Dual View Random Solved Random Open
PROVED (LEAN) This has been solved in the affirmative and the proof verified in Lean.
Let $A\subset \{1,\ldots,N\}$ be a Sidon set with $\lvert A\rvert\sim N^{1/2}$. Must $A+A$ be well-distributed over all small moduli? In particular, must about half the elements of $A+A$ be even and half odd?
Lindström [Li98] has shown this is true for $A$ itself, subsequently strengthened by Kolountzakis [Ko99]. It follows immediately using the Sidon property that $A+A$ is similarly well-distributed.

View the LaTeX source

External data from the database - you can help update this
Formalised statement? No (Create a formalisation here)
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None
The results on this problem could be formalisable None
I am working on formalising the results on this problem None

Additional thanks to: Zach Hunter

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #154, https://www.erdosproblems.com/154, accessed 2026-02-13