic pigeonholing as in [[144, (11.59)], we conclude that

90 1/2
[W| < T°W) [ N?720 4 Nk(3-40)/2 Z Z b, 12—t +iv

t,t’eW |ne[N’,2N’]

for some v = O(T°"M) and coefficients b, = O(T°Y), and some N’ <« (4T/N)*. After
passing to a subsequence if necessary, we may assume that N’ = N+ for some 0 < o <
k(t—1). If & = 0 then the second term here is negligible compared to the first and we obtain
p < 2 — 20, so suppose that a > 0. Using [144, Lemma 11.1] to eliminate the b,n~/2+"
coefficients, we conclude that

|W| & To(l)(NZ—Qa 4 ]Vlc(?>—4o)/2—1S(]\f/7 W))
By construction, we have S(N’, W) = (N”)*'/e+ol) = Ns'+o(1) for some tuple (o, 7/c, p/a, p* /e, s" o) €
&. The claim follows. O
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Heuristically one expects s < max(p 4+ 1,2p) + 1 (see [144, (11.63)]). There is one easy case
in which this is true:

Lemma 10.16. If (o,7,p, p*,s) € & with T < 1, then s < max(p + 1,2p) + 1.

Recorded in literature.py as:
add_1lver_ivic_1985()

Proof. By definition, there exists a large value pattern (N, T,V (an)ne[NQN], J, W) with
N > 1 unbounded, T = N7°W |W| = NrteW) B (W) = NP+ and S(N, W) = N+o),
By the discussion after [144, (11.63)], we have

N-IS(N,W) < T¢(|W|N + |W|?)
for any fixed € > 0, which gives the claim. . O
Another bound is

Lemma 10.17. 144, Lemma 11.2] If (k,£) is an exponent pair with k > 0, and (o, 7, p, p*, 8) €

&, then
2+ 3k+ 44 k+¢

T+2k+20" T 152k +20

s < max (,0+1,5p/3+7'/3, 7') +1.

Proof. By definition, there exists a large value pattern (N, T,V (a,)nein,2n, J, W) with
N > 1 unbounded, T = N7 |W| = Nete) B (W) = NP+ and S(N, W) = Nstol),
From [144, Lemma 11.2] we have

24+3k+4l ktlte

N‘lS(N7W) < |W|N+ |I/I/'|5/3T1/3+E + |W|1}2k}21’.T142k121{

for any fixed € > 0, which gives the claim. O
Finally, we have the useful

Lemma 10.18 (Heath-Brown bound on double sums). If (0,7, p, p*,s) € £, then
s <max(p+1,2p,5p/44+7/2) + 1.

Note that if 7 < 3/2, the 5p/4 + 7/2 term is bounded by the convex combination (3/4)(p +
1)+ (1/4)(2p) and may therefore be omitted.

Recorded in literature.py as:

add_lver_heath_brown_1979()

Proof. By definition, there exists a large value pattern (N,T,V, (a,)nein,2n), J, W) with
N > 1 unbounded, T = N7V || = Nete) B (W) = NP *o() and S(N, W) = Nstol),
From [106, Theorem 1] or [144, Lemma 11.5], one has

N7IS(N, W) < TE(|W|N + |W|? + [W|>/4T1/2),
giving the claim. O

Lemma can be formulated in terms of the large value energy region as follows.
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Lemma 10.19. If (0,7, p, p*, s) € &, then there exists (o,7,p’,(p')*,8') €E and 0 <k < p
such that
k+p <2p

2/€+p/§,0*

and
pr+20 <K+ (s+5)/2

Proof. By definition, there exists a large value pattern
(Na T, V; (an>n€[N,2N]7 J> W)

with N > 1 unbounded, T = N7V = Notol) || = Nt B (W) = NP+ and
S(N,W) = N*t°(1 From () we have

V2E, (W) < T°VS(N,W)28,(N,W)/2 + 175,

By Lemma , there exists 1 < u <« |W| and a 1-separated subset U of [—2T,27T] such
that such that
V2E, (W) < T°VuS(N,W)Y/2S(N,U)"/? + 750

with (), () holding. Since W is non-empty, E,(W) > 1 and V > N¥2 > 1, so
the T7°0 error here may be discarded. Passing to a subsequence, we may assume that
u = N for some 0 < k < p, and that |U] = Nt for some p’ > 0. Then we have
So(N,U) = s for some (o,7,p",(p")*,s") € £, and the claim follows. O

These bounds on the double zeta sums can be used to control additive energies:
Theorem 10.20 (Heath-Brown relation). [107, (33)] If (0,7, p,p*,s) € &, then one has
1 5 T 1 3 T
* < . _ _ _ - * _ % _ .
pr<1—20+ 2max <p+1,2p, 4p+ 2) + 2max (p +1,4p, 4p +p+ 2)

Recorded in literature.py as:
add_lver_heath_brown_1979b1()

Proof. By Lemma we have
p*+20 < k+ (max(p+1,2p,5p/4 +7/2) + max(p’ + 1,2p",5p" /4 +7/2))/2 + 1
for some 0 < k < p with
k+p <2p
26+ p < p*

In particular,
2k+5p /4 <3p* /4 +p

and the claim follows after moving the x inside the second maximum and performing some
algebra. O

Corollary 10.21 (Simplified Heath-Brown relation). If (o,7,p,p* s) € & and 7 < 3/2,
then
p* <max(3p+1—20,p+4—40,5p/2+ (3 —40)/2).
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Recorded in literature.py as:
add_lver_heath_brown_1979b2()

This result essentially appears as [107, Lemma 3].

Proof. Apply the previous result. For 7 < 3/2 we observe that 5p/4 + 7/2 is less than
5p/4+ 3/4, which is a convex combination of p+ 1 and 2p. Similarly 3p* /44 p+ 7/2 is less
than 3p*/4 + p + 3/4, which is a convex combination of p* + 1 and 4p. We conclude that

p* <1—20+max(p+1,2p)/2 + max(p* + 1,4p)/2.
Thus p* is less than one of
1—20+(p+p*+2)/2,1—204+ 5Bp+1)/2,1 =204+ 2p+ p*+1)/2,1 — 20 + (6p)/2;
solving for p*, we conclude
p* <max(4—4o+p,(3—40)/2+5p/2,3 — 4o +2p,1 —20 + 3p).

But since o > 1/2, 3 — 40 + 2p is less than 5/2 — 30 + 2p, which is the mean of 4 — 40 + p
and 1 — 20 + 3p. Thus

p* <max(4—4o +p,(3—40)/2+5p/2,1 — 20 + 3p),
which gives the claim. O
Similarly, using Lemma and Lemma , one has
Theorem 10.22. If (k,£) be an exponent pair with k > 0 and (o, 7, p, p*,s) € &, then

el gp s ] a<+15+72+3k+4€+ k40 )
— 20 + - max = = T
P> 2 PP ok + 20 T T4 2%k + 20

+71 <*+14 73*+ +7>
max .
2 PEmnipyl TPy

Implemented at ladditive_energy.py as:
ep_to_lver(eph)

Proof. By Lemma, and Lemma , there exists some (o, 7, p’, (p*)’,s") € € satisfying
0<k<p, K+ p < 2p, 26+ p’ < p* (10.9)

and

243k + 44 kE+¢ )

1
oo <kt 1.5p/3 +7/3
Pt ”—”+2max<p+ P34 T P T ok r 2t

+ %max (p’ 1,20, gp/ + %) 41
The result follows by moving the x term into the second maximum and applying () O
Lemma 10.23 (Second Heath-Brown relation). If (o,7,p, p*,s) € € then
p <max(2 —20,p* /4 + max(7/4 + k(3 —40)/4, k7t /4 + k(1 — 20)/2))

for any positive integer k.
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Recorded in literature.py as:
add_lver_heath_brown_1979c (K)

Proof. By definition, there exists a large value pattern (N,T,V, (a,),cin 2n):J, W) with
N > 1 unbounded, T' = N7V || = Ne+te) B (W) = NP *°) and S(N, W) = Nstol),
From [107, Lemma 4], we have

(W| < T¢ (N?720 4 B, (W)V/A4(T1/ANkB-40)/4 | Th/4 Nk(1-20)/2))
for any fixed € > 0, giving the claim. O
Lemma 10.24 (Guth-Maynard relation). If (o,7,p, p*,s) € & then
p <max(2 — 20,1 — 20 + max(S;, Sy, S5)/3)
where Sy, Sy, S5 are real numbers with
Sy < 10,

Sy <max(2+2p,7+1+(2—1/k)p,2+2p+ (1/2—3p/4)/k)

for any positive integer k and
Sy <27+ p/2+p*/2

and also
Sy <max(27 +3p/2, 7+ 1+ p/2+ p*/2).

Recorded in literature.py as:
add_lver_guth_maynard_2024a()

Proof. By definition, there exists a large value pattern (N,T,V, (a,),ein 2n)sJ, W) with
N > 1 unbounded, T = N7V || = Nete) B (W) = NP *°) and S(N, W) = Nstol),
By [B8, Proposition 4.6, (5.5)], one may bound

|W| <« N2720 4 N1729(8, + S, + S5)1/3
for three expressions S;, S5, S5 defined after [88, (5.5)]. From [88, Proposition 5.1] we have
S, < T719.
From [88, Proposition 6.1] we have

T1/2
|W|3/4

Sy < TN (N2|W 2 + TN|W >k 4 N2|W|%( Yk,

From [88, Proposition 8.1] we have
Sy < T2 W2, (W)1/2
while from [88, Proposition 10.1] we have
Sy < T2 W [3/2 4 Tl N W2 By (W)2,

Combining all these bounds, we obtain the claim. O
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Lemma 10.25 (Second Guth-Maynard relation). [88, Lemma 1.7] If (o, 7, p, p*,s) € & then
pr<p+s—20.
In particular, from Lemma we see for T < 3/2 that
p* <max(3p+1—20,2p+2—20).

Recorded in literature.py as:
add_lver_guth_maynard_2024b()

Proof. By definition, we can find a large value pattern (N, T,V (czn)ne[]\,m\,]7 J, W) with
N > 1 unbounded, T = N7t v = Notel) || = Netel) B (W) = N +o)and
S(N,W) = N**°(1. From () one has

V2E (W) < T°D|W|S(N, W) 4+ T,

Since W is non-empty, Ey(W) > 1, and V > 1, so the T-°° error can be discarded. The
claim then follows. O

Lemma 10.26 (Third Guth-Maynard relation). If (o, 7, p, p*,s) € £ and 1 < 7 < 4/3, then
p* <max(p+4—40,21p/84+7/4+1—20,3p+1—20).

Recorded in literature.py as:
add_lver_guth_maynard_2024c ()

Proof. By definition, there exists a large value pattern (N, T,V (a,)nein,ons J, W) with
N > 1 unbounded, T = N7V || = Nete) B (W) = NP"*°() and S(N, W) = Nstol),
Applying [88, Proposition 11.1], we conclude that

E,(W) < ToD(|W|N14o 4 |W|2V/8TVAN-20 4 [ [3N1-27),
giving the claim. O
We can put this all together to prove the Guth—-Maynard large values theorem.
Theorem 10.27 (Guth-Maynard large values theorem). [8§, Theorem 1.1] One has

LV(o,7) < max(2 — 20,18/5 — 40,7+ 12/5 — 40).

Recorded in literature.py as:
add_guth_maynard_large_values_estimate()

Derived in derived.py as:
prove_guth_maynard_large_values_theorem()
prove_guth_maynard_lvt_from_intermediate_lemmas ()
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Proof. For o < 7/10 this follows from Lemma @, and for o > 8/10 it follows from Lemma
7.19. Thus we may assume that 7/10 < o < 8/10. By subdivision (Lemma @) it then
suffices to treat the case 7 = 6/5, that is to say to show that

p <18/5—4o

whenever (0,7, p, p*.s) € & with 7 =6/5 and 7/10 < o < 8/10.
Applying Lemma ‘ and discarding the very negative S; term, we have

p < max(2 — 20,1 — 20 + max(S,, S5)/3)
where S5, S5 are real numbers with
Sy <max(2+2p,7+1+(2—-1/k)p,2+42p+ (1/2—3p/4)/k)

for any positive integer k and
Sy <27+ p/2+p*/2

and also
Sy <max(27 +3p/2, 7+ 1+ p/2+ p*/2).

From the latter bound and Lemma , one has
Sy <max(2T +3p/2,7+p+3—20,7+2p+3/2—0,97/8+29p/16 + 3/2 — o).

Inserting this and the S, bound (with k = 4) into the bound for p and simplifying (using
T =6/5), we eventually obtain the desired bound p < 18/5 — 4o. O

We also record a variant of that theorem from the same paper:

Theorem 10.28 (Additional Guth—-Maynard large values estimate). For any 1/2 < o < 1,
T > 1, and natural number k one has

k k 4k 2
L < (2—2 — 60, (4 — —+ —7,(b— —_ 4 T,
V(o,7) < max 0,5—60,( 60)k‘+1+k—|—17 (5 60)4k+3+4k+37—
4 79 72—1120 18
_ = _ 2 i 10.10
2 40—1—37’,3 4U+2,2 7o+, m —|—197'). ( )
If one specializes to the case o > 7/10 and 1 < 17 < 6/5, one then has
T k k 4k 2
L < 2—2 —4 —, (4 — —_—t — —_—t
V(O’,T)_III&X( 0,3 0+2,( 60)k+1+k+17,(5 60>4k+3+4k—|—37)
(10.11)
and also 46 — 60 30 21
LV(0,7) < max (2 20,3 — 4o + % ~ 7 05_ T). (10.12)

Recorded in literature.py as:
add_guth_maynard_large_values_estimate2(Constants.LARGE_VALUES_TRUNCATION)
Derived in derived.py as:

prove_guth_maynard_intermediate_lvt()
prove_guth_maynard_intermediate_lvt2()
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Proof. (Sketch) The first_bound () is [@, (12.1)], and is proven by the same methods
used to prove Theorem @ The second and third bounds ([10.11]), (M) are in

Proposition 12.1]. The second bound () follows from the k = 3 case of Theorem

when o > 39/50. and from () together with Theorems @, for o < 39/50. The
third bound () follows from Theorems [7.9, when 7 < 4 —40, and for 7 > 4 — 4o
the bound follows from () after optimizing in & (see the proof of [88, Proposition 12.1]
for details). O

Now we turn to another application of double zeta sums to large value theorems.

Theorem 10.29 (Bourgain large values theorem). /@] Let1/2 <o <1 and T >0, and let
p:=LV(o,7). Let ay,ay > 0 be real numbers. Then either

p < max(ay + 2 — 20, —ay + 27 + 4 — 80,20y + 7+ 12 — 160) (10.13)

or else there exists s > 0 such that

1 1
—max(p+2,2p+ 1,5p/4+7/2+1) + 5max(s—|—2,2$—|— 1,5s/4+71/241) >

2 (10.14)

max(—2a; + 20+ s+ p,—a; —ay /2 + 20 + 5/2+ 3p/2).

Proof. By Definition @, we can find a large value pattern (N, T,V (a,),en 2n)s /5 ) with
N > 1 unbounded, N > 1, T = N7+ |R| = Nr+o) 'V = No+to(l): we use R here instead
of W to be consistent with the notation from [@] Now set ¢, := N 1, §, := N~ *2. From
[@, (4.41), (4.42)], one has the inequality
[R| <[RW]|+ R

for certain sets R(Y) and R® with the former set obeying the bound

IR « 631 N2V 2+ §,T2N*V 8 + 53T N2V 16,
Hence, we either have

|R| < 65 N2V~2 4 §,T2N4V 8 4 2T N12y 16

which implies (), or else

|R| < |R?)|. (10.15)
Henceforth we assume that () holds. From [@, (4.53), (4.54)] we may upper bound
T=25'(6")2V?|S||RP| + T=26,V?|S|Y2 > |R,, P/ (10.16)
by
< T¢S(N,R®)/28(N,S)'/? (10.17)

set S (which will be non-empty by [@, (4.47)]), and some sets R, defined in [ 4.39)],

for arbitrarily small fixed e, some §’,8” > 0 with 6’ > T(,/3”)? (see [@, (4.37)]), some
§, the

where the double zeta sums S(N,W) are defined in () Applying Lemma |l
latter expression is bounded by

K T(|RIN?+ |R|2N + |RPPATY2N)Y2(|SIN? + [S|2N + |S|P/4T V2 N)12,

(0]



Meanwhile, from [21), (4.57)], the expression ([l0.16) is bounded from below by
> T2(83V?|S||R| + 6,8, *V2|S|'2|R|*/2).

After passing to a subsequence, we can ensure that |S| = Neto) for some s > 0. Combining
these bounds and writing all expressions as powers of N, we obtain the claim (after sending
e —0). O

Corollary 10.30 (Bourgain large values theorem, simplified version). [21, Lemma 4.60]
Let the notation be as above, but additionally assume p < min(1,4 — 27). Then

p < max(ay+2—20, a;+0y/242—20, —ay+27+4—80, —20; +7+12—160, 4oy +2+max(1, 27—2)—40).

In [21]] this bound is only established in the case 7 < 3/2 (in which case the condition on p
simplifies to p < 1, and the final term 4o +2+max(1, 27 —2) —4o simplifies to 4a; +3—40),
but the argument extends to the 7 > 3/2 case without significant difficulty.

Proof. With p < min(1,4—27), 5p/44+7/2+1 and 2p+ 1 are both bounded by p+ 2, hence
max(p+2,2p+1,5p/4+7/24+1)=p+2.
Furthermore, 5s/4 + 7/2 + 1 is a convex combination of s + 2 and 2s + 27 — 2, hence
max(s+ 2,25+ 1,5s/4 + 7/2 4+ 1) < max(s + 2,2s + max(1, 27 — 2)).

Thus () simplifies to
(p+2)/24+max(s+2, 2s+max(1,27—2))/2 > max(—2a;+20+5+p, —a;—a /24+20+5/2+3p/2).

Thus either
(p+2)/2+(s+2)/2> —a; —ay/2+20+5/2+ 3p/2

or
(p+2)/2+ (2s+max(1,217 — 2))/2 > —2a; + 20 + s+ p.

In both cases we may eliminate s and solve for p to obtain
p<a;+ay/2+2—20

or
p < 4day + 2+ max(1,27 — 2) — 4o,

giving the claim. O

With the aid of computer assistance, one is able to produce an optimized version of the
above large values theorem. We have

Corollary 10.31 (Bourgain large values theorem, optimized version). For each row (py, oy, 0y, S)
of Table , one has
P < pO(UaT)a (077—) €8

Recorded in literature.py as:
add_bourgain_large_values_estimate()

Derived in derived.py as:
prove_bourgain_large_values_theorem()
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Proof. Follows from substituting the specified values of o; and a, and a routine calculation.
O

The preprint of Kerr [165] contains additional large value theorems:

Lemma 10.32 (Kerr large values theorem).

(i) 165, Theorem 2] Let 3/4 < o <1,0<7<3/2, and 0 < p < LV(o,7),1 be fized.
Then for any fired o > 0, one has

p<max(2—20+«a,21+4—80 —a,7/34+16/3 —200/3+ «/3,27/3+9 — 120).

(ii) 165, Theorem 3] Under the same hypotheses as (i), we have for any fized integer k > 2
obeying —a < dko — (1 +3k—1) and —a < 1+ ﬁ — 7 that

p<max(2—20+a,7/3+ (3k+4)/3 — 4k +4)0/3 + «/3).

(iii) |165, Theorem 4] If 25/32 <o <1, 7> 0, and 0 < p < LV(0,7),1,4 — 27 are fized,
then for any fized o with

260—32c0—17T<—a<160—11—171
one has

p<max(2—20+ a,21+4—80 —a,—7 + 8 — 80 + 2c, 10 — 120 + 2c¢/3).

(iv) [165, Theorem 5] If1/2 <o <1,0<7<3/2, and 0 < p <LV(o,7),1 are fized, then
for any fixed o with
—a<—T1+80—5

one has

p < max(2— 20 + a,47/3 + 23/3 — 120 — 20/3,27/3 + 14/3 — 20/3).
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Table 10.1: Bounds on LV(o,7) for 1/2< o <land 7>1

p0<0', T)

Qg

S

—1+72>0,

10— 140+ 71 > 0,
4440 —51 >0,
—11+ 160 —7 > 0.

5—To+3r

(NI
\
Nl
Q
+
|3

—1—0+%T

8§—8—7172>0,
—16—|—200+%720,

—6+100—£720,
—4—40+ 57> 0.

3—50+T1

[Nl
w‘:

1—3c+T1

—84+8r+72>0,
2—60+27 >0,

2
—10+14a—§7'20,
6—20—27>0.

—40 + 271

1—3c+T71

—6+20+27 >0,
—12+ 120 +1 > 0,
1—0c2>0.

8—120 + 37

2—20—%7’

6— 100 + 37

15—21lc+7172>0,
12 —-120 — 17 > 0,

—g+7'20,

6—1004—%7’20.

2—20

1—02>0,
—10+ 140 — 7 > 0,
—1+72>0,
—2460—27>0.

9—120—1—%7’

3 _ 1
5 — 20+ 5T

11 — 160 + 7

3
5—7'20,

1

—14+72>0,
11 — 160 + 7 > 0,

16—200’—%7’20.
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Chapter 11

Zero density theorems

Definition 11.1 (Zero density exponents). For o € R and T > 0, let N(o,T) denote the
number of zeroes p of the Riemann zeta function with Re(p) > o and [Im(p)| < T.

If1/2 < 0 < 1 is fized, we define the zero density exponent A(c) € [—00,00) to be the
infimum of all (fized) exponents A for which one has

N(o—6,T) < TA-)+o(l)
whenever T is unbounded and § > 0 is infinitesimal.

The shift by ¢ is for technical convenience, it allows for A(o) to control (very slightly) the
zeroes to the left of Res = o. In non-asymptotic terms: A(o) is the infimum of all A such
that for every € > 0 there exists C,d > 0 such that

N(o—4,T) < CTAN-o)+e
whenever T' > C.

Lemma 11.2 (Basic properties of 4). (i) o = (1 — 0)A(0) is non-increasing and left-
continuous, with A(1/2) = 2.

(i7) If the Riemann hypothesis holds, then A(c) = —oo for all 1/2 < o < 1.

Proof. The claim (i) is clear using the Riemann-von Mangoldt formula [144, Theorem 1.7
and the functional equation. The claim (ii) is also clear. O

Remark 11.3. One can ask what happens if one omits the § shift. Thus, define Ay(o) to
be the infimum of all fized exponents A for which N(o,T) < TA1=+ W) for unbounded T.
Then it is not difficult to see that

lim A(o) < Ay(o) < A(o)
o’ —ot
for any fivred 1/2 < o < 1; thus A, is basically the same exponent at A, except possibly at
jump discontinuities of the left-continuous function A, in which case it could theoretically
take on a different value. (But we do not expect such discontinuities to actually exist.) Thus
there is not a magjor difference between A (o) and Ay(o), but the former has some very slight
technical advantages (such as the aforementioned left continuity).
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The quantity |A[,, = sup, Jo<aci A(o) is of particular importance to the theory of primes

in short intervals; see Section [L§. From Lemma we have |Al, > 2. It is conjectured
that this is an equality.

Conjecture 11.4 (Density hypothesis). One has |Al = 2. Equivalently, A(o) < 2 for all
1/2<o0< 1.

Indeed, the Riemann hypothesis implies the stronger assertion that A(c) = —oo for all
12 < 0 < 1. However, for many applications to the prime numbers in short intervals, the
density hypothesis is almost as powerful; see Section @

Upper bounds on A(o) can be obtained from large value theorems via the following relation.

Lemma 11.5 (Zero density from large values). Let 1/2 < o < 1. Then

A(o)(1—0) <max(sup LV (o,7)/7,limsup LV(o,7)/7).

T>2 T—00

Proof. Write the right-hand side as B, then B > 0 (from Lemma @(iii)) and we have
LV (o,7) < BT (11.1)

for all 7 > 1, and
LV(o,7) < (B+¢e)T (11.2)

whenever £ > 0 and 7 is sufficiently large depending on ¢ (and o). It would suffice to show,
for any € > 0, that N(o — o(1),T) < TBHOEo) a5 T — 0.

By dyadic decomposition, it suffices to show for large T that the number of zeroes with real
part at least o — o(1) and imaginary part in [T,27] is < T5+0)*°) From the Riemann-
von Mangoldt theorem, there are only O(logT') zeroes whose imaginary part is within O(1)
of a specified ordinate t € [T,2T], so it suffices to show that given some zeroes o, + it,,
r=1,..,R with o —o(1) <0, < 1and t, € [T,2T] 1-separated, that R <« TB+OE)+e(l),
Suppose that one has a zero o, +it, of this form. Then by a standard approximation to the
zeta function [144, Theorem 1.8], one has

1
D e ST

n<T

Let 0 < ¢; < € be a small quantity (independent of T') to be chosen later, and let 0 < d, < d,
be sufficiently small depending on d;, d,. By the triangle inequality, and refining the sequence
t,. by a factor of at most 2, we either have

1
Yo | > T
T%1<n<T e
for all r, or
1
Z W < T762 (113)
n<T1

for all r.

Suppose we are in the former (“Type I”) case, we perform a smooth partition of unity, and
conclude that

v YN pebeo)

nor +it,.
T%1<n<T
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for some fixed bump function ¢ supported on [1/2, 1], and some 7% <« N < T.
We divide into several cases depending on the size of N. First suppose that N <« T'/2. The
variable n is restricted to the interval I := [max(N/2,T°1), N]. We have

> W(n/N)(n/N)=Trn=itr| s> NOT 0270,

nel

Performing a Fourier expansion of ¢)(n/N)(n/N)~?r in logn and using the triangle inequal-
ity, we can bound

1
> |0+ [t —t,[)~4 dt

nel

S 6/ N)(n/N) om0 < /R

nel

for any A > 0, so by the triangle inequality we conclude that

E : nttr

nel

> NUT*‘SQ*O(U

for some t/. = t, + O(T°Y)). By refining the ¢, by a factor of T°!) if necessary, we may
assume that the ¢/ are l-separated, and by passing to a subsequence we may assume that
T = N7+ for some 2 < 7 < 1/5,, then we conclude that

1
Z nzt/

nel

> No— 85/6,+0(1

for all remaining r. By Definition @ we then have (for §, small enough)

R« NLV<<O',T)+€+O(1) < TLV<<O',T)/T+E+O(1)

and the claim follows in this case from ()
In the case N < T, a standard application of the Euler-Maclaurin formula (see e.g., [277,
(2.1.2)]) yields
N)
> Y/N) o po,

nor At
T31<n<T

which leads to a contradiction. So the only remaining case is when T2 « N <« o(T). Here
we can ignore the cutoffs on n and obtain

)(n/N)=orn =i > NOT 0270l

Applying the van der Corput B-process (see, e.g., [149, §8.3]) or the approximate functional
equation we have

t,

> 9(n/N)(n/N)=7rn=i = (2T1 7—7+ Zw (2xt, /mN)(2nt, /mN)~Trmit(2rm? /t,) " /2+0(T°M)

™ 2 2w

and thus

‘Z p(2mt, /mN)(2nt, /mN) =T m i | > MU2No2T 0o

m
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where M := 27T /N <« N'/2. In particular

Y(27t,/mN)(2nt, /mN) =Trm = > MoT %2700,
me[M/10,10M]

since N > T%? and o > 1 /2. Performing a Fourier expansion as before, we conclude that

Z m~itr « MeT—92—0(1)
me[M/10,10M]

for some t. = t, + O(T°"), and one can argue as in the N <« T'/? case (partitioning
[M/10,10M] into O(1) intervals each contained in some [M’,2M’] with M’ <« T'/?).
Now_suppose instead we are in the latter (“Type II”) case () We multiply both sides

of () by the mollifier Zm<T52/2 —sm7- to obtain
a
i | =00
T82/2 <pardrsz/z 0T

where a,, is some sequence with a,, < T7°). By dyadic decomposition and the pigeonhole
principle, and refining the ¢, by a factor of O(T°!)) as needed, we can then find an interval
I in [N,2N] with T%/2 « N « T%+%2/2 guch that

aTL
Z nortit,

nel

> 7o)

1
ner

>
nith

nel

and hence by Fourier expansion of

in logn

> Norp—ol)

for some t. = t, + O(T°Y); by refining the ¢, by a further factor of 7°") we may assume
that the ¢, are also 1l-separated; we can also pigeonhole so that T = N m+o(l) for some
W <7< 52%. Applying Lemma [7.3, we conclude that

R <« NWV(@m+o(l) _ pLV(e,r)/r+o(1)
and the claim follows in this case from ([L1.9). O

Recently, a partial converse to the above lemma was established:

Lemma 11.6 (Large values from zero density). /204, Theorem 1.2] If7 >0 and1/2 <o <1
are fized, then

o<o’<1 2

LV (0, 7)/7 < max (1, sup A(o')(1— o)+ ‘”) |

Proof. Let N > 1 be unbounded, T = N7*°1) and I C [N,2N] be an interval, and
ty,...,tg € [T,2T] be 1-separated with

1
Do

nel

> No—o(l)
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uniformly for all ». By [206, Theorem 1.2], we have for any fixed 6 > 0 that

R< T’ sup TZ2°N(o',0(T)) + T+

o—0<0’<1

Using Definition , we conclude that

R« r_z—vmax(%,supaﬂ;Sa/Sl A(o")(1—0")+ U/gg )+O0(6)

and thus

o' —o

LV (o,7) < Tmax(%, sup A(d’)(1—0")+

o—e<0’<1

) +0(9).
Here the implied constant in the O() notation is understood to be uniform in §. Letting §

go to zero, and using left-continuity of A, we obtain the claim. O

The suprema in Lemma require unbounded values of 7, but thanks to the ability to
raise to a power, we can reduce to a bounded range of 7. Here is a basic such reduction,
suited for machine-assisted proofs:

Corollary 11.7. Let 1/2 < o <1 and 7y > 0. Then

A(0)(1 —0) < max ( sup LV (o,7)/7, sup LV(U,T)/T)

2<7<Tg To<T<27,

with the convention that the first supremum is —oo if it is vacuous (i.e., if 75 < 2).

Implemented at zero_density_estimate.py as:
lv_zlv_to_zd(hypotheses, sigma_interval, tau0)

Proof. Denote the right-hand side by B, thus
LV(o,7) < Bt

for all 7y < 7 < 27, and
LV (o,7) < BT (11.4)

whenever 2 < 7 < 7. From Lemma @ we then have
LV(o,7) < Bt

for all kry < 7 < 2k7, and natural numbers k. Note that the intervals [k7y, 2k7] cover all
of [1y,00), hence we have

LV(e,7) < Bt
for all 7 > 7. In particular

limsup LV(o,7)/7 < B.

T—00

Also, combining the previous estimate with () using Lemma @(iii) we have

LV (o,7) < BT (11.5)
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for all 7 > 2. By Lemma @(iv), this implies that

1 1 1 T T
4= (o—= <
LV<<2+T—1<U 2)’7—1)—37—1

for 7 > 2. Thus

LV,(o,7
sup L < B.
T>2 T
The claim now follows from Lemma . O

For machine assisted proofs, one can simply take 7, to be a sufficiently large quantity, e.g.,
To = 3 for o not too close to 1, and larger for o approaching 1, to recover the full power of
Lemma . However, the amount of case analysis required increases with 7. For human
written proofs, the following version of Corollary is more convenient:

Corollary 11.8. Let 1/2 <o <1 and 7y > 0. Then
A(0)(1 —0) < max sup LV(o,7)/7, sup LV(o,7)/7].
2<7<47,/3 274/3<7<T1g

Implemented at zero_density_estimate.py as:
lv_zlv_to_zd2(hypotheses, sigma_interval, tau0)

Proof. Applying Corollary with 7 replaced by 47,/3, it suffices to show that

sup LV(e,7)/7r< sup LV(o,7)/7.

474 /3<7<87(/3 274/3<7<1g

But this follows from Lemma @, since the intervals [2k7,/3, k7y] for k = 2,3 cover all of
[471,/3,87,/3]. O

The following special case of the above corollary is frequently used in practice to assist with
the human readability of zero density proofs:

Corollary 11.9. Let 1/2 < o <1 and 7y > 0. Suppose that one has the bounds

LV(o,7) < (3 — 30)— (11.6)

To

for21,/3 <1 <74, and

LV (0,7) < (3—30);0 (11.7)
for 2 <1 <471y/3. Then A(o) < T%
The reason why this particular special case is convenient is because the inequality
2 — 20 < (3—30)— (11.8)

To

obviously holds for 7 > 27,/3. That is to say, we automatically verify () in regimes where
the Montgomery conjecture holds. In fact, we can do a bit better, thanks to subdivision:
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Corollary 11.10. Let 1/2 < 0 < 1 and 74 > 0. Suppose that one has the bound () for
2 < 1 < 47,/3, and the Montgomery conjecture LV (o, 7) < 2—20 whenever0 < 7 < 1y+0—1.
Then A(o) < %

Proof. We may assume that 7, > 3—30, since otherwise the claim follows from the Riemann—
von Mangoldt bound
A(o)(1—0) <A(1/2)(1—-1/2)=1.

By Lemma @(ii) we have
LV(o,7) < max(2 — 20,3 — 30 + 7 —7,)

for all 7 > 0. But both expressions on the right-hand side are bounded by (3 — 30) T for
213 <7 <15 and 75 > 3 — 30, so the claim follows from Corollary | O

11.1 Known zero density bounds

Let us see some examples of these corollaries in action.

Theorem 11.11. The Montgomery conjecture implies the density hypothesis.

Proof. Apply Corollary with 7, = 3/2 (so that () is vacuously true). O

Theorem 11.12. The Lindelof hypothesis implies the density hypothesis, and also that
A(o) <0 for3/4< o <1.

Proof. The ﬁrst result is proved in [13€], and the second result is due to [91]. We will apply
Corollary | From Corollary we see that LV,(o,7) = —oo whenever o > 1/2 and
T>1, 80 for any choice of 7, we have

sup LV (o,7)/7 = —oc.
2<7<47y/3

From Theorem @ and Lemma @ we have
LV(o,7) < max((2 — 20)k, 7+ (1 — 20)k) (11.9)

for any natural number k and 7 > 1; setting k£ to be the integer part of 7 we conclude in
particular that

LV(o,7) < (2—20)7 + O(1),
and hence by taking 7, large enough, we can make sup,_ \/3<r<g LV(e,7)/7 bounded by
2 —20 + ¢ for any € > 0. This already gives the den51ty hypothe51s bound A(o) < 2.
For 0 > 3/4, we may additionally apply Theorem n to make sup,_ L J3<r<r, LV(o,7)/T
arbitrarily small, giving the bound A(o) < 0. O

There are similar results assuming weaker versions of the Lindelof hypothesis. For instance,
we have

Theorem 11.13 (Ingham’s first bound). [137] (See also [277]) For any 1/2 < o < 1, we
have

Ao) < 2+4p(1/2).
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Proof. We give here a proof (somewhat different from the original proof) that passes through
Corollary . We apply Corollary with 7, chosen so that p(1/2)7, < o —1/2. From
Corollary we then have

A(oc)(1—0) < sup LV(o,7)/7.

To<TL2T,

For any integer £ > 0 and k < 7 < k+ 1, we see from () that
LV(o,7) < (2—20)(k+1)

and
LV(o,7) <74 (1 —20)k;

multiplying the first inequality by 20 — 1, the second by 2 — 20, and summing, we conclude
that
LV(o,7) < (1 +20—1)(2—20);

inserting this bound we have
20 — 1
Alo) <2+ -,
To

Optimizing in 7, we obtain the claim. O
Theorem 11.14 (Ingham’s second bound). [18§] For any1/2 < o < 1, one has A(o) < 5.

Recorded in literature.py as:
add_zero_density_ingham_1940()
Derived in derived.py as:
prove_zero_density_ingham_1940()
prove_zero_density_ingham_1940_v2()

Proof. We apply Corollary with 7, := 2 — 0. Here we have 47,/3 < 2 since 0 > 1/2,
so the claim ) is automatic; and the Montgomery conjecture hypothesis follows from

Theorem . O

Either of Theorem or Theorem 1.14-}] implies an older result of Carlson [29] that
A(o) < 4o for 1/2 < 0 < 1. Recorded in [literature.py as:
add_zero_density_carlson_1921()

Theorem 11.15 (Huxley bound). [124] For any 1/2 < 0 < 1, one has A(o) < 525. (In
particular, the density hypothesis holds for o > 5/6.)

Recorded in literature.py as:
add_zero_density_huxley_1972()
Derived in derived.py as:
prove_zero_density_huxley_1972()
prove_zero_density_huxley_1972_v2()
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Proof. We apply Corollar with 7, := 30 — 1. The Montgomery conjecture hypothesis
follows from Theorem . So it remains to show that () holds for 2 < 7 < 47,/3. For

o < 5/6 we have 47,/3 < 2, so the claim is vacuously true in this case. For 0 > 5/6 we use
Corollary @ and the bound (1/2) < 1/6 from Table @ to conclude that LV (o, 7) = —0c0
whenever o > 1/24-7/6, but this is precisely 7 < 60 —3. Since 60—3 > 47,/3 when o > 5/6,
we obtain the claim. O

Theorem 11.16 (Guth-Maynard bound). For any 1/2 < o < 1, one has A(o) < Bigg.

Recorded in literature.py as:
add_zero_density_guth_maynard_2024()
Derived in derived.py as:
prove_zero_density_guth_maynard_2024()
prove_zero_density_guth_maynard_2024_v2()

Proof. We may assume that 7/10 < o < 8/10, since the bound follows from the Ingham and
Huxley bounds otherwise. We apply Corollary m with 7, := % We have 47,/3 < 2, so
the claim ([L1.7) is vacuous and we only need to establish (m) We split into the subranges
13/5 —20 < 7 < 71y and 27,/3 < 7 < 13/5 — 20. In the former range we use Theorem [L0.27]
(and ()), and reduce to showing that

18/5 — 4o < (3 — 30)—,
To
and -
T4+12/5—40 < (3—30)—
To

for 13/5 — 20 < 7 < 7. The first inequality follows from

13/5 — 20

18/5 — 4o < (3~ 30)
0

(11.10)
which one can numerically check holds in the range 7/10 < o < 8/10. Finally, the third
inequality is obeyed with equality when 7 = 7y and the right-hand side has a larger slope in
7 than the left (since 7, > 3 — 30), so the claim follows as well.
In the remaining region 27,/3 < 7 < 13/5 — 20, we use Theorem @ and () to reduce
to showing that

T+1—20<(3—30)—
To
in this range. This follows again from () which guarantees the inequality at the right
endpoint 7 = 13/5 — 20. O

Theorem 11.17 (Jutila zero density theorem). [16(] The zero density hypothesis is true
for o >11/14.

Derived in derived.py as:
prove_zero_density_jutila_1977()
prove_zero_density_jutila_1977_v2()
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Proof. We apply Corollary with 7, := 3/2, then it suffices to show that
LV(o,7) < (2—20)T

forall 1 <7 <3/2.
From the k£ = 3 case of Theorem m we have

10 — 160

LV(o,7) < max (2 — 20,7+ 3

, T+ 18 — 240) .
But all terms on the right-hand side can be verified to be less than or equal to (2 — 20)7
when 1 <7< 3/2 and ¢ > 11/14, giving the claim. O

In fact, we can do better:

Theorem 11.18 (Heath-Brown zero density theorem). 107/ For 11/14 < o < 1, one has
A(o) < % (in particular, this recovers Theorem ) For any 3/4 < o <1, one has

A(o) < max(152—, =) (which is a superior bound when o > 20/23).

Recorded in literature.py as:
add_zero_density_heathbrown_1979()
Derived in derived.py as:
prove_zero_density_heathbrown_1979a()
prove_zero_density_heathbrown_1979b()
prove_zero_density_heathbrown_1979a_v2()
prove_zero_density_heathbrown_1979b_v2()

Proof. For the first estimate, we apply Corollary with 7, 1= 7‘73’ L To verify (), we

apply the k = 3 version of Theorem , which gives
10 — 16
LV(o,7) < max (2 — 20,7+ %,T +18— 240).
When o > 11/14 one has 18 — 240 < w, so by ([L1.§) we need to show that
10 — 160 T
——— < (3—30)—
T 3 < o) Ty

for 27,/3 < 7 < 7. This holds with equality at = 7, hence holds for 7 < 7, as well since
To = 3 —30. As for ()7 we invoke Theorem @ and reduce to showing that

2 +6—120 < (3 — 30)
To
for 2 < 7 < 47,/3. Since 6 — 120 is negative, the ratio of the left-hand side and right-hand
side is increasing in 7, so it suffices to verify this claim at the endpoint 7 = 47,/3. The
claim then simplifies to 7, < %(40 — 1), which one can verify from the choice of 7, and the
hypothesis o > 11/14.
For the second estimate. we take 7 := min(100c — 7, 2(40 — 1)). To verify ()7 we now
use Theorem and (), and reduce to showing that

T+10— 130 < (3 — 30)—
To

for 27y/3 < 7 < 7y. The inequality holds at 7 = 7 since 7, < 100 — 7, and hence for all
smaller 7 since 7, > 3 — 30. As for (), we can repeat the previous arguments since
To < %(40 —1). O
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With the aid of computer assistance, we were able to strengthen the second claim here. We
first need a lemma:

Lemma 11.19. (3/40,31/40) is an exponent pair. In particular, by Corollary , w(7/10) <
3/40.

Derived in derived.py as:
best_proof_of_exponent_pair(frac(3,40), frac(31,40))

Proof. This can be derived from the Watt exponent pair W := (89/560, 1/2 560 from
Theorem ﬂ as well as the A and B transforms and convexity (Lemmas , b.9) after
observing that

(3/40,31/40) = ayAW + (1 — 2)yABAW + (1 —y)W

with = = 37081/40415 and y = 476897/493711. (One could of course also use more recent
exponent pairs that are stronger, such as the Bourgain exponent pair (13/84,1/2+13/84).)
We remark that one could also obtain this result from Lemma , after_observing that
the required bound S(a) < 3/40 4+ 7a/10 can be derived from Theorem M (as well as
the classical bounds in Corollary @) We also note that the corollary p(7/10) < 3/40 =
0.075 is immediate from [279, Theorem 2.4], which in fact gives the slightly stronger bound
w(7/10) < 218/3005 = 0.07254 ... . O

Theorem 11.20 (Improved Heath-Brown zero density theorem). For any 7/10 < o < 1,

3
one has A(0) < 52—

Derived in derived.py as:
prove_zero_density_heathbrown_extended()

Proof. We_apply Corollary with 7 := 100 — 7._The claim () again follows from
Theorem ! and () as in the proof of Theorem . Meanwhile, from Lemma
and Corollary @ we have LV.(0,7) = —oo whenever o > 214 &5, or equivalently 7 <

(100 — 7), which then immediately gives () O

Theorem 11.21 (Bourgain result on density hypothesis). The density hypothesis holds for
o> 25/32.

Recorded in literature.py as:
add_zero_density_bourgain_2000()

Proof. The arguments below are a translation of the original arguments of Bourgain [21] to
our notational framework.

In view of Theorem (or Theorem m we may assume that 25/32 < o < 11/14. Set
p:=LV(o,7). As in the proof of Theorem ‘, it suffices to show that

p<(2—20)T (11.11)

forall 1 <7 <3/2.
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From the & = 3 case of Theorem m we have

10 —16
p < max <2—20,7’+U,T+18—240> (11.12)
which in the o < 11/14 regime simplifies to
p <max(2—20,7 + 18 — 240) (11.13)
and this already suffices unless
240 — 18
> 11.14
- 20—-1 ( )

In the regime o > 25/32 and 7 < 3/2, the bound () certainly implies
p < min(1l,4 —27)

and also
max(1,2r —2) =1

so we may invoke Corollary to conclude that

p <max(ay+2—20,0q4 +y/2+2—20, —ay+27+4—80, —20q + 7+ 12— 160, 4a; +3—40)
(11.15)
for any o,y > 0.

We now divide into cases. First suppose that 7 < @.

Z — 2(7o — 5) (which can be checked to be nonnegative using () and o > 25/32) and
a, = 0, and one can check that () implies ([L1.11)) in this case (with some room to

In this case we set a; =

spare).

Now suppose that 7 > @. In this case we choose a; = ¢ — 9"2’7 and ay = %T —(1+o0),
which can be checked to be nonnegative using the hypotheses on o, 7. In this case one can
again check that () implies () O

We can improve this bound as follows:

Theorem 11.22 (Improved Bourgain density hypothesis bound). For 17/22 < o < 4/5,
one has A(o) < max(52, 8(%71)). Thus one has A(o) < ﬁ for 38/49 < o < 4/5 and

A(0) < g2 for 17/22 < 0 < 38/49.

Derived in derived.py as:
prove_zero_density_bourgain_improved()

The arguments can be pushed to some o below 17/22; but in that range the estimate in
Corollary [11.31] becomes superior, so we do not pursue this further.

Proof. We apply Corollary with 7, := min(282-2 8C21)  For future reference we
note that

1 — 1
T dzde 1 (11.16)
Ty 2
It suffices to show that -
LV(o,7) < T—(3 —30) (11.17)
0
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for 27,/3 < 7 < 7y, as well as
.

LV¢(o,7) < 7—0(3 —30) (11.18)
for 2 < 7 < 47,/3. For () we use the twelfth moment bound in Theorem @ Since the
slope of 27 — 12(c — 1/2) in T exceeds that of }0(3 —30) by (‘11.16), it suffices to check the
bound at the endpoint, i.e., to show that

879/3 —12(c —1/2) <4 —4o
or equivalently 7, < W, which one can easily check to be the case.
Now we_prove () Set p := LV(o,7). From the k = 3 case of Theorem m we again
i‘l.l 2

have ( ), which implies the required bound p < %(3 — 30) unless one has

10 — 16

> —max(%, 18— 240) /(1 — 2—37

To

) (11.19)

In this regime, one can also check from () that
p <min(1,4 — 27)
(with room to spare) so we may apply Corollary to obtain

p <max(ag +2—20,a7 + ay/2+2—20,—a, + 27+ 4 — 80,

(11.20)
—2aq + 7412 — 160,404 + 2 + max(1,27 — 2) — 40)

for any ay,ay > 0.
We first consider the case when 38/49 < o < 4/5, so that 7, = 8(20 —1)/3. As in the proof
of Theorem [L1.21], we set

Q= max (% -1 +J),O>
and 5
-

With this choice, the expressions a; + a5 /242 —20 and —2ay + 7+ 12— 160 are both equal
to T+ % + %, while —ay + 27 4+ 4 — 80 is equal to

I+w+%_é(a —i—(l—l- ))
3 3 3 3\ 7 7

which is less than or equal to the previous expression by definition of a,. Finally, the
expression 4o + 1 + max(2,27 — 2) — 4o is equal to

4 46 — 68 2
§T + TU + max(1,27 — 2) — %
Thus it remains to show the bounds
ay+2—20 < (3 30) (11.21)
To
16 — 20
T2 % T3 (11.22)

3 3 377,
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and
4 46 — 68 2
§+Ta+max(1,2r—2)—% < 710(3—30). (11.23)
For (), we trivially have 2 — 20 < %(3 — 30) since T > 27,/3, and the slope of
5 — (14 0)+2—20 in 7 certainly exceeds =32 by ([L1.16), so it suffices to check the

To
endpoint

9Ty
4

which one can check to be valid for o < 4/5. Now we turn to () From ([L1.16) it
suffices to show that

—(1+0)+2—-20<3—-30

5T
T 16—200c 3 —(1+0)
— <3-3
5 T3 T 3 =070

and
z+16—200+9<272
3 3 3=

The former is_an identity, and the latter simplifies to 7 > 140 — 10, which one can check

follows from ( with some room to spare) in the regime 38/49 < o < 4/5, giving the
claim. Finally, for () it suffices to show that

AT 46 — 680 207 —(+o0) 7
5 t——5 — tmax(l,2n—2) - 4# < 70(3—30)
which by () would follow from
4 46 — 68 2(%70 — (14
%JFTU+max(1,270—2)—M <3-30

and one can check that this applies for o > 38/49.
Now suppose that we are in the case 17/22 < o < 38/49, so that 7, = 9Bo=2) < 2 <3 (s0
in particular max(1,27 —2) =1 for 7 < 7,). We set

ay :=max(11 — 160 + 7,0)

and

(To0 —5) — ay /6.

[SCAR )

Q=

Wil

Note that for o < 38/49, one has
(57/4—(1+0))— (11 =160+ 7) <150 —12—17,/4 <0
and hence
ay > 57/4— (14 0).

As before, we conclude that the quantities ay + a5 /2 + 2 — 20 and —2a + 7+ 12 — 160 are
both equal to 7 + % + % while —ai, +27 44 — 80 is less than or equal to this quantity.
Thus it suffices to show (|11.2]J), (|11.2 ), (IL1.23) as before.

For () we argue as before to reduce to showing that

11—160+ 75+ 2—20 <3—30
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which one can check to be true (with room to spare) for o > 17/22. For (), we use
() as before to reduce to showing that

Ty 16 —200c 11— 160+ T

20 <3
3—|- 3 + 3 <3—30
and
T 16-200 0,
3 3 3 '

The first inequality is an identity, and the latter again reduces to 7 > 140 — 10 which one
can check follows from (| 1.1a). For (]L1.23) it suffices to show that

4 46 — 2(11 -1
ar 6 680+1_ ( 60’+T)Sl(3_30_)
3 3 3 T
which by () follows from
47y i 46 — 680 L1 2(11 — 160 + 79) <330,
3 3 3
but this is an identity. O

Theorem 11.23 (Bourgain zero density theorem). [2(, Proposition 3] Let (k E) be an
exponent pair with k < 1/5, ¢ > 3/5, and 15¢ + 20k > 13. Then, for any o > one
has

(k+1) ’

4k
<
M) S S e — 1

or that 1t <k < 1 and o > ko111

assuming either that k < 85, 170k—22

Corollary 11.24 (Special case of Bourgain’s zero density theorem). /20, Corollary 4] One
has

f0r15<o<1and

Jor It <o < 12
Recorded in literature.py as:

add_zero_density_bourgain_1995()

Proof. ApplE Theorem m with the classical pairs (%1 i) and (é7 %) respectively from

Proposition O

It was remarked in [20] that further zero density estimates could be obtained by using
additional exponent pairs. This we do here:
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Corollary 11.25 (Optimized Bourgain zero density bound). One has

1 5_,_u
12(40 — 3) 1°7=15
391 14 2841
— — <0< —,
24930 — 2014 15 3016
22232 2841 <5< 859
b ks
1632480 — 134765 016 8’
5% el - 109
27420 — 227 - 1692°
Alo) < 772609588 1655 iy §334585
20732766 — 17313767 1%92 3447984’
75872 3334585 <o < 974605
O99F009 g« 2PV
9(810240 — 69517) 3447984 ~ 1005296’
288 974605 5857
36160 — 3197 1005296 o= 6032’
86152 5%57 co<l
14474600 — 1311509 6032 '
Implemented at zero_density_estimate.py as:
bourgain_ep_to_zd ()
Proof. Let 8(o) denote the closure of the region
13 41
kO):0<k<—-,—-<{l<1,150+20k > 13, —— < 0o,
{( ) 55 + 2+ 1) ~°7
11 11 144k — 114 — 11
k< — k>—and —————
<850r< 785 M TR — 2 <U)}

One may verify that 8(o) is a convex polygon for all 3/4 < o < 1, and thus so is S(o) N H,
where H is the convex hull of exponent pairs. Thus

. 4k
(k,é)rerg(rrlf)ﬁH 204+ ko —1—¢

is a convex optimisation problem for each 3/4 < o < 1. We take the following choices of
(k,¢) (found with the aid of computer assistance).

(Ll . 59 n 26) ( 391 L. 3461) ( 2779 v 58699) ( 89 Le 997 )
85 " 85 "\ 4595 4595 ) "\ 38033 776066/ 7 \ 1282 11282/
( 652397 7599781) ( 2371 280013) ( 9 1461) ( 10769 609317)
+ g, ) + &, s\ 599~ + g, ’ + g, .
9713986 9713986 43205 345640 217 1736 351096 702192

Of these exponent pairs:

 (%,22) is the intersection of the lines k = 1/5 and 15/ + 20k = 13;
. (%, %) is an intersection of the line 15¢ + 20k = 13 and the boundary of H;

o all other exponent pairs are vertices of H.
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The desired result follows from taking a minimum over the implied bounds. Sharper bounds
are possible close to ¢ = 1 by choosing other exponent pairs, however it turns out such
results are superseded by other zero density estimates. O

Lemma 11.26 (1980 Ivic zero density bound). [141], [144, Theorem 11.2] We have

4
Alo) <
(0) < 5077

for17/18 <o <1, and

for 155/174 < o < 17/18.

Recorded in literature.py as:
add_zero_density_ivic_1980()

Proof. From Lemma we have

840 — 65)
6
for all 7 > 0. Meanwhile, applying Lemma with the exponent pair (2/7,4/7) we have

LV(o,7) <max(2 — 20,74+ 9—120,7 —

LV (o,7) <max(r + (3 — 60),37 +19(1/2 — 0)).

We apply Corollary with 7, := max(?’o‘%n, %), and reduce to showing that ()
for 27,/3 < 7 < 7, and () for 2 < 7 < 47,/3. But this follows from the preceding
estimates after routine calculations. O

One can also use bounds on p to obtain zero density theorems:

Lemma 11.27 (Zero density from p bound). [218, Theorem 12.3] If 1/2 < a < 1 and
o‘?ﬂ < o<1, then

2(30 — 1 — 2a)
(20 —1—a)(c—a)

Corollary 11.28 (1971 Montgomery zero density bound). [218/, [144, Theorem 11.3] For
any 9/10 <o <1 and 1/2 < a <1 one has

A(o) < p(a)

A(o)(1—0) < Zp(bo —4).

[ NI

In particular, for 152/155 < o < 1, one has
A(o) < min(35/36,1600(1 — o)/2).

Recorded in literature.py as:
add_zero_density_montgomery_1971()

Proof. Apply the previous lemma with o = 50 — 4. O
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Lemma 11.29 (Preliminary large values estimate). If m > 2 is an integer, 3/4 < o < 1,
and (k,0) is an exponent pair, then

LV(o,7) < max(2 — 20, m(2 —40) + m7, min(X,Y))

where
X :=27/34+4m(3 —40)/3
and
Y :=max(7 +3m(3 —4o), (k+ )7 /k + k(1 + 2k + 20)(3 — 40) / k).
Proof. See [144, (11.74)]. O

Lemma 11.30 (General zero density estimate). [144, (11.76), (11.77)] If (k,£) is an expo-
nent pair, and m > 2 an integer, then

3m
A <
(o) < Bm—2)cg+2—m
whenever
o (6m?—5m+2
c>min| ——,
8m2 —Tm + 2

e 9m? —4dm +2 3m?(1 + 2k + 20) — (4k + 20)m + 2k + 2¢
X
12m2 — 6m + 2" 4m?(1 + 2k + 20) — (6k + 4€)m + 2k + 2/

Implemented at zero_density_estimate.py as:
ivic_ep_to_zd(exp_pairs, m=2)

Proof. With the hypothesis on o, one sees from Lemma that

(dm —2)o +2—2m
m

LV(o,7) < max(2 — 20,7 — +2—20)
for0 <7 W7 and hence for all 7 > 0 by by Lemma @(11) Meanwhile, from

Theorem one has
LVC(U,T) <27 —12(c —1/2)

for all 7 > 2. The claim then follows from Corollary with 7, := M+M after a
routine calculation. O

Corollary 11.31 (1980-1984 Ivic zero density bound). [141], \144, Theorem 11.4] One can
bound A(c) by

3831
2 for 22 < o<1,
f o1 S0k

9 41
Zos<
e 11530

6 13
= forﬁ<a<1

15

for£7< <1
1Bo—3'"167=7="

4
0 for—7<a<l
8o —2 62
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Recorded in literature.py as:
add_zero_density_ivic_1980()
add_zero_density_ivic_1984()
Derived in derived.py as:
prove_zero_density_ivic_1984()

Proof. Apply Lemma with m = 2 and (k,¢) = (29571, 132) for the first claim; the

remaining claims follow from taking m = 3,4,5,6 and the trivial exponent pair (0,1). O

The first bound has been improved:

Theorem 11.32 (2000 Bourgain zero density theorem). [22] One has A(c) < 3/20 for
3734/4694 < o < 1.

Recorded in literature.py as:
add_zero_density_bourgain_2002()

Lemma 11.33 (Preliminary large values theorem). If1/2 <o <1 and 7 < 80 — 5, then
LV(o,7) < max(2 — 20,67/5 + (20 — 320)/5).
Proof. See [144, (11.95)]. O

Corollary 11.34 (Zero density estimates for o close to 3/4). 144, Theorem 11.5] One has

A(o) < =2 for 3/4 <0 <10/13, and A(0) < g2 for 10/13 <o < 1.

Proof. For 3/4 < 0 < 10/13, we see from Lemma that the bound

LV(o,7) < max(2 — 20,7+ 7 — 100)

holds for 0 < 7 < 8¢ — 5, and hence for all 7 > 0 by Lemma E Meanwhile, from Lemma
we have
LVi(o,7) <7 —4(0 —1/2)

for all 1/2 < o <1 and 7 > 2. The claim then follows from Corollary with 7y :=To—4
after a routine calculation. Similarly, for 10/13 < o < 1, we have

11—-17
LV(o,7) < max(2 — 20,7 + TJ)
for 0 <7< %, hence for all 7 > 0 by Lemma @(ii); the claim then follows from
Corollary with 7, := 322 after a routine calculation. O

Theorem 11.35 (Pintz zero density theorem). (237, Theorem 1] Ifk > 4, £ > 3 are integers
and 0 =1 —mn is such that

) 1
SR R (11.24)
and
I S S (11.25)
2+ 1) 20t —-1)
then o~ 3 4
(o) < max (m —2(0—1)n)" k(1 — (k— 1>n)> '
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Recorded in literature.py as:
add_zero_density_pintz_2023()

As a corollary of these bounds one has A (o) < 3v/2n/2 18 for n < 1/18; see [237, Theorem
27].

Proof. We apply Corollary with
7o = min(£(1 — 2(£— 1)), Z(k(l (k=) —¢ (11.26)

for an arbitrarily small e. It then suffices to show that () holds for 27,/3 < 7 < 7, and
() holds for 2 < 7 < 47,/3.

To prove ()7 it suffices by Lemma @ to show that o > 76(1/7) for all 2 < 7 < 47,/3.
By () one has 2 < 7 < k(1 — (k—1)n). Meanwhile, from Lemma one has

78(1/7) <1+ max (Ta_q>,—r(rl 1>7—T2(T22 1)) (11.27)

for any » > 3. So by () it suffices to find 3 < r < k such that

r—T 2T S
r(r—1) r2(r—1) = K
or equivalently
r2(r—1)n
S U R )]

But one can check that these intervals for 3 < r < k cover the entire range 2 < 7 < 47,/3,
as required.

To prove (), it suffices by Lemma and () to show that

sup B(1/T)T<20—1=1-—2n.

1<7<7,
Using (), () we obtain the claim whenever
Ter?(r—1n+er(l—2(r—1)n) —¢

for some 3 < r < £. These cover the range [18n+ ¢, 7y]. For the remaining range [1, 18n + €|
we use the van der Corput bound

TB8(1/7) < % <9y
from Corollary @, which suffices since n < ﬁ < % O

The range of the second bound in Lemma was recently extended:

Theorem 11.36 (Chen-Debruyne-Vidas density theorem). [34] For any 279/314 < o <
17/18, one has A(0) < 55247,

Recorded in literature.py as:
add_zero_density_chen_debruyne_vindas_2024()

The following result appears in an unpublished preprint of Kerr, and is based on the large
values theorems in Theorem [10.32:
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Zero density estimates

Figure 11.1: The bounds in Table , compared against the existing literature bounds on
A(o).

Proposition 11.37. [164, Theorems 6, 7] One has A(0) < 2 for o > 23/29, and

1140 —
A(0)<max( 36 o—1T9 )

1380 — 89’ (1 — 0) (1380 — 89)
for 127/168 < o < 107/138.

The current best known zero density estimates (excepting the unpublished result in Propo-
sition [11.37) are summarized in Table [L1.1].

Derived in derived.py as:

compute_best_zero_density()

For completeness, we list in Table some historical zero density theorems not already
covered, which have now been superseded by more recent estimates.
TODO: enter this table into literature.py

11.2 Estimates for o very close to 1/2 or 1

Some additional estimates were established for o sufficiently close to 1/2 or 1.
Turan [280] introduced the power sum method to establish

A(l _ ,,7) < 2+ 770.14

for n small enough. Haldsz and Turdn [91] combined this method with the large values
approach of Haldsz [90] to improve the bound to

A(l—n) < COnt/? (11.28)

with C' = 12,000 for sufficiently small 7. See [236] for an alternate proof of these results.
The constant C in () was improved to 1304.37 by Montgomery [218, Theorem 12.3]
(see also the remark after [144, (11.97)] for a correction), to 58.05 by Ford [67], to 5.03
by Heath-Brown [113] (the latter exploiting the resolution of the Vinogradov mean value
conjecture [24]), and to any C' > 3v/2 = 4.242 ... in [237]. See also an explicit version at
[13].

“Log-free” zero density estimates of the form

N(1—n,T)< TB"
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for various B were established starting with the work of Linnik [190, 191] and developed
further in [280], [66], [17], [159], [79], [85], [L112]. An explicit version of such estimates may
be found in [14].
There is some work establishing bounds on N (o, T') for o very close to 1/2 (and not necessar-
ily fixed), although these bounds do not make further improvements on A(c). Specifically,
bounds of the form

N(o,T) < T2 ]og T

for T > 2 (say) were established for § = 1/8 by Selberg [264] (see [267] for an explicit
version), any 0 < 6 < 1/2 by Jutila [161], and any 0 < 6 < 4/7 by Conrey (claimed in [43],
with a full proof given in [9]). Note that the density hypothesis would follow if we could
establish the claim for all 0 < 6 < 1, but an improvement to Ingham’s bound (Theorem
) would only occur once 6 exceeded 2/3.

11.3 A heuristic for zero density estimates

We can now state a rough heuristic as to what zero density estimates to expect from a given
large value theorem:

Heuristic 11.38 (Predicting a zero density estimate from a large value theorem). Suppose
that 1/2 < 0 < 1 and 7y > 1 are such that one can prove LV(o,7,) < 3 — 30 (i.e., the
Montgomery conjecture holds here with a multiplicative loss of 3/2). Then in principle, one
can hope to prove A(o) < 3/1y. Conversely, if one cannot prove LV (o, 7y) < 3 — 30, then
the bound A(c) < 3/, is likely out of reach.

We justify this heuristic as follows, though we stress that the arguments that follow are
not fully rigorous. In the first_part, we simply apply Corollary . In practice, the ()
is often more delicate_than () and ends up being the limiting factor for the bounds;
furthermore, within ([L1.6), it is the right endpoint 7 = 7, of the range 27,/3 < 7 < 7, that
ends up being the bottleneck; but this is precisely the claimed criterion LV (o, 75) < 3 — 30.
We remark that in some cases (particularly for o close to one), the estimate () ends up
being more of the bottleneck than ()7 and so one should view 3/7, here as a theoretical
upper limit of methods rather than as a guaranteed bound. (In particular, the need to also
establish the bound LV (o, %7’0 —¢€) < 4—40 for € > 0 small can sometimes be a more
limiting factor.)
Conversely, suppose that

LV(o, 7)) > 3 — 30, (11.29)

A

but that one still wants to prove the bound A(c) < 3/7,. Heuristically, Theorem [11.6
suggests that in order to do this, it is necessary to establish the bound LV (o,7)/7 <
%(1 — o) for all 7 > 2. In particular, one should show that

LV (o,27) <6 —60.

Let us consider the various options one has to do this. There are ways to control zeta
large values that do not apply to general large value estimates, such as moment estimates
of the zeta function, exponent pairs, or control of 5 and p. However, at our current level of
understanding, these techniques only control LVC(U, 7) for relatively small values of 7, and
in practice 27, is too large for these methods to apply; this exponent also tends to be too
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large for direct application of standard large value theorems to be useful. Hence, the most
viable option in practice is raising to a power (Lemma [7.§), using

LV (o,27y) < kLV (0,27, /k)

for some natural number £ > 2. However, the most natural choice & = 2 is blocked due
to our hypothesis ([11.29), while in practice the &k > 3 choice is blocked because of Lemma
Hence it appears heuristically quite difficult to establish A(o) < 3/7, with current
technology, in the event that () occurs.
In Table we list some examples in which the heuristic can actually be attained. Note
that this only covers some, but not all, of the best known zero density estimates in Table
, as there are often other bounds that need to be established that prevent the heuristic
limit of 3/7, from actually being attained; so one should take the heuristic with a certain
grain of salt.
One consequence of Heuristic is that, in the regimes where the heuristic is accurate,
combining multiple large values theorems together are unlikely to achieve new zero density
theorems that could not be accomplished with each large value theorem separately.

11.4 Explicit results

A number of explicit versions of the above zero-density estimates have been established,
which are particularly relevant when o is close to 1/2 or 1, where factors of T°) become
significant.

Theorem 11.39 ([267]). For T >3 and 1/2 < o < 0.778, one has
N(c,2T) — N(o,T) < 5874.051T5(9=2) log T + 1.107log” T + 0.345log T loglog T

Sharper bounds for T" large can be found in [267).
Theorem 11.40 ([41]). For every T >3 and 1/2 < o < 5/8 one has

3(

N(o,T) < 8.604T 2" log® T + 9.46110g> T + 167.8log T

For every T >3 and 5/8 < o < 7/8 one has

3(1—0)

N(o,T) < 22.44T 25 log’ T + 8.290 log® T + 147.0log T.

Theorem 11.41 ([40]). For every T > 3 and o > 3/5, one has
N(o,T) < 0.7756T47(1=9) 1og" 2" T

Further bounds for larger values of o can be found in [40].

Theorem 11.42 ([243]). For every T > 3 and o > 0.52 one has

8(1-0)

N(o,T)<965(3T) 3 (logT)% 27 + 51.5(log T)?.

The following result is an improvement upon [Theorem 11.42.

Theorem 11.43 ([163]). For each tuple (0, A, B) of Table , one has

N(o,T) < AT5(=9)(1og T)572° + B(log T)>

for each oy <o <1 andT > 3.
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See [@] for further estimates.
The following result is an explicit log-free zero density estimate.

Theorem 11.44 ([@]) For every T > 3 and o € [0.9927,1], one has
N(o,T) < 4.45-10'? . 780-9),

Sharper estimates of the form

N(o,T) < CTB0~9) o€ o, 1], T €Ty, T
can be found in [@] We mention a couple of examples in Table .
Theorem 11.45 ([@]) For every o € [0.98,1] and T > 3, one has:

N(o,T) < 2.15- 1023 . T57-8875(1=0)°"% (155 7)10393/900,

Note that implies the following log-free zero-density bound.
Corollary 11.46 ([@]) For every T > exp(6.7 - 10*?) and o € [0.98, 1], one has

N(o,T) < 4.45- 1012 . 711.3(1—0)
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Table 11.1: Current best upper bound on A(o)

A(o) bound Range Reference
Qio- 2303%207 Theorem [11.14
3 f&j 1—70 <o <o =076 Theorem
809— 5 % <o < % = 0.7604 Corollary
13;5_ 3 % <o % = 0.7647 Corollary
506_ 1 % <o< ;—2 =0.7727 Corollary
902_ 5 g <o< ;% = 0.7735 Theorem
7097 : % <o< g = 0.7777 .. Corollary
ﬁ g <o < ;2% =0.7954 ... Theorem
% % <o< §:0.8 Theorem [11.32
% g <o < g = 0.875 Corollary
10037 ) g <o< g% = 0.8885... Theorem
3002%11 % <o< 1—?2 = 0.8908.... Theorem
3002%11 %SGS%:O.Q Theorem
10037 - % <0< 2711 =0.9117 .. Theorem
ﬁ 3711 <o< % =0.9333.. Corollary
ﬁ % <o< % =0.9419 ... Corollary
16324552_32134765 % <o< % = 0.9460 ... Corollary
% % <o< g =0.9583... Corollary
24037_20 § <o % =09721... | Theorem
144746551—521311509 % o< % = 0975 Corollary
m:ﬁ 0S0< % =0.9761 ... Theorem
40037_35 % <o< % =0.9833... Theorem

3 1— % <o<1-— 1

n(n—1) 2n(n+1) | Theorem

n(1—2(n— 1)1~ 0))

(for %rqg’eger n > 6)




Table 11.2: Historical upper bounds on A(o)

A(o) bound Range Reference
4o 1<o<1 Carlson (1921) [29]
2 4/5<o<1 Montgomery (1969) [217] |
2 0.8080 <o <1 Forti-Viola (1972) [71] |
Y 55/67 < o < 189/230 Huxley (1973) [123]
2 189/230 < o < 78/89 Huxley (1973) [123]
T 78/89 < o < 61/74 Huxley (1973) [123]
= 37/42< o<1 Huxley (1975) [124]
% 61/74 < o < 37/42 Huxley (1975) [124]
2 0.80119< o<1 Huxley (1975) [124]
2 4/5 <o <1 Huxley (1975) [125]
- 67/87 <o <1 Ivié (1979) [[146]
T 28/37 <o < 74/95 Ivié (1979) [146]
2 74/95 <0 <1 Ivié (1979) [146]
= 4/5<o0<1 Tvié (1979) [146]
T 115/166 < o < 1 Ivié (1979) [146]
2 3831/4791 <o < 1 Ivi¢ (1980) [141]
2 41/53 <o <1 Ivié (1980) [141]
N 13/17<o <1 Ivié (1980) [141]
] 17/18< o<1 Ivié (1980) [141]
o 155/174 < 0 < 17/18 Ivié (1980) [141]
2 3/4<0<10/13 Ivié (1983) [142]
= 10/13< o<1 Ivié (1983) [142]
PraaT 10/13 <0 <5/6 Ivié (1984) [143]
e L <o <1 k>2 Tvié (1984) [143]
58.05(1 — o)'/? 1/2<0<1 Ford (2002) [67]
6.42(1 — o)'/? 9/10< o<1 Heath-Brown (2017) [113] |
3v2(1 —0)Y2 +18(1 — o) 17/18 <o <1 Pintz (2023) [237]
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Table 11.3: Examples of large value theorems, the values of 7, and A(co) they suggest, and
rigorous zero density theorems that attain the predicted value for at least some ranges of o.

Large value theorem

Predicted choice of 7,

Predicted bound % on A(o)

Matching zero density theorem(s

Theorem @ 2—o0o o Theorem [11.1
Theorem 30 —1 i Theorem 1.1
Theorem 100 — 7 10377 Theorems !1.1&, !1.2{]
Theorem , k=3 % 709_1 Theorems !1.1&, 11.3
Lemma [11.29, m = 2 42” % Corollary [11.31], Theorem [L1.3
Lemma [11.29, m = 3 % 70971 Theorems ]1.1&, Corollary [11.3
Lemma [11.29, m =4 10‘3172 50671 Corollary Il 1.3!]
Lemma [11.3 To—4 7;’—74 Corollary I13ill
Lemma [11.3 % 809_2 Corollary !1.3@!
Theorem [L0.2 5‘753 5;53 Theorem [11.1
o A B
0.75 | 5.277 | 4.403
0.80 | 6.918 | 3.997
0.85 | 8.975 | 3.588
0.90 | 11.499 | 3.186
0.95 | 14.513 | 2.772
0.98 | 16.544 | 2.532
Table 11.4: Some examples of (0, 4, B)
Table 11.5: Values of constants C, B
B C o T, T
1.551 | 1.62- 10" | 0.9927 3 exp(6.7 - 10'2)
1.551 | 1.62- 10" | 0.985 | exp(80) | exp(6.7 - 10'%)
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Chapter 12

Zero density energy theorems

Definition 12.1 (Zero density exponents). For 1/2 < 0 < 1 and T > 0, let N*(c,T)
denote the additive energy E,(X) of the imaginary parts of the zeroes p of the Riemann zeta
function with Re(p) > o and [Im(p)| < T. For fixred 1/2 < o < 1, the zero density exponent
A*(0) € [—00,00) is the infimum of all exponents A* for which one has

N*(O' o 6’ T) & TA*(170'>+0(1)
for all unbounded T and infinitesimal 6 > 0.

The exponent A*(c) is also essentially referred to as B(o) in [104] (though without the
technical shift by 0 in that reference).

Implemented at zero_density_energy_estimate.py as:
Zero_Density_Energy_Estimate

Lemma 12.2 (Basic properties of A*). (i) We have the trivial bounds
1
2A(0),4A(0) — T < A*(0) < 3A(0)
-0
forany 1/2 <o < 1.
(ii) o (1 —0)A*(o) is non-increasing, with A*(1/2) = 6 and A*(1) = —oc.
(i) If the Riemann hypothesis holds, then A*(c) = —oo for all1/2 < o < 1.

Implemented at zero_density_energy_estimate.py as:
add_trivial_zero_density_energy_estimates (hypotheses)

Proof. The claim (i) follows from Lemma (iv), and the remaining claims then follow
from Lemma [11.2. O

Upper bounds on A*(o) can be obtained from large value energy theorems via the following
relation.

Lemma 12.3 (Zero density energy from large values energy). Let 1/2 < o < 1. Then

A*(0)(1 —0) < max (sup LVZ(O’7T)/T,HIH sup LV*(J,T)/T> )

T>1 T—00
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Proof. Write the right-hand side as B, then B > 0 (from Lemma (iii)) and we have
LVi(o,7) < BT (12.1)

for all 7 > 1, and
LV*(o,7) < (B+e)r (12.2)

whenever £ > 0 and 7 is sufficiently large depending on ¢ (and o). It would suffice to show,
for any € > 0, that N*(o,T) <« TB+OE)+e(1) for unbounded T

By dyadic decomposition, it suffices to show for unbounded T that the additive energy of
imaginary parts of zeroes in [T,27T] is < TB+OE)+e() Ag in the proof of Lemma E
we can assume the imaginary parts are 1-separated (here we take advantage of the triangle
inequality in Lemma (iii)).

Suppose that one has a zero ¢’ + it of this form. Then by standard approximations to the

zeta function, one has
1
Z ~1

n<T

)

Let 0 < 6; < € be a small quantity (independent of T') to be chosen later, and let 0 < d5 < J;
be sufficiently small depending on §;, 5. By the triangle inequality, and refining the sequence
t’ by a factor of at most 2, we either have

1
Z no’ +it

T%1<n<T

for all zeroes, or () for all zeroes.
Suppose we are in the former (“Type I”) case, we can dyadically partition and conclude
from the pigeonhole principle that

> T92

|
D | > T
n

nel

for some interval I in some [N,2N] with 7%t <« N <« T, with at most O(logT) different
choices for I. Performing a Fourier expansion of n? in log n and using the triangle inequality
one can then deduce that
1
>

nel

> N T—02—0(1)

for some t' = t + O(T°)); refining the t by a factor of T°) if necessary, we may assume
that the ¢" are 1-separated and that the interval I is independent of ¢, and by passing to a
subsequence we may assume that 7 = N7t°() for some 1 < 7 < 1/4,, then

1
2w

nel

> NOo—02/8,+0(1)

for all ¢. If we let ¥’ denote the set of such ¢’, then by Definition we then have (for d,
small enough) we have

El (Z/) < NLVZ(U,T>+E+O(1) & TLV?(O’,T)/T-Q—E-’-O(I).
By Lemma (1) this implies that the set X of imaginary parts of zeroes under consideration

also obeys the bound
El(z) < TLVZ(O’,T)/T+E+O(1>.
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and the claim follows in this case from ( .
The Type II case similarly follows from ( ) exactly as in the proof of Lemma . O

Corollary 12.4. Let 1/2 < o <1 and 7y > 0 be fized. Then

A*(0)(1 — o) < max ( sup LVi(o,7)/7, sup LV'(o, T)/T)

2<7<Ty To<TL27,

Implemented at zero_density_energy_estimate.py as:
lver_to_energy_bound (LVER, LVER_zeta, sigma_interval)

Proof. Repeat the proof of Corollary . O

12.1 Known additive energy bounds

Proposition 12.5 (Additive energy under the Lindelof hypothesis). Let 1/2 < o < 1 be
fixed. Then one has
A*(0) <8—4o

and A*(c) <0 if o > 3/4.
Proof. See [104, Lemma 4]. O

Theorem 12.6 (Heath-Brown’s additive energy bound). (107, Theorem 2] Let 1/2 < o < 1
be fized. Then one can bound A*(o) by

10— 110
(2—0)(1—-0)
18 — 190
(4—20)(1—0)

for1/2 <o <2/3;

for2/3 <o <3/4;

or3/4<o<1.
40 —1 f / - =
Recorded in literature.py as:
add_zero_density_energy_heath_brown_1979()
Derived in derived.py as:
prove_heath_brown_energy_estimate()

Proof. We first suppose that o < 3/4. Here we apply Corollary with 7, = 2. The LVE
supremum is now trivial, so it suffices to show that

10— 110 18 — 190

* < 12.3
p*max( 2o 4720) (123)
whenever (o, 7, p, p*,s) € £ with 2 < 7 < 3. Let k be the first integer for which 1 < 7/k <

3/2, thus k = 2,3 and also 7/(k + 1) < 1. By Lemma i0.12, there exist tuples

*

T / p* / T V4 p V4
— — — —_— E. 12.4
(o—’k7p’k_’s>’<o—’k+17p7k+17s)6 ( )
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for some p’, s’, p” and s” satisfying

/ < B S/ < f V4 < p S// < S
F=% kK P=krn T k+1
Applying Corollary to the former tuple of () and using p’ < p/k, we have
P 3p p 5p 3 — 40)
P < Py1-20,2 144520 .
k_max(kJr cr,k+ O’,2k+ 9

Write 77 := 7/k. Applying Lemma @ to the first tuple of () one has
p/k<1' +1—20
while applying Lemma @ to the second tuple of () (recalling that 7/(k+ 1) < 1) gives

_k+1 p k+1
ey s Ty

(2—20)<3-30

and thus
p/k <min(r’ +1— 20,3 — 30) (12.5)

and
p*/k <max(3min(r’ +1—20,3 —30) + 1 — 20,
min(7’ +1—20,3 — 30) + 4 — 4o,
S5min(r" +1—20,3—30)/2 + (3—40)/2).

A tedious calculation shows that for 1 < 7/ < 3/2, we have

10 — 11
3min(r’ +1— 20,3 — 30) + 1 — 20 < 2707’,
— 0

7
2_:,6—60)7"

min(T’—|—1—2U,3—3a)+4—4aSmaX(

and
18 =190 ,

1—20 -

7T—T0 10— 110 18 — 190
max( ,6—60>§max< , >
2—o0 2—0 4—20

S5min(7" +1—20,3—30)/2+ (3—40)/2 <

Since

we obtain the claim.

Now suppose that o > 3/4. From Theorem and Lemma (1) we are already done
when o > 25/28, so we may assume o < 25/28.

Here we apply Corollary with 7, = 40—1. To control the LVZ term, we need to establish

12(1 — o)
40 —1

*

pr < (12.6)

whenever (0,7, p, p*,s) € £, and 2 < 7 < 40 — 1. We use Lemma @(ii) followed by Lemma

to give
pF<3p<3(2r—12(c —1/2))
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so the claim reduces to verifying

12(1 - o)
— — <= 7
3(2r—12(c —1/2)) < o1
This holds with equality when 7 = 40 — 1, and the slope in 7 is higher on the left-hand side
for o > 1/2, so the claim () follows.

It remains to establish
12(1—o0)

fo—1
whenever (o, 7,p,p*,s) € £ and 40 — 1 < 7 < 2(40 — 1). Let k be the first integer for which
do —1)/2 < 7/k < 3(40 —1)/4, thus k = 2,3 and also 7/(k + 1) < 40 — 1. By Lemma
, we have () From Theorem we have

p/k < max(2 — 20,7 +4 —60)

*

(12.7)

and also ka1 b1
p
k= < 2—-20)<3—
o/ K hels ) (2T20)s3-30
and hence
p/k < min(max(2 — 20,7 +4—60),7" + 4 — 60,3 — 30). (12.8)

Among other things. this implies that p/k < 1.
From Theorem 10.2;] and p’ < p/k, we have

1 p 2p bp T
Jk<1—20+ - Loy Py T
Pk < U+2max<k+’k’4k+2

1 p* 4p 3p* p T
- Foiq 2P r.r
—|—2max(k+,k,4k+k+2

(12.9)

where 7/ := 7/k. This expression is complicated, so we divide into cases. First suppose that
p/k+12>5p/4k + 7' /2. In this case the first maximum in the above expression is p/k + 1,
and we simplify to

p*/k < 3/2—20+ p/2k +max(p*/k+ 1,4p/k,3p* |4k + p/k + 1" /2) /2,
which after solving for p*/k gives
p*/k < max(p/2k +4 —40,5p/2k + (3 — 40)/2,8p/5k + 27" /5 + (12 — 160)/5).

Inserting (), one can verify after a tedious analysis (using the hypothesis 3/4 < o <
25/28) that
12(1— o)
B —— 12.10
o< 200 (12.10)
as required.
It remains to treat the case where p/k+1 > 5p/4k + 7’ /2. Using () one can check that

this forces

S0 - 1), (12.11)

4o —-2< 7 < -
o <7<y

so that ([12.§) now becomes
p/k <3 —30. (12.12)
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The bound () becomes

p*/k <1—20+ (5p/4k + 7'/2)/2 + max(p*/k + 1,4p/k, 3p* J4k + p/k + 7' /2) /2
which simplifies to
p*/k < max(bp/4k + 7' /243 —40,21p/8k + 7' /4 + 1 —20,9p/5k + 47" /5 + (8 — 160)/5).

Inserting ( i2.15) and ([12.11]), one can eventually show (again using the hypothesis 3/4 <
o < 25/28) that ([12.10) holds as required. O

We found the following estimates with the use of computer-aided proof discovery, which
improve on [Theorem 12.4 in various ranges of o. First, by using [Theorem 10.2(] in place of
orollary 10.21) in the proof of the previous theorem, it is possible to obtain an improved

additive energy estimate for ¢ > 3/4. A human-readable proof is contained in the following
theorem.

Theorem 12.7. For 3/4 <o <5/6 one has

A*(0) < max ( 18 — 190 4(10 — 90) )

230 —1)(1—0)’ 5(40 — 1)(1 —0)

Derived in derived.py as:
prove_improved_heath_brown_energy_estimate()

Proof. Throughout assume that 3/4 < o < 5/6. Choose

Ty = 80 — 4.
We will show that 18— 19
S0 3/4< o< 4)5
ot 7 < %E?"_—U)l) (12.13)
79 45<o<
o AB<o<s5/s,

for all (o, 1, p, p*, s) € € for which 7, < 7 < 27, and that

45 — 460 4(10 — 90-))

4(40 — 1) 5(4o —1) (12.14)

p*/T < max (
for all (o, 7.p.p*,s) € & such that 2 < 7 < 75. The desired result (i) then follows from
Corollary and computing the piecewise maximum of ([12.13) and ([12.14)).

First, consider . Suppose that (0,7, p, p*,s) € £ with3/4 <o <5/6and 2 <7 < 7.
Then, from [Theorem 9.7 we have

p<2r—12(0c —1/2). (12.15)

Furthermore, by rTheorem 7.1ﬂ and lLemma 7.§ with k = 2, one has p < 2max(2 — 20,4 —
60 + 7/2). However since 7 < 7, = 80 — 4, this simplifies to

p<4—do. (12.16)
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Since o > 3/4, this also implies that p < 1. For future reference we also note that
4 < 45 — 460 4(10 —90)
- X
5 4(40 —1)" 5(40—1)

By [Cheorem 10.2(, one has

f <1 2—|—1ma(—|—12 5+T)+1 a<*+14 34 +T>
— — max - = — max - - .
p o+ 3 p+1.20,0p+ 5 )+ 3 PrtLldp, opt ot g

) <2, (3/4<0<5/6). (12.17)

Since p < 1, one has p+1 > 2p. Thus the middle term in the first maximum may be
omitted, and we are left with two cases to consider.
Case 1: If p+1 > 5p/4 + 7/2 then

1 1 3
p*g1—20+%—i—ima){(p*—l—l,élp,ip*—kp—&—%).
Solving for p* gives
3 5 2
p*gmax(4—4a+p,f—2cr+fp,f(6—80+7'+4p) )

2 2775
Applying () to each term,

23 2
p* < max (8 — 80, — — 120, -(22 — 240 + 7'))

2 5
_ o (45— 460 4(10—90)
=T fao—1) " Be—1) )

ie. () holds. The last inequality may be verified by inspecting the growth rates with
respect to 7 of each term (using ())7 and checking that the desired inequality holds at
T=2.

Case 2: If p+1 < 5p/4+ 7/2, then

<1204 2pr Tyl (*+14§*+ +Z)
pr< =20+ gp+ o gmax (p7+ Ldp, 1 ot 5 )

Solving for p gives

T 5 T 21 8—160+47+9p
< —4 —+-p,1—-2 -+ — .
p_maX(S a+2+4p, 0+4+8p, 5 )

If 7 > 40 — 1, then apply () termwise to get

T 23 25 T 4
e B T T
33 2 s 3‘”7))
45 — 460  4(10 —90)
T T
4(40 —1) ' 5(40—1) ’

p*§max<8—90+

gmax(

since the RHS is increasing faster in 7 and at 7 = 40 — 1 we have equality.
On the other hand if 7 < 40 — 1 then we apply () termwise to get

67 — 1340 + 227 2
— 1 5
45— 460 4(10 — 90)

440 —1) 5(40—1) T) ’

21
p* < max (? — 190 + 37, 31 — 620 + 117'))

gmax<
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by inspecting growth rates in 7 and noting that at 7 = 40 — 1 one has equality.
Thus we have shown that if (0,7, p, p* s) € £ with 3/4 <o <5/6 and 2 < 7 < 80 — 4,
then

. . (45—460 4(10—90))
p*/7 < min )

4(40 —1)" 5(40—1)
which is (
Now consider (‘12.13). Suppose that 7, < 7 < 27, and (o, 7, p,p*,s) € £. Note that the
interval [1y,27,] is covered by intervals I, := [(d0 — 2)k, (40 — 2)(k + 1)] with &k = 2,3.
Suppose that 7 € I}, and write

7 i=1/k.
Then, by and 7" > 40 — 2 one has
p/k <max(2—20,4—60+7")=4—60+ 71"
Also, from and 7 < (40 — 2)(k + 1) one has
p/(k+1) <max(2—20,4—60+7/(k+1)) <2—20
so that for k = 2,3 one has p/k < (2 —20)(k+1)/k < 3 — 30. In summary,
p/k <min(3 — 30,4 — 60 + 77). (12.18)

Next, by Lemma 10.13,

(o,7",p  p*/k,s") €&
for 7/ := 7/k and some p’ < p/k and s’ < s/k.
Applying [Cheorem 10.2( to this tuple, then applying p’ < p/k, one has

2p 5p T’>

=~

1 P
<1-2+= Pyg,2220, T
= U+2maX<k+’k’4k+2

1 p* 4p 3p* p T
= LAY P R R
+2max(k+ Ak TR

By () one has p/k <1 (since o > 3/4) so there are only two cases to consider:
Case 1: p/k+ 1> 5p/(4k) + 7' /2 then

3 1
—20+£+7max

3 P 4p 3p* p
2 2k 2

7_/
P, 228 2 ).
k+’k’4k+k+2)

Solving for p*/k, we get

(3—40)+5p/k 2

P P
P 1-0)+2 :
kmax(< Nt 2 '5 3

((6—8c)+ 7" + 4p>> )

If 77 > 30 — 1 then () reduces to p/k < 3 — 30. Substituting this bound gives
p*/k < max(7—"70,9—190/2,32(1 — 0)/5).

However the RHS is bounded by
18 — 190
60 — 2

for all 7/ > 30 — 1 since the desired bound holds at 7/ = 30 — 1 (where one has equality).

7 (12.19)
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On the other hand, if 40 —2 < 77 < 30 — 1 then () reduces to p/k < 4 — 60 + 7.
Substituting this bound gives

23 — 34 ’2
p*/k < max (8100+T’,33;+5T,5(22320+57’))
(12.20)
18 =190 ,
<29
60 — 2

where the last inequality may be established by checking that it holds at both 7/ = 40 — 2
and 77 = 30 — 1 (where one has equality). To summarise, by taking k = 2,3 in the ()
and (i2.2 ), one has

. 18—190
p §60‘7—2T, (T0§T§2TO)
in this case.
Case 2: p/k+1 < 5p/(4k) + 7' /2 then
50 17 1 p* dp 3p* p T
Jk<l-204+ 24T 42 Py, 222l 2 7)),
p*/k < a+8k+4+2max(k+,k,4k+k+2

Solving for p*/k gives

/ 5 / 21
p*/kgmax<34a+7—+p 1—20+T—+

2p 1o 'y gP
5t Tt g @160 4 49 )).

k
Proceeding as before, if 77 > 30 — 1 then () becomes p/k < 3 — 30, and substituting
gives
ks (T3l T T a3
PR S max 4 277 8 2T BT )
One may verify that the RHS is bounded by
18 — 190
-
60 — 2

4

(with some room to spare) by checking at the endpoint 7" = 30 — 1.
Similarly, if 40 — 2 < 7" < 30 — 1 then using p/k < 4 — 60 + 7’ from () one has

230 LT’ %_7170_’_237’ 44 — 700 + 1377
2 472 4 8’ 5 '

p*/k < max (8——}—

One can check that the RHS is bounded by

18 — 190
-
60 — 2

4

by checking the required inequalities hold at 7/ = 40 — 2 and 7/ = 30 — 1 (in each case, with
some room to spare).
Combining all the cases, by taking k = 2,3 we have shown that for 3/4 < o < 4/5 and

To < 7 < 27, one has
. 18—19c

p= 60—27

which is the first part of ()
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The case for 4/5 < o < 5/6 may be treated similarly. Here one needs to verify that

;T Ty TTEotET

for 7 > 30 — 1, and that

3
(27310 7 11—-79% 7 43 4
max [ ——— + —

23 — 340 + 517 2

2 1—o0) ,
2 5

8 — 10 ! ,
rnax( o+ T, 30_17

(22 — 320 + 5#)) <

STyt T e 5 30— 1

for 40 — 2 < 7/ < 30 — 1. The treatment is analogous to before, so we omit the proof. [

( 230 7T 23 Tlo 237 44—700+137"> 7(1—o0) ,
max _——— <

Using Theorem , it is possible to obtain improved energy estimates near o = 3/4, which
are given by the next two theorems.

Theorem 12.8. For 7/10 < o < 3/4, one has

A*(0) < max ( 5(18 — 190) 2(45 — 440) )

2(50 +3)(1—0)’ (20 +15)(1 — o)

Derived in derived.py as:
prove_zero_density_energy_2()

Proof. Throughout assume 7/10 < ¢ < 3/4 and take 7, = 2 in Corollary . It suffices to
show that if (o, 7, p, p*,s) € £ with 2 <7 <4, then either

5(18 — 190)

< 12.21
P =060 +3) (12:21)
. 2(45 — 44
p* < 2(45 — 44o) (12.22)
20 +15
Note for future reference the crude bounds
5(18 — 190) 2(45 —440) 7
—_— <2 1< —< - 12.23
20 +3) S T%115 "1 (12.23)
Let
2, 2< 3
kom0 2STS " 7 i=1/k.
3, 3<T17<4,
Via Theorem @ and Lemma @, one has
p/k <max(2—20,1—20+171") (12.24)

and via Theorem and Lemma @, one has

p/k <max(2—20,18/5 —40,12/5 — 4o + 77).
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Since o < 4/5, we may drop the first term, i.e.
p/k <max(18/5 —40,12/5 — 40 + 7). (12.25)

Combining (h2.24l) and (|12.2ﬂ),

1—20+17, 1< 7" <13/5—20,

18/5 — 4o, 13/5 — 20 < ' < 6/5,

12/5—4do+7',  6/5<7 <2(0—1/5)+2(1—0)/k,
2—=20)k+1)/k, 2(c—1/5)+2(1—0)/k<7 <1+4+1/k.

plk < (12.26)

One can verify that all intervals are proper for 7/10 < o < 3/4 and k = 2,3.

Since (0,7, p, p*,s) € &, by Lemma m one has (o,7",p',p*/k,s") € & for some p’ < p/k
and s” < s/k. Applying Theorem ( to the first tuple followed by p” < p/k, and noting
that p/k+ 1> 2p/k since p/k <1 by (

d), one obtains

P 1 P 5p 1 p* dp 3p* p T
E<1-2 4= 1,2 - L . (122
=< a+2max(k+ T )+2max<k+ 1 4k+k+2 (12.27)

First, suppose that p/k + 1 < 5p/(4k) + 7’/2 so that

P’ 5p 7 1 P dp 3p* p T
Pc1 204 2P - 1,22 2P P T
pEl-20 g gm <k+ Ak TR

Solving for p*/k gives

¥ Bp '’ o91p 1
(3 4a+—+w1—2 +T—+—3 (8 — 160 + 47/ +9k)>

P < ma
2 1% 85

One may verify that the RHS is bounded by
5(18 — 190) ,
.
2(5o + 3)

by substituting each case of () This involves the tedious verification of the following
four inequalities:

(17 13 ,7.,29 29 23 17 34 13 ) _ 5(18—190) , (12.28)
—— =0+ -7, ———0+ =T ,— — —0+ —T —_—T .
4 27 "4 8 4 8 5 5 5 )~ 2(5o+3)

for 1 <7/ <13/5— 203

e (22 9 +T/ 209 25 +7'/ 202 52 +4 N < 5(18 —190)
X|\w—9Y90++, F—F0+—+—,— — —0+ = QT
2 2720 2 4725 5 5 ) = 2(50+3)

for 13/5 —20 < 1/ < 6/5;

max (6—90+ZT’ E—§U+§T’ %—gaJrE'r’) < 75(18_19@7"
47010 277872 T 57T 5T ) S 250 1 3)

for k=2,3and 6/5 <7 <2(0c—1/5)+2(1 —0)/k;

T 5(2—20)k+1 T 21(2—20) k+1
3—do 4 p 2T DPT Ly 9y L 2T O)RT
max(3 —do + 5+ = k +4+ 8 ko
1 k+1.  5(18—190)
Z(8— 160 + 47" +9(2—2 < /
5( OHAT 92 - 20) o)) S ST
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for k =2,3and 2(c —1/5)4+2(1—0)/k <7’ <14 1/k. For instance, in the case of ()7
the LHS is increasing faster with respect to 7’ than the RHS in view of (), and the
inequality holds at the upper limit 7" = 13/5 — 20 (with some room to spare). The other
inequalities may be verified similarly, with the exception of
7 . 5(18—190)

6—90+ 7 < 22— 09)
I S Bera) |

4

which is equivalent to 6—90 < 3(53—"750)/(4(50+3))7’. For ¢ < 53/75 the LHS is negative
while the RHS is positive so the inequality holds. For o > 53/75 one may verify that the
inequality holds at the lower limit 7" = 6/5.
In the remainder of the proof we assume p/k + 1 > 5p/(4k) + 7'/2 so that () becomes
LA S VAR S (I VA

3 20+2k+2max(k+l, k:’4k:+k+2 .

Solving for p*/k gives

* 3—4 op/k 2
2§max<4—4a+z,g2+p/,5

(6—80+T’+4]5)>. (12.29)

The case where 7" > 6/5 is simpler so we handle it first. Applying the last two cases of
() it suffices to verify that

32 15 5 , 156 48 5(18 — 190)
2 8o, = =120+ o1, = — 2’)<7’
max<5 oy T T s TN ) S ey |
for k=2,3and 6/5 <7 <2(c—1/5)+2(1 —0)/k;
k+1 3—4 k+1
max(4—4a+(2—20)%,3 5 J+(5—50)%,
2 k+1. 518 —190)
—(6—38 "+ (8-—38 < !
g6—8o+ T +8—80) =) < S5 g T

for k = 2,3 and 2(c —1/5) +2(1 —o0)/k < 7" <1+ 1/k. Note also that one has equality
when 7" =2(60 —1/5) 4+ 2(1 —o0)/k and k = 2.
Lastly, consider the case where 1 < 7" < 6/5. Applying p/k < min(1 — 20 + 77,18/5 — 40)
from the first two cases of ([L2.2G), one obtains

3—4o+5p/k < min (4_704_?7-/7%_120)’
2 2 2
2 4 32 204 48 2
5(6—80'4-7'/-’-%) Smln (4—30'—"-27'/,%—?0"‘57/) .

However one may verify that the RHS of both of the above inequalities are bounded by

5(18 —190)/(2(50 + 3))7’ for 1 < 7’ < 6/5 by checking at 7" = 13/5 — 20. Thus

5(18 — 190)
2(50 +3)

L
k
Meanwhile, by Lemma ,

k
(0,7/(k=1),p",p"/(k=1),8") € £

< max ( 7,4 —40 + p) . (12.30)
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for some p” < p/(k—1) and s” < s/(k—1). Applying Theorem to this tuple (and
applying p” < p/(k —1)) gives
1

P P 2p 5p T
<1-2+ = 1
poq St guaxES LT Ty Y a1
. . ) . T (12.31)
+ — max( A P Py P 4 ).

2 k—1 " "k—14(k—1)  k—1 " 2(k—1)

By expanding the first maximum and simplifying, one of the following inequalities must
hold:

3 1 3p*
P < (2 —20)k—1)+ 2+ max(p* + k—1,4p, 2 4 p+ D), (12.32)
2 2 2 4 2
. 1 . 3p* T
p §(1—20)(k—1)+p+§max(p +k—1,4p, 1 +p+§), (12.33)
. 5 T 1 . 3p* T
p S(l—?o)(kz—l)+§p+1+§max(p +k—1,4p,T+p+§). (12.34)
If () holds, then solving for p*/k gives
k—1 3—4do)(k—1)/k+5p/k 2 k—1 4
p*/k < max((4 — 40) . —l—%( 7)( 2)/ 50/ ,5((6—80) 3 +T/+?p)).

For 7" < 13/5 — 20, we apply p/k < 1— 20 + 7’ from ([12.26) (along with the inequalities
4—40>0,3—40>0,6—80 >0and (k—1)/k < 2/3),

p—*<max(1—l—ga+7”z—l—90+§7"E—EG+ZT’><75(187190>7
k= 33 2 37T T 2(50 + 3)

for all 1 <7’ <13/5—20. The last inequality is verified using () and checking at both
7/ =1and 7" = 13/5—20. Similarly, for 13/5 —20 < 7/ < 6/5 we use p/k < 18/5 — 40 and
verify that

/7

p* (94 20 34 184 128 2 ) 5(18 — 190)
zgmax —_——

5 375 T BT ) S ket |

where the last inequality is verified using () and checking at the lower limit 7/ =

éifpogg iow that () holds. Solving for p*/k gives
* k—1 k—1

% < max ((3 —do)——+ 2% (1—20)—— +32,

2 k—1 , p
3 (4 —80) 7 +6E)>

Similarly to before, applying the first two cases of ([12.2) allows one to verify that for
1<7<6/5,

k—1
k

5(18 — 190)
2(50 +3)

4

(3—40)

+2% < Z(3—40) + 2min(1 — 20 + 7/,18/5 — 40) <

2
3
and

%((4—80)k —1

5(18 = 190)
2050 +3)

(4—80)+7"+6min(1—20+7",18/5—40)) <

(S0 V)
N~

+r460) <

k k (
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each with room to spare. Therefore, for 1 < 7" < 6/5, one has

o 5(18 — 190) k—1  3p

— < _ 1—20)——+ — 12.35

k_max<2(5a+3) T (1 =20) =+ (12.35)
However, if 7/ <o+ 1/2 — (20 — 1)/(2k) we may apply p/k <1 — 20+ 7’ to get

5(18 — 190) 2(45 — 440)

1-20)0 =4 2 /
(1=20) ==+ 250 +3) ' 20+15 )

where by (), the last inequality is verified by checking that it holds at the upper limit
T'=0+4+1/2— (20 —1)/(2k) for k =2,3. For 7’/ > o+ 1/2— (20 — 1)/(2k), we once again
apply p/k <1—20+ 7" to get

k—1 3p

< (1f20)%+3(1f20+7’) < max(

18—1 2(45 — 44
4—40+Z<5—60+T’<max<5(8 99) 2(45 U)) &

2050 +3) ' 20+ 15

where now the last inequality is verified at the lower limit 7/ = o 4+ 1/2 — (20 — 1)/(2k).
Therefore, in view of (|12.3 ) and (123a), one has

p* 5(18 —190) 2(45—440)\ |,
— < max ,
k 2(50 + 3) 20 + 15

in this case, as required.
Lastly, suppose that () holds. Then solving for p*/k gives
k—1 7 5p k—1 7 21p (8—160)(k—1)/k+ 47" +9p/k
122 12 T,2f .
Pt T T e e 5 )
Proceeding as before, we use p/k < 1—20 + 7’ from () together with (k—1)/k <2/3
to get

% < max((3—40)

kol 7 bp 18 31 T, 25—ddo)
k 2 4k~ 4 6 4 = 20415 ’
where the last inequality is verified at 7 = 6/5. Furthermore, using p/k < min(l — 20 +
7/,18/5 —40) and (k—1)/k > 1/2 one has

(8 —160)(k—1)/k+47 +9p/k _ . (13 26 13 , 182 44 4 ,

5 gmm(E—?a 57’,%—€0+37’>

(5(18 —190) 2(45— 440)) )

< max T

(3—40)

250 +3) 7 20+15
for 1 <7’ <6/5. Therefore,

p* 5(18 — 190) , 2(45 — 4do) k—1 1 21p
P 1-2 .
o= ( 2013 " oris T

If1 <7 <1+ 20/15, we use the bound p/k < 1— 20+ 7 to get

k—1 7 2lp k—1 7 21 2(45 — 440)
Ll ci—20——+l 4t (1 —204+7) < 22Ty
P R = T
where by () it suffices to check the inequality at the upper limit 7" = 14+20/15 (where we
have equality if £ = 2). On the other hand if 1+20/15 < 7/ < 6/5, we use p/k <1—20+7"

to get

(1—20)

2(45 — 440) |

p ,
4—40+2<5_56 <
oL S TS T 15
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where by () it suffices to check the last inequality at 7/ = 1 + 20/15 (where we have
equality). Therefore, one has

P 5(18 —190) 2(45—440)\ |,
— <ma )
k 2(50 + 3) 20 + 15

in this case too.

Theorem 12.9. For 3/4 < o <4/5, one has

197 — 2200 3(29 — 300) 4(10 — 90)
850 —1)(1—0) 5(5c —1)(1 —0) 540 —1)(1 — 0)>

A*(0) < max (

Derived in derived.py as:
prove_zero_density_energy_3()

Proof. Throughout assume that 3/4 < o < 4/5 and take 7, := 8¢ — 4 in Corollary . It
suffices to show that

197 — 2200 3(29 — 300)
* < 12.36
p _max<8(5a—1)’ 5(50 — 1) ) (12:36)
for all (o, 1, p, p*, s) € & satisfying 7, < 7 < 27, and
4(10 — 90)
L 12.
~ 5(40—1) 4 (12.37)

for all (o,7,p,p*, s) € &, such that 2 < 7 < 7. In the proof of Theorem we have
already shown that () holds in the large range 65/86 < o < 5/6, so it remains to prove

() Given o, 7, let k > 2 be the integer for which

-
k<
T 40 —2

so that k = 2,3 for 7, < 7 < 27y, and as before write 77 := 7/k.
By Theorem [10.27 and LemmaO@ one has

<k+1 (12.38)

18/5 — 4o, 7 <6/5
k< 18/5 — 40,12/5 — 4o + 77) =
plk < max(18/ 7,12/ o+7) {12/5—4U+T’, 7' >6/5

and from Theorem and Lemma @, for any integer /¢,

2 — 20, T/l < 4o — 2,

p/t < max(2 — 20,4 — 60 +7/f) {4—60+T/€, T/t > 4o 2.

so that in particular, taking ¢ = k + 1 and noting that 7/(k + 1) < 40 — 2 by ([12.3§),

kvl p k41 T k+1
k= < 2—20,4— —)=(2—-20)— < 3—30.
k== s max@-20d =60t o) = (2= 20) 5= <330
Combining everything, one obtains (for k > 2)
4—60+ 1, 4o —2< 7" <20 —2/5,
18/5—4 20 —2/5< 71 <6/5
plh< {8/5—do, 20 =2/5< T < 6/5, (12.39)
12/5—4o+7', 6/5<7 <o+3/5,
3 — 3o, c4+3/5<7 <(d0—2)(k+1)/k.
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First, suppose that 6/5 < 7/ < (40 —2)(k + 1)/k. By Lemma 7 (o,7",p ,p*[k,s") € €
for some p’ < p/k and s’ < s/k. Applying Theorem 10.20, and noting that p/k+ 1> 2p/k

since p/k < 1 by ()7

I 1 P 5p | T 1 I p 3p* p T
Py 954= 1, 2P - 1, Pyt
K ”+2max<k+ 4k T >+2max(k+ KAk k2

If p/k+1>5p/(4k) + 7' /2, then

p 1 (p* 4p 3" . p T’)

*

w

Solving for p*/k gives

|,

4 2
<m <4 o +p3 o+ 5p/k

—(6—80+ 7"+ i )
k’ 2 5 k
Applying p/k < min(12/5 — 40 + 7/,3 — 30) to the RHS, one may ultimately verify that
p*

— < ma;
s

(197 —2200 3(29—300)\
8(50 —1) " 5(50 — 1)

If p/k+1 < 5p/(4k) + 7' /2 one has

50 17 1 P 4p 3p* p T
h<l-20+22 4T 42 1,22 Py T
p* k< a+8k+4+2max(k+ k4k+k+2)
and solving for p*/k gives
" 5p 7 21p 1
p* Jk < max(3 — 40+T—+M 20—1—%+§£,5(8—160+4T/+9%)).

Once again applying p/k < min(12/5 — 40 + 7,3 — 30), one again ultimately obtains

197 — 2200
PIRS SEe ) "

/

Now Suppose that 4o — 2 < 7-/ < 6/5. By Lemma , for any integer k > 2 one has
(o,7/(k—1).0",p*/(k — ) € & for some p’ < p/( — 1) and s’ < s/(k—1). Applying
Theorem m J to this tuple followed by p’ < p/(k — 1) and rearranging, one obtalnb

1
p*§(1—20)(k—1)+§max(p+k 12p,54p+2)
(12.40)
—&—lmaX( +k—1,4 3L+ —1—1)
5 p Ap, = Tt )
Consider the first maximum of () If p+ k — 1 is maximal, then
3 p 1 3p* T
) _(2 20)(k 1)+2+2max(p +k—1,4p, 1 +p+2)
Solving for p* and dividing by k gives
* k—1 3—4 —1)/k+5 k 2 4
B < max((4—do)—+ 2, (8= 40)(k 5 )k + 50/ =(6—80)(k—1)/k+7 + ).
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Since 3/4 <o <1and 1/2 < (k—1)/k < 2/3, we have

* 8 3 op 2
%gmax<7(l—0)+£,1—a+fg =(

4p
—4 T+ =) ).
3 2k’53 o+71 + ))

k

Bounding the RHS with p/k < min(4 — 60 + 7’,18/5 — 40), one ultimately obtains

197 — 2200 3(29 — 300) ) )

p*/kgmax( 8(50 —1) ’ 5(50 — 1)

Now suppose 5p/4 + 7' /2 is maximal in () Then

5) T 1 3p* T

*< _ _ _ _ - * _ _r —).

p* < (1—20)(k 1)+8p+4+2max(p +k—1,4p, 1 +p+2)
Solving for p* and dividing by k gives
p* k=1 7 5p k—1 7 21p 8 k—1 1 9p
P < o)y T2l ey ey T 2P P 428y,
g s max(@do) et g e U2 P g (2 Ty g
As before, since 3/4 <o <1and 1/2 < (k—1)/k < 2/3, one has

p 3—40 T 5p 1 T 21p 81 7 9p

r < T il e R

P R A A I W AT RS S )

Once again we apply p/k < min(4 — 60 + 7’,18/5 — 40) to ultimately obtain

197 — 2200 3(29 — 300)> )

p*/k<max< 8(50 —1) * 5(50 — 1)

Lastly, if 2p is maximal in (), then

1 3p*
p*S(1—20)(k—1)—|—p+imaX(p*—Fk’—l,élp,%—!—p—‘-%).
Solving for p* and dividing by k gives
E—1 2p E—1 3p 8 k=1 7 3p
Ik < —4 La-2 L2((1-2 Ly2f
o'k < max(3 — o) + L, (1-20) = 4+ 2L 21— 20) = 4 T4 28

Once again we apply p/k < min(4 — 60 + 7/, 18/5 — 40) to ultimately obtain

*/k‘ < ma 197 — 2200 3(29 — 300) ,
X

PT= 8(50 —1) * 5(50 —1)

in this case too. O

Modest improvements are possible by incorporating more large value estimates; these are
recorded in the next few theorems.

Theorem 12.10. For 664/877 < o < 31/40, one has

A*(0) < max ( 72— 9l 5(18 — 190) )

7(110 —8)(1—0)  2(50 + 3)(1 — o)
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Derived in derived.py as:
prove_zero_density_energy_4()

Proof. Fix 664/877 < o < 31/40 and take 7, = 2. It suffices to show that

e (72910 5(18 = 190)
X
p= 7(1l0 —8)" 2(50 + 3)

for all (o, 1, p, p*, s) € & satisfying 2 < 7 < 4.
Let k = 21if 2 < 7 < 3 and k = 3 otherwise, and as usual let 7" = 7/k. By Lemma ,
(o,7", 0", p/k,s") € & for some p” < p/kand s’ < s/k. Applying Theorem , and noting
that p/k+ 1> 2p/k since p/k <1 by (),
7’ 1 p* 4p 3p* p T
Ty 4 max(Z 41,22 LU
) g maxCE L g Tt )

2 1 P 5p
Po<1-2+ -max(? +1,22
S 0+2max(k+ Ik

Rearranging the inequality and solving for p*/k, one must either have

* 3— 4o +5p/k 2 4
% < max(4 — 4o + %,#,5(6—804—7’ + ?p)). (12.41)
or
P T Bp T 21p 1 , p
Pocmax(3—do+—+22 120+ + =L S8 160+ 47 +92)). (1242
oS max@—dod 54 g I-20 4 o4 5l ot +op). (1242)

Here we will divide our argument into several cases. Suppose first that

,>9U—1
T .
-5

By Theorem , one has
p/k < max(18/5 —40,12/5 — 4o + 77)
and by Theorem @, one has
p/(k+1) <max(2—20,1—20+7/(k+1)).
Combining the two inequalities, we have

18/5 — 4o, (90 —1)/5 <7 < 6/5,
p/k<12/5—do+1',  6/5<7 <20 —2/5+2(1—0)/k, (12.43)
(2—20)(k+1)/k, 20—2/54+2(1—0)/k<T <(k+1)/k.

Substituting (h24§4) into (h24]]) and ()7 one may verify that

5(18 — 190)
2(50 +3)

P <
3

for all (90 —1)/5 <7’ <14 1/k (with equality occurring at 7" = 20 —2/5+2(1 — o) /k and
k=2).
Now consider the case where

90 — 1

1<7 <
5
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Taking k = 10 in Theorem 7 one has
p/k < max(2—20,19/5—290/5+ 7/,60 — 800 + 7'). (12.44)
Suppose first that o > 281/371. Then, this reduces to
p/k <max(2 —20,19/5—290/5+ 7). (12.45)

By Lemma , for any integer k > 2 one has (o,7/(k =1).p",p*/(k—1),s") € & for
some p < p/(k—1) and s’ < s/(k—1). Applying Theorem [10.2( to this tuple, followed by
p’ < p/(k—1) and rearranging, one obtains

1
p*g(1—20)(k—1)+7max(p+k—1,2p7‘j?p+z)

2 2 (12.46)
+ max(pr k1,49, 4 p+ T
L _ 3p Y
2 P y 20, 4 P 9

By considering each case of the two maximums individually, and solving for p*/k, one obtains

* k—1 —4o)(k—1)/k k
f;fﬁmax((llélo) 3 +%,(3 o) 3 )k + 50/ ,
2 k—1 4p k—1 p
Z((6-8 " Py 34 2l
5(( O’)k+7'+k)( U>k+k
k—1 p 2 k—1 p
1—20)—— —, - ((4—80)—— / = 12.47
(1—20)——+37, z((4—=80)—— + 7" +67), (12.47)
k—1 1 5p E—1 1 21p
—4 K T 7 YA R et
Bty gty e T2 T T e
(8 —160)(k—1)/k+ 47" +9p/k
s .
Bounding each term on the RHS using (), one may verify that in each case
P _5(18—190)
k= 250 +3)
for 1 <7/ < (90 —1)/5 and k = 2,3.
Suppose now that o < 281/371 so that () reduces to
% < max(2 — 20,60 — 800 + 7). (12.48)

If 1 <7/ < 770/2— 28 then substituting p/k < max(2 — 20,60 — 800 + 7") into (), one
may ultimately verify in each case that

p* ( 72—910 5(18 — 190—)) .

— <
k=M 7110 —8)" 2050 + 3)

for k = 2,3, with equality when 7/ = 770/2 — 28 and k = 2 (here we make use of the
assumption o > 664/877 = 0.7571...).

Lastly, if 770/2 — 28 < 1 < (90 —1)/5 then ([12.48) simplifies to p/k < 60 — 800 + 7.
Substituting this into (h24]]) and (h2.4ﬂ), one obtains in either case that

72—91c 5(18—190))
7(116 —8)" 2(50 + 3)

with equality when 7/ = 770/2 — 28 and k = 2. O

p*
— <
B max(
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Theorem 12.11. For 42/55 < o < 79/103, one has

A(0) < max ( 18 — 190 3(18 — 190) )

6(150 —11)(1 —0)  4(40 — 1)(1 — o)

Derived in derived.py as:
prove_zero_density_energy_5()

Proof. Fix 42/55 < o < 79/103 and take 7, = 2. It suffices to show that

18— 190 3(18— 19a)>

<
pro=max (6(150 “11)" 440 — 1)

for all (o, 7, p, p*,s) € € for which 2 < 7 < 4. As before let

2. 2<7<3,
pim {0 2STS 7 :=T1/k,
3, 3<71<4,

so that in particular 1 < 7/ < (k+1)/k.
By Lemma |10.1§, for k = 2,3,

(0,7 0", p" [k, 8"), (o, m/(k+1), 0", p"/(k+1),8") € & (12.49)

for some p’ < p/k, s’ < s/k, p” < p/(k+1)and s” < s/(k+1). Applying Theorem
with k£ = 6 to each tuple, one has
p/k <max(2—20,11/3 —170/3 4+ 7/,36 — 480 + 1),

12.50
p/(k+1) <max(2—20,11/3—176/3+7/(k+1),36 — 480 + 7/(k + 1)). ( )
First suppose o > 97/127, in which case the above simplifies to

p/k < max(2—20,11/3 —170/3 +17),
p/(k+1) <max(2—20,11/3—170/3 +7/(k + 1)).

This combines to give

2 — 20, 1<7 < (116 —5)/3,
p/k<211/3—170/3+7/, (1o —5)/3<7 < (1o —5)/3+2(1—0)/k,  (12.51)
(2—20)(k+1)/k, (1lo—5)/3+2(1—0)/k<T <1+1/k.

First suppose that 7" > (110 — 5)/3. Applying Theorem to the first tuple of (),
and noting that p/k + 1 > 2p/k since p/k < 1,

o 1 p 50 1 1 p* 4p 3p* p T
Pt 2o+ -max(Z+ 1,22 + Ty 4 Zmax(Z 41,22 .
g Sl 2etgmax(p Lt o)+ gmax(Ge 4+ L on e+ e+ )

Rearranging the inequality and solving for p*/k, one must either have

* — 4 k 2
%Smax(pllﬁg,%,g

(6 —8c+7" + 4%)) (12.52)
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or

p* T Bp T 2lp 1 , P
— < 3—4 —+-=,1-2 — 4+ —=,-(8—16 4 9-)). 12.53
pemax@-dot ottt gl o+ar+9p). (12:53)
In either case, upon substituting the last two cases of () one obtains
3(18 — 190) 110 —5 1
< S <7 <14 7). 12.54
L e e (12:51)

Now suppose that 7" < (110 — 5)/3. Then, note that for £ = 2,3 one has
(0.7 (k = 1). 0" 5"k~ 1), 8") € &

for some p” < p/(k—1) and s” < s/(k—1). Applying Theorem to this tuple, followed
by p” < p/(k — 1) and rearranging, one obtains

1 5
o < (1—20)(k—1)+§max(p+k—1,2p,f+%)
2 . T (12.55)

By considering each case of the two maximums individually, and solving for p*/k, one obtains

%*Smax ((4_40>k;1 +g, (3—40)(k—21)/k+5p/k,
%((6—80—)’“;1 +T/+4?p),(3—40)%+2%,
(1_20)%+3%,§((4—80)%+7"+6£), (12.56)
(8—160)(k—1)/k+47/+9p/k>.
5

Note that for all 1 < 7" < (110 — 5)/3, one has by () that p/k < 2 — 20. Substituting
this into ()7 one obtains

/

3(18 — 190)
* <7
PIRS Sae T

in this case too. Combined with (), we have shown that
3(18—190) _
440 —1)

for all (o, 7, p,p*, s) € € for 97/127 < 0 < 79/103 and 2 < 7 < 4. as required.
The proof in the range 42/55 < o < 97/127 is similar. Here @) reduces to

*

p/k < max(2 — 20,36 — 480 + 1),
p/(k+1) <max(2—20,36 — 480 + 7/(k + 1))

so that

2 — 20, 1 <7 < 460 — 34,
p/k < <36 —480 + 7/, 460 — 34 <7’ < 460 — 34 +2(1 — o) /k, (12.57)
(2—20)(k+1)/k, 460—344+2(1—0)/k<7 <1+1/k.
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If 7 > 460 — 34, we substitute the last two cases of this bound into (h25j) and (h2.5d), one
may verify that

18 — 190
-
6(150 — 11)
with equality when 7/ = 460 — 34 4+ 2(1 — 0)/k and k = 2.
On the other hand if 1 < 77 < 460 — 34 then substituting p/k < 2 — 20 into () gives

)C* ’
— < 12.58

< ' (1< 7 <460 — 34)

p*  18—19¢
— < T
k = 6(150—11)

in each case. Combined with (), the desired result follows for 42/55 < ¢ < 97/127. O
Theorem 12.12. For 79/103 < 0 < 84/109, one has

A*(0) < max ( 18 — 190 5(18 — 190) >

2(370 —27)(1 — o)’ 2(130 — 3)(1 — o)

Derived in derived.py as:
prove_zero_density_energy_6()

Proof. Fix 79/103 < o < 84/109 and take

{(360 —16)/5, 79/103 < o < 33/43,
Ty =

380 — 28, 33/43 < o < 84/109.
Let
. {i: ;0752T§<73;0/2270 ’ =r/k.
Suppose that (o, 7, p, p*,s) € £&. We will first show
p* < max ( 5 (1387U_i92"7), 5;(11830_i9§))> T, (1o <7< 27). (12.59)
By Lemma , one has that
(o,7", 0, p k., s"), (o,7/(k+1),p",p"/(k+1),s")e’ (12.60)

for some p’ < p/k, s < s/k, p” < p/(k+1) and s” < s/(k+ 1). First suppose that
o > 33/43. In this range, Theorem with k =5 gives

p/k < max(2 —20,18/5— 280 /5 + 1’),

p/(k+1) <max(2—20,18/5 —280/5 + 7/(k + 1)).

For 7 > 7, the first inequality reduces to p/k < 18/5 — 280 /5 + 7/, while for 7 < 27, the
second inequality reduces to

_k+1 p E+1

k= < 2—20)<3—30.
o/ sl s T 2T20)s3-30
Combining these two inequalities gives

p/k <min (18/5 —280¢/5+ 7',3 — 30), (1o <7< 27).
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In particular this implies p/k < 1. Applying Theorem to the first tuple of ()7

o 1 p 50 71 1 p* 4p 3p* p T
Pt 2ot cmax(P+1, 22 + Ty y Smax(Z +1, 2222 4 P T,
g Sl 2e b gmax(p Lt )+ gmax(Ge 4+ L on e+ )

By considering each case of the first maximum and solving for p*/k, one must either have

* — 4 k 2 4
% < max(4 — 40 + g,%,g(ﬁfESJJrT’ + ?p)) (12.61)
or
o 7 5p 7o21p 1 o op
P o+ T4 2P ey T 2P g 160+ 4 +90)). (12,62
k_max(?) ot 5t U+4+8k’5(8 60+T+9k>) (12.62)

However one may verify in both cases that

5(18 — 190)

p*
P e 190) 12.
k= 2130 —3) (12.63)

for 33/43 < 0 < 84/109 and 7, < 7 < 27, (with equality at 7 = 2(130 — 3)/5).
Now consider o < 33/43. In this range of o, Theorem with k =5 gives

p/k < max(2 — 20,30 — 400 + 77),

p/(k+1) <max(2—20,30 —400 + 7/(k + 1))

which gives
p/k < min(30 — 400 + 77,3 — 30), (1o £ 7 < 21).

Substituting this bound into (ll2.6]J) and (h?.Gﬂ), one obtains

* 18—190
.
2(370 — 27)

4

27, (with equality at 7 = 740 — 54). Combined with

for 79/103 < 0 < 33/43 and 75 < T
(12.69). one obtains (L2.59).

It remains to show that

18 — 190 5(18—190)) (1264

* <
pro=max (2(370 —27)" 2(130 — 3)

for all (o, 7,p, p*,s) € & for which 79/103 < o < 84/109 and 2 < 7 < 7. This follows from
substituting p/k < 6 — 120 + 277 (Theorem—@) into ([12.61)) and () O

Theorem 12.13. For 84/109 < o < 5/6, one has

A (o) < max ( 18 — 190 4(10 — 90) ) '

980 —2)(1—0)’ 5(40 —1)(1 —0)

Derived in derived.py as:
prove_zero_density_energy_7 ()

Theorem 12.14. For 165/226 < o < 42/55 one has

A*(0) < max ( 457 — 5460 5(18 — 190) )

2(61 —580)(1 — o)’ 2(50 + 3)(1 — o)
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Derived in derived.py as:
prove_zero_density_energy_12()

Table records the sharpest known unconditional upper bounds on A*(o) for 1/2 < o < 1

(except when close to o = 1, when sharper estimates are available by applying Lemma [12.2
with known zero-density bounds).

Table 12.1: Current best upper bound on A*(o)

A*(o) bound Range Reference
% % <o< % — 0.6666 ... Theorem
% g <oc< 1—70 =0.7 Theorem
2(§§1i ;)(119 (:)a) 770 <0< % = 0.7255.... Theorem
(202%515) 2114‘:) U) 539 *4g/0m <o< % —0.7300 ... Theorem

2(614375g 05)4((15"_ = % <o< W = 0.7373.. Theorem
2(55(51_'8_ ;)(119(1) - o831 _SFQZL/OW <o< % =0.7636... Theorem ,
6(15015:11;9(? — é—g <o< % — 0.7637 ... Theorem
4(5’;1? ;)(119‘1) . %77 <o< % = 0.7669 ... Theorem
2(37018__271;)(‘; i <0< % = 0.7674 .. Theorem
2(12218_3)130_) . % <o< % = 0.7706 ... Theorem
9(3018_—2)13"_ ~ % <o< W = 0.7721.. Theorem
5(;(101—)30) ~ 1273 _11\;128% <o< % = 0.8333... | Theorem [12.7, 12.9,
4013 : % <o<1 Theorem
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Additive energy estimates

7
o f—
— <
T N\
5
44 — Literature additive energy estimate
s “Tivial" additive energy estimate
b Best additive energy estimate
34 — Additive energy estimate on the Lindelof hypothesis

Figure 12.1: Comparison of bounds on A*(¢) under various assumptions.
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Chapter 13

Zero free regions

A zero of the Riemann zeta function is a complex number p = 8 + iy for which {(p) = 0.

e There are infinitely many “trivial” zeros of the form p = —2n for integer n > 1; these
zeros are well understood.

e There are a countably infinite number of “non-trivial zeros lying inside the critical
strip 0 < Rz < 1.

Definition 13.1 (Zero free region of {(s)). A zero-free region of the Riemann zeta function
is a set D C C for which {(s) # 0 for all s € D.

Lemma 13.2 (Basic properties of zero free regions). The following properties hold:
(i) (Symmetry about the real azis) If ((o + it) # 0 then ((o —it) # 0.

(ii) (Symmetry about the critical line Ms = 1/2) For 0 < o < 1, if ((o +it) # 0 then
¢(1—o+1t) #0.

(i) (Non vanishing for Rs > 1) If ®Rs > 1 then ((s) # 0.

Proof. Claim (i) follows directly from the property ((s) = ((5). Claim (ii) follows from the
functional equation
¢(s) = 25w tsin(ms/2)T(1 — 5)¢(1 — s)

and claim (iii) follows from the Euler product formula

(o) =T[a-p"  @s>0).

P
O

A well-known conjecture regarding the non-trivial zeroes of {(s) is the Riemann hypothesis.

Conjecture 13.3 (Riemann hypothesis). If p is a non-trivial zero of the Riemann zeta
function, then Rp = 1/2.

In light of , for the rest of the chapter we will focus on the quadrant
DC{zeC:Rz>1/2,3z>0}.

The first non-trivial zero-free region was due to de la Vallée Poussin [6G] and Hadamard
[89], who showed independently that:
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Theorem 13.4 (Non-vanishing on the 1-line). One has (1 + it) £ 0 for any real t.

Proof. For Rs > 1, one has

Rlog (s Zicostlogp
P

m=1

where the outer sum runs through all primes. Applying this formula at s = 0,0 + it and
o+ 2it (t # 0), and since 3 + 4 cos + cos 20 = 2(1 + cos#)? > 0, one has

3+ cos(tlog p™) + cos(2t logp™)

> 0.
mpme

3R log ((0)+4R log ((o+it)+NR log ((o+2it) = Z i

p m=1

It follows that |[((0)3¢(o + it)*((o + 2it)| > 1. Now as ¢ — 1 from above (and ¢ remains
fixed), one has

¢(o) < T C(o+2it) <« 1,
o—
since ¢ has a simple pole at s = 1 and no pole at o +2it. If ((1+it) = 0, then {(o+it) € 0—1
so that |((0)3¢(o + it)*((o + 2it)| < o — 1, a contradiction. O

This was used to prove the prime number theorem 7(z) ~ z/logz as  — oo (in fact the
two statements are equivalent).

13.1 Relation to growth rates of zeta

Using estimates of ((o 4 it) close to the line ¢ = 1, one can extend the zero free region
slightly inside the critical strip.

Lemma 13.5 (Relation to growth exponents of zeta). Suppose and 0 < g(t) <1 < f(t) are
real-valued functions for t > 0, with f(t) non-decreasing and tending to infinity with t, and
g(t) non-increasing. Suppose further that e/® /g(t) = o(f(t)). If

Clo+it) < f(t)  (1—g(t)<o<2,¢>0)

then (o +it) # 0 for
g2t +1)
o=1- log f(2t +1)

where A > 0 is an absolute constant.
Proof. See [277, Theorem 3.10]. O
Theorem 13.6 (Classical zero free region). One has ((o +it) # 0 if

A
logt’

for an absolute constant A > 0 and t sufficiently large.

Proof. Thanks to the convexity bound p(o) < (1 — 0)/2, one may take g(t) = 1/2, f(t)
t1/4+o(l) in . The result follows.

0o
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This classical result has been improved in a number of works, most of which make crucial
use of non-trivial estimates of certain types of exponential sums.

Theorem 13.7 (Littlewood zero free region). One has ((o +it) £ 0 if

Al
1 oglogt
logt

for an absolute constant A > 0 and t sufficiently large.

Proof. Follows from the zeta bound corresponding to

(1) < o
H ok _9) =2k _9

for integer k > 3, which is generated by the van der Corput exponent pair A¥~2B(0,1) =
(57—, 1—£=L). However, one needs to make explicit the o(1) term in the bound (o +it) <
t#@)+o(l) Tn particular, by [277, Theorem 5.14], one has

¢(1— +it) < t1/2" 2 Jogt.

k
2k —2

1 logt
=g % (giont).
log 2 loglogt

and using the Phragmén Lindel6f principle, one has

Taking

(loglogt)? )
logt 7’

so we may take f(t) = (logt)® and g(t) = (loglogt)?/logt in . O

Theorem 13.8 (Chudakov zero free region). One has ((o +it) # 0 if

1
oc>1-— (log 1)3/17o0)

((o +it) < (logt), (c>1—

for t sufficiently large.
Theorem 13.9 (Korobov-Vinogradov zero free region). One has ((o +it) # 0 if

A
(logt)2/3(loglog t)1/3

oc>1-—

for an absolute constant A > 0 and t sufficiently large.

Proof. Via estimates of Vinogradov’s integral, one may obtain an estimate of the form (see
e.g. Richert [248])

C(o +it) < B9 (log )M (1/2< 0 < 1)

where B > 0 is a constant and ¢ sufficiently large. Take

o(t) = <loglogt)

logt

2/3

so that
Clo+it) < f(t) = (logt)®V) (6 >1—g(t)).

The result follows from applying . O
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Chapter 14

Distribution of primes: long
ranges

Let A(n) denote the von Mangoldt function, i.e. A(n) = logp if n = p™ where p is prime
and m is a positive integer, and A(n) = 0 otherwise.

Definition 14.1. For all x > 1 define the Chebyshev prime counting functions ¥(z), 0(x)

and w(x) as
b@) = STAm),  6@) =Y logp,  wa) =31

n<x p<z p<zx

where the first sum is over positive integers n and the last two sums are over primes p.

These functions, particularly 7(z), are central to number theory because they measure the
distribution of prime numbers among the integers. A well-known result is the prime number
theorem.

Theorem 14.2 (Prime number theorem). As z — oo,

x °° dt
~ ~ 1' = Pa——
m(@) log x i(z) /2 logt

The following are equivalent formulations of the prime number theorem.

Theorem 14.3 (Prime number theorem, alternative formulations). As @ — oo, one has
W(x) ~x and 0(x) ~ x.

14.1 Error bounds for prime counting functions

In addition to their asymptotic behaviour, various bounds on the deviation from their re-
spective asymptotics are known. The current best-known error bounds are derived from
zero-free regions of the Riemann zeta function {(s). The relation between zeroes of {(s) and
error bounds for prime counting functions are illustrated through von Mangoldt’s explicit
formula: for all non-integer = > 0, one has

P 1
P(xr) =2 — ; % —log 2w — 3 log(1 —272),

where p runs through all non-trivial zeroes of ((s).
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Theorem 14.4 (Korobov—Vinogradov estimate). There exists a positive constant A, such
that

ogx)3/°
P(z) —z, 0(z) —z, m(x) —li(z) € zexp <_A(lc<)lgig)x)1/5) .

able 14.1] lists the historical progression on estimates of m(x).

Table 14.1: Historical estimates of 7(x), for = sufficiently large.

Reference Estimate of 7(x)
Chebyshev ) logz <7(z) < 02$ for some constants 0 < ¢; < 1 < ¢y, i.e. 7(z
de la Vallée Poussin [56], Hadamard [89] m(x) = loggcx(l +o(1)) ie. m(x) ~ lozx
de la Vallée Poussin [b17] m(z) = li(x) + O(z exp(—Ay/logz)) for some A > 0

Littlewood [193] m(x) =li(x) + O(z exp(—A+/lTog xloglog x)) for some A > 0

Al 3/5
Korobov, Vinogradov [285] m(x) =li(x) + O | zexp _ Alogz)"” for some A >0

(loglog x)/5

Under the Riemann hypothesis, stronger error bounds are known.

Theorem 14.5 ([168]). If the Riemann hypothesis is true, then
Y(x) —z, O(z) — x < /% (log x)?, 7(x) —li(x) < z'/?log .
Slightly sharper estimates are possible if one assumes even stronger hypotheses.

Theorem 14.6 (Heath-Brown [109]). Assume that the Riemann hypothesis is true. Fur-
thermore, assume that

Frid) = 0<71§,:72§T 16*(‘(2;1_—7722);24 = o(T*(1e8T)")

where the sum is over the imaginary parts of all pairs of non-trivial zeroes of ((s). Then
(@) = 2+ o(a!/2(log 2)?).

The same result was previously proved (assuming stronger hypotheses) by Gallagher—Mueller

[80] and later by Mueller.

14.2 Relation to zero free region of zeta

Lemma 14.7 (Relation to zero free regions). [139] Suppose (o + it) # 0 for o > 1 —n(t)
where n(t) is a positive and decreasing function. Then

P(r) —x K vexp (—Aw(x)) (x — 00)
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for an absolute constant A > 0, where

w(z) := inf(n(t) logz + logt).

t>1

Applying , one obtains the error term estimates in the prime number theorem
given in Table 14.9.

Table 14.2: Zero free regions for ((s), along with the bound on ¥(z) — = that they imply.
Here A represents an absolute, positive constant, which may be different at each occurrence.

Reference Zero free region Bound on (¢(x) —x)/x
a A 1/2
AT exp(—A(logz)!/?)
Aloglogt
0>1- % exp(—A(logzloglog z)!/?)
heorem 13.8 g 2 1— W eXp(7A<10g IIJ’) )
A (log z)3/°
>1- —A
= 7= (logt)?/3(loglogt)'/3 P ( (loglog z)'/5

The following type of converse statement is also known.

Theorem 14.8 ([281] Theorem 40.1). If for some 0 < a <1 one has
P(x) — & < xexp(—A(log z)t/(1+)) (x — o0)

then (o +it) £ 0 for t sufficiently large and

A
(logt)™

Here A denotes an absolute positive constant, not necessarily the same at each occurrence.

o>1—

14.3 Omega results
In the opposite direction, it is known that
Theorem 14.9 (Schmidt [260]). As z — oo,
Y(x) =z + Qz'/?).
This can be improved slightly conditioned on the Riemann hypothesis.
Theorem 14.10 (Littlewood [192]). If the Riemann hypothesis is true, then as x — oo,

log log 1
() — li()] = © (1:1/2%) .

Furthermore it is also known that
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Theorem 14.11 (Grosswald [87]). If

0= sup Rp>1/2
p:¢(p)=0

then as r — oo,
(@) =2 + Q).

137



Chapter 15

Distribution of primes: short
ranges

Recall that A is the von Mangoldt function, and that the prime number theorem asserts
that

Z Aln) =z + o(x)

n<x

for unbounded z. If p,, denotes the n'" prime, the prime number theorem is also equivalent
to
P, = (1+o0(1))nlogn

for unbounded n.
We now consider local versions of the prime number theorem.

Definition 15.1 (Prime number theorem in short interval exponents). (i) We let Opyr
denote the least exponent with the following property: if € > 0 is fized, and x is

unbounded, then
> An)=y+oly)

r<n<z+y
whenever xfrntte <y < glme,

(ii) We let Opnr_ana denote the least exponent with the following property: if € > 0 is fized,
and X is unbounded, then we have

2X
[ 1 Al ds=o(xy)
X r<n<z+y
whenever Xopnr-aate < g < X17¢,
i) We let 0,, . denote the least exponent such that, if p. denotes the n*™ prime, that
gap n
+o(1)

+o(1) — pflgap

Pni1 — Pn < negap

as n — o0.
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(iv) We let Oy, o denote the least exponent such that

Z (pn+1 7pn)2 < Iegap’2+0(1>

Pp ST
as x — 00.

(v) We let Oy,, an denote the least exponent such that for every ¢ > 0, the intervals
[n, nagap*AA“] contain a prime for a density 1 set of natural numbers n.

Lemma 15.2 (Trivial bounds). We have

0 < egapfAA < QPNTfAA7 egap < GPNT < 1

and 1 <6 <1+86

gap,2 gap’
Proof. These are all immediate, after noting from the prime number theorem that Zp” <2 Pn1—

P, = $1+O(1). O
The Cramér random model [4§] predicts

Conjecture 15.3 (Prime gap conjecture). Opnt = 0, and hence (by Lemma ) Ogap—an =
GPNT—AA = anp = O and ogap72 = 1.

We note that the results of Maier [203] show that there is some deviation from the prime

number theorem at very small scales (of order logo<1) x), but this does not directly affect
the exponents discussed here due to the epsilons in our definitions.
A basic connection with zero density exponents is

Proposition 15.4 (Zero density theorems and prime gaps). Let

Ao = sup A(0). (15.1)
1/2<0<1
Then
B <1—
T Al
and
OpnT-An <1— AL
Proof. See for instance [88, §13.2]. O
Corollary 15.5 (Ingham-Huxley bound). We have pnp < 15 and Opyp_apn < 5.
Proof. From Theorem [11.14 and Theorem one as |A|,, < 12/5, and the claim now
follows from Proposition [15.4. O

Corollary 15.6 (Ingham-Guth-Maynard bound). [88] We have Opyt < % and Opnr_aa <
2
=

These are currently the best known upper bounds on Opyt and Opyr_aa-

Proof. From Theorem and Theorem one as |Al < 30/13, and the claim now

follows from Proposition [15.4]. O
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Table 15.1: Historical upper bounds on 6,

Reference Upper bound
Hoheisel (1930) [118§] 1 — 35855 = 0.999 ...
Heilbronn (1933) [116] 1— 5 =0.996
Ingham (1937) [137] 5 =0.625
Montgomery (1969) [217] 3=06
Huxley (1972) [122] = =0.5833...
Iwaniec—Jutila (1979)[[148] 22 =0.5652...
Heath-Brown—Iwaniec (1979) [L15], Lou—Yao (1993) [201] 35 =0.55
Pintz (1981) [233] 4T = 0.5483 ...
Iwaniec-Pintz (1984) [151] 23 = 0.5476 ...
Mozzochi (1986) [222] 1951 = 0.5473...
Lou—Yao (1984) [196] 35 = 0.5469 ...
Lou-Yao (1992) [200] £ =0.5454...
Baker-Harman (1996) [f] 207 = 0.535
Baker-Harman-Pintz (2001) [g] 2 =0.525
R. Li (2025) [183] 22 =052

Corollary 15.7. The density hypothesis implies that Opyp < 1/2 and Opypr_pa = 0.
The current unconditional best bound on ,,, is
Theorem 15.8. [185] We have 0,,, < 13/25 = 0.52.

Historical bounds on 6,,, are summarized in the following table:
Bounds on 6,,, 5 are recorded in Table [L5.
Historical bounds on 6, , are recorded in Table @

The following general bound on ,,, 5 is known:

Proposition 15.9. We have

2
Ogap,2 < Max (2 sup max(a(a),ﬂ(o)))

Al 122051

where
. B(o)(1—0)—1
alo) =40 —2+2 Blo) = A(0)
" B(o)(1—0) ~1
ﬁ(O’) :40—2+T

where A(o), B(o) are any upper bounds for A(c), A*(o) respectively.

Proof. See [104, Lemma 2]. We remark that this lemma allows o to range over 0 < o <1
rather than 1/2 < ¢ < 1, but it is easy to see that the contributions of the 0 < o < 1/2
cases are dominated by the 0 = 1/2 case. O
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Table 15.2: Historical upper bounds on 0y, aa-

Reference Upper bound

Selberg (1943) [263] 19 =0.2467 ...
Montgomery (1971) [21§] £=02

Huxley (1972) [122] £ =0.1666 ...
Harman (1982) [99] 5 =0.1

Harman (1983) [100], Heath-Brown (1983) [110] & =0.0833...
Jia (1995) [154] 5 = 0.0769

Lou-Yao (1985) [197] 3= = 0.0748 ...

H. Li (1995) [17§] Z =0.0740
Jia (1995) [153], Watt (1995) [294] ﬁ =0.0714 ...
H. Li (1997) [179] 2= = 0.0666 ...
Baker—Harman—Pintz (1997) [[7] - =0.625
Wong (1996) [298], Jia (1996) [156], Harman (2007) [[101] Tls = 0.0555 ...
Jia (1996) [155] 75 = 0.05
R. Li (2024) [181] 2 =0.0465 ...
R. Li (2025) [185] 75 = 0.0455 ...
compute_gap2()
This proposition can be used to recover the following bounds on 6, 5:

Corollary 15.10.

(i) Assuming the Riemann hypothesis, 0,,, o = 1. (Selberg, 1943 [263])

(ii) Assuming the Lindelof hypothesis, 0y, » < 7/6. (Heath-Brown, 1979 [104])
(#i) Unconditionally, 6 < 23/18. (Heath-Brown, 1979 [105]).

gap,2 —

Proof. For (i), we observe that ||A|,, = 2 and that one can take A(c) = B(o) = ¢ for any
o>1/2and e > 0, and A(c) = 2, B(o) = 6 for ¢ = 1/2, and then the claim follows from
Proposition [15.9.

For (ii), from Theorem we may take A(c) = 2foro < 3/4and A(c) =efor3/4 <o <1
and any € > 0, while from Theorem one can take B(o) = 8—4o foroc < 3/4and B(o) = ¢
for 3/4 < o0 < 1. The claim now follows from Proposition and a routine calculation.
Part (iii) follows from applying Proposition @ using the bounds from Theorem 7

together and various bounds on A(o); see [144, Theorem 12.14] for details. O
Two variants of 0,,, » are 0,,, . and 0,,, -, defined respectively as the least exponent for
which

> (Py1 = Pp) < afsmn b0l

P SEP,y 1 —Py 2wt/2HE

(for any fixed & > 0 for unbounded z > 1) and

Z (Pro1 —Pp) < 28ap,>to(1)

P S<TiPpi1—Pp >xl/2
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Table 15.3: Historical upper bounds on 6

gap,2-
Reference Upper bound
Selberg (1943) [263] 1 (on RH)
Heath-Brown (1978) [102] 3 =1.3333...
Heath-Brown (1979) [104] £ =1.1666 ... (on LH)
Heath-Brown (1979) [104] 1582 =1.3242 ..
Heath-Brown (1979) [105] 23— 1.2777 ...
Yu (1996) [312] 1 (on LH)
Peck (1996) [230], Maynard (2012) [207] 5=125
Stadlmann (2022) [26§] 123 —1.23

(for unbounded = > 1). The trivial bounds are

Proposition 15.11 (Trivial bounds on large gaps). One has O,,, . < 0,,, . If0,,, <1/2,

then b, . = —oc. In general, we have
max(1/2,0,,,) <max(1/2,0,,, )
and Og,, - < 1. Also Oy, - < Oy 0 —1/2.

The proofs are routine and are omitted. Historical bounds on 6,,, . are recorded in Table

Table 15.4: Historical upper bounds on 6,,, . and 0,,, -.

Reference Upper bound on 6,,, . | Upper bound on 0,,, -
Selberg (1943) [263] 1 =10.5 (on RH)
Wolke (1975) [297] 2% = 0.966 ...
Cook (1979) [44] 82 =0.8673...
Huxley (1980) [126] 3739 =0.8242 ...
Huxley (1980) [126] 3 =0.75 (on LH)
Ivic (1979) [140] 2% =0.8082...
Heath-Brown (1979) [105] 3 =0.75
Heath-Brown (1979) [104] 5 =0.625
Peck (1998) [231] 25 =0.6944 ...
Matomiiki (2007) [205] 2 =0.6666
Heath-Brown (2020) [114] 2=0.6
Jarviniemi (2022) [152] 25 =057

For any 0 < 0 < 1, let ppyn7(0) denote the least exponent p such that for all unbounded
X,onehasy  _ . ,A(n)=(1+ o(1))z? for all z € [X,2X] outside of an exceptional set
of measure O(X#*+°(1)). Thus for instance ppyp(f) = —oo for @ > Opnp (and ppxr(0) > 0
for 0 < Opnr), and ppn(0) < 1 implies 6 > Opyp_aa- The quantity ppynr(0) is clearly
non-decreasing in 6.

The following bounds are known:
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Lemma 15.12 (Bounds on p).

(i) [14, Theorem 2(i)] For sufficiently small A > 0, we have ppnr(1/6 + A) < 1—cA
and ppnp(7/12 = A) < 2+ TA + O(A?).

(ii) |14, Theorem 2(ii)] Assuming RH, we have ppnr(0) <1—0 for 0 <6 <1/2.
(iii) |11, Lemma 1] We have

3(1-6)

1 11
5 3 <0 < 51

ppnt(0) < 7475;‘29 H<o<2
3602-966+55 23 7

39-360 5 <0<15

Some further bounds were claimed in the region 1/6 < 6 < 1/2, but unfortunately the
arguments provided are incomplete (the claim (13) of that paper is not justified for
0<1/2).

(tv) [7§] For any 0 < 6 < 1, one has

ppnr(0) < igg sup  min(pgy ,(0), fg 5 (0))
€ 0<o<1
A(U)Zﬁ—e

where
o (0) == (1 =0)(1 —0)A(0) +20 —1
and
pap(0) = (1= 0)(1 — 0)A"(0) + 4o — 3.
(v) [114, Theorem 2] ppnr(1/2) < 3/5.

prime_excep()

In 2004, under the assumption of the existence of exceptional Dirichlet characters, Friedlan-
der and Iwaniec [[77] proved the following result:

Theorem 15.13. [77] Let x = xp denotes the real primitive character of conductor D,
x > D" with r = 18290. Then we have

m(z) — 7 (x — x%) = li;; (14O (L(1,x)(logz)™)) .

©

Moreover, if we have
L(1,x) < (logz)™"

then there is always a prime number in the interval [x—m%,x] for any D" < x <
.
exp (L(l,x) 7m+1>,

Note that 23 = 0.4936.... In 2024, Li [180] improved the exponent 23 to 0.4923 with
r = 433433.
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15.1 Extremal values of prime gaps

Consider now the problem of determining upper bounds on

as well as lower bounds on
G(X) ‘= max (pn+1 7pn>' (153)
pn+1—X

From the prime number theorem one expects p,,,; — p,, to be of size logp, on average, so
that

Theorem 15.14 (Consequences of the prime number theorem). One has

liminf 2 " Pn <9 G(X) > (1+o(1)logX (X — o0).

n=eo  logp,

However, p,, ., —p,, can be sometimes be much smaller or much larger than its average size.
The following is a classical conjecture regarding small prime gaps.

Conjecture 15.15 (Twin prime conjecture). One has
liminf(p,  —p,) = 2.

Since all sufficiently large primes are odd, the twin prime conjecture states that prime gaps
achieve the smallest possible size, infinitely often. In the other direction, it is conjectured
that

Conjecture 15.16 (Cramér [48]). One has

limsup 20 _
X~>oop (log X)2

Note that by it is known tha@){) < X052,

The current best known result concerning ( ) is

Theorem 15.17 (Polymath 8b [240]). One has

liminf(p, ., —p,,) < 246.

n—
Sharper conditional bounds are also known.

Theorem 15.18 (Maynard [209]). Assuming the Elliott-Halberstam conjecture (EH), one
has
liminf(p, ., —p,) < 12.

n—oo

Theorem 15.19 (Polymath 8b [240]). Assuming the Generalized Elliott-Halberstam con-
jecture (GEH), one has

n—

Historical progress towards this problem is recorded in .

The current best known lower bound on G(X) is

Theorem 15.20 (Ford-Green—Konyagin—Maynard—Tao (2017) [68]). For unbounded X, one

has
GIX) > log X loglog X loglogloglog X

logloglog X
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Table 15.5: Historical progression of bounds related to ()

Reference Unconditional result Assuming EH
Goldston-Pintz—Yildirim (2009) [82] lgggf%;np" =0 H, <16
Goldston-Pintz—Yildirim (2010) [83] linrgiogf (1ngn];?/+21(l_o§ﬁ)gpn)2 < 00

Pintz (2013) [233] lim inf (logpn)]?”77+(11c:glp:gpn) 7 <00
Zhang (2014) [315] H, <7107
Polymath 8a (2014) [B0] H, <4680
Maynard (2015) [20] H, < 600 H, <12
Polymath 8b (2015) [24(] H, < 246

Table 15.6: Historical progression of bounds related to ()

Reference Lower bound on G(X) (for X sufficient
. logloglog X
tzynthius (1931) [2 X)>»logX———=>2=>——
Westzynthius (1931) [295] G(X) > log oz Toglog log X
Erdés (1935) [65] G(X) > log X — 08108 X
& (logloglog X)?
. log log X log log log log
Rankin (1938) [244 G(X 1)) log X
ANKII ( ) [ ] ( ) > (CO + 0( )) 0g (10g10g10gX>2
Schonhage (1963) [262] cp = =€
Rankin (1963) [246] cyp=¢€"

Maier—Pomerance (1990) [204] ¢y = 1.31256eY
Pintz (1997) [234] co = 267
loglog X log logloglog X
Ford-Green—Konyagin—Tao (2016) [69], Maynard (2016) [210] | G(X) > f(X)log X o8 Oﬁoglzglzi)?iog for
log X loglog X logloglogl
Ford-Green-Konyagin-Maynard-Tao (2017) [68] G(X) > 87 08 087 08 08 08
logloglog X
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Chapter 16

The generalized Dirichlet
divisor problem

For any fixed integer k > 1, let

nynE=n

denote the number of ways a positive integer n may be written as a product of exactly k
positive integers. The divisor sum

Dy(z) == Z di,(n)
n<x
is known to satisfy the asymptotic formula

Dy(z) = 2P, (logz) + Ay(x)

where P,_; is an explicit polynomial of degree k — 1 and Aj(x) = o(x) is an error term.
The (generalized) Dirichlet divisor problem concerns bounding the growth rate of A, (x) as
T — 00.

Definition 16.1 (Divisor sum exponents). Let k > 1 be a fized integer. Then, « is the
least (fized) exponent for which

Ay (z) < portold)
for unbounded x > 0. Furthermore, 3, is the least (fized) exponent for which

1 o 1/2
(/ (Ak(t))%lt) < ghrtol)

T

for unbounded x > 0 (in both definitions, the implied constant may depend on k).

One can also give a non-asymptotic definition: «y, ) are respectively the least exponent
such that for all € > 0, there exists C = C(g, k) > 0 for which

[Ap(@)] < Ca™ee, (22 0)

and
1/2

1 < CgBrte, (x> 0O).

L C(Ap(t)2dt

X

In the case k = 1, the problem is trivial. In particular:

146



Lemma 16.2 (d; exponent). One has a; = 3, = 0.
Proof. Follows from > _ 1=z +O(1). O

However, the value of «, is not known for k£ > 2. On the other hand, the values of 5, and
B3 are known.

Theorem 16.3 (Hardy [94]). One has 35 = 1/4.
Theorem 16.4 (Cramér [47]). One has 55 =1/3.

Nevertheless, the value of 3, is not known for k£ > 4. Unconditionally, the following lower-
bounds are known to hold.

Lemma 16.5 (Lower bound on «y, and f;). For all k > 1, one has

1 1
%Zﬁk2§—ﬂ~

Proof. The first inequality follows from inserting the bound A,(z) < z®*+°() into the
definition of 8. The second inequality is due to Titchmarsh [275]. Note also that the
weaker inequality oy, > 1/2 — 1/(2k) was first proved by Hardy [93]. O

It is conjectured that this lower bound on «;, and f, is in fact an equality [277, p. 320].
Amongst other consequences, this conjecture implies the Lindeldf hypothesis [277, Chapter
X11].

Conjecture 16.6 (Generalised Dirichlet divisor problem conjecture). For all k > 1, one

has
1 1

0‘1@:51@:§—2*k~

The remainder of this chapter focuses on upper bounds on «;, and 3.

16.1 Known pointwise bounds on divisor sum exponents

Currently the sharpest known upper bound on «a is:

Theorem 16.7. [18G, Theorem 1.2] One has ay < o = 0.314483 ..., where o* is the solution
to the equation

8 (y2(1+14a) = 5vV/=1+8a)? N 51
25" 200 200
on the interval o € [0.3,0.35].

able 16.] records the historical progression of upper bounds on a,.

Currently, the sharpest known bound on a5 is:

(67

Theorem 16.8. [171] One has ag < 43/96.

able 16.9 records the historical progression of upper bounds on a;.

For larger k, estimates typically make use of the following relationship with zeta-moments.
Lemma 16.9. Let k > 2 be an integer. If M(o,k) =1 then o), < 0.
Proof. See [144, §13.3]. O
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Table 16.1: Historical bounds on o

Reference

Upper bound on ay

Dirichlet (1849) [?], Piltz [?] 1/2=05
Voronoi (1903) [286] 1/3=0.3333 ..
van der Corput (1922) [45] 33/100 = 0.33

van der Corput (1928) [46]

27/82 = 0.3292 ...

Chih (1950) [39], Richert (1953) [247]

15/46 = 0.3260 ...

Kolesnik (1969) [169]

12/37 = 0.3243 ...

Kolesnik (1973) [170]

346/1067 = 0.3242...

Kolesnik (1982) [172]

35/108 = 0.3240 ...

Kolesnik (1985) [L73, p. 118]

139/429 = 0.3240 ...

Iwaniec-Mozzochi (1988) [150]

7/22 =0.3181 ...

Huxley (1993) [I12§]
Huxley (2003) [130]
Li-Yang (2023) [[186]

23/73 = 0.3150 ...
131/416 = 0.3149 ...
0.314483 ...

For completeness we record the historical progression in bounds for «.
Lemma 16.10 (Piltz bound). For k > 2, one has

1

Lemma 16.11 (Voronoi, Landau bound). For k > 2, one has

<12
=TT
Proof. See Voronoi [286] for k = 2 and Landau [176] for k > 3. O

Lemma 16.12 (Hardy-Littlewood bound for k > 4). For k > 4, one has

Proof. See [96]. The original proof relied on the assumption that p(1/2) < 1/6 which was
published later. O

Lemma 16.13 (Tong bound for 4 < k < 11). One has

ay, <1/2 ay < 4/7, ag < 5/8, a; < 71/107
ag <41/59, g <31/43, gy <26/35,  ay; <19/25
Proof. See Tong [27§]. O

Theorem 16.14. J10§] For 4 < k <8, one has

3k—4
< .

Y= T
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Table 16.2: Historical bounds on oy

Reference Upper bound on a4
Walfisz (1926) [28§] 43/87 = 0.4942 ...
Atkinson (1941) [1] 37/75=0.4933 ...
Rankin (1955) [245] 0.4931466 ...

Yue (1958) [B13] 14/29 = 0.4827 ...
Yin (1959) [30§] 25/52 = 0.4807 ...
Yin (1959) [B09] 10/21 = 0.4761 ...
Yue-Wu (1962) [314] 8/17 =10.4705 ...
Chen (1965) [33] 5/11 = 0.4545 ...
Yin (1964) [310] 34/75 = 0.4533 ...
Yin-Li (1981) [B11], Zheng (1988) [B17] | 127/282 = 0.4503 ...
Kolesnik (1981) [1171] 43/96 = 0.4479 ...

Theorem 16.15 (Ivic-Ouellet bound for large k). [145] One has

ayp < 27/40, oy, <0.6957, gy <0.7130,  ay4 < 0.7306,
0yy 07461, ay; < 075851, g < 0.7691, g, < 0.7785,
a1s <0.7868, a9 <0.7942,  ayy < 0.8009.

Theorem 16.16. /144, Theorem 13.12] One can bound «y, by

3k —4)/4k for4 <k <8
35/54 for k=9
41/60 for k = 10
7/10 for k=11
(k—2)/(k+2) for 12 <k <25
(k—1)/(k+4) for 26 <k <50
(31k — 98)/32k for 51 < k < 57
(Tk —34)/Tk for k > 58.

Lemma 16.17 (Heath-Brown bound for large k). For any k > 2, one has
oy, < 1—0.849k7%/3,
Proof. See Heath-Brown [[113].
Theorem 16.18 ([15]). For integer k > 30, one has
oy < 1—1.421(k —1.18)72/3,

Moreover, ay, < 1 —1.889k2/3 for sufficiently large k.
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Theorem 16.19 (Trudgian—Yang bound for large k). [|279], Theorem 2.9/One has

0y < 0.64720,  ay0 < 0.67173, gy < 0.69156,  ay, < 0.70818,

0y < 0.72350,  ay, <0.73696, g5 < 0.74886, g < 0.75952,

apr < 0.76920,  ayg < 077792, aye < 0.78581,  ary < 0.79297,
gy < 0.79951.

Theorem 16.20 (Li bound for large k). [[184], Theorem 2]One has

ay < 0.638889,  ay, < 0.663329,  ay; <0.684349,  a;, < 0.701768,
a3 0717523, ay, <0.731898,  ays; < 0.744898,  ay4 < 0.75638,
oy, < 0.766588,  ayg < 0775721,  age < 0.783939,  ary < 0.791374.

150



Chapter 17

The number of Pythagorean
triples

Definition 17.1 (Pythagorean triple exponent). Let Opyy,,, be the least exponent for which

one has
P(N) _ CN1/2 _ C/NI/B + Nﬂpythango(l)

for unbounded N and some fized c,c’, where P(N) is the number of primitive Pythagorean
triples of area no greater than N.

Lemma 17.2. One has Opyp,, < 1/4.
Proof. See [296, 62]. The previous bound 0pyy,,, < 1/3 was obtained in [175]. O
Lemma 17.3. If (k,£) is an exponent pair, and RH holds, then

1 5k+0-3/2 1 3k+(—3/2

gPythag S Inax( 5 54(k 4 E) —7

3 64(k+0)—72 )

Proof. See [214] and and [279, Section 5.10]. O
Lemma 17.4. Assuming RH, one has Opy ., < 71/316.

Proof. See [279, Section 5.10]. O
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Chapter 18

The de Bruijn—Newman
constant

A survey on this topic may be found at [224].
Let Hy: C — C denote the function

1 /1 iz
Hy(z) == gf (5 + 5) ) (18.1)
where £ denotes the Riemann xi function
. s(s—1) —sjap (S
§(s) 1= = —no/7r (2) ¢(s) (18.2)

and ( is the Riemann zeta function. Then H, is an entire even function with functional
equation H,(z) = Hy(z), and the Riemann hypothesis is equivalent to the assertion that all
the zeroes of H are real.

It is a classical fact (see [277, p. 255]) that H, has the Fourier representation

where @ is the super-exponentially decaying function

D(u) := 2(277271469“ — 3mn2e®) exp(—mn2et). (18.3)

n=1

The sum defining ®(u) converges absolutely for negative u also. From Poisson summation
one can verify that ® satisfies the functional equation ®(u) = ®(—u) (i.e., ¢ is even).

De Bruijn [p5] introduced the more general family of functions H,: C — C for t € R by the
formula

H,(z) ::/O et & (u) cos(zu) du. (18.4)

As noted in [52, p.114], one can view H, as the evolution of H,, under the backwards heat
equation 0,H,(z) = —0,,H,(z). As with H,, each of the H, are entire even functions with
functional equation H,(Z) = H,(z). From results of Pélya [239] it is known that if H, has
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purely real zeroes for some ¢ then H, has purely real zeroes for all ¢’ > ¢t. De Bruijn showed
that the zeroes of H, are purely real for ¢ > 1/2. Strengthening these results, Newman [223]
showed that there is an absolute constant —co < A < 1/2, now known as the De Bruijn-
Newman constant, with the property that H, has purely real zeroes if and only if ¢ > A.
The Riemann hypothesis is then clearly equivalent to the upper bound A < 0. Newman
conjectured the complementary lower bound A > 0, and noted that this conjecture asserts
that if the Riemann hypothesis is true, it is only “barely so”.

Known lower bounds on A are listed in the tables below.

Table 18.1: Lower bounds on A.
Lower bound on A | Reference

> —00 Newman 1976 [223]

> —50 Csordas—Norfolk—Varga 1988 [49]
> =5 te Riele 1991 [271]

> —0.385 Norfolk-Ruttan—Varga 1992 [226]
> —0.0991 Csordas—Ruttan—Varga 1991 [51]

> —4.379 x 1076 Csordas—Smith—Varga 1994 [52]

> —5.895 x 1079 Csordas—Odlyzko—Smith—Varga 1993 [p(]
> 263x10°° | Odlyzko 2000 [227]

> —1.15 x 1071 Saouter—Gourdon-Demichel 2011 [257]
>0 Rodgers—Tao 2020 [255]

>0 Dobner 2021 [50]

The argument of Dobner applies more generally to the Selberg class.
For upper bounds, we have

Table 18.2: Upper bounds on A.

Upper bound on A | Reference

<1/2 Newman 1976 [223]
<1/2 Ki—Kim—Lee 2009 [166]
<0.22 Polymath 2019 [241]
<0.2 Platt—Trudgian 2021 [23§]
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Chapter 19

Brun-Titchmarsh type theorems

Definition 19.1 (Prime counting function on arithmetic progressions). Suppose a,q € Z
with ged(a,q) = 1. For each x > 0, define

m(x;q,a) = Z 1.

p<z
p prime
ql(p—a)

The ordinary prime counting function can be recovered by n(x) = w(x;1,1).

The Prime Number Theorem (PNT) shows that 7(x) ~ 2 as @ — 00. On the other hand,
known results on the asymptotic behavior of 7 (x;¢q,a) depend greatly on how ¢ and x are
sent to oco. Heuristically, it is expected that for “most” sequences g¢,,, z,, — oo with q,, < z,,,

(2,5, a) ~ m as n — o0o. Brun-Titchmarsh type theorems make this precise

X

by provide asymptotic upper or lower bounds on 7(z;¢,a) in terms of F(@iogz OF related
quantities, presupposing constraints between ¢ and z.

Definition 19.2 (Logarithmic integral function). Define the offset logarithmic integral func-

tion for x > 2 by Li(z) = f; lsg“u. Note that Li(z) ~ 557

We first record two early results which recover the correct asymptotic under stringent as-
sumptions.

Theorem 19.3 (Brun-Titchmarsh theorem under GRH (1929) [272]). Under the General-
ized Riemann Hypothesis (GRH), if ¢ < x, then

m(z;q,a) = Li(z) /% log x
(3¢, a) Q) + O(z /" log z).

Theorem 19.4 (Walfisz (1936) [290]). Fiz B > 0 and suppose q < (logx)?. Then there
exists A = A(B) > 0 such that

1 q,a _Ll(ﬂ?) Trexpl—Ay/1logx

19.1 Upper bounds

Titchmarsh’s original theorem establishes a coarse asymptotic upper bound.
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Theorem 19.5 (Brun-Titchmarsh theorem (1929) 272]). If0 <6 <1 and q < 2°, then

xr
7(z;q,a) = O | ——— | + O(280-0)/7),
(#:0,) (@(q)logfr) ( )

Later bounds more generally bound the number of prime numbers equivalent to a (mod q)
in the interval [z, + y]. Observe that setting + = 0 indeed yields an improvement on
previous results.

Theorem 19.6 (Lint, Richert (1965) [283]). If y > ¢, then

2y min (3 6 )
©(q)log(y/q) log(y/q)

Theorem 19.7 (Montgomery, Vaughan (1973) [219]). If y > q, then

(x4 y;q,a) —m(r;q,a) <

2y
©(q)log(y/q)

On the other hand various bounds improve on this result under polynomial relationships of
the form ¢ < z¥. To state these, we need the following definition.

m(x +y;q,a) —w(r;9,a) <

Definition 19.8 (6 and Cy). Suppose © > 0 and g € Z. Define 0 := logg, and let Cy > 0
be the smallest constant such that
1
max  7(z;q,a) < (Cy +o(1))z
asged(a,q)=1 ¢(q) log(z)

as x — o0.
Here is the historical progression of bounds on Cy, where

66 *log(t—1
Gi(0) = - 3—169/ (t La

160 4— 3+— 9

/ 4(33 169 4 log(t _ 1)dt
4 — 3 + 64 9 7*32 4

8 49 e 1 (t — 1)
0g
4 (1 64 ) 0 max ( 472((1;63791))9 -3 ,2) t

and

66 *log(t —1)
Cl0) = 33 169/2 A

165(8-76)

16 8(33-166) log(t _ 1)
——>dt
8T L . .
16 Ea log(t —1)
— ——=dt.
MY {

max(z;(iese) ’2)
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Let 0.y, be the least constant such that for every ¢ > 0 there exists 6 > 0 such that one
has a character sum bound of the form

Zx(l) < Lg™°

I<L

whenever y is a non-principal character mod ¢ and L > ¢%bar 4+ ¢. The Burgess bound
[27, 28] shows that 6., < 3/8, which can be improved to 0., < 1/4 for cube-free q. The

char char

extended Lindel6f hypothesis implies that 6., = 0.
In [147, Theorem 3| it was shown that
2 2
Cy < .
b S max(T g 55075
This was improved in [198] to
2 2
Cy < .
0 S WX S 510735

A further (complicated) bound on Cy in the range 3/7 < 6 < 9/20 may be found in [3,
Theorem 2].

In [B01)], the bound C, < 16/(8 — (3 + 20zp)0) for 9/20 < 6 < 1/2 was established, where
Orp is the exponent for the Ramanujan—Petersson conjecture for GL,(Q). By the work of
Kim and Sarnak [[167] one has 0zp < 7/64. One can also convert exponent pairs to bounds
on Cy:

Theorem 19.9 (From exponent pairs to Brun—Titchmarsh). (301, Theorem 1.4] If (k,£) is
an exponent pair, then

C, < 4
"= B+k—0)—(3+3k—10)0
whenever
1+k—1¢ <h< 1+k—€'
2+ 2k — 2/ 1+2k—7¢

Averaged versions of the Brun—Titchmarsh inequality were proven in [119], [120], [147], [59],
[72], (73] [215], [4], [6], [74] and [182].
For any 0, let Cj denote the best constant for which one has an upper bound

g

wle + ) —w(x) < (G o)

for unbounded z. The following bounds on Cj are known:

19.2 Lower bounds

The most basic lower bound is Dirichlet’s theorem, stating that lim,_,  7(x; ¢, a) = oo; we
shall not record it here. Until relatively recently, good lower bounds were not known on
7(x; q,a) other than Theorem m for small g, but there are many known estimates for the
smallest value of x for which 7(z;q,a) > 0.

Definition 19.10 (Linnik’s constant L). Define L to be the infimum over all L’ > 0 where

there exists qo(L') > 0 such that for all ¢ > qo(L) and = > ¢~ MiNgeq(q,q=1 7(25¢,a) > 0.
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Here is the historical progression of L.
Recent work by Maynard [208] establishes asymptotic lower bounds for 7 (z;q, a).

Theorem 19.11 (Maynard (2013) [208]). For sufficiently large q and x > ¢%, we have

log q T )
q'/? (so(q} 1ogx> < nlzig,a)

Theorem 19.12 (Maynard (2013) [208]). Let € > 0. There exists qy(€) > 0 such that for
all g > qy(e),

q76

———— < w(x;q,a).
¢(q) log
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Table 19.1: Historical bounds on C,

Reference Range of 6 Upper bound on Cjy
Titchmarsh (1930) (0,1) Finite
van Lint & Richert (1965) [283]
Montgomery & Vaughan (1973) [219] (0,1) 2/(1-6)
Selberg (1991) [265]
Motohashi (1973) [22(] (0,1/3) 16/(8 — 30)
Motohashi (1974) [221] (0,1/3] 2 (on LH)
Motohashi (1973) [220] (2/5,1/2] 2/(2 —306)
Motohashi (1974) [221] (1/3,2/5] 4/(2—0)
Motohashi (1974) [221] [1/3,2/5] 2/(2— 36) (on LH)
Goldfeld (1975) [81] (0,24/71) 16/(8 — 30)
Twaniec (1982) [147] (0,9/20) 16/(8 — 39)
Iwaniec (1982) [147] (0,9/20) 8/(4 —20) (if ¢ cube-free)
Iwaniec (1982) [147] [9/20,2/3] 8/(6—70)
Baker (1996) [3] (9/20,1/2) 4/(2—0)
Friedlander & Iwaniec (1997) [75] [6/11,1) (2—((1—6)/4)%)/(1—0)
Maynard (2013) [208] (0,1/8] 2
Bourgain & Garaev (2014) [25] [1—946,1) (2—co(1—0)2)/(1—0)
Xi & Zheng (2024) [301 (9/20,1/2) 16/(8 — (3+ 7/32)0)
Xi & Zheng (2024) [301 (9/20,1/2) 16/(8 — 30) (if q prime)
Xi & Zheng (2024) [301 [1/2,12/23) 8/(5 —50) (if ¢ prime)

Xi & Zheng (2024) [301

[12/23,32/61)

32/(32 — 430) (if ¢ prime

Xi & Zheng (2024) (301

[32/61,8/15)

)
)
)
)

(
)
24/(16 — 170) (if ¢ prime
)
)
)

|

(2024) [301]

(2024) [301]

(2024) [301]

(2024) [301]
Xi & Zheng (2024) [301] [8/15,7/13) 48/(40 — 496) (if ¢ prime
Xi & Zheng (2024) [301] [7/13,6/11) 16/(11 — 120) (if ¢ prime
Xi & Zheng (2024) [301] (6/11,4/7) 32/(28 — 356) (if ¢ prime)
Xi & Zheng (2024) [301] [9/51,9/11] 160/(89 — 910) (if ¢ smooth squar
Xi & Zheng (2024) [301] [1/8,5/12) 2 (if ¢ smooth square-free)
Xi & Zheng (2024) [301] [5/12,9/20) 5/(5 — 660) (if ¢ smooth square-1
Xi & Zheng (2025) [302] 9/20,1/2) 66/(33 — 160) — C,(0)
Xi & Zheng (2025) [302] [9/20,1/2) 66/(33 — 166) — Cy(0) (if ¢ prix
Xi & Zheng (2025) [302] [3/10,3/4] 24/(15 — 166) (if ¢ smooth square
Xi & Zheng (2025) [303] [1/2,34/67] 240/(184 — 2170) (if ¢ prime

(2025) [303]

Xi & Zheng (2025) 303

[1/2, (v(2v + 1))/ (4% + v + 4)]

8
2v—(3v+4)0
670+ yz/(?z/y—l)

for every integer v > 5 (
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Table 19.2: Historical bounds on Cé

Reference Range of § | Upper bound on Cj
Montgomery & Vaughan (1973) [219] (0,1) 2/6
Iwaniec (1982) [147] (1/3,1) 18/(150 — 2)
Iwaniec (1982) [147] (1/2,1) 4/(1+6)
Lou & Yao (1989) [199] (6/11,11/20] |  22/(1006 — 45)
Lou & Yao (1992) [200] (6/11,1] 1.031
Baker, Harman, & Pintz (1997) [[7] (0.55,1) 1.0001
(0.52,0.521] 2.874
(0.521,0.522] 2.700
R. Li (2025) [183] (0.522,0.523] 2.583
(0.523,0.524] 2.536
(0.524, 0.525] 2.437
(0.525,0.535] 2.347
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Reference

Table 19.3: Historical bounds on L

Upper bound on L

Linnik (1994) [1190]

< 00
Pan (1957) [22] 10000
Pan (1958) [22] 5448
Chen (1965) [34] T
Jutila (1970) [158] 630
Jutila (1970) [157] 550
Chen (1977) [33] 168
Jutila (1977) [159] 80
Graham (1977) [84] 36
Graham (1981) [36] 20
Chen (1979) [34] 17
Wang (1986) [291] 16
Chen & Liu (1989) [37)] 13.5
Chen & Liu (1990) [B] 115
Wang (1991) [297] 8
Heath-Brown (1992) [112] 5.5
|

Meng (2000) [211

4.5 (if ¢ prime)

Meng (2001, 2010) [212] [213]

5 (if ¢ has bounded cubic part)
Xylouris (2009) [B04] 5.2
Xylouris (2011) [B05] 5.18
Xylouris (2011, 2018) [30d] [307] 5
Montgomery (1971) [218]

= 2.5 (if ¢ is a power of a fixed prime)

Forti & Viola (1973) [[70]

20 \F = 2.4633 ... (if ¢ is a power of a fixed prime)

Jutila (1972) [162]

3OHVIT) — 9 4606 ..

Huxley (1975) [125]

. (if g is a power of a fixed prime)
1—52 = 2.4 (if ¢ is a power of a fixed prime)

B. Chen (2025) [B1]

% = 2.3333... (if ¢ is a power of a fixed prime)

Banks & Shparlinski (2019) [L0]

70 1735 = 2.1115 ... (if ¢ is a power of a fixed prime)

R. Li (2025) [183]

70 1755 = 2.1044 ... (if ¢ is a power of a fixed prime)

Heath-Brown (1990) [111]

3 + ¢ (under the existence and some conditions of the exceptional characte:

2 + ¢ (under the existence and some conditions of the exceptional character

Friedlander & Iwaniec (2003) [[76]

15197 = 1.983... (under the existence and some conditions of the exceptional
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Chapter 20

Waring and Goldbach type
problems, and Schnirelman’s
constant

20.1 Waring Problem
Definition 20.1. Let A C N be such that there exists k for which

A+A+--+A=N (20.1)

k times

Then A is called an additive basis of N. The minimum k for which () holds is the order
of A.

Definition 20.2. For any k > 1 let A, = {n* : n € NU{0}}. Let g(k) be the order of
A, when it exists. That is, g(k) is the minimum number of k powers needed to write any
natural number as the sum of (not necessarily unique) g(k) many k powers including 0.

Definition 20.3. For any k > 1, let G(k) be the minimum m such that there exists N > 1
for which
—_—

m times

where Jy = {1,...,N}. That is, G(k) is the minimum number of k powers such that every
sufficiently large integer may be written as the sum of (not necessarily unique) G(k) many
k powers including 0.

20.1.1 Known values of g(k)

Theorem 20.4 (Lagrange’s Four Square Theorem). We have ¢(2) = 4; that is every natural
number may be written as the sum of 4 perfect squares.

Theorem 20.5 (Linnik [188]). g(k) exists for all k > 1.

Linnik’s proof relied on the notion of Schnirelmann density, which will be discussed later.
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In fact, the exact value of g(k) is known for almost all k£ > 1. We have
k k

g(k)=2’“+[;’]k—2 if 2’“{%} +E} < 9k

and, otherwise,

where £ = 2 if

k k

3 () + B =

and 3 otherwise. Note that [z] is the greatest integer less than z and {z} = = — [z]. It has
been shown that there at at most finitely many exceptions [202]. To complete the proof, it

Su&ices tO ShOW
2 4

It has been shown for all k& > 5000, {(3/2)*} < 1 — a* where a = 2799 ~ 0.53, and for
sufficiently large k, {(3/2)*} <1 —(0.5769...)7% [61] [16].

k—1

20.1.2 Known values of G(k)

Only 2 values of G(k) are known definitively: G(2) = 4 as shown by Lagrange and G(4) = 16
as shown by Davenport [53].

Definition 20.6. Let G (k) be the smallest number m such that

m times

where d(A) represents the natural density of A:

_ . #(ANJY)
d(4) = Jim =5
G, (k) has been determined for 5 values:
Davenport [p4] G,(3)=4
Hardy and Littlewood [98] | G;(4) =15
Vaughan [284] G,(8) =32
Wooley [299] G,(16) =64
Wooley [299] G,(32) =128

Table 20.1: Known values of G, (k)
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89 (10|11 |12 |13 |14 | 15| 16 17 | 18 19 |20
Best Bound | 31 | 39 | 47 | 55 | 63 | 72 | 81 | 89 | 97 | 105 | 113 | 121 | 129 | 137
Conjectured | 8 [ 32 | 13 |12 |12 |16 | 14 | 15 | 16 | 64 18 27 20 25

Table 20.2: Conjectured and best upper bounds for G(k) for 7 < k < 20

20.1.3 General bounds for G(k)
Theorem 20.7 (Brudern and Wooley 2022 [26]). For all k > 1,
G(k) < k(logk + C;) + C,

Furthermore,
G(k) < [k(log k + 4.20032)]

This bound is the sharpest to date and was a significant improvement over the previous
bound by Wooley [299]: for sufficiently large k,

G(k) < k(logk + loglog k + 2 4+ O(loglog k/ log k))

20.1.4 Bounds for special cases for G(k)
k=3
Lemma 20.8. G(3) >4

Proof. Note cubes are congruent 1, —1,0 modulo 9. Thus, numbers congruent 4,5 modulo
9 may not be expressed as the sum of 3 cubes. O

Theorem 20.9 (Linnik [189]). G(3) <7

The exact value of G(3) is conjectured to be 4, but has not been proven.

Conjectured G(k) for small k

summarizes the best upper bounds for G(k) and the conjectured values of G(k)
for 7 < k < 20.

The upper bounds for k& < 13 were deduced from Wooley [300] and the bounds for 14 < k <
20 are from Theorem .

20.1.5 Generalized Waring problem and connections to the Gener-
alized Riemann Hypothesis

Waring’s Problem concerns the solvability of equations of the form
ook 42k =m (20.2)

for m,n.k € N, and Theorem states that for any fixed k£ > 1, there exists n € N such
that () is solvable for all m € N. A more generalized problem arises when & is not fixed.
Given any k = (kq, ..., k,) € N™, the generalized Waring problem concerns the solvability
of the equations of the form

B b o =m (20.3)

The following theorem due to Erich Kamke provides a partial result.
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Theorem 20.10 (Kamke). Let f(x) be an integer valued polynomial such that there does
not exist d € N such that d|f(n) for alln € N. Then for sufficiently large k,

f(@y) + flag) + -+ flag) =
is solvable for all large enough m.

Assuming the Generalized Riemann Hypothesis (GRH), The solvability of () can be
guaranteed for specific k. For example:

Theorem 20.11 (Wooley). Assuming GRH, then
24zitas+ad+ad+al=n (20.4)

is solvable for sufficiently highn. Furthermore, ) is not solvable for at most O((log N)3¥€)
integers between 1 and N.

20.2 Goldbach-Style Problems

Goldbach’s original conjecture stated that every positive integer could be written as the sum
of 3 primes. In light of Waring’s problem, a natural extension of Goldbach’s problem asks
when

Prdph 4 tpk =n (20.5)
is solvable for all n € N for p;,...p, prime and k¥ € N. It is conjectured when m > k+1
and for sufficiently large n satisfying local conditions, which will be made more explicit for
specific values of k, () is solvable.

20.2.1 When k=2

It is conjectured that
n=pi+p3+p3+pi (20.6)

is solvable whenever n = 4 (mod 24). The following theorem gives the closest solution.

Theorem 20.12 (Liu._Wooley, Yu [195]). Let E(N) be the number of integers n =
4 (mod 24) for which .) is not solvable. For any ¢ > 0,

E(N) < O(N#&+e)

20.2.2 When k=4,5

Following Kawada and Wooley, we define the following quantities to give the relevant local
conditions for the cases k = 4 and k = 5. Let § = 0(p, k) be the greatest power of p dividing
k; that is p?|k but p?+! } k. Then, let

_J0+2 whenp=2,0>0
v(k,p) = {9 +1 otherwise }

and

Hp“/ )

(p—1)|k

In particular, K(4) = 240 and K (5) =
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Definition 20.13. For k € N, let H(k) be the minimum integer s such that
PY+p5 o+ pi=n
is solvable for sufficiently large n whenever n = s (mod K (k)).
Finding the value of H (k) is the main focus of the modern Waring-Goldbach problem.
Theorem 20.14 (Wooley, Kawada 2001 [164]). We have
. H(4)<14

e For any positive A,
pi4ps++pr=n

has at most O(N (log N)~4) exceptions for n =7 (mod 240) and 1 <n < N.
. H5)<21

o For any positive A,
pi+ps+ P =n

has at most O(N (log N)~4) exceptions for n odd and 1 <n < N.
In 2014, Zhao improved the bound for & = 4 and showed H(4) < 13 [316]. He also showed
H(6) < 32 in the same paper.
20.2.3 When k> 7
Theorem 20.15 (Kumchev, Wooley 2016 [174]). For large values of k,

H(k) < (4k—2)logk — (2log2 — 1)k — 3 (20.7)
Table 20.3 summarizes the best bounds on H(k) for 7 < k < 20.

7 8|19 (1011 12 | 13 | 14 | 15 | 16 |17 |18 |19 20
45 | 57 | 69 | 81 | 93 | 107 | 121 | 134 | 149 | 163 | 177 | 193 | 207 | 223

Table 20.3: Upper bounds for H (k)

20.3 Schnirelmann Density

20.3.1 Existence of Additive Basis
Definition 20.16. Define the Schnirelmann density of A C N as

oA = inf TADT)

n>1 n

Definition 20.17. Define the lower asymptotic density of A C N as

0A = lim infM

n—o0 n
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Theorem 20.18 (Schnirelmann [261]). Suppose oA > 0. Then A is an additive basis for
N.

With Theorem , it is possible to prove many sets form additive bases. For example:

Theorem 20.19 (Schnirelmann [261]). Let P denote the set of primes. Then, 6(P + P) >
0. Therefore, P is an additive basis for N. The order of P is denoted C and called
Schnirelmann’s constant.

Schnirelmann originally bounded C' < 80000 and Helfgott showed in 2013 that C' < 4 [117].
Goldbach’s conjecture claims that C' = 3.

Theorem 20.20 (Romanoff [242]). Let &, = {p+a* :p € P,k € N}. Then, S, > 0 for
all a € N. Thus, each integer n may be written as the sum of at most C, primes and C|,
powers of a, where C,, is a constant depending only on a.

20.3.2 Essential Components

Definition 20.21. B C N is called an essential component if o(A + B) > o(A) for any
ACN with0 < oA < 1.

Linnik showed in 1933 gave the first example of an essential component that is not a basis
[187]. Erdos showed in 1936 that every basis is also an essential component [64]. The
minimum possible size of an essential component remained an open problem until Ruzsa
showed in 1984[256] that for any € > 0, there exists an essential component H such that

#(HNJ,) < (logn)tte
but there does not exist an essential component such that

#(HNJ,) < (logn)t+ed)
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Chapter 21

The Gauss circle problem and
its generalizations

This chapter is not yet integrated into the main blueprint.
For any fixed integer £ > 2 and unbounded R, consider the problem of estimating the
number of integer lattice points contained in By (R), a k-dimensional ball of radius R:

Su(R) = #2% 1 By(R) = #{z € 2" : |s] < R}.
Equivalently, S, (R) may be written as the partial sum

Sp(R) = Z p(n)

n<R?2

where 7, (n) counts the number of integer solutions to the equation z% + - + x% = n.
By considering the volume of a k-dimensional ball of radius R, one has the asymptotic

Y i

Si(R) ~ VollBy(R)) = o B

The generalized Gauss circle problem concerns estimating the error term in this approxima-
tion.

Definition 21.1. For fized integer k > 2, define HkGauss as the least (fixed) exponent for
which 7
S, (R) — Vol(By(R)) < R +o(1),

[Figure 21.1] and [Figure 21.1 plots the magnitude of this error term for k = 2 and k£ = 3
respectively (for 0 < R < 1000).
It is conjectured that

Conjecture 21.2. One has

9Gauss — 1/27 k= 27
k k—2, k>3.
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I52(R) -~ mR|

Figure 21.1: |S,(R) — Vol(Bj(R))| for k=2 and 0 < R < 1000

o 200 400 600 800 1000

Figure 21.2: |S,(R) — Vol(B,(R))| for k=3 and 0 < R < 1000
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21.1 Known upper and lower bounds

77 21.2 is known to hold for k£ > 4, i.e.
Theorem 21.3. For integer k > 4, one has 9,?“55 =k—2.

The remaining open cases are k = 2, 3. For such cases the following lower-bounds on ngauss
are known:

Theorem 21.4. One has F)ga“ss >1/2 and 9:?&“55 > 1.

In light of 77 21.2 and , in the rest of this section we shall focus on upper

bounds on 0,?3“55 for k = 2,3.
The case k = 2 is known classically as Gauss’s circle problem. The current sharpest known
bound on #51ss is

Theorem 21.5 (Li-Yang (2023) [186]). One has 652" < 2, where o = 0.31448 ... is the
solution to the equation

8 (v/2(1 + 14a) — 5v/—1 + 8a)? N 51
25 200 200

on the interval [0.3,0.35].
Remark 21.6. The value of a is the same as that appearing in [Theorem 16.7. Historically,

methods used to make progress in the ay exponent in the Dirichlet divisor problem have led to
corresponding improvements in Ggauss (and vice versa). This may be unsurprising given that
both problems reduce to counting the number of lattice points contained in a curved region
with a smooth boundary (with the region being the hyperbola {(m,n) € [0,00)% : mn < z} in
the case of the Dirichlet divisor problem).

The historical progression of upper bounds on 92Gauss is recorded in [Table 21.1] and

fre 21..

(67

Table 21.1: Historical upper bounds on 953“55

Reference Bound on #§#uss
Gauss (1834) 1
Sierpinski (1906) [266] 2/3 = 0.6666 ...

van der Corput (1923) [282] 2/3 — ¢ for some ¢ > 0
Littlewood Walfisz (1924) [194] | 37/56 = 0.6607 ...

Walfisz (1927) [289] 163/247 = 0.6599 ...
Nieland (1928) [225] 27/41 = 0.6585 ...
Titchmarsh (1935) [274] 15/23 = 0.6521 ...
Hua (1942) [121] 13/20 = 0.65
Iwaniec-Mozzochi (1988) [[L50] 7/11 = 0.6363 ...
Huxley (1993) [127] 46/73 = 0.6301 ...
Huxley (2003) [130] 131/208 = 0.6298 ..
Li-Yang (2023) [186] 200x = 0.6289 ...
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Upper Bound on 855
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Figure 21.3: Historical upper bounds on §5auss
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