Dual View Random Solved Random Open
PROVED This has been solved in the affirmative.
Prove that, for any finite set $A\subset\mathbb{N}$, there exist $a,b\in A$ such that\[\mathrm{gcd}(a,b)\leq a/\lvert A\rvert.\]
A conjecture of Graham [Gr70], who also conjectured that (assuming $A$ itself has no common divisor) the only cases where equality is achieved are when $A=\{1,\ldots,n\}$ or $\{L/1,\ldots,L/n\}$ (where $L=\mathrm{lcm}(1,\ldots,n)$) or $\{2,3,4,6\}$.

Proved for all sufficiently large sets (including the sharper version which characterises the case of equality) independently by Szegedy [Sz86] and Zaharescu [Za87].

Proved for all sets by Balasubramanian and Soundararajan [BaSo96].

View the LaTeX source

External data from the database - you can help update this
Formalised statement? Yes
Likes this problem None
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None
The results on this problem could be formalisable None
I am working on formalising the results on this problem None

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #402, https://www.erdosproblems.com/402, accessed 2026-02-13