PROVED (LEAN)
This has been solved in the affirmative and the proof verified in Lean.
Is there a sequence $A=\{a_1\leq a_2\leq \cdots\}$ of integers with\[\lim \frac{a_{n+1}}{a_n}=2\]such that\[P(A')= \left\{\sum_{n\in B}n : B\subseteq A'\textrm{ finite }\right\}\]has density $1$ for every cofinite subsequence $A'$ of $A$?
This has been solved in the affirmative by ebarschkis in the comments (based on idea of Tao and van Doorn, also in the comments).
View the LaTeX source
This page was last edited 22 January 2026.
Additional thanks to: ebarschkis, Terence Tao, and Wouter van Doorn
When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:
T. F. Bloom, Erdős Problem #347, https://www.erdosproblems.com/347, accessed 2026-02-13