Dual View Random Solved Random Open
FALSIFIABLE Open, but could be disproved with a finite counterexample.
Let $r\geq 3$. If the edges of $K_{r^2+1}$ are $r$-coloured then there exist $r+1$ vertices with at least one colour missing on the edges of the induced $K_{r+1}$.
Disclaimer: The open status of this problem reflects the current belief of the owner of this website. There may be literature on this problem that I am unaware of, which may partially or completely solve the stated problem. Please do your own literature search before expending significant effort on solving this problem. If you find any relevant literature not mentioned here, please add this in a comment.
In other words, there is no balanced colouring. A conjecture of Erdős and Gyárfás [ErGy99], who proved it for $r=3$ and $r=4$ (and observered it is false for $r=2$), and showed this property fails for infinitely many $r$ if we replace $r^2+1$ by $r^2$.

View the LaTeX source

External data from the database - you can help update this
Formalised statement? Yes
Likes this problem eigensolver
Interested in collaborating None
Currently working on this problem None
This problem looks difficult None
This problem looks tractable None
The results on this problem could be formalisable None
I am working on formalising the results on this problem None

When referring to this problem, please use the original sources of Erdős. If you wish to acknowledge this website, the recommended citation format is:

T. F. Bloom, Erdős Problem #617, https://www.erdosproblems.com/617, accessed 2026-02-13