PREPRINT

14:27, 25 Apr 2025

Dynamic Region Ownership for Concurrency Safety

FRIDTJOF PEER STOLDT, Uppsala University, Sweden
BRANDT BUCHER, Microsoft, USA

SYLVAN CLEBSCH, Microsoft, UK

MATTHEW A. JOHNSON, Microsoft, UK
MATTHEW J. PARKINSON, Microsoft, UK

GUIDO VAN ROSSUM, Microsoft, USA

ERIC SNOW, Microsoft, USA

TOBIAS WRIGSTAD, Uppsala University, Sweden

The ways in which the components of a program interact with each other in a concurrent setting can be
considerably more complex than in a sequential setting. The core problem is unrestricted shared mutable state.
An alternative to unrestricted shared mutable state is to restrict the sharing using Ownership. Ownership
can turn what would have been a race into a deterministic failure that can be explained to the programmer.
However, Ownership has predominantly taken place in statically typed languages.

In this paper, we explore retrofitting an existing dynamically typed programming language with an owner-
ship model based on regions. Our core aim is to provide safe concurrency, that is, the ownership model should
provide deterministic dynamic failures of ownership that can be explained to the programmer. We present
a dynamic model of ownership that provides ownership of groups objects called regions. We provide dynamic
enforcement of our region discipline, which we have implemented in a simple interpreter that provides a Python-
like syntax and semantics, and report on our first steps into integrating it into an existing language, Python.

CCS Concepts: « Software and its engineering — General programming languages; - Computing
methodologies — Concurrent programming languages.

Additional Key Words and Phrases: Ownership, Concurrency Safety, Dynamic languages, Python

ACM Reference Format:

Fridtjof Peer Stoldt, Brandt Bucher, Sylvan Clebsch, Matthew A. Johnson, Matthew J. Parkinson, Guido van
Rossum, Eric Snow, and Tobias Wrigstad. 2025. Dynamic Region Ownership for Concurrency Safety. Proc.
ACM Program. Lang. 9, PLDI, Article 210 (June 2025), 26 pages. https://doi.org/10.1145/3729313

1 Introduction

When a sequential program or programming language graduates to concurrent execution, the
process can be painful [52, 59]. The ways in which the components of a program interact with
each other in a concurrent setting can be considerably more complex than in a sequential setting.
Consider a simple example of the append method on a List in Python. The Python representation
has an object that contains a length, a capacity, and a pointer to a block of memory that contains

Authors’ Contact Information: Fridtjof Peer Stoldt, Information Technology, Uppsala University, Uppsala, Sweden, fridtjof.
stoldt@it.uu.se; Brandt Bucher, Microsoft, Redmond, WA, USA, brandtbucher@microsoft.com; Sylvan Clebsch, Azure
Research, Microsoft, Cambridge, UK, sylvan.clebsch@microsoft.com; Matthew A. Johnson, Azure Research, Microsoft,
Cambridge, UK, mattpark@microsoft.com; Matthew J. Parkinson, Azure Research, Microsoft, Cambridge, UK, mattpark@
microsoft.com; Guido van Rossum, Microsoft, Redmond, WA, USA, gvanrossum@microsoft.com; Eric Snow, Microsoft,
Redmond, WA, USA, eric.snow@microsoft.com; Tobias Wrigstad, Information Technology, Uppsala University, Uppsala,
Sweden, tobias.wrigstad@it.uu.se.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/6-ART210

https://doi.org/10.1145/3729313

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

HTTPS://ORCID.ORG/0009-0006-5356-280X
HTTPS://ORCID.ORG/0009-0009-5083-3311
HTTPS://ORCID.ORG/0009-0004-4049-134X
HTTPS://ORCID.ORG/TODO
HTTPS://ORCID.ORG/0009-0004-3937-1260
HTTPS://ORCID.ORG/0009-0001-4225-4995
HTTPS://ORCID.ORG/0009-0001-8085-1088
HTTPS://ORCID.ORG/0000-0003-4918-6582
https://doi.org/10.1145/3729313
https://orcid.org/0009-0006-5356-280X
https://orcid.org/0009-0009-5083-3311
https://orcid.org/0009-0004-4049-134X
https://orcid.org/TODO
https://orcid.org/0009-0004-3937-1260
https://orcid.org/0009-0001-4225-4995
https://orcid.org/0009-0001-8085-1088
https://orcid.org/0000-0003-4918-6582
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729313
Tobias Wrigstad

210:2 F. Stoldt, B. Bucher, S. Clebsch, M. Johnson, M. Parkinson, G. van Rossum, E. Snow, and T. Wrigstad

the elements. The append method increases the length of the list by one, and if it does not exceed
the current capacity of the list, it writes the new element into the block of memory. If it exceeds
the capacity, it allocates a new block of memory, copies the elements from the old block to the new
block, and writes the new element into the new block. If we naively use this method in a concurrent
setting, then racing calls to append can result in data loss, and even worse, data corruption.

To enable programs to run in a concurrent context, synchronisation must be added to the program.
Failure to correctly add synchronisation typically manifests as non-deterministic bugs that are
difficult to reproduce, diagnose, and fix. This is not a great programming experience and makes
the migration from sequential to concurrent programming a difficult one. The core problem is
unrestricted shared mutable state.

An alternative to unrestricted shared mutable state is to restrict the sharing. This restriction
can be a shared-nothing approach such as JavaScript’s WebWorkers or Erlang’s Actors, or more
elaborate approaches often described as Ownership. Many forms of ownership have been proposed
over the years [2, 6, 16, 18, 26, 48] with multiple versions being developed to provide concurrency
safety [11, 17, 26, 51, 56]. Ownership for concurrency safety can turn what would have been a
data race into a deterministic failure that can be explained to the programmer. However, with few
exceptions [23, 32, 50], Ownership has predominantly been explored in statically typed languages.

But what happens if you are in a dynamically typed language? Can we enforce ownership
dynamically to provide safe concurrency? How do we surface ownership without a static type
system to carry the ownership information? Can we add ownership to an existing language like
Python to enable a seamless migration from sequential to concurrent execution of programs?

In this paper, we explore retrofitting an existing dynamically typed programming language, like
Python, with a region-based ownership model building on Arvidsson et al.’s Reggio [4]. Our core
aim is to provide safe concurrency [11, 17, 26, 56], that is, the ownership model should provide
deterministic dynamic failures of ownership that can be explained to the programmer, rather than
allowing racing accesses to potentially corrupt sequential invariants of data structures.

Contributions. We present a dynamic model of ownership called Lungfish (§ 2) that provides
ownership of groups of objects called regions. We use a novel notion of a local region that captures
existing sequential code without modification, and provides a dynamic notion of borrowed references
that allow objects in the local region to refer into other regions. This approach is integrated with
deeply immutable objects and cowns, concurrent owners [13], to allow for safe sharing of objects
between regions, while protecting the programmer from data races.

We provide dynamic enforcement of our region discipline (§3). Our implementation uses a
write-barrier to enforce that the region discipline is obeyed as the object graph is updated. For
legacy sequential code, this introduces a couple of untaken conditional branches for each write to a
field. For code using regions it prevents connecting regions in ways that would potentially lead to
data races. To rapidly prototype and explore our ownership model, we have developed a simple
interpreter that provides a Python-like syntax and semantics (§4). The prototype outputs graphical
traces of the changes to, and enforcement of, the ownership model.

We report on our first steps of integrating Lungfish into Python. This has led to several inter-
esting challenges (§5). As this paper shows, many of the challenges stem from the pragmatics of
programming language design and implementation, and we expect our insights to be as useful as
they are surprising. To evaluate our design, we compare it to our goals for Lungfish (§7). As our
work is ongoing towards a complete Python prototype, not all our goals can yet be empirically
evaluated. However, we provide qualitative arguments for why we believe they will be met.

Why Python? Python was designed as a single-threaded language with a global interpreter lock
(GIL) that ensures that only one thread at a time executes Python bytecode in the interpreter [61].

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

Dynamic Region Ownership for Concurrency Safety 210:3

Concurrency was introduced through threading, allowing developers to write concurrent code,
but without true parallelism thanks to the GIL. To support true parallelism, Python recently added
support for “subinterpreters”—multiple threads each running its own isolated interpreter with its
own GIL [54], inside a single Python process. Python’s multiple subinterpreters is an example
of share nothing. Communication between subinterpreters is necessarily by copy as different
subinterpreters run their own memory managers and can only manage objects they themselves
created. Shared-nothing approaches permits sequential reasoning inside each subinterpreter (in
the case of Python) with clearly demarcated interaction points with other threads.

Recently, development has begun [65] on “free-threaded Python” which removes the GIL in a sin-
gle interpreter [28]. With the GIL removed, free-threaded Python trades sequential reasoning away
for increased performance enabled by permitting threads to operate directly on shared state. Where
the shared state is mutable, data races are possible. Work on free-threaded Python is concerned with
ensuring that such data-races cannot compromise the integrity of the runtime, but does not prevent
data-races in Python code. When work on free-threaded Python is done, Python will have joined
the most common approach to concurrency and parallelism: threads with shared mutable state.

We are at a point where Python graduates from sequential to concurrent execution. We believe
that using dynamic ownership can reduce the challenges for the programmer in this process.

2 Growing an Ownership Model for Safe Concurrency

Let us set the stage by enumerating our design goals, which we use to both motivate and evaluate
our design choices. Only the first five goals are in the scope of this paper, but without stating the
remaining, some design decisions would be inexplicable. The goal of this work is to retrofit Python,
an existing, “morally sequential” dynamic programming language, with concurrency in a way that
is (G1) safe from data races. In addition to data-race safety we want backwards compatibility for
existing programs: (G2) existing sequential Python programs should work without modification,
and (G3) Python libraries which are morally safe in a multithreaded setting should be usable when
multithreading has been added with little or no effort by the library maintainers. Our design should
(G4) embrace the value set of dynamic languages (e.g., delay errors until they occur, reject as few
programs as possible), and (G5) introduce a low number of new syntactic elements to the Python
language. We also strive to (G6) deliver performance — in particular, (G6a) sequential programs
should not run considerably slower, although we (G6b) are willing to take a small performance hit
for multithreaded programs, speculating that it can be offset against performance increases due
to parallelism. It also (G6c) should not disable or counteract existing performance optimisations.
Finally, (G7), our design should not add considerable complexity to Python’s runtime, to ease the
burden of maintaining the language using a small and largely unpaid volunteer work-force.

These goals have been developed while iterating our design over many months with a group of
core committers to Python (some of which eventually ended up co-authors of this paper; c.f., §9).
In the coming sections, we evolve our design to meet (most of) them.

2.1 A Notion of Safe Sharing and Ownership Transfer

As an initial model, the single thread of our program has exclusive access to all data, i.e., it owns
the data. Our first goal is to organise that data to permit it to be shared safely with other threads,
or alternatively to see which data cannot safely be shared. By safe sharing we mean absence of
data races and uncoordinated access.

First, we distinguish between immutable and mutable data. The former is always safe to operate
on without exclusive access (but c.f. §5.3.5), but the latter requires some form of synchronisation to
ensure “effective exclusive access”, or ownership transfer.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

210:4

For ownership transfer to be safe it must not give rise to sharing
of mutable data across threads (which would invalidate exclusive
access). Transferring an object a from one thread to another re-
quires ensuring that the transitive closure of mutable state under a
that becomes reachable to the receiver is no longer reachable on the
sender side (b in Fig. 1). Synchronisation has a similar requirement:
sharing a (without transfer) requires that accesses to the transitive
closure of mutable state under a is properly guarded, both by the
sender and the receiver. Finally, for an immutable object to be safe
to share, when object a is made immutable (we call this freezing),
the transitive closure of mutable state under a must be made im-
mutable too. Fig. 1 shows the subtleties involved when transfering,
sharing and freezing data structures with subobjects.

From the above follows that a programmer must be able to reason
about the transitive closure of mutable state from objects in their
concurrent programs, regardless of if they want to share them as im-
mutable or mutable objects, or transfer them. If all object references
are unique, then a automatically dominates all state reachable from
a, but if more flexible reference structures are permitted, either as
part of a data structure (e.g., a doubly-linked list) or as part of an
operation (e.g., an iterator over a collection), reasoning can become
arbitrarily complicated.

2.2 Region-Based Ownership

To decouple ownership from the unit of concurrency, we use regions
as isolated groups of mutable objects. At any point in time, a thread

F. Stoldt, B. Bucher, S. Clebsch, M. Johnson, M. Parkinson, G. van Rossum, E. Snow, and T. Wrigstad

Starting point: Ty and T»
are threads and green areas
the objects they “own”.

T
X
Y—

Below shows result of Ty
sharing state with T.

T

transfer(x,T2)

share(x, T2)

T T2
S - X

Y =03

freeze(x); share(x,T2)
Ty Tz
P
F 3 z
=0k
<— Safe (to access) <-- Unsafe
<— Threads know sync is needed

Fig. 1. Dangers when sharing
data structures across threads.

has exclusive access to the regions it can reach. Each thread has an implicit local region associated
with it. It contains the thread’s stack frames as well as new heap-allocated objects, which can move

to other regions. New regions can be created dynamically.

Local regions give an ownership semantics to all existing Python
programs: all its data is owned by the thread that created it (G2).
To satisfy our performance goal (G6a), assigning between locally-
owned objects must be cheap. We revisit this in §7.

With the exception of the local region, every region contains
a bridge object [32] that reifies the region and acts as a handle
to it along with its contained objects. Bridge objects are exter-
nally unique [15], i.e., at most one of its incoming references may
originate from outside the region itself, or the local region. Only
externally unique references to bridge objects may cross region
boundaries (Fig. 2). This is the case for reference ¢ — R’ making
R the parent of R’. Because x is in the local region, R is free. The
region topology forms a forest of region trees.

2.2.1

Locar f'\i
N T ’

T Break % Breaks
isolation uniqueness
<-- Bad immutable O
<— Ok contained .

bridge .

Fig. 2. Region R with objects b,
¢, bridge R, and nested region R’.

<€----Ok (borrowed)

Assigning Ownership and Borrowing. In a statically typed language, an ownership system

can be layered on-top of the program as type annotations. In Reggio [4],

iso Foo y = new Foo()

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

Dynamic Region Ownership for Concurrency Safety 210:5

creates a new Foo object which automatically becomes a bridge object for a new region by virtue
of the iso annotation on the type of y. If iso is replaced by mut, the object created would instead
become a “contained object” inside the equivalent of the local region.!

In an untyped language, we do not have the ability to layer such metadata on-top of code. Instead,
ownership is determined dynamically as a side-effect of a field update, and region creation is unified
with bridge object creation. This allows us to use Python’s object creation syntax for region creation,
in accordance with (G5). Thus, our equivalent of the Reggio code is (on three separate lines)

y = Foo() x = Region() x.f =y

This creates a new Foo object y in the local region, a bridge object x for a fresh region R, and finally
moves y into R. (See Fig. 3; R, drawn on the region border, is the bridge object and b is Foo.)

We treat ownership in the implicitly created local region differ- Line
ently from explicitly created regions. The local region’s ownership
is ephemeral, meaning that as soon as an object in the local region 9—>O
. . . AN A
is referenced from another region, we transfer the ownership of ? i

the object to the other region. (This is what happens to b on line 3
in Fig. 3.) Transferring an object from the local region will transfer
all other objects in the local region that the first object reaches. If a
propagating transfer encounters a reference to an object in a third
region, the transfer terminates successfully if the referenced object ?/p\)?_)9

is a bridge object. (This is what happens to b— R’ on line 3 in Fig. 3, A

where R’ becomes nested inside R.) If the referent is not a bridge

object, the entire transfer fails (and an exception is raised), as the Xy Z W Locat
object cannot be moved and the reference breaks region isolation.

Just as ephemeral ownership gives up ownership of objects on Fig 3. Interaction between local
incoming references, it permits outgoing references without claim- region and explicit region R.
ing ownership. Any residual references from the local region to
an object that is moved into another region becomes a borrowed reference. (The y — b on line 3
of Fig. 3.) Borrowed references are only permitted from the local region (as no other region has
ephemeral ownership). Just like inference, this design can lead to unintended object ownership,
but unlike inference, this will be discovered at run-time (if it conflicts with the rest of the program).

X y__>0 z w Locar

Line

2.2.2 Regions Facilitate Ownership and Transfer. When there are no references to the region (or
nested regions) from outside, except to its bridge object, and no references from inside the region
(or nested regions) to outside, the region is fully encapsulated — we say that it is closed. This is
the case for both regions in Fig. 2. As a closed region is dominated by the single reference to its
bridge object, the holder of such a reference has exclusive access to — owns — the region and its
contents. Safe transfer of a closed region to another thread only requires the proper move of the
single reference to the bridge object. Thus, it suffices to reason about a single reference to guarantee
absence of residual aliasing for the entire transitive closure of state under it. If the objects a and b in
the transfer example in Fig. 1 were created as R and b in Fig. 3, transfer could proceed in two ways:
detect that the region is not closed and fail, or invalidate the borrowed reference in x and succeed.

2.2.3 Regions Facilitate Freezing. Regions help reasoning about the propagation of freezing: freez-
ing a closed region through a path p is guaranteed to not affect other reachable variables or fields.
For example in freeze(x); y.f = 42, if x is closed, then y cannot refer to x or any other object in
the same region, meaning freeze(x) cannot cause y.f = 42 to fail because the object y refers to

1Reggio does not have a local region, but only one mutable region at a time so mut Foo means the currently mutable region.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

210:6 F. Stoldt, B. Bucher, S. Clebsch, M. Johnson, M. Parkinson, G. van Rossum, E. Snow, and T. Wrigstad

has been made immutable. Once a region is frozen, the region itself is no longer needed because
immutable objects can be safely shared across threads without any need for exclusive access.

2.2.4 Regions Facilitate Coordinating Concurrent Access to Shared Data. So far, we have shown
that regions facilitate concurrent programming with objects which are mutable but not shared or
shared but not mutable. To simultaneously support mutability and sharing we must add a dynamic
component to govern who has exclusive ownership at any given point. To this end we add a new
object kind: the cown, short for “concurrent owner” due to Cheeseman et al. [13].

Cowns are cells that hold a reference to a bridge object (or another cown or immutable object).
Cowns offer mutability without topological restrictions. Instead, they cannot be accessed immedi-
ately: a thread that wants to access a cown must first acquire it. An access to a cown by a thread that
has not acquired the cown throws an exception. We leave the semantics of acquisition outside of
this paper, but it may be a lock-like synchronous operation or an message-passing like asynchronous
operation, depending on the desired concurrency model. In short, exclusive access is mediated by
the run-time. A thread that has acquired a cown may transfer ownership of a region stored in the
cown to itself along with its objects and nested regions. Before the cown is released, the thread may
transfer the region (or another value) back into the cown. The local region cannot be transferred
because it does not have a bridge object that can be stored in a cown. Cowns are released when
created unless they contain any object that is borrowed. In that case, the cown is pending release
and will become released when the final borrow is removed. An acquired cown cannot be released
manually, c.f,, §2.3.1. When a cown is released, its contained region must be closed.

By nesting a region, cowns enable ownership-based structural lock correlation, which ensures
that the appropriate locks are held at the time of access [6, 39].

2.3 Summary and Overview of the “Lungfish” Ownership Model

Each thread implicitly allocates stack frames and ob-
jects inside its local region. To safely share (or transfer)

Table 1. Conditions for a reference from a
source object S to a target T (denoted S — T)

objects with (to) other threads, explicit regions must
be created and objects from the local region moved
into these regions. References across regions must be
externally unique references to bridge objects or bor-
rowed references (i.e., originate in the local region).
References into the local region cause objects to be
transferred to the source region.

We distinguish three kinds of owned objects: con-
tained objects which are mutable and encapsulated in-
side a region; bridge objects which are like contained
objects but additionally permit a single incoming ref-
erence from outside its encapsulating region; and local
objects whose ownership can be transferred implicitly
by an incoming pointer, and hold borrowed references.

As ownership means exclusive access, owned ob-
jects can never be reachable by more than a single
thread at any given point. They are thus safe to access
immediately without any need for synchronising with

in Lungfish. v Permitted (sometimes with addi-
tional constraint). X Not permitted. = Triggers
transfer of ownership to satisfy E. Additional
constraints: E if S and T belong to the same
region; U if S’s reference to T is the only refer-
ence to T originating from outside of T; B the
— reference is borrowed.

S—>T T

o &

> &'} o @\ &

S \0& '\@((\ *oi\b co(\ coqx
local N A L 4
immutable X v X X e
bridge - v /RUE
contained - v VRV /E
cown X v VAT { e

anyone. In other words, they permit sequential reasoning. Additionally, we distinguish two kinds
of un-owned objects: immutable objects and cowns. As they are not owned, they can be freely
shared in the system. As immutable objects are guaranteed to not change, they enjoy the same

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

Dynamic Region Ownership for Concurrency Safety 210:7

immediate access and sequential reasoning as owned objects. Cowns however must be acquired
before being accessed, which guarantees exclusive access dynamically.
Table 1 shows all the reference constraints of our system, which we call Lungfish?.
In addition to the above, Lungfish defines a number of functions operating on entire regions (via
bridge objects b), paths (p == x | p.f), cowns (c), immutable objects (i), or values (v == b | ¢ | i):
— is_closed(b) Returns true if b is closed, else false.
- freeze(b) Makes the contents of a region (tree) deeply immutable and removes the region(s).
— merge (b1, b2) Merges free region by into region b, and returns b; as a contained object. If the
second argument is omitted, by is merged into the local region, essentially resetting ownership.
- get(c) and set(c,v) read and update the value of an acquired cown. The get(c) returns the value
and set(c,0) installs the new value and returns the previous value.
— The keyword move p Moves the contents of a variable or field. This is the equivalent of a destructive
read [7, 32] or a swap [30] with None (in the case of Python). A new keyword is motivated as no
other Python operators have a side-effect of nullifying a variable or field (G5).

2.3.1 Concurrency Model. Lungfish can be used with different , L
concurrency models such as threads and locks, or behaviour- b . zonnoeacwss fo x's orys regions
oriented concurrency [13]. For concreteness, we give all examples yith cs(x, y): #CSis a cown set
following the style of free-threaded Python, i.e., threads and #x and y are now acquired
locks. What sets this work apart from free-threaded Python’s ... #access tox's and y's regions
approach is ownership-based structural lock correlation [39]: itis P = 8et(¥) ,

. #ornewly created regions
not possible to access any mutable state unless you have exclusive "~ *
read and write access to that state. A thread is created in Python . 4,4y are now released
by instantiating a Thread object and passing it a callable object
that implements a run() method and arguments to that function.
These objects will become accessible by both the creating thread
and the created thread. For this to be safe we require these objects to be transferred, cowns, or
immutable, following the three scenarios in Fig. 1. We can spawn a new thread starting in my_method
with a bridge object x, a cown y, and an immutable object z like so:

Fig. 4. Acquiring and releasing two
cowns using a with statement.

t = threading.Thread(target=my_method, kwargs={"p1"=move x, "p2"=y, "p3"=z})
This creates a new thread ¢, moves the bridge object x from
the local thread into ¢, and shares the cown y and the immutable
object z with ¢. The move invalidates the local variable x. When
starting the thread by t.start() an exception is thrown if any
of the constructor arguments are not bridge objects of closed
regions, cowns, or immutable objects. Without loss of generality,
t.join() returns nothing as a cown can be used to obtain results
from threads (c.f,, Fig. 13). .
For acquiring and releasing cowns, we use a block-scoped con- x b y
struction that acquires zero or more cowns before the start of
the block and automatically releases the cowns at the end. In a
synchronous concurrency model, this can be achieved using a Fig. 5. Exclusive access inside the
context manager [62] that gets called on entry and exit to awith WithinFig.4. (Only drawing bridge
statement (the CS class in Fig. 4).3 Fig. 5 shows what is accessible ©Pjects to reduce clutter).

CownN

Cown

LocaL z

with (CS(x, y)):

2 As lungfish both have lungs and gills (c.f, §7.1.2), and resemble snakes (at least to a computer scientist).
3Note that with blocks do not create new scopes in Python. In examples, we assume variables used only inside the with are
removed at the end of the block. This can be achieved with reflection or a combination of decorators and nested functions.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

210:8 F. Stoldt, B. Bucher, S. Clebsch, M. Johnson, M. Parkinson, G. van Rossum, E. Snow, and T. Wrigstad

inside the with CS(x, y) block, notably not z. A dark green cown is acquired and a light green
region is exclusively accessible to the acquiring thread. Regions nested in unacquired cowns are
dark red. If the b = None was removed, the region will escape its acquiring block. However, that
means that the region isn’t closed, and the release will raise an exception. We will discuss our
intended concurrency model and its Lungfish interface in a future paper.

2.3.2 Limitations. The granularity and flexibility of Lungfish’s concurrency is controlled by the
heap structure. It is not possible to operate concurrently on two objects that reference each other
as those objects must be inside the same region. A region structure that does not fit an intended
parallelism can be dealt with by merging the region into the local region, which permits its objects
to be moved to new regions which can subsequently be operated on in parallel. Whether such
overhead is acceptable will vary from case to case. Parallel operations on arrays require that cells
are cowns. As long as an array’s elements do not overlap, we can turn an array into disjoint regions
4 la Arr-O-Matic [68].

3 Dynamic Ownership Enforcement

Next we explain how to check for ownership violations dynamically. As a result of design iteration
with maintainers of dynamic programming languages, there has been a constant shift towards
delaying ownership checking closer to the time of error (G4). In the end, we treat the act of trying
to make a structure that would make data-races possible visible to other threads as an error, rather
than raising the error only if the data races are observed. Thus, errors are caused by the actions of
a single thread, not by several threads operating on shared data.

Motivated by (G4), we require region-based ownership to be enforced only when data is trans-
ferred or shared, that is when spawning a new thread and releasing a cown. In Lungfish, this requires
that the region is closed. If the region is open, then the errors outlined in Fig. 1 are possible, i.e.,
mutable state becoming directly reachable from multiple threads. Note that we raise an exception
when sharing occurs, not if a data race actually takes place on that shared state.

3.1 Tracking Ownership

In Lungfish, every object knows its owning region using a field owner. It is initially set to LocAL,
which represents that the object is in the local region. When a local object is moved into another
region, we update the object’s owner field to reference the region r. For immutable, and cown,
objects the owner field to Imm, and CowN, respectively. Lungfish distinguishes between shared,
inter-region and intra-region references. Shared references are references to immutable and cown
objects, and are always allowed. Intra-region references are always allowed and do not need to
be checked. Inter-region references are split into two types of reference: borrowed and external. A
borrowed reference is any inter-region reference starting in the local region. Note that all stack
variables are borrowed references as they are fields of a frame object in the local region. All other
inter-region references are external references and must satisfy the external uniqueness constraint.

External uniqueness requires that there is at most one external reference to each region and
that the target of the reference is a bridge object. Regions have a parent attribute which is either
None (when the region is a root of a region tree), Cown (when the region is stored in a cown), or
the parent attribute is the enclosing region. Regions initially do not have a parent region, and are
captured when their bridge object is referenced from a region other than itself or the local region.
Capturing an already captured region throws an exception. To make a captured region free, we
simply remove the external reference to the bridge object, which updates its parent to None.

We track a region’s incoming borrowed references through a local reference count (LRC). The
LRC allows us to efficiently check if a region is closed: when the LRC is 0 the region is closed.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

Dynamic Region Ownership for Concurrency Safety 210:9

Note that this means that regions referenced from the stack (or fields in the local region) cannot be
closed, which is intentional: they are directly reachable from the current thread, and closed implies
they are safe to transfer or share.

We also track the existence of borrowed references to child regions (aka nested regions). When
we increase the local reference count of a child region, if it moves from an LRC of zero to one, we
increase the LRC of the parent region. Similarly, when it moves from one to zero, we decrease the
LRC of the parent region. This is done recursively up the region tree. This ensures that a region is
not closed if there are borrowed references to any of its child regions.

3.2 Implementation

The core challenge of the implementation is to dynamically enforce the ownership constraints in
Table 1 efficiently. We enforce these constraints through a write-barrier, that is, some additional
logic triggered on stores to fields, assignment to local variables and binding of arguments to formal
parameters. As we model local variables and formal parameters as fields of a frame object it suffices
to just implement the write-barrier for fields.

To track the correct usage of regions, the write-barrier must maintain three things: (1) the region
that an object belongs to, (2) the local reference count, and (3) the parent region of the region, if
there is one. The first is represented by the owner field of each object, which refers to the region
that owns the object. The second and third values are represented using two special fields that are
stored in the region: 1rc and parent, respectively. It also contains a field that references the bridge
object. The region is a separate allocation to the bridge object, which simplifies handling cases
where the bridge becomes unreachable, but there are still borrowed references into the region. The
separate allocation allows the bridge to be collected as soon as it becomes unreachable without
needing to update the owner of still reachable objects.

Let us consider a store that updates the field f of an object src with the value tgt, where the
field previously contained oldtgt. The store triggers a write-barrier shown in Fig. 6. The first thing
the write-barrier must do is to check if the assignment is allowed by checking that the region of
the updated object src is not Imm or Cown. If the store is allowed, the write barrier updates the
region topology for the new edge from src to tgt, and removes the old edge from src to oldtgt.
In Fig. 6, we define two operations on the region topology for this purpose: addReference and
removeReference. See Fig. 7 for a graphical example of the barrier in use.

The removeReference operation removes a reference from src to oldtgt. If src and oldtgt are in
the same region or oldtgt is a cown or immutable, then there are no region topology updates. If tgt
is a cown or immutable, then the reference count is decreased atomically, and in all other cases, it
is decreased non-atomically. If the reference is borrowed, that is, from the local region into another
region, then the local reference count of the region owning oldtgt is decremented. The final case
handles instances where src and oldtgt are in different regions. From the external uniqueness
constraint, we know oldtgt is a bridge object, and src contains the only owning reference to oldtgt
from outside of oldtgt’s region. The code removes the parent pointer from the returned heap.

The addReference operation adds a reference from src to tgt. This follows a similar pattern to
removeReference. If src and tgt are in the same region or tgt is a cown or immutable, then there
are no region topology updates. If tgt is a cown or immutable, then the reference count is increased
atomically, and in all other cases it is increased non-atomically. If the new reference is from the
local region into another region, a borrowed reference, then the local reference count of the region
owning tgt is incremented. Otherwise, we need to move the tgt object, and all the local objects it
references, into the region owning src. This may fail, if it does not obey the region discipline.

The addToRegion operation is responsible for updating the local reference count for the region
that is being moved into. It assumes reference counted memory management for individual objects.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

210:10 F. Stoldt, B. Bucher, S. Clebsch, M. Johnson, M. Parkinson, G. van Rossum, E. Snow, and T. Wrigstad

1 def writeBarrier(src, oldtgt, tgt): 2¢ def removeReference(src, oldtgt): 42 # ...Recursively move the fields
2 if src.owner in {Imm, Cown}: 21 # Check if in same region 43 for next in fields(curr):
3 raise Error 22 if src.owner is oldtgt.owner: 44 addToRegion(next, reg)
4 addReference(src, tgt) 23 return decRC(oldtgt) 45 return
5 removeReference(src, oldtgt) 24 # Check if oldtgt is a cown or immutable 46 # Account for internal reference
6 25 if oldtgt.owner in {Imm, CowN}: 47 if curr.owner is reg
7 def addReference(src, tgt): 26 return decRCAtomic(oldtgt) 48 reg.lrc -= 1
8 # Check if in same region 27 reg = oldtgt.owner 49 return
9 if src.owner is tgt.owner: 28 decRC(oldtgt) 56 Ccurr_reg = curr.owner
10 return incRC(tgt) 29 # Check if borrowed reference 51 # Ignore external references
1 # Check if tgt is a cown or immutable 30 if src.owner is Locar: 52 if curr_reg in {Imm, CownN}:
12 if tgt.owner in {Imm, Cown}: 31 return decLRC(reg) 53 return
13 return incRCAtomic(tgt) 32 #Handle removing parent of region. sa # Check for bridge object
14 incRC(tgt) 33 return removeParent(reg) 55 if not curr_reg.bridge is curr:
15 # Check if borrowed reference 34 56 raise Error
16 if src.owner is Locar: 35 def addToRegion(curr, reg): 57 # Check not already in a region
17 return incLRC(tgt.owner) 36 if curr.owner is LocAL: 58 if not curr_reg.parent is None:
18 #Add object to a region (may fail) 37 # Add references to the object, 59 raise Error
19 addToRegion(tgt, src.owner) 38 # minus the one we just followed. 60 # Check for cycle in region topology
39 reg.lrc += curr.rc - 1 61 if curr_reg in parents(region):
40 # Move into the region 62 raise Error
41 curr.owner = reg 63 curr_reg.parent = region
42 # Recursively move the fields...

Fig. 6. Pseudo code for write-barrier. We highlight: operations that may trigger deallocation of multiple
objects; operations that do not run in O(1); and Python reference count manipulations.

While moving objects into the region, we add to the local reference count the reference count of the
objects added to the region and remove a reference count for each internal reference that is created
by the move. If addToRegion is given an object that is already in a region, then it is responsible for
adding a parent to a bridge object. This can fail if the object is not a bridge object, already has a
parent, or if adding the parent would create a cycle in the region topology. These checks guarantee
that external uniqueness is preserved.

Note that the addToRegion operation is not constant time. Its time complexity is proportional to
the size of the subgraph being moved combined with the number of parents of the region being
moved into. The second component is due to the check for cycles in the region topology. While
the first comes from the graph walk. The incLRC and decLRC operations are also not constant time,
because they may need to update the local reference count of the parent regions.*

Our implementation assumes that breaking the region topology is an unrecoverable error. To
make the error recoverable, we need to implement two versions of addToRegion: one that checks
the update is valid, and a second that actually performs the update. If added, a double pass will
increase the cost of adding objects to a region, but will provide a better programming experience.

3.21 Move. The move keyword can be implemented by using a temporary variable in the local
region to store the value of the field being moved. For example: y.f = move x.f can simply be
encoded using a fresh temporary variable, tmp, as four statements: tmp = x.f;x.f = None;y.f = tmp;
del(tmp). This is a simple encoding of the move operation that does not require any additional
logic in the write-barrier. The line x.f = None will result in removing the parent of the region, and
y.f = tmp will add the parent of the region to the new object. Finally del(tmp) removes tmp.

4We do not expect the region hierarchy to be deep, so the cost of these operations should be low. (Potanin et al. [47] measure
average ownership depth to be 5-6 in Java, using a more fine-grained ownership model; we expect less.) If that does not
prove to the be case in Python, we can consider a more elaborate data structure to track the local reference count from
nested regions lazily. This would make closing a region more expensive, but would make the write-barrier more efficient.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

Dynamic Region Ownership for Concurrency Safety 210:11

class Obj: pass #a (To reduce clutter, we colour local objects like this @ instead of drawing a local region.)

1

i ; Qbéé;(;bﬂc -0b3 - 0b] _-0b]

¢ r = Region() #R Xy o -class MV
5 r.h = x #trigger transfer Line Line —g) Line
6 Xx.f =7 #immutable

7 x = None #immutable

Line No.
Code WB Comment

1 10 local to local
2 10 local to local
3 10 local to local
4 17 borrowed ref.
(a
b

5(a) 19 add b to R

5(b) 19 addatoR

5(c) 19 addctoR
6 13 7 is immutable
7 14,31 stop borrowing

Fig. 7. Example of exercising the write-barrier. The table explains what line of code from the snippet ends in
what lines on the write-barrier logic in Fig. 6. Line 1 evaluates to a local name bound to a type object. To
reduce clutter, we do not draw the local region or show all __class__ pointers.

4 Prototyping Language Design

P:=b e

To guide our design, we implemented §rankenScript, atoy se- pu=s|ss I F
quential programming language. Its goal is to enable ourselves F = def f(x*):b e :=x
and the Python community to interact with and understand [.= { } | str| bool | move x
Lungfish’s design space and has been instrumental to explain s .= yhile e: b | e.f
the semantics of regions and how the write-barrier works. | forx,xinx:b | x[str]

FrankenScript implements all of Lungfish’s region model | ife: b | x!=y
explained thus far, including some design alternatives which | ife: belse: b | x==
are described in the next section. Since it is sequential, it does | returne | f(e*)
not have with blocks, get and set or similar mechanisms. In | ef=e | e.f(e¥)
the future, we will extend FrankenScript with a concurrency | x=e | L

model, but our priority has been the design of the region own-
ership model. FrankenScript is available as an artefact [57], Fig. 8. Syntax of FrankenScript.
with a small collection of programs.

When executing a program, the rankenScript interpreter generates a markdown file with
one Mermaid diagram® for each line that shows the region and object topology of the program,
highlighting borrowing and region openedness, etc. This allows us to test and communicate
consequences of different designs without biting the bullet of making patches to the Python
runtime (which is itself a moving target).

Fig. 8 shows the syntax of FrankenScript, which draws syntactically from Python and semanti-
cally from Python and JavaScript. It uses Python-style semantic indentation, which is not shown
for brevity. Metavariables x and f range over names of variables, fields and functions. str denotes a
double-quoted string. Literals L are empty objects { }, strings and boolean values. The language
is prototype-based to avoid the need for special syntax for classes. Objects are dictionaries born
empty; methods are added by storing functions in object fields. Every object has a __proto__ field
which can be assigned to any object which will subsequently be used to lookup missing names.

3See https://mermaid.js.org/, and also the live editor https://mermaid.live/ to view diagrams.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

https://mermaid.js.org/
https://mermaid.live/

210:12 F. Stoldt, B. Bucher, S. Clebsch, M. Johnson, M. Parkinson, G. van Rossum, E. Snow, and T. Wrigstad

The built-in function Region() creates a fresh region e
and returns its bridge object. Cown() takes a reference to a
root of a region tree and stores it in a freshly created cown
and returns it. freeze() makes the contents of a region e —
immutable. None is a built-in immutable object. Mutable pu
objects are shown in light gray, immutable objects and i e —’
references in ice blue and borrowed references as orange. ey

Running a FrankenScript program produces a file I Y '
with one diagram per line showing the heap’s evolution e
called mermaid.md. Fig. 9 shows the heap after line 7 of i
running the FrankenScript equivalent of the code in =
Fig. 7. See supplemental material for the entire execution.

Despite being sequential FrankenScript can still be Eis 9. State of the heap after line 7 of Fig. 7
used to explore safe concurrency. Successful transfer of 45 rendered by FrankenGcript.

a region into a cown means that the region (its contents

and nested regions) is disjoint from state reachable from the current thread and therefore could
be operated on in parallel as soon as the cown is released. To explore reachability, and ensure
oneself that local state is not reachable from a closed region in a cown, the mermaid_show_tainted()
function can be used to colour the transitive closure of mutable state reachable from the taint
starting point.

FrankenScript is implemented in Trieste, a C++ DSL for tree rewriting [20]. It can be built on
Linux, Windows and Mac using standard tools and is available as an artefact [57] for this paper.

5 Design Alternatives and Challenges x. Locar Z Y.

Let us now review alternatives and challenges due to common e 2N 0
features in dynamic languages. é

5.1 Implicit Freezing y.£=xf

. . . . X . LocaL z Y.
Our write-barrier raises an error when a reference would otherwise =

be created from one region to an object in another region. The
errors are raised on lines 56 and 59 of addToRegion (). An alternative
approach to this behaviour is to “fix” the problematic reference by
freezing the transitive closure reachable from the shared object.
This is straightforward to implement by replacing each Error by Fig. 10. Implicit freezing of band
a call to freeze(curr) on the aforementioned lines as well as have ¢ destroys the integrity of the lo-
Thread’s start() method freeze contained and local objects passed @l reference count for R.

to the thread constructor.

The obvious downside of implicit freezing is that it may cause objects to become immutable
unintentionally. When freezing a region, the effects will not propagate beyond the programmer-
curated region, simplifying reasoning about the results of freezing. On the other hand, there are
objects that one might want to freeze implicitly, such as strings and types (c.f, §5.3.2). A possible
middle ground is to support implicit freezing for a select number of types, or by opt-in.

However, implicit freezing interacts badly with our local reference count technique. Consider the
region R in Fig. 10. If we create a reference to b from another region, the object will be frozen along
with c. Because b and ¢ were frozen, R is actually closed. However, we are unable to detect that

the reference z — ¢ should no longer contribute to R’s local reference count, unless we trace the
entire memory of R (or the local region), which is an expensive operation when the region is large.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

Dynamic Region Ownership for Concurrency Safety 210:13

A pragmatic approach can be taken to handle this: we mark the local reference count as “dirty”
(shown by red colour in Fig. 10). This means that the counter is an upper bound and may prevent
LRC from reaching zero making the region closed. To resolve this we have to resort to other means
such as traversing the local region to invalidate all borrowed references or count them to establish
a correct value for the counter. An alternative approach would be to record more information about
borrowed references, in particular what objects in a region have incoming borrowed references.
This would allow us to remove the total number of incoming references to the frozen objects from
R’s local reference counter, at the expense of increasing the cost for tracking borrowed references.

FrankenScript permits freezing the transitive closure reachable from any object and supports
implicit freezing by default. This behaviour can be turned off in favor of the strict freezing protocol
described in §2.3 by calling the built-in function pragma_disable_implicit_freezing().

5.2 Invalidation of Borrowed References

Closing a region requires the absence of borrowed references to the region (and its nested regions).
In statically typed languages, the duration of borrowing is typically known at compile-time from
scoping. The most straightforward definition of borrowing only permits borrowed references on
the stack [7]. More powerful definitions permit borrowed references on the heap, using typing
mechanisms to delimit their existance (e.g., Clarke and Wrigstad [15]). In Rust [36], the borrow
checker ensures that the lifetime of the borrowed value outlives the duration of the borrow. Since
Lungfish permits borrowed references from the local region, borrowed references can be in local
variables as well as fields in objects in the local region. To satisfy (G5), we do not introduce any
syntax for borrowing, but rely on programmers to manually invalidate borrowed references, or write
their programs with clever uses of scopes such that local variables are invalidated automatically.
In languages with prompt collection of memory, such as Python which uses reference counting,
borrowed references in temporary objects such as iterators will be cleaned up once the reference to
the iterator object is invalidated. A language implementation using a tracing GC would require
more manual invalidation.

It is possible to think of a borrowed reference as “weak” in the sense that it is only valid as long
as the region it refers into is open. Thus, closing a region could be made to invalidate borrowed
references dynamically. An obvious downside to this proposal is that references may be invalidated
“under foot”: Closing a region may cause references to become undefined elsewhere in the thread.

The close(b) function in FrankenScript will invalidate all references from the local region into
the region. The function is_closed(b) returns True if the region is closed.

5.3 Dealing with Pervasive (Mutable) State

5.3.1 Mutable Types. Despite studies showing that most objects are thread-local in languages
like Java [66, 67], the sharing situations in Fig. 1 are very common in languages that reify types
and where each object has a reference to its creating type or class. This is the case in Python and
JavaScript, and in both cases, the type objects are mutable. Thus, even the act of instantiating two
objects of the same type in different threads creates an opportunity for the threads to race on the
type object. Freezing an object also requires freezing the type object, or it could change in ways
that could effectively violate immutability. For example, overwriting a getter method on the class
with one that returns a fixed number in the style of Abadi and Cardelli [1] can be indistinguishable
from a change to the object to a client of the object.

Python 3.12’s multiple subinterpreters model addresses this problem by having one type object
for each type per subinterpreter. This avoids races, but instead creates problems if an object is
passed (in a serialised fashion) between subinterpreters with different interpretations of its type.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

210:14 F. Stoldt, B. Bucher, S. Clebsch, M. Johnson, M. Parkinson, G. van Rossum, E. Snow, and T. Wrigstad

In Lungfish, we require that a type is frozen before it is used in more than a single region. This
permits a program to use Python’s reflective capabilities and modify the type up to the point where
the type object is shared across regions. The implicit freezing in §5.1 handles freezing of types
automatically as soon as a type object becomes reachable from a second region. Without such an
automatic solution, programs may become littered with annotations to freeze a type to ensure that
they can run without throwing exceptions, or handling such exceptions.

5.3.2 Immutable Types. But one does not simply freeze a type. In contrast to static languages,
a Python program is constructed dynamically during its execution. This poses challenges with
making reflective objects immutable, as the following example will show. Consider the use of a
conditional expression to determine the base class of a type: class A(B if cond else C):. This
evaluates to a new type object bound to the local name A, but also updates the tp_subclasses list
in the type object for B or C, depending on cond. The tp_subclasses list can be queried through the
__subclasses__() method. There are two aspects to this: If making type objects immutable is to be
interpreted strictly, then freezing a type would prevent deriving from it. We could not program
analyse our way out of this problem and create an immutable, fully populated subclass list from
the start as we cannot determine A’s base type without running the program.

A straightforward solution is to store the tp_subclasses data elsewhere in the system, or remove
it from the immutable fields. This brings us to the second aspect: (a) calls to __subclasses__() racing
with concurrent subclassing, or (b) concurrent subclassing racing on writing to tp_subclasses.

Problem (b) is the simpler problem. Since concurrent class creation will always lead to creation
of discrete type objects, additions to tp_subclasses are not order sensitive. Thus, concurrent
subclassing can be supported by making accesses to the tp_subclasses list thread-safe. Problem
(a) is trickier as it permits different interleavings of an execution to change the behaviour of a
program branching on the observable content of __subclasses__(). Our solution is to disable the
__subclasses__() method on mutable and immutable type objects.

To support querying a class for its subclasses (and similar opera- ™ = A-mirror() #misa cown

tions), we introduce a per-class mirror [8] hidden inside a cown that WI:: [:“:\

must be acquired to access these parts of the reflective API, as show get(m).__subclasses__()
in Fig. 11. The mirror represents a snapshot of the class taken at for ¢ in sc:

acquisition. This allows concurrent subclassing directly without the print(c.__name__)

mirror (b) in a way that is unobservable through a concurrent mir- Fig. 11. Using a mirror to query
ror. To observe added subclasses, the mirror must be relinquished ; ¢Jass’ subclasses.

and re-acquired. Note that types must remain immutable since we

permit immediate concurrent access to type objects.

To support our goal of backwards compatibility with sequential programs (G2), we only require
access through mirrors from the point where a second thread is created in the program. When
libraries developed for single-threaded Python are used in a multi-threaded context, we expect
most uses of reflection to break. However, due to the dangers of reflection in a concurrent setting,
forcing programmers to review and refactor this code is not without merit. A strength of the design
is permitting common cases, such as subclassing, to remain unchanged.

FrankenScript models mutable type objects through its prototype-based design. Every object has
a __proto__ field pointing to a mutable prototype object and lookups of names to an object delegate
to the prototype when the names cannot be found directly in the object. Freezing a prototype is
possible either directly by freeze(), by turning on implicit freezing and sharing a prototype across
regions, or by placing prototypes in a region at the start of a program and then freezing it.

5.3.3 Module State. Python modules define a top-level namespace, which they can refer to inter-
nally using globals(). This namespace is a dictionary which is accessible to an importer through

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

Dynamic Region Ownership for Concurrency Safety 210:15

1 state = Region() 10 state = Region() 20 state = Region()

2 ... #populate state n ... #populate state 21 ... #populate state

3 guard = Cown(move state) 12 guard = Cown(move state) 22 guard = Cown(move state)
4 13 23

5 def random(): 14 def random(): 24 def random(state):

6 with CS(guard): #acquire 15 assert acquired(guard), "Error" 2s ...

7 16 tmp = get(guard) # borrow 6 return (result, \

8 return result v 27 move state)

9 # implicit release 18 return result

Fig. 12. Three examples of a module using a cown to store its mutable state using different approaches
to ensure exclusive access to it (G3). Left: module encapsulates cown acquisition (Line 6), making calls to
random() thread-safe. Middle: module assumes its cown has been acquired by the caller (Line 15) and then
borrows the the content of the cown. (The assert is not necessary for safety.) Right: module requires a state
region to be moved into it (Line 24), and moves the state back to the caller together with the result (Line 26-27).

the name of the imported module. Modules make use of this dictionary to hold mutable state
crucial for its operation (e.g., the random module) or immutable constants such as math.pi in the
math module. As dictionaries are mutable by default, a proponent of the Indiana Pi Bill [64] is free to
import math and subsequently assign 3.2 to math.pi without intervention, or add state to a module
whose definition is stateless. Thus, regardless of a module’s internal behaviour, using a module
across two different threads, gives rise to the undesirable sharing situations in Fig. 1.

Forcing a module to freeze its top-level namespace make stateless and immutably stateful libraries
safe to use. However, this will not work for modules such as random. To support gradual Lungfish
adoption, we extend Python so that modules can be marked as Lungfish compliant. Compliant
modules will be frozen imediately after import, at least once the program uses more than one
thread. Recall that freezing does not propagate through cowns. This permits a compliant module to
refactor its necessarily mutable state into a cown. Some libraries may encapsulate this fact and
hide acquisition of the cown entirely inside the library. This works well in the case of random but
not when it is necessary to reason atomically about interaction spanning multiple calls to the same
library. In this case, the library can require that the cown has already been acquired by the caller.
Fig. 12 shows three approaches to mutable state in a module using cowns.

5.3.4 Migration and Non-Compliant Modules. A very crude support for a non-compliant module is
possible by silently lifting its entire top-level namespace into a region shared by all non-compliant
modules wrapped inside a global cown called NonCompliantModule (G3). The import would also
wrap all the module’s functions in a trampoline that performs an assert on the cown:

assert acquired(NonCompliantModule), "Error: NonCompliantModule not acquired"
This will effectively make all interaction with non-compliant modules take place in a critical section,
permitting their use at the cost of suspending all parallelism. The reason for all non-compliant
libraries sharing the same “cown guard” is to facilitate using non-compliant libraries that depend
on other non-compliant libraries. With a single cown per non-compliant library, a user would have
to know the total set of non-compliant dependencies for a library to acquire them.
Interaction with a non-compliant random module would look thus (four separate lines):°
import random as r X =0 with NonCompliantModule: x = r.random() print(x)

The call to r.random() performs the assertion above, and thus requires that the NonCompliant cown
is acquired, which happens on line 3. Note that the code is written assuming blocking interaction

SIf the random module was made compliant according to Fig. 12, simply replace NonCompliantModule by r.guard which is
the cown wrapping the module’s state region created on Lines 1-3, 10-12 and 20-22.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

210:16 F. Stoldt, B. Bucher, S. Clebsch, M. Johnson, M. Parkinson, G. van Rossum, E. Snow, and T. Wrigstad

with cowns. It would be possible to use behaviour-oriented concurrency [13], in which case line 4
would be nested in the with in line 3, or become an explicit continuation spawned inside the with.
If line 4 is inside the with, the printing is part of the critical section, otherwise not.

If the result of r. random() would create a persistent reference into the module’s implicitly created
region, the release would not succeed because the region in the releasing cown would not be closed
(or alternatively, the object is implicitly frozen (c.f, §5.1)).

5.3.5 Observing Reference Counts. The Python function sys.getrefcount(obj) returns the value
of the reference counter for the object obj. This function makes it possible to observe mutation of
an immutable object’s reference counter. Inspecting the value of the reference counter is done to
check for ownership in certain parts of the Python source code and in libraries such as numpy. If
the value of the reference counter is 1, that means that the object is unique, and therefore safe to
update in-place, which can be very useful to avoid large or frequent allocations. Similar tricks are
played in e.g., Koka [49] to match deallocation with allocation in close proximity.

To avoid code believing it can “own” an immutable object, and to prevent code from observing
concurrent creation of references to a known object, we redefine sys.getrefcount() to return
INTMAX when called with an immutable argument (G3). This is consistent with how Python handles
“immortal” objects’ to reduce cache invalidation and avoid data races.

This brings us back to our claim in §2.1 that immutable objects are safe to share. While this is
true from the perspective of the programmer, underlying details such as memory management
may still warrant special treatment of immutable objects. In Lungfish, we require atomic reference
count manipulations of immutable objects (Fig. 6), just like for cowns.

6 Putting it All Together

Fig. 13 shows a small concrete example written in Python extended with Lungfish. We model
a bank with one bank account per cown. This fine-grained concurrency permits operating on
accounts in parallel, although our example does not as all operations access the same accounts. We
illustrate multi-cown acquisition to atomically transfer money between accounts, and read/only
cown acquisition to tally the total balance of all accounts in the bank. Transfer operations are
logged, and we share a single log entry across two accounts involved in the same transfer. This
requires the log entries to be immutable. We illustrate both implicit and explicit freezing of log
entries. In the first case (%), the log entry is created as a local object, then moved into the self
account’s region before becoming implicitly frozen when the log entry is appended to the dest
account’s region. In the second case (**), the entry is moved into a region and frozen.

Let us look closer at the transfer of funds from account a1 to account a2 on line 48. The with
block handles acquisition and release in as described in §2.3.1. Because of write acquisition, the
two cowns’ regions are given write permission. This is handled by the CS cown set class under the
hood by implementing the context manager interface.

The calls to ba() opens the regions of both accounts’ cowns and places references to the account
objects on the stack. This borrowing is handled by lines 16-17 in addReference() and increases
both accounts’ regions’ LRCs from zero to one, opening them. In this case, both regions are roots in
region trees rooted in separate cowns, meaning they have no parent regions to inherit permissions
from. When the block ends, the borrowed references have been invalidated, causing LRC to drop
back to zero for both regions — they are now closed. Thus, the releasing of the cowns will succeed.

"While our immutable objects are not immortal, the immortality concept was motivated by a desire to make the reference
counts of immutable objects immutable too [55].

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

Dynamic Region Ownership for Concurrency Safety 210:17

1 # Account class for contained objects 24 # Create log entry 47 # Transfer money between accounts

2 class Account: 25 def entry(msg): 48 def transfer(al, a2, m)

3 def __init__(self, balance): 26 r = Region() 49 with CS(al, a2):

4 self.balance = balance 27 r.obj = Log() 50 ba(al).transfer(ba(a2), m)

5 self.log = [] 28 r.obj.entry = msg 51 # Swap contents of two cowns

6 def transfer(self, dest, amount):29 freeze(r) 52 def swap(al, a2):

7 if self.balance >= amount: 30 return r.obj #immutable 53 with CS(al, a2):

8 dest.balance += amount 31 # Create account 54 tmp = set(al, get(a2))

9 self.balance -= amount 32 def account(b): #b = balance 55 set(a2, move tmp)

10 # implicitly immutable entry (x) 33 r = Region() s6 # import the Thread class

1 log = Log() 34 r.account = Account(b) 57 from threading import Thread

12 self.log.append(log) 35 return Cown(move r) s8 # Create accounts and perform tasks

13 log.entry = "Transfer OK" 36 # Borrows account from cown 59 al = account(100)

14 dest.log.append(log) # freeze! 37 def ba(c): 60 a2 = account(20)

15 else: 38 return get(c).account 61 Thread(transfer, al, a2, 10).start()
16 # explicitly immutable entry (++) 39 # Tally balance of accounts 62 Thread(swap, al, a2).start()

17 log = entry("Transfer fail") 4o def tally(acc, result): 63 result = Cown(None) # Empty released cown
18 self.log.append(log) 4 sum = @ 64 # Note: tuple of cowns is immutable

19 dest.log.append(log) 42 with CS([a for a in accl)): e5s t = Thread(tally, (al, a2), result)
20 raise Exception("Overdraft") 43 for ¢ in acc: 66 t.start()

21 # Opt-in implicit freeze support 44 sum += ba(c).balance; 67 t.join()

22 class Log(Freezable): 45 with CS(result): 68 with CS(result): # Print tally result

23 pass 46 set(result, sum) 69 print(get(result))

Fig. 13. Example illustrating regions, cowns, read and write cown acquisition, implicit and explicing freezing,
borrowing and region transfer between cowns.

The tally operation demonstrates the use of a cown as a way to pass data back from a child
thread to a parent. The tally() function takes an empty cown result where the result is stored.
We use the join() method to ensure that printing does not start until the result is available.

Failure Modes. When the code in Fig. 13 is executed, it spawns three threads that all access the two
accounts a1 and a2, racing on transferring money, swapping the two accounts, and tallying the sum
of their balances®. The thread creation on lines 61, 62 and 65 all take cowns or immutable objects.
If a1 or a2 were mutable objects, thread creation would have failed (§2.3.1): neither contained nor
local objects may be passed as arguments to threads; if the regions inside a1 or a2 were not wrapped
in cowns, they would not be closed at thread start as the original variables are copied, not moved.
If they were moved, they would have been moved to the thread created on line 15, and subsequent
threads would have been passed None. In summary, Lungfish will prevent the accounts from being
shared between threads as directly accessible mutable objects.

As the accounts are cowns they are sharable, because Lungfish ensures that concurrent accesses
to them are properly synchronised. Contents of cowns are only accessible through get and set.
Such calls will fail outside an acquiring with. Because the with blocks on acquiring cowns, they
will serialise the execution, and avoid data races. At the end of the block the cowns are released,
which throws an exception unless the cowns’ regions are closed. This prevents a reference to a
mutable object in a region from escaping and being accessed outside of the block that dynamically
ensures exclusive access to it, as shows in Fig. 4.

7 Evaluation of Design Goals and Implementation Goals

Table 2 summarises our goal fulfilment and points to the discussion in the paper. Implementation
goals that are too early to tell are included to make sense of our design decisions. We expect that

81n a large system, it is easy to imagine concurrent operations on the same accounts being initiated from different places
and needing to be ordered in some way to avoid racing. To keep things simple, we spawn them in a single place.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

210:18 F. Stoldt, B. Bucher, S. Clebsch, M. Johnson, M. Parkinson, G. van Rossum, E. Snow, and T. Wrigstad

the full implementation will take two person years to complete. In our current state, we have
implemented most of the functionality for immutable objects, and the diff is around 2 KLOC.

7.1 Design Goals

7.1.1 (G1). Because Lungfish only allows access to data that is immutable or exclusively accessible
to the current thread, it is data-race free. This ticks (G1).

7.1.2 (G2) and (G3). Existing sequential programs allocate and manipulate only inside the local
region. They will therefore work unmodified despite actually using (ephemeral) ownership.

Lungfish’s isolation permits us to leverage Python 3.12’s multiple subinterpreters so that each
thread runs its own subinterpreter (with its own GIL [54]). A necessary prerequisite of this is to
change how memory is managed since Lungfish permits objects created by one thread to be accessed
directly by other threads. In Python 3.12, each subinterpreter manages its own isolated memory
using non-atomic reference count manipulations and its own cycle detector. Since mutable regions
are only visible to one thread at a time and all shared objects guaranteed to not change, each subin-
terpreter can safely be extended to handle cycle detection inside its reachable memory. Reference
count manipulations on immutable objects and cowns must become atomic (line 13 in Fig. 6).

Running a per-thread subinterpreter removes the performance limitations of the GIL without
needing to remove the GIL. As a side-effect of this design, existing code that uses old Python threads
or uses parallelism at the C-level, and therefore relies on the GIL for safety in both cases, will not
crash or compromise the Lungfish-enabled CPython runtime This ticks (G2) and (G3).

As its name suggests, Lungfish thus both has GILs and no GILs, and is close enough to pre-
Lungfish Python that existing code should work, even if it uses pre-Lungfish threads or parallelism
at the C-level. (But this code is not guaranteed to be data-race free.)

7.1.3 (G4). Our design delays the point of enforcing region isolation to where it would otherwise
lead to mutable state becoming directly accessible to multiple threads. This is stricter than a data-
race detector which would only err in case of a data race on such shared state, but such tools
can let bugs slip into production that are hidden in unlikely interleavings. While it is possible to
extend borrowing to all regions and let regions intersect while open, it would require a more costly
solution than LRC to track “foreign references”. While on the upside, this would make it possible to
move objects beween regions manually, such code could easily break since a move must reason
about all incoming alias to an object. With these caveats, we believe that we tick (G4).

7.14 (G5). We mostly piggyback on existing language constructs to construct and manipulate
regions and cowns, e.g., function calls, constructors and context managers. The only new syntax is
move, but this is notably a convenience only — not fundamental. A move can always be implemented
manually by assigning None to a variable because we never perform a closed check immediately
after a transfer, only on cown release, freeze, or thread start. This ticks (G5).

7.2 Implementation Goals

We do not claim to meet these goals, but reason why we believe that the full implementation will.

7.2.1 (Géa). Single-threaded programs opt out of most of the overhead of ownership checking:
they only allocate in the local region, never perform implicit transfer nor topological changes, and
they never implicitly freeze objects. Thus they exercise fast constant-time parts of our write-barrier.
Some checks can be delayed until the start of the second program thread.

We speculate that the write-barrier will not cause a significant slow-down. A store in CPython
such as x.f = 42 goes through many levels of indirection, branching on e.g., the object’s represen-
tation and if its class replaces the default behaviour for setting attributes with user code.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

Dynamic Region Ownership for Concurrency Safety 210:19

Table 2. Goal fulfilment. /= goal fulfilled. ?= Too early to tell, but we expect so.

Goal Description Status Discussion

(G1) Data-race freedom v §2,83

(G2) Existing sequential programs should work unmodified v §2.2,§7.1.2

(G3) De facto safe libraries should be easy to make compliant v §5.1,8§5.34,§7.1.2
(G4) Delay errors; “favour no false positives over no false negatives” v §3,87.1.3

(G5) Low number of new syntactic additions v §2.3,8§7.14

(G6a) Almost no slow-down of sequential programs ? §7.2.1

(G6b) Moderate overhead for multithreaded programs ? §7.2.2

(G6c) Compatible with existing performance optimisations ? §7.2.3

(G7) Preserve maintainability of the runtime ? §7.2.4

7.2.2 (G6b). Multi-threaded programs that create many regions will pay a cost for moving objects
into regions which is proportional to the number of objects in the region. The upper bound for a
topological change is the depth of the deepest region tree, but in practise most region movement
will be cheaper. The cost for freezing objects is linear in the size of the number of objects being
frozen. The program will also pay for implicit freezing of type objects and literals, many of which
are shallow object structures.

When immutable objects are frozen, they can be made more efficient. For example, the overhead
needed to ensure consistency between non-atomic operations on dictionaries and lists can be
completely avoided. It may also be possible to lay out the objects in memory more efficiently.

With respect to memory management of immutable objects, we plan to build on work by Parkin-
son et al. [46] that shows how a single atomic reference count can be used to track the liveness of
an entire immutable strongly connected component as its objects share the same lifetime. Notably,
this approach deals with cyclic immutable garbage without tracing.

Partitioning the mutable heap into regions has positive implications for garbage collection. With
the exception of cowns, cycles in the mutable heap cannot cross region boundaries. Therefore,
cycle detection can be incrementalised and easily parallelised. When Lungfish is added to Python,
each region will have its own cycle detector. Furthermore, programmers are now able to safely
drop a bridge object to quickly deallocate an entire region. We thus expect that making garbage
collection more efficient may offset some of the overhead of ownership checking.

At the present, the lifetime of cowns is managed using atomic reference counting. Since cowns
are mutable, the tricks we employ for immutable objects do not apply. We have not yet developed
any cycle detection for cowns. For now, we rely on programmers to manually break cycles.

7.2.3 (Géc). Because our design is not contingent on removing the GIL, most of the CPython
implementation can stay unchanged, and there are no far-propagating changes due to GIL removal
as in the case for free-threaded Python. (See more below.)

7.2.4 (G7). To see how Lungfish can contribute to preserving the maintainability of the CPython
runtime, let us compare with free-threaded Python.

Because our ownership model is strict and does not permit simultaneous access to mutable
objects from multiple threads, much of the Python runtime should be able to stay the same when
support for multiple threads is added, as well as optimisations which have been developed in
a sequential setting (G6c). In particular, reference count manipulations can stay the same, i.e, a
simple non-atomic increment or decrement, with the exception of immutable objects and cowns,
as these are shared across multiple threads. If we compare with the proposed changes for free-
threaded Python [28], this means no tricks are needed to ensure reference count accesses racing

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

210:20 F. Stoldt, B. Bucher, S. Clebsch, M. Johnson, M. Parkinson, G. van Rossum, E. Snow, and T. Wrigstad

with deallocation and no need for biased or deferred refence counting to reduce the amount of
atomic reference count manipulations. Also, cycle detection can stay the same, and built-in data
structures like lists, dictionaries and sets do not need to be rewritten to become thread-safe. We
need to increase the object header with enough bits to identify the object’s owning region but
we believe this space could be created by replacing the intrinsic doubly-linked list that CPython
uses to track memory allocations (and that thus adds two pointers to each object header). Notably,
free-threaded Python relies on mimalloc [37] to be able to free up enough space in the object header
to be size neutral. This alone is an addition of 15 KLOC to the CPython runtime [28].

Most of our checks are performed in the write-barrier in Fig. 6. Python has no write-barrier
infrastructure in place, and piggybacking on reference count manipulation is not an option as these
are encoded as different C macros that inject code in a context assuming existence of variables with
certain names. Once a write-barrier is added to the codebase, much of the heavy lifting is done.

When each thread has its own isolated memory, there are no concerns about visibility, atomicity,
or ordering of memory operations across threads. The Lungfish ownership model thus shifts the
responsibility for ensuring memory safety from hardware mechanisms to run-time software checks,
effectively reducing the need for strong memory consistency models.

Finally, most additions will be contained in a single module that handles the region logic.

8 Related Work

Although early work on object encapsulation started in Smalltalk [32], encapsulation has not been
as common in dynamic languages as in statically typed languages. A reason may be the overhead
necessary to impose encapsulation dynamically, or process encapsulation 4 la Erlang [3, 45]. With
respect to name-based encapsulation, Smalltalk makes all instance variables private and methods
public [25]. Recently, Thomas et al. [60] explored the overhead of supporting a protected modifier
in dynamic languages. Python supports name-based encapsulation through convention. Ruby, Dart,
Newspeak, and recent versions of JavaScript support private fields.

The early work on object encapsulation [32, 33] triggered a stream on research into managing,
preventing or elucidating aliasing in programming. In this paper we have referred to this stream
of work as “ownership”, which is an umbrella term for hundreds of papers, including works on
uniqueness, fractional permissions, universes and ownership types. Due to the success of Rust [34],
the ownership moniker has become synonymous with affine types in mainstream programming.

Early work on ownership-based dynamic alias protection [44] and follow-up work [27] took a
different approach to ownership and transfer than Lungfish. These works consider a method to
execute inside an object (the current this) which becomes the owner of all objects created in the
method. When this is the wrong default, an object may gift any object it owns to another object.

Preceeding our realisation that type objects must be frozen by 25 years, Noble et al. employ
ownership to protect prototype objects from accidentally propagating changes when shared across
different prototype chains [44]. Notably, neither of these papers restrict the object topology (like
Lungfish does), but rather restrict uses of references that violate ownership (which Lungfish does
not do). This is key in these systems to change ownership when multiple objects form complex
relationships: If A and B are owned by the same owner and reference each other in a cycle, they
must change owner “atomically” or references that violate ownership will exist temporarily.

This approach is not possible in Lungfish without a check on each dereference, which is something
that we have carefully avoided due to its performance implications (reads are more common than
writes). We furthermore consider this a bad fit when the application of ownership is concurrency
safety and trying to save language implementers from having to protect the VM from incorrectly
synchronised programs: if a reference is permitted to cross between two threads, we end up having

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

Dynamic Region Ownership for Concurrency Safety 210:21

to deal with concurrent reference count manipulations (if memory is managed like in Python), and
lose the ability to perform cycle detection individually for each region.

Early work on applying ownership to concurrent programming [5, 6] extend ownership to
permit threads to own objects (and later also actors [17, 21]) in statically typed languages. These
designs too permit violating references to exist but restrict their use. Particularly exiting early
works in this space [35, 38] do not rely on static isolation but instead dynamically check whether
the current thread is the owner of an object, by checking that a path of owners end in the current
thread. Lungfish uses this design for cowns: access is only permitted if the cown is acquired by the
accessing thread. Objects in a Lungfish region that are reachable by a thread are always owned by
that thread, and can be accessed without a check. A check is instead needed to ensure that a region
can be closed for transfer (i.e., no violating references remain with the sender).

In the context of dynamic languages, and outside the thread paradigm, E [42] and Ambient-
Talk [22] provide a form of dynamically enforced ownership through the vat concept. A vat isolates
a single-threaded control loop that drives all access to the data inside the vat, but the data itself is
not isolated. Any interaction with an object o from outside its enclosing vat v will be turned into
an asynchronous operation sent back to v, ensuring that concurrent accesses to o are serialised.
Racket supports isolated “places” [59], similar to actors and communicating using message passing.

Different ownership models use different granularity of ownership. Initial work [15, 18, 48] on
ownership types [14] allowed objects to own other objects, and imposed a hierarchical decom-
position of the heap. Uniqueness, a simple form of ownership has been used in e.g., Clean, Eiffel,
Smalltalk, and Rust to deliver control ownership on a per-object level [10, 32, 36, 43]. Vitek and
Bokowski [63] proposed module-granularity ownership for Java. Arvidsson et al. [4] proposed
region-based ownership for the Verona programming language, similar to e.g., work on Cyclone, a
memory-safe C [29, 31]. Uses of ownership to deliver safe concurrency often couple ownership
with the concurrency model, or the unit of concurrency. In both AmbientTalk and E the unit of
concurrency is also the owner. Several statically typed languages follow suit, for example Joelle [17],
Pony [19], and Encore [9, 12] (actor based) and Loci [66] (thread based). In these systems, the actor
(or equivalent) is the owner of objects and uniqueness is used to permit safe transfer of ownership
of objects between actors. The actor-based Swift language recently introduced support for data-race
freedom, using a region-based model reminiscent of [17] and directly drawing on work by [40], but
without support for nested regions. Python’s evolutionary path is not unique. Racket’s runtime
was highly tuned for sequential programs when concurrency was added, with similar goals to
ours [58]. OCaml was recently retrofitted with support for parallelism [52, 53] removing reliance
on the global “Runtime Lock” that effectively serialised the execution in a single process. There
is now a proposal to extend OCaml with a form of regions called capsules [24], which statically
guarantees data-race freedom, while providing backwards compatibility with sequential code.

Our ownership model is perhaps most similar to work by Fernandez-Reyes et al. [23] on Dala,
a proposal for using ownership to make dynamic languages data-race free. Dala supports three
kinds of objects: immutable (1), uniquely referenced (2), local to the current thread (3). A reference
from an object A to an object B is permitted only if A’s kind is higher or equal to B’s. Dala does not
couple ownership with unit of concurrency, but is more restrictive than Lungfish as it does not
support sharing of mutable state, only immutable state and ownership transfer, and transferrable
objects must be tree-shaped, as in the Kilim system [56]. Inspired by work on gradual ownership
types [50], Dala provides a gradual type system to catch concurrency errors statically. We will
explore something similar for Lungfish in Python, drawing from its closeness to Reggio [4].

The use of with blocks to acquire and release cowns is similar to many scoped concurrency
mechanisms in other languages, such as synchronized in Java. However, the Java mechanism does
not prevent access to the underlying state if it is not wrapped in a synchronized block and only

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

210:22 F. Stoldt, B. Bucher, S. Clebsch, M. Johnson, M. Parkinson, G. van Rossum, E. Snow, and T. Wrigstad

protects a single object. The use of with blocks to acquire and release cowns is tied to our ownership
model, and thus is much closer to Rust’s standard library Mutex type, which uses the static borrow
checker to ensure access does not escape the scope of the mutex usage. With Lungfish, we provide
the same guard rails for the programmer as Rust, but in a dynamic language.

9 Interfacing with The Faster CPython Team

This project began by pitching an ownership model based on Reggio [4] to the the Faster CPython
Team [41]. The initial reactions could be described as, at best, lukewarm. The Reggio design had
very strict views of what was a permissable program. This was not a good fit for Python, which is
a very permissive language. As time progressed, our shared understanding developed significantly,
and through frequent discussions with the Faster CPython team, we adapted the Reggio design to fit
with the Pythonic way of doing things. Under guidance from the Faster CPython team, the design
morphed into Lungfish, which is a more permissive ownership model. From Reggio, we removed
the explicit region enter construct, the single window of mutability, and added implicit freezing
and the ability to extract isolated subgraphs from a region. We believe that the “programming
experience” of Reggio can be improved by our insights from Lungfish.

We are very grateful to the team for discussing the project with us regularly (~every 2 months).
By the time of submission, several Faster CPython team members had contributed sufficient ideas
to warrant author credit. There are still many open questions, and we are looking forward to
continuing the collaboration with the Faster CPython team to bring ownership to Python.

10 Conclusion

Many dynamic programming languages have evolved in a sequential setting. Their semantics,
libraries and runtimes are optimised for single-threaded operation. When concurrency is added,
features which are ubiquitous such as mutable types and module state easily lead to mutable data
being shared across threads. Without dynamic ownership checks, data-races are inevitable.

We have presented Lungfish, a dynamically enforced region-based ownership model that makes
data-races impossible by construction. While our target is the Python programming language, we
believe it will fit other languages as well, such as JavaScript. We have built FrankenScript, a toy
programming language that demonstrates the semantics of a program graphically, to communicate
the Lungfish semantics effectively to members of the Python community.

Sharing mutable objects across concurrent threads requires a memory model to define the
semantics of all legal operations. When the work on free-threaded Python materialises, Python will
need such a memory model — in the very least defined through the implementation of a data-race
detector or similar debugging tool needed to weed out data-race bugs. With Lungfish, we limit
what operations are legal, which shifts the cost from debugging concurrency bugs (which are
timing-related) to ownership bugs (which are structure-related).

In future work, we will provide a dynamic semantics of Lungfish combined with concurrency
along with proofs of data-race freedom. The region-based ownership model draws heavily on
Reggio [4] which has been proven sound. However, Reggio is statically checked and more restrictive
than Lungfish, so a separate formalism is required. While one cannot stress enough the importance
of having formally stated properties proven to hold in a mathematical model, the foremost challenge
in this work lies in the wicked realm that cannot be easily quantified: design — striking a “good
enough” balance between strictness, performance, usability and backwards compatibility.

We believe Lungfish meets our goals of data-race freedom, backwards compatibility, performance,
delaying checking to avoid false positives, and reasonable performance without adding much
complexity to the Python runtime. With Lungfish, we hope to make Python’s graduation to a
concurrent language smoother and safer.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

Dynamic Region Ownership for Concurrency Safety 210:23

11 Data Availability Statement

The published artefact [57] is a Docker image containing the interpreter of FrankenScript.
The artefact includes example programs to introduce the syntax and functions of FrankenScript
documented in §4, and scripts to recreate fig. 2, 3, 5, 7, 9 and 10 from this paper.

Acknowledgments

We would like to thank Mads Torgerson for his insightful question that started this research. We
are grateful to Michael Droettboom, Irit Katriel, and Mark Shannon of the Faster CPython team for
volunteering their time to discuss this work and contributing suggestions and ideas. Finally, we
thank the anonymous reviewers for their constructive feedback that improved the paper.

This research was supported by the Swedish Research Council through the grants 2024-04565,
“Data-race Freedom and Memory Safety for Untyped Languages”, and 2023-05526, “Pervasive
Memory Safety through Ownership Types”.

References

[1] Martin Abadi and Luca Cardelli. 1996. A Theory of Objects (1st ed.). Springer-Verlag, Berlin, Heidelberg.

[2] Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. 2002. Alias annotations for program understanding. In
Proceedings of the 2002 ACM SIGPLAN Conference on Object -Oriented Programming Systems, Languages and Applications,
OOPSLA 2002, Seattle, Washington, USA, November 4-8, 2002. 311-330. https://doi.org/10.1145/582419.582448

[3] J. Armstrong. 2007. A History of Erlang. In HOPL III. https://doi.org/10.1145/1238844.1238850

[4] Ellen Arvidsson, Elias Castegren, Sylvan Clebsch, Sophia Drossopoulou, James Noble, Matthew J. Parkinson, and Tobias
Wrigstad. 2023. Reference Capabilities for Flexible Memory Management. Proc. ACM Program. Lang. 7, OOPSLA2,
Article 270 (oct 2023), 31 pages. https://doi.org/10.1145/3622846

[5] David F. Bacon, Robert E. Strom, and Ashis Tarafdar. 2000. Guava: a dialect of Java without data races. In Proceedings of
the 15th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (Minneapolis,
Minnesota, USA) (OOPSLA °00). Association for Computing Machinery, New York, NY, USA, 382-400. https://doi.org/
10.1145/353171.353197

[6] Chandrasekhar Boyapati and Martin Rinard. 2001. A Parameterized Type System for Race-Free Java Programs. In
Proceedings of the 16th ACM SIGPLAN Conference on Object -Oriented Programming, Systems, Languages, and Applications
(OOPSLA °01). Association for Computing Machinery, New York, NY, USA, 56-69. https://doi.org/10.1145/504282.504287
event-place: Tampa Bay, FL, USA.

[7] John Boyland. 2001. Alias burying: Unique variables without destructive reads. Software: Practice and Experience 31, 6
(2001), 533-553. https://doi.org/10.1002/spe.370 Publisher: Wiley.

[8] Gilad Bracha and David Ungar. 2004. Mirrors: design principles for meta-level facilities of object-oriented programming
languages. In Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (Vancouver, BC, Canada) (OOPSLA ’04). Association for Computing Machinery, New York,
NY, USA, 331-344. https://doi.org/10.1145/1028976.1029004

[9] Stephan Brandauer, Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes, Einar Broch Johnsen, Ka I Pun, Silvia
Lizeth Tapia Tarifa, Tobias Wrigstad, and Albert Mingkun Yang. 2015. Parallel Objects for Multicores: A Glimpse
at the Parallel Language Encore. In Formal Methods for Multicore Programming - 15th International School on
Formal Methods for the Design of Computer, Communication, and Software Systems, SEM 2015, Bertinoro, Italy. 1-56.
https://doi.org/10.1007/978-3-319-18941-3_1

[10] T. H. Brus, M. C. J. D. van Eekelen, M. O. van Leer, and M. J. Plasmeijer. 1987. Clean — A language for functional

graph rewriting. In Functional Programming Languages and Computer Architecture, Gilles Kahn (Ed.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 364-384.

Elias Castegren. 2018. Capability-Based Type Systems for Concurrency Control. PhD Thesis. Uppsala UniversityUppsala

University, Division of Computing Science, Computing Science. Backup Publisher: Uppsala University, Division of

Computing Science ISBN: 978-91-513-0187-7 ISSN: 1651-6214 Issue: 1611 Series: Digital Comprehensive Summaries of

Uppsala Dissertations from the Faculty of Science and Technology.

[12] Elias Castegren and Tobias Wrigstad. 2024. Encore: Coda. In Active Object Languages: Current Research Trends, Frank S.
de Boer, Ferruccio Damiani, Reiner Hahnle, Einar Broch Johnsen, and Eduard Kamburjan (Eds.). Lecture Notes in
Computer Science, Vol. 14360. Springer, 59-91. https://doi.org/10.1007/978-3-031-51060-1_3

[13] Luke Cheeseman, Matthew J. Parkinson, Sylvan Clebsch, Marios Kogias, Sophia Drossopoulou, David Chisnall, Tobias
Wrigstad, and Paul Liétar. 2023. When Concurrency Matters: Behaviour-Oriented Concurrency. Proc. ACM Program.

—

[11

—

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

https://doi.org/10.1145/582419.582448
https://doi.org/10.1145/1238844.1238850
https://doi.org/10.1145/3622846
https://doi.org/10.1145/353171.353197
https://doi.org/10.1145/353171.353197
https://doi.org/10.1145/504282.504287
https://doi.org/10.1002/spe.370
https://doi.org/10.1145/1028976.1029004
https://doi.org/10.1007/978-3-319-18941-3_1
https://doi.org/10.1007/978-3-031-51060-1_3

210:24 F. Stoldt, B. Bucher, S. Clebsch, M. Johnson, M. Parkinson, G. van Rossum, E. Snow, and T. Wrigstad

[14

[l

(15

—

[16

—

[17

—

[18

[t

[19
[20

[t i’

[21
[22

—

[23]

[24

=

[25]

[26]

[27]

[28]
[29]

[30]

[31]
[32]
[33]
[34]

[35]

[36]

Lang. 7, OOPSLA2, Article 276 (oct 2023), 30 pages. https://doi.org/10.1145/3622852

Dave Clarke, Johan Ostlund, Ilya Sergey, and Tobias Wrigstad. 2013. Ownership Types: A Survey. In Aliasing in
Object-Oriented Programming. Types, Analysis and Verification, Dave Clarke, James Noble, and Tobias Wrigstad (Eds.).
Lecture Notes in Computer Science, Vol. 7850. Springer, 15-58. https://doi.org/10.1007/978-3-642-36946-9_3

Dave Clarke and Tobias Wrigstad. 2003. External Uniqueness Is Unique Enough. In ECOOP 2003 - Object-Oriented
Programming, 17th European Conference, Darmstadt, Germany, July 21-25, 2003, Proceedings (Lecture Notes in Computer
Science, Vol. 2743), Luca Cardelli (Ed.). Springer, 176-200. https://doi.org/10.1007/978-3-540-45070-2_9

David Clarke, Tobias Wrigstad, and James Noble. 2013. Aliasing in Object-oriented Programming: Types, Analysis and
Verification. Vol. 7850. Springer.

Dave Clarke, Tobias Wrigstad, Johan Ostlund, and Einar Broch Johnsen. 2008. Minimal Ownership for Active Objects.
In Programming Languages and Systems, G. Ramalingam (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 139-154.
David G Clarke, John M Potter, and James Noble. 1998. Ownership types for flexible alias protection. In ACM SIGPLAN
Notices, Vol. 33. ACM, 48-64. Issue: 10.

Sylvan Clebsch. 2017. Pony: Co-designing a Type System and a Runtime. PhD Thesis. Imperial College London.
Sylvan Clebsch, Matilda Blomqvist, Elias Castegren, Matthew A. Johnson, and Matthew J. Parkinson. 2024. Trieste: A
C++ DSL for Flexible Tree Rewriting. In Proceedings of the 17th ACM SIGPLAN International Conference on Software
Language Engineering (Pasadena, CA, USA) (SLE °24). Association for Computing Machinery, New York, NY, USA,
184-189. https://doi.org/10.1145/3687997.3695647

David Cunningham, Sophia Drossopoulou, and Susan Eisenbach. 2007. Universe Types for Race Safety. VAMP 07.

J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and W. De Meuter. 2006. Ambient-Oriented Programming in
AmbientTalk. In ECOOP. 230-254.

Kiko Fernandez-Reyes, Isaac Oscar Gariano, James Noble, Erin Greenwood-Thessman, Michael Homer, and Tobias
Wrigstad. 2021. Dala: A Simple Capability-Based Dynamic Language Design For Data Race-Freedom. In Proceedings
of the 2021 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software (Chicago, IL, USA) (Onward! 2021). Association for Computing Machinery, New York, NY, USA, 1-17.
https://doi.org/10.1145/3486607.3486747

Aina Linn Georges, Benjamin Peters, Laila Elbeheiry, Leo White, Stephen Dolan, Richard A. Eisenberg, Chris Casinghino,
Frangois Pottier, and Derek Dreyer. 2025. Data Race Freedom a la Mode. Proc. ACM Program. Lang. 9, POPL, Article 23
(Jan. 2025), 31 pages. https://doi.org/10.1145/3704859

Adele Goldberg and David Robson. 1983. Smalltalk-80: the language and its implementation. Addison-Wesley Longman
Publishing Co., Inc., USA.

Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy. 2012. Uniqueness and reference
immutability for safe parallelism. In Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October
21-25, 2012. 21-40. https://doi.org/10.1145/2384616.2384619

Donald Gordon and James Noble. 2007. Dynamic ownership in a dynamic language. In Proceedings of the 2007
Symposium on Dynamic Languages (Montreal, Quebec, Canada) (DLS *07). Association for Computing Machinery, New
York, NY, USA, 41-52. https://doi.org/10.1145/1297081.1297090

Sam Gross. 2023. PEP 703 - Making the Global Interpreter Lock Optional in CPython. https://peps.python.org/pep-
0703/.

Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Cheney. 2002. Region-based
memory management in Cyclone. ACM Sigplan Notices 37, 5 (2002), 282-293. Publisher: ACM.

Douglas E. Harms and Bruce W. Weide. 1991. Copying and Swapping: Influences on the Design of Reusable Software
Components. IEEE Trans. Softw. Eng. 17, 5 (May 1991), 424-435. https://doi.org/10.1109/32.90445 Publisher: IEEE
Press.

Michael W. Hicks, J. Gregory Morrisett, Dan Grossman, and Trevor Jim. 2004. Experience with safe manual memory-
management in Cyclone. In ISMM. 73-84.

John Hogg. 1991. Islands: Aliasing Protection in Object-Oriented Languages. In Conference proceedings on Object-
oriented programming systems , languages, and applications - OOPSLA ’91. ACM Press, 271-285. https://doi.org/10.
1145/117954.117975

J. Hogg, D. Lea, A. Wills, D. de Champeaux, and R. Holt. 1992. The Geneva Convention on the Treatment of Object
Aliasing. OOPS Messenger 3, 2 (April 1992).

Vivian Hu. 2020. Rust Breaks into TIOBE Top 20 Most Popular Programming Languages. (June 2020). InfoQ.

B. Jacobs, K.R.M. Leino, F. Piessens, and W. Schulte. 2005. Safe concurrency for aggregate objects with invariants.
In Third IEEE International Conference on Software Engineering and Formal Methods (SEFM’05). 137-146. https:
//doi.org/10.1109/SEFM.2005.39

Steve Klabnik and Carol Nichols. 2019. The Rust Programming Language (Covers Rust 2018). No Starch Press.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

https://doi.org/10.1145/3622852
https://doi.org/10.1007/978-3-642-36946-9_3
https://doi.org/10.1007/978-3-540-45070-2_9
https://doi.org/10.1145/3687997.3695647
https://doi.org/10.1145/3486607.3486747
https://doi.org/10.1145/3704859
https://doi.org/10.1145/2384616.2384619
https://doi.org/10.1145/1297081.1297090
https://peps.python.org/pep-0703/
https://peps.python.org/pep-0703/
https://doi.org/10.1109/32.90445
https://doi.org/10.1145/117954.117975
https://doi.org/10.1145/117954.117975
https://doi.org/10.1109/SEFM.2005.39
https://doi.org/10.1109/SEFM.2005.39

Dynamic Region Ownership for Concurrency Safety 210:25

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]
[55]

[56]

Daan Leijen, Benjamin Zorn, and Leonardo de Moura. 2019. Mimalloc: Free list sharding in action. In Programming
Languages and Systems: 17th Asian Symposium, APLAS 2019, Nusa Dua, Bali, Indonesia, December 1-4, 2019, Proceedings
17. Springer, 244-265.

K. Rustan M. Leino and Peter Miiller. 2004. Object Invariants in Dynamic Contexts. In ECOOP 2004 — Object-Oriented
Programming, Martin Odersky (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 491-515.

Yi Lu, John Potter, and Jingling Xue. 2013. Structural Lock Correlation with Ownership Types. In Programming
Languages and Systems, Matthias Felleisen and Philippa Gardner (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
391-410.

Mae Milano, Joshua Turcotti, and Andrew C. Myers. 2022. A flexible type system for fearless concurrency. In PLDI 22:
43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation, San Diego, CA,
USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 458-473. https://doi.org/10.1145/3519939.3523443
Jay Miller. 2022. A Team at Microsoft is Helping Make Python Faster. https://devblogs.microsoft.com/python/python-
311-faster-cpython-team/.

M. Miller. 2006. Robust Composition: Towards a Unified Approach to Access Control and Concurrency Control. PhD Thesis.
Johns Hopkins University, USA.

Naftaly H. Minsky. 1996. Towards Alias-Free Pointers. In ECOOP’96 - Object-Oriented Programming, 10th European
Conference, Linz, Austria, July 8-12, 1996, Proceedings (Lecture Notes in Computer Science, Vol. 1098), Pierre Cointe (Ed.).
Springer, 189-209. https://doi.org/10.1007/BFB0053062

James Noble, David Clarke, and John Potter. 1999. Object Ownership for Dynamic Alias Protection. In Proceedings of
the 32nd International Conference on Technology of Object-Oriented Languages (TOOLS °99). IEEE Computer Society,
USA, 176.

Nikolaos Papaspyrou and Konstantinos Sagonas. 2012. On Preserving Term Sharing in the Erlang Virtual Machine . In
Proceedings of the Eleventh ACM SIGPLAN Workshop on Erlang Workshop (Erlang °12). Association for Computing
Machinery, New York, NY, USA, 11-20. https://doi.org/10.1145/2364489.2364493 event-place: Copenhagen, Denmark.
Matthew J. Parkinson, Sylvan Clebsch, and Tobias Wrigstad. 2024. Reference Counting Deeply Immutable Data
Structures with Cycles: An Intellectual Abstract. In Proceedings of the 2024 ACM SIGPLAN International Symposium on
Memory Management (Copenhagen, Denmark) (ISMM 2024). Association for Computing Machinery, New York, NY,
USA, 131-141. https://doi.org/10.1145/3652024.3665507

Alex Potanin, James Noble, and Robert Biddle. 2004. Checking ownership and confinement. Concurrency - Practice and
Experience 16, 7 (2004), 671-687. https://doi.org/10.1002/cpe.799

Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. 2006. Generic ownership for generic Java. In Proceedings
of the 21st Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications
(Portland, Oregon, USA) (OOPSLA ’06). Association for Computing Machinery, New York, NY, USA, 311-324. https:
//doi.org/10.1145/1167473.1167500

Alex Reinking, Ningning Xie, Leonardo de Moura, and Daan Leijen. 2021. Perceus: garbage free reference counting
with reuse. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 96-111.
https://doi.org/10.1145/3453483.3454032

Ilya Sergey and Dave Clarke. 2012. Gradual Ownership Types. In Programming Languages and Systems - 21st European
Symposium on Programming, ESOP 2012, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings. 579-599. https://doi.org/10.1007/978-3-
642-28869-2_29

Marco Servetto, David J. Pearce, Lindsay Groves, and Alex Potanin. 2013. Balloon Types for Safe Parallelisation over
Arbitrary Object Graphs. In 4th Workshop on Determinism and Correctness in Parallel Programming.

KC Sivaramakrishnan, Stephen Dolan, Leo White, Sadiq Jaffer, Tom Kelly, Anmol Sahoo, Sudha Parimala, Atul Dhiman,
and Anil Madhavapeddy. 2020. Retrofitting parallelism onto OCaml. Proc. ACM Program. Lang. 4, ICFP, Article 113
(Aug. 2020), 30 pages. https://doi.org/10.1145/3408995

KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and Anil Madhavapeddy. 2021. Retrofitting
effect handlers onto OCaml. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York,
NY, USA, 206-221. https://doi.org/10.1145/3453483.3454039

Eric Snow. 2022. PEP 684 — A Per-Interpreter GIL. https://peps.python.org/pep-0684/.

Eric Snow and Eddie Elizondo. 2022. PEP 683 — Immortal Objects, Using a Fixed Refcount. https://peps.python.org/pep-
0683/.

Sriram Srinivasan and Alan Mycroft. 2008. Kilim: Isolation-Typed Actors for Java. In ECOOP. https://doi.org/10.1007/
978-3-540-70592-5_6

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

https://doi.org/10.1145/3519939.3523443
https://devblogs.microsoft.com/python/python-311-faster-cpython-team/
https://devblogs.microsoft.com/python/python-311-faster-cpython-team/
https://doi.org/10.1007/BFB0053062
https://doi.org/10.1145/2364489.2364493
https://doi.org/10.1145/3652024.3665507
https://doi.org/10.1002/cpe.799
https://doi.org/10.1145/1167473.1167500
https://doi.org/10.1145/1167473.1167500
https://doi.org/10.1145/3453483.3454032
https://doi.org/10.1007/978-3-642-28869-2_29
https://doi.org/10.1007/978-3-642-28869-2_29
https://doi.org/10.1145/3408995
https://doi.org/10.1145/3453483.3454039
https://peps.python.org/pep-0684/
https://peps.python.org/pep-0683/
https://peps.python.org/pep-0683/
https://doi.org/10.1007/978-3-540-70592-5_6
https://doi.org/10.1007/978-3-540-70592-5_6

210:26 F. Stoldt, B. Bucher, S. Clebsch, M. Johnson, M. Parkinson, G. van Rossum, E. Snow, and T. Wrigstad

[57]

[58]

[59]

[60]

[61]

[62]

Fridtjof Stoldt, Matthew Parkinson, Sylvan Clebsch, Matthew Johnson, and Tobias Wrigstad. 2025. FrankenScript: A
tool to explore and visualize region-based ownership in dynamic programming languages. https://doi.org/10.5281/
zenodo.15235762.

James Swaine, Burke Fetscher, Vincent St-Amour, Robert Bruce Findler, and Matthew Flatt. 2012. Seeing the futures:
profiling shared-memory parallel racket. In Proceedings of the 1st ACM SIGPLAN Workshop on Functional High-
Performance Computing (Copenhagen, Denmark) (FHPC °12). Association for Computing Machinery, New York, NY,
USA, 73-82. https://doi.org/10.1145/2364474.2364485

Kevin Tew, James Swaine, Matthew Flatt, Robert Bruce Findler, and Peter Dinda pdinda@northwestern.edu. 2011.
Places: adding message-passing parallelism to racket. In Proceedings of the 7th Symposium on Dynamic Languages
(Portland, Oregon, USA) (DLS ’11). Association for Computing Machinery, New York, NY, USA, 85-96. https:
//doi.org/10.1145/2047849.2047860

Iona Thomas, Vincent Aranega, Stéphane Ducasse, Guillermo Polito, and Pablo Tesone. 2023. A VM-Agnostic and
Backwards Compatible Protected Modifier for Dynamically-Typed Languages. The Art, Science, and Engineering of
Programming 8, 1 (June 2023). https://doi.org/10.22152/programming-journal.org/2024/8/2

Guido van Rossum. 2007. It isn’t Easy to Remove the GIL. https://www.artima.com/weblogs/viewpost.jsp?thread=
214235

Guido van Rossum and Alyssa Coghlan. 2005. PEP 343 — The “with” Statement. https://peps.python.org/pep-0343/.

[63] Jan Vitek and Boris Bokowski. 1999. Confined types. In Proceedings of the 14th ACM SIGPLAN Conference on Object-

[64]
[65]

[66]

[67]

[68]

Oriented Programming, Systems, Languages, and Applications (Denver, Colorado, USA) (OOPSLA °99). Association for
Computing Machinery, New York, NY, USA, 82-96. https://doi.org/10.1145/320384.320392

wikipedia 2024. Indiana pi bill. https://en.wikipedia.org/wiki/Indiana_pi_bill.

Thomas Wouters. 2023. A Steering Council notice about PEP 703 (Making the Global Interpreter Lock Optional in
CPython). https://discuss.python.org/t/a-steering-council-notice-about-pep-703-making-the-global-interpreter-lock-
optional-in-cpython/30474.

Tobias Wrigstad, Filip Pizlo, Fadi Meawad, Lei Zhao, and Jan Vitek. 2009. Loci: Simple Thread-Locality for Java. In
ECOOP 2009 - Object-Oriented Programming, 23rd European Conference, Genoa, Italy, July 6-10, 2009. Proceedings
(Lecture Notes in Computer Science, Vol. 5653), Sophia Drossopoulou (Ed.). Springer, 445-469. https://doi.org/10.1007/978-
3-642-03013-0_21

Nosheen Zaza. 2013. Evaluating the Accuracy of Annotations in the Loci 3.0 Pluggable Type Checker. Master’s thesis.
Uppsala University.

Beatrice Akerblom, Elias Castegren, and Tobias Wrigstad. 2020. Reference Capabilities for Safe Parallel Array
Programming . Programming Journal 4, 1 (2020), 1. https://doi.org/10.22152/programming-journal.org/2020/4/1

Received 2024-11-14; accepted 2025-03-06

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 210. Publication date: June 2025.

https://doi.org/10.5281/zenodo.15235762
https://doi.org/10.5281/zenodo.15235762
https://doi.org/10.1145/2364474.2364485
https://doi.org/10.1145/2047849.2047860
https://doi.org/10.1145/2047849.2047860
https://doi.org/10.22152/programming-journal.org/2024/8/2
 https://www.artima.com/weblogs/viewpost.jsp?thread=214235
 https://www.artima.com/weblogs/viewpost.jsp?thread=214235
https://peps.python.org/pep-0343/
https://doi.org/10.1145/320384.320392
https://en.wikipedia.org/wiki/Indiana_pi_bill
 https://discuss.python.org/t/a-steering-council-notice-about-pep-703-making-the-global-interpreter-lock-optional-in-cpython/30474
 https://discuss.python.org/t/a-steering-council-notice-about-pep-703-making-the-global-interpreter-lock-optional-in-cpython/30474
https://doi.org/10.1007/978-3-642-03013-0_21
https://doi.org/10.1007/978-3-642-03013-0_21
https://doi.org/10.22152/programming-journal.org/2020/4/1

	Abstract
	1 Introduction
	2 Growing an Ownership Model for Safe Concurrency
	2.1 A Notion of Safe Sharing and Ownership Transfer
	2.2 Region-Based Ownership
	2.3 Summary and Overview of the ``Lungfish'' Ownership Model

	3 Dynamic Ownership Enforcement
	3.1 Tracking Ownership
	3.2 Implementation

	4 Prototyping Language Design
	5 Design Alternatives and Challenges
	5.1 Implicit Freezing
	5.2 Invalidation of Borrowed References
	5.3 Dealing with Pervasive (Mutable) State

	6 Putting it All Together
	7 Evaluation of Design Goals and Implementation Goals
	7.1 Design Goals
	7.2 Implementation Goals

	8 Related Work
	9 Interfacing with The Faster CPython Team
	10 Conclusion
	11 Data Availability Statement
	Acknowledgments
	References

