Dual View Random Solved Random Open
OPEN This is open, and cannot be resolved with a finite computation.
Let $1\leq n_1<n_2<\cdots$ be an arbitrary sequence of integers, each with an associated residue class $a_i\pmod{n_i}$. Let $A$ be the set of integers $n$ such that for every $i$ either $n<n_i$ or $n\not\equiv a_i\pmod{n_i}$. Must the logarithmic density of $A$ exist?
Disclaimer: The open status of this problem reflects the current belief of the owner of this website. There may be literature on this problem that I am unaware of, which may partially or completely solve the stated problem. Please do your own literature search before expending significant effort on solving this problem. If you find any relevant literature not mentioned here, please add this in a comment.
This is a special case of [486].

View the LaTeX source

This page was last edited 20 January 2026.

External data from the database - you can help update this
Formalised statement? Yes
Likes this problem Svyable
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None
The results on this problem could be formalisable None
I am working on formalising the results on this problem None

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #25, https://www.erdosproblems.com/25, accessed 2026-02-13