Dual View Random Solved Random Open
OPEN This is open, and cannot be resolved with a finite computation.
For what values of $t,\alpha \in (0,\infty)$ is the sequence $\lfloor t\alpha^n\rfloor$ complete (that is, all sufficiently large integers are the sum of distinct integers of the form $\lfloor t\alpha^n\rfloor$)?
Disclaimer: The open status of this problem reflects the current belief of the owner of this website. There may be literature on this problem that I am unaware of, which may partially or completely solve the stated problem. Please do your own literature search before expending significant effort on solving this problem. If you find any relevant literature not mentioned here, please add this in a comment.
Even in the range $t\in (0,1)$ and $\alpha\in (1,2)$ the behaviour is surprisingly complex. For example, Graham [Gr64e] has shown that for any $k$ there exists some $t_k\in (0,1)$ such that the set of $\alpha$ such that the sequence is complete consists of at least $k$ disjoint line segments. It seems likely that the sequence is complete for all $t>0$ and all $1<\alpha < \frac{1+\sqrt{5}}{2}$. Proving this seems very difficult, since we do not even know whether $\lfloor (3/2)^n\rfloor$ is odd or even infinitely often.

View the LaTeX source

External data from the database - you can help update this
Formalised statement? Yes
Likes this problem Woett, Dogmachine, hider1alduha
Interested in collaborating Woett, hider1alduha
Currently working on this problem Woett, hider1alduha
This problem looks difficult None
This problem looks tractable None
The results on this problem could be formalisable None
I am working on formalising the results on this problem None

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #349, https://www.erdosproblems.com/349, accessed 2026-02-13